

Effectiveness and Safety of Antibiotics in Kidney Transplant Recipients With Asymptomatic Bacteriuria: A Systematic Review and Meta-analysis of Randomized Controlled Trials

Abdullah Tarik Aslan, Lokman Hekim Tanriverdi, Adrian V. Hernandez, Munt Akova, Munt Akova, Munt Kutluca, Munt Kut

¹Faculty of Medicine, UQ Centre for Clinical Research, University of Queensland, Brisbane, Queensland, Australia, ²Faculty of Medicine, Department of Medical Pharmacology, Inönü University, Malatya, Turkiye, ³Health Outcomes, Policy, and Evidence Synthesis (HOPES) Group, University of Connecticut School of Pharmacy, Storrs, Connecticut, USA, ⁴Unidad de Revisiones Sistemáticas y Meta-Análisis (URSIGET), Vicerrectorado de Investigación, Universidad San Ignacio de Loyola, Lima, Peru, ⁵Emory University School of Medicine, Faculty of Medicine, Atlanta, Georgia, USA, ⁶School of Medicine, Hacettepe University, Ankara, Turkiye, ⁷Department of Nephrology, Princess Alexandra Hospital, Brisbane, Australia, ⁸Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, Victoria, Australia, ⁹Service de Maladies Infectieuses et Tropicales, Centre Hospitalier Universitarie de Guadeloupe, Les Abymes, Guadeloupe, France, ¹⁰Department of Nephrology, Hospital Centenario Miguel Hidalgo, Aguascalientes, Mexico, ¹¹Instituto de Atención Integral de Enfermedades Renales del Estado Aguascalientes, Mexico, ¹²Department of Infectious Diseases, Hospital Universitario "12 de Octubre," Madrid, Spain, ¹³Department of Infectious Diseases, Hospital Universitario "Lozano Blesa," Zaragoza, Spain, ¹⁴Department of Infectious Diseases, Hospital Universitario de Bellvitge, L'Hospitalet de Llobregat, Barcelona, Spain, ¹⁵Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain, ¹⁸School of Medicine, Department of Infectious Diseases and Clinical Microbiology, Hacettepe University, Ankara, Turkiye, ¹⁷ADVANCE-ID, Saw Swee Hock School of Public Health, National University of Singapore, Singapore, Singapore, Singapore, Singapore, Singapore, Singapore

Background. Asymptomatic bacteriuria (ASB) is generally systematically screened and treated with antibiotics in kidney transplant recipients (KTRs). We aimed to explore the role of antibiotic therapy in management of ASB in KTRs.

Methods. Randomized controlled trials conducted through 10 May 2023 were searched on Ovid MEDLINE, Web of Science, PubMed, and Cochrane CENTRAL. We used inverse variance random-effects models for all meta-analyses; for rare outcomes, we used the Mantel-Haenszel method. ROB-2 criteria were used to assess the risk of bias.

Results. We identified 4 randomized controlled trials (including 478 participants). Antibiotic therapy, compared with no therapy, nonsignificantly increased the risk of acute pyelonephritis by 19% (relative risk, 1.19 [95% confidence interval (CI)], .72–1.94; $I^2 = 0\%$) and that of symptomatic urinary tract infection (UTI) by 18% (1.18 [.78–1.78]; $I^2 = 28\%$). The risks of all-cause mortality (relative risk, 1.56 [95% CI, .54–4.52]), graft loss (0.80 [.20–3.19]), graft rejection (0.89 [.46–1.70]), hospital admission due to symptomatic UTI (0.92 [.48–1.76]), symptomatic UTI caused by a multidrug-resistant organism (1.31 [.63–2.74]), Clostridioides difficile diarrhea (0.75 [.23–2.42]), and serious adverse events (1.20 [.75–1.91]) did not differ significantly between groups, nor did the change in serum creatinine level from baseline to the end of the study (mean difference, 0.40 mg/ dL [95% CI, -.05 to .85 mg/dL]). No significant differences were demonstrated in any outcomes between antibiotic therapy and no-therapy arms across subgroup and sensitivity analyses.

Conclusions. Current evidence does not support routine screening and treatment of posttransplant ASB in KTRs. **Keywords.** antibiotic; asymptomatic bacteriuria; kidney transplantation; pyelonephritis; urinary tract infection.

Received 06 March 2025; editorial decision 17 July 2025; accepted 15 August 2025; published online 19 August 2025

Presented in part: ESCMID Global 2024, Barcelona, Spain, 27-30 April 2024.

Correspondence: Abdullah Tarik Aslan, MD, Faculty of Medicine, The University of Queensland Centre for Clinical Research, Building 71/918 RBWH Herston, Brisbane City, QLD 4006, Australia (a.aslan@uq.edu.au).

Open Forum Infectious Diseases®

© The Author(s) 2025. Published by Oxford University Press on behalf of Infectious Diseases Society of America. This is an Open Access article distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs licence (https://creativecommons.org/licenses/by-nc-nd/4.0/), which permits non-commercial reproduction and distribution of the work, in any medium, provided the original work is not altered or transformed in any way, and that the work is properly cited. For commercial re-use, please contact reprints@oup.-com for reprints and translation rights for reprints. All other permissions can be obtained through our RightsLink service via the Permissions link on the article page on our site—for further information please contact journals.permissions@oup.com.

Asymptomatic bacteriuria (ASB) is defined as the presence of bacteria in the urine when there are no symptoms of urinary tract infection (UTI), such as fever, chills, painful urination, abdominal pain, or blood in urine. Up to 51% of kidney transplant recipients (KTRs) experience bacteriuria in the first 3 years after kidney transplantation, and the incidence of UTIs, as the most common complication and a significant source of morbidity in KTRs, ranges from 6% to 83% depending on the diagnostic criteria [1–3]. Acute pyelonephritis is the most serious form of UTI and may result in sepsis and acute graft dysfunction in this patient population [4].

Despite the absence of solid evidence, ASB is systematically screened for and treated with antibiotics in many kidney transplant centers, with the presumption that eradication of ASB can reduce the risk of acute pyelonephritis and symptomatic UTI [5]. Clinicians are also concerned that clinical manifestations

of posttransplant pyelonephritis may be masked due to graft

denervation and use of immunosuppressive medications [6]. Nevertheless, it remains unclear whether antibiotic treatment of ASB effectively prevents progression to acute pyelonephritis or symptomatic UTI and thereby improves patient and graft outcomes. In addition, antibiotic exposure has well-known ramifications, such as emergence of antimicrobial resistance and antibiotic-associated adverse events [6, 7].

To date, 1 Cochrane review and 2 systematic reviews and meta-analyses have assessed the effects of antibiotics versus no therapy in KTRs with ASB. In the Cochrane review, published by Coussement et al in 2018 [6], only 2 studies were included (1 randomized controlled trial [RCT] and 1 quasi-RCT); the authors concluded that the results of 3 RCTs ongoing at the time of this review may help resolve existing uncertainties. In a more recently published systematic review and meta-analysis [3], a total of 5 studies (4 RCTs and 1 quasi-RCT) were included. The results of that study suggested that antibiotic treatment of KTRs with ASB does not reduce the incidence of subsequent symptomatic UTI or provide any benefit to graft outcomes. Antibiotic treatment was also found to present an uncertain risk for the emergence of multidrug-resistant (MDR) bacteria. This systematic review and meta-analysis had important limitations. First, the authors asserted that no subgroup analyses could be performed due to the paucity of data. Furthermore, the study lacked some critical sensitivity analyses (eg, analysis of RCTs excluding KTRs with ureteral catheters) and included some inaccurate data regarding the number of study participants from whom MDR bacteria were isolated during follow-up. Similarly, another systematic review and meta-analysis evaluating 9 studies (4 RCTs, 1 quasi-RCT, and 4 observational studies) indicated no clinical benefit of antibiotic therapy for ASB in KTRs [8].

We performed the current systematic review and metaanalysis of RCTs evaluating antibiotic therapy versus no antibiotic therapy in KTRs with ASB at any time point after transplantation. We also aimed to investigate the outcomes in several preplanned subgroup and sensitivity analyses. We hypothesized no significant difference between antibiotic therapy and no antibiotic therapy for all patients and both subgroups.

METHODS

This systematic review was reported according to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines [9]. We registered our protocol at PROSPERO (International Prospective Register of Systematic Reviews) (CRD42023430397; https://www.crd.york.ac.uk/prospero/display_record.php?RecordID=430397) (accessed 20 August 2024). There were no changes in our protocol until we finished conducting the systematic review.

Population, Intervention, Comparator, and Outcomes

The participants/populations were adults with end-stage kidney disease who were recipients of a first or subsequent cadaveric or living donor kidney transplant and who had ASB. The interventions or exposures were antibiotics, and the comparators/controls received placebo or no antibiotic. The outcomes were the incidences of acute pyelonephritis and symptomatic UTI.

Literature Searches

A thorough search of Ovid MEDLINE, Web of Science, PubMed, and Cochrane CENTRAL was conducted through 10 May 2023 to identify studies according to inclusion/exclusion criteria. Literature search strategies are presented in the Supplementary Materials. We included all languages and did not restrict by publication year.

Selection of Studies and Data Extraction

We included RCTs comparing antibiotic therapy with no antibiotic therapy or placebo for ASB in recipients of a first or subsequent cadaveric or living donor kidney transplant. RCTs assessing pregnant women, patients with graft loss before randomization and those awaiting any urological procedure in which mucosal bleeding is anticipated were excluded, as were quasi-RCTs. Three investigators (U. A., K. K., and S. C.) independently selected studies by applying the prespecified inclusion/exclusion criteria after the literature search; disagreements were resolved by a fourth reviewer (A. T. A.). Data extraction was performed by 3 reviewers (U. A., K. K., and S. C.) using a predefined standard data extraction form and was checked by another researcher (A. T. A.). A member of the systematic review team (L. H. T.) contacted the authors of primary studies to obtain any missing data relevant to the current review and meta-analysis; authors of primary studies were also asked to check extracted data for completeness and correctness.

Primary and Secondary Outcomes, and Definitions Used

The co–primary outcomes were the incidences of symptomatic UTI and acute pyelonephritis. To identify ASB in asymptomatic women and men, previous definitions or those adapted by the authors were used [6, 10]. In 3 of the included RCTs [11–13], ASB was defined as isolation of a single bacterial species at 10^5 colony-forming units (CFUs)/mL in a urine specimen from a patient without UTI symptoms. In contrast, Origüen et al [14] required 2 consecutive urine specimens with isolation of the same bacterial strain in quantitative counts $\geq 10^5$ CFUs/mL in women, whereas a single clean-catch voided urine specimen was adequate for diagnosis of ASB in male patients. Symptomatic UTI was defined as the isolation of a bacterial species from a patient with symptoms such as fever, chills, dysuria, abdominal pain, and blood in the urine. We used the thresholds of urinary bacterial growth (in CFUs per milliliter)

from the included RCTs to define symptomatic UTI. Acute pyelonephritis was defined by the presence of fever with bacteriuria and/or bacteremia and ≥ 1 of the following criteria: chills, allograft tenderness, or cystitis. MDR bacteria were defined as being nonsusceptible to ≥ 1 antibiotic in ≥ 3 antimicrobial categories [15].

Secondary outcomes included all-cause mortality, graft loss (including death with a functioning allograft), graft rejection (either clinically suspected and treated or histopathologically proven), change in the estimated glomerular filtration rate (eGFR) from baseline to the end of follow-up, change in the serum creatinine level (in milligrams per deciliter) from baseline to the end of follow-up, hospital admission due to symptomatic UTI, number of persistent or relapsing ASB episodes (with persistence defined as an episode caused by the same bacterial species with similar antimicrobial susceptibility profile and relapse as recurrence after clearance of the initial bacteriuria episode), symptomatic UTI caused by an MDR organism during follow-up, a second episode of ASB caused by an MDR organism during follow-up, severe adverse events, and *Clostridioides difficile* diarrhea.

Assessment of Risk of Bias and Certainty of Evidence

The overall risk of bias (RoB) assessment was independently performed by 2 reviewers (A. T. A. and L. H. T.) using the RoB 2.0 tool [16]; disagreements were resolved by a third reviewer (A. V. H.). The certainty of evidence was described per outcome using the GRADE method, and its assessment covered 5 aspects: RoB, inconsistency, indirectness, imprecision, and publication bias [17]. The certainty of evidence was described in a summary of findings table, created using GRADEpro GDT software (version 2020) [18].

Statistical Analysis

We primarily used inverse variance random-effects models for all meta-analyses; for rare outcomes (incidence <10% of individuals), we used the Mantel-Haenszel method. Between-study variance (τ^2) was calculated using the Paule-Mandel method. Effects on dichotomous outcomes were described with relative risks (RRs) and their 95% confidence intervals (CIs); effects on continuous outcomes, with mean differences (MDs) and their 95% CIs. We explored the heterogeneity among study effects with Cochran Q tests and I^2 statistics. For I^2 statistics, 30%–60% indicates moderate heterogeneity; >60%, high heterogeneity; and >75%, substantial heterogeneity. All statistical analyses and pooling were performed using R software v.4.0.2 (www.r-project.org).

Four preplanned subgroup analyses were performed to explore possible sources of heterogeneity: time from transplantation to ASB (<12 vs \ge 12 months), baseline eGFR at study inclusion (<40 vs \ge 40 mL/min), type of bacteria causing initial ASB episode (*Escherichia coli* vs others), and presence of

antimicrobial resistance against ≥ 2 of the 3 antibiotics (trimethoprim-sulfamethoxazole, ciprofloxacin, and thirdgeneration cephalosporins) in bacteria identified in the initial ASB episode. We also performed 2 post hoc subgroup analyses based on reviewers' suggestions (time from transplantation to ASB [<6 vs ≥ 6 months] and sex [male vs female]). Significant subgroup effects had P for interaction values <.1. A post hoc sensitivity analysis was performed to include only RCTs (n = 3) that randomized patients after ureteral catheters were removed. Other sensitivity analyses were carried out by repeating all analyses using fixed-effects models.

RESULTS

Study selection is illustrated in Figure 1. Four trials met our inclusion criteria; all were investigator initiated and compared antibiotics versus no therapy in KTRs with ASB [11–14]. Only 1 trial included KTRs who were early after transplantation and had ureteral catheters. All trials reported the incidences of acute pyelonephritis and symptomatic UTI. While Coussement et al [11] included KTRs \geq 2 months after transplantation, when they developed ASB, the 3 other trials systematically included patients after transplantation (Table 1). Therefore, in these trials, not all participants developed ASB during the trial follow-up [12–14]. Other characteristics of included trials are depicted in Table 1.

The RoB of the included RCTs is depicted in Figure 2. For symptomatic UTI, the RCT by Sabé et al [12], was at high RoB due to measurement of outcome, and the 3 remaining trials had some concerns of bias in the deviations from the intended intervention and selection of the reported results. For pyelonephritis, all RCTs had some concerns of RoB due to the deviations from the intended intervention, and selection of the reported results. The certainty of evidence was heterogeneous across RCTs, ranging from very low to moderate across primary and secondary outcomes (Table 2).

Overall, the systematic review included 234 patients randomized to the antibiotic arm and 244 to the no-therapy arm. For the primary outcome analysis, antibiotic therapy increased acute pyelonephritis risk nonsignificantly, by 19% (n = 478; RR, 1.19 [95% CI, .72–1.94]; I^2 = 0%) (Figure 3). In the per-protocol analysis, albeit not reaching statistical significance, the risk of acute pyelonephritis was higher in patients who were treated for ASB than in those who were not (n = 409; RR, 1.43 [95% CI, .62–3.27]; I^2 = 25%) (Supplementary Figure 1). Similarly, antibiotic therapy nonsignificantly increased the risk of symptomatic UTI risk, by 18% (n = 478; RR, 1.18 [95% CI, .78–1.78]; I^2 = 28%) and 27% (n = 409; RR, 1.27 [.67–2.39]; I^2 = 55%) in intention-to-treat (Figure 4) and per-protocol (Supplementary Figure 2) analyses, respectively.

Regarding secondary outcomes, the following risks and MDs did not differ significantly between groups: all-cause mortality

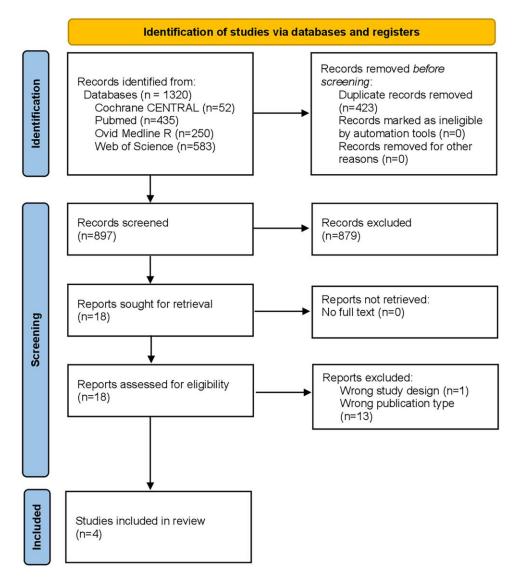


Figure 1. PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) flow diagram for systematic review and meta-analysis, demonstrating the identification, screening, and inclusion of studies.

(n = 478; RR, 1.56 [95% CI, .54–4.52]; I^2 = 0%) graft loss (n = 398; RR, .80 [.20–3.19]; I^2 = 0%), graft rejection (n = 478; RR, 0.89 [.46–1.70]; I^2 = 0%), hospital admission due to symptomatic UTI (n = 478; RR, 0.92 [.48–1.76]; I^2 = 6%), persistent or relapsing ASB episodes (n = 452; RR, 0.86 [.69–1.06]; I^2 = 34%), incidence of a second episode of ASB caused by an MDR organism (n = 267; RR, 0.98 [.54–1.79]; I^2 = 46%), symptomatic UTI caused by an MDR organism (n = 206; RR, 1.31 [.63–2.74]; I^2 = 0%), change in serum creatinine level from baseline to end of study (n = 308; MD, 0.40 mg/dL [95% CI, -.05 to .85 mg/dL]; I^2 = 66%), change in eGFR from baseline to end of study (n = 357; MD, -2.77 mL/min/1.73 m² [95% CI -6.25 to .70 mL/min/1.73 m²], I^2 = 78%), serious adverse events (n = 478; RR, 1.20 [.75–1.91]; I^2 = 0%), and *C difficile* diarrhea (n = 478; RR, 0.75 [.23–2.42]; I^2 = 0%) (Supplementary

Figures 3–13). The results of the sensitivity analyses including patients randomized after removal of ureteral catheters were consistent with those from the main analyses (Supplementary Figures 14 and 15). The same trends were seen when a fixed-effects model was used in place of a random-effects model in all analyses (data not provided).

The results of predefined subgroup analyses (time from transplantation to ASB [<12 vs ≥ 12 months]), baseline eGFR [<40 vs ≥ 40 mL/min], ASB due to *E coli* versus other organisms, and antimicrobial resistance against ≥ 2 of the following: trimethoprim-sulfamethoxazole, ciprofloxacin, and thirdgeneration cephalosporins) are presented in the Supplementary Materials (Supplementary Figures 16–23), along with those requested by the reviewers (time from transplantation to ASB (<6 vs ≥ 6 months) and sex (male vs female) (Supplementary

Study ID	Experimental	Comparator	Outcome	Weight	<u>D1</u>	<u>D2</u>	<u>D3</u>	<u>D4</u>	<u>D5</u>	Overall		
Mendoza-Enciso 2022	Antibiotics	No treatment	Pyelonephritis	1	•	1	•	•	1	!	•	Low risk
Coussement 2021	Antibiotics	No treatment	Pyelonephritis	1	•	1	•	•	1	1	1	Som e concerns
Sabe 2019	Antibiotics	No treatment	Pyelonephritis	1	•	1	•	•	1	1		High risk
Origuen 2016	Antibiotics	No treatment	Pyelonephritis	1	•	1	•	•	1	1		
Mendoza-Enciso 2022	Antibiotics	No treatment	Symptomatic UTI	1	•	1	•	•	1	1	D1	Randomisation process
Coussement 2021	Antibiotics	No treatment	Symptomatic UTI	1	•	1	•	•	1	1	D2	Deviations from the intended intervention:
Sabe 2019	Antibiotics	No treatment	Symptomatic UTI	1	•	1	•		1	-	D3	Missing outcome data
Origuen 2016	Antibiotics	No treatment	Symptomatic UTI	1	•	1	•	•	1	1	D4	Measurement of the outcome
											D5	Selection of the reported result

Figure 2. Review of authors' judgments about each risk-of-bias item for each of the 4 included randomized controlled trials [11–14]. Abbreviation: UTI, urinary tract infection.

Figures 24–27). No significant effects of antibiotic therapy were detected in any of the subgroups, in terms of pyelonephritis or symptomatic UTI.

DISCUSSION

In this systematic review and meta-analysis, which included data on 478 participants from 4 randomized trials, antibiotic treatment of KTRs with ASB had no significant protective effect on subsequent acute pyelonephritis and symptomatic UTI. Furthermore, antibiotic therapy had uncertain effects on symptomatic UTI caused by MDR bacteria, serious adverse events, *C difficile* diarrhea, and persistent or relapse ASB episodes. There was no evidence that antibiotic treatment of KTRs with ASB improves patient and graft function outcomes (eg, change in eGFR, graft loss, or acute graft rejection), hospitalization due to symptomatic UTI, or the all-cause mortality rate. The results of the sensitivity and subgroup analyses were parallel with those of the main analyses.

Observational studies published between the 1970s and 1980s reported high incidences of ASB in KTRs, particularly within the first few months after kidney transplantation [10]. Many KTRs with ASB also developed symptomatic UTI with detrimental impacts on graft function [19]. This impelled many clinicians to screen for and treat posttransplant ASB with the assumption that this strategy may reduce the risk of subsequent symptomatic UTI and improve long-term patient and graft outcomes [20]. However, the posttransplant risk of UTI has probably been modified by advances in the management of KTRs, including the introduction of routine antibiotic prophylaxis in the perioperative period, earlier removal of indwelling urinary devices, and long-term antibiotic prophylaxis to prevent opportunistic infections (eg, Pneumocystis jirovecii pneumonia) [6]. With these changes having the potential to help prevent symptomatic UTI and ASB [21], more recent retrospective studies indicated that few ASB episodes result in symptomatic UTI, without any major impact on graft function

and patient outcomes [22, 23]. Supporting international guidelines that recommend against systematically treating ASB in KTRs [10, 24–26], our meta-analysis of 4 randomized trials did not find any significant benefit of antibiotic therapy in this population. Although the prevalence of persistent or relapse ASB was numerically lower in patients allocated to antibiotic therapy, this microbiological effect did not translate into a clinically relevant benefit (ie, less frequent acute pyelonephritis and symptomatic UTI). In addition, antimicrobial therapy for ASB includes an uncertain risk for the development of MDR bacteria (ie, symptomatic UTI caused by MDR bacteria) and serious adverse events.

The great majority of participants from the primary studies included in our meta-analysis were randomized after removal of urinary catheters. As a consequence, it remains unclear whether or not antibiotic treatment for ASB occurring before removal of these devices can be useful in preventing acute pyelonephritis or symptomatic UTI [3]. Of the evaluated RCTs, only a single trial explored the effect of antibiotic treatment of ASB before removal of the ureteral catheter during the early posttransplant period. That trial found the incidences of acute pyelonephritis (15% for antibiotic vs 2.5% for no treatment; P = .04) and symptomatic UTI (25% vs 10%, P = .07) to be higher in the antibiotic group [13], but it was limited by its size; further RCTs are needed to determine the effects of systematically treating ASB in the first weeks after kidney transplantation, before removal of urinary catheters. Furthermore, the optimal duration of antibiotic therapy in ASB should be investigated if the clinical benefit of antibiotic therapy is revealed in this patient population.

The strengths of our systematic review include the comprehensive search strategy, the prespecified eligibility criteria and screening process, and the participation of the principal investigators from the primary studies, who validated and completed the data extracted from their studies. In addition, the availability of individual data from each RCT allowed us to perform clinically relevant subgroup and sensitivity analyses, which enhanced the transparency and reliability of our results. Such

Downloaded from https://academic.oup.com/ofid/article/12/9/ofaf502/8237537 by guest on 14 October 2025

Table 1. Characteristics of Included Randomized Controlled Trials

	Primary Outcome	First episode of symptomatic UTI during follow-up	First episode of acute pyelonephritis during follow-up	1:1; 5-d Antibiotic ASB and time before therapy vs no development of UTI or antibiotic acute pyelonephritis therapy during first 2 mo after transplant	First episode of acute pyelonephritis during follow-up	
	Stratification ^a	1:1; 10-d Antibiotic therapy vs no antibiotic therapy	1:1; 5–7-d Antibiotic therapy vs no antibiotic therapy	1:1; 5-d Antibiotic therapy vs no antibiotic therapy	1:1; 3–7-d Antibiotic therapy vs no antibiotic therapy	
	Follow-up Duration	12 mo	12 mo	93 d	24 mo	
Antibiotic Therapy Group/No-Therapy Group	Primary Kidney Disease, No.	Glomerular disease, 24/26; polycystic kidney disease, 17/16; TIN, 17/0; vascular nephropathy, 0/13	Previous KT, 11/0; diabetes, 9/8; glomerular disease, 6/0; unknown, 0/12; polycystic kidney disease, 0/9	Unknown, 36/35; glomerular disease, 3/3; WT, 1/ 0; diabetes, 0/1	Diabetes, 15/11; polycystic kidney disease, 11/ 0; glomerular disease, 10/14; nephroangiosclerosis, 0/8	
herapy Gro	Age, Mean (SD), y	60.2 (11.5)/ 60.1 (11.6)	61.0 (11.5)/ 60.1 (11.4)	29.9 (10.5)/ 29.7 (10.4)	55.4 (14.5); 53.0 (15.8)	i
Antibiotic T	Female Sex, No.	4777	26/25	12/15	25/28	
A	Patients in ITT Analysis, No.	100/99	41/46	40/40	53/59	
•	Population	France and Adult KTRs (aged ≥18 y) who had ASB within Belgium ≥2 mo after transplant and with urinary catheters removed; exclusion criteria: bladder and/or ureteral catheter, pregnancy, combined transplant, major increase in immunosuppression, neutropenia, ESRD requiring dialysis, recurrent allograft pyelonephritis, use of antibiotics at time of ASB episode, nonfunctioning native bladder, urinary surgery within 2 mo before randomization	Adult KTRs (aged ≥18 y) within first year after transplant and with urinary catheters removed; exclusion criteria: bladder and/or ureteral catheter	Adult KTRs (aged ≥18 y) within first 2 mo after transplant; exclusion criteria: urological complications and removal of ureteral catheter	Adult KTRs (aged ≥18 y) with ≥1 ASB episode >2 mo after transplant; exclusion criteria: bladder and/or ureteral catheter, pregnancy, kidney-pancreas transplant, graft loss within first 2 mo after transplant, previous diagnosis of ASB >2 mo after transplant but before randomization	
	Country	France and Belgium	Spain	Mexico	Spain	
	Study Design	er	Open label, multicenter (n = 2)	Open label, single center		
	Authors	Coussement et al Open label, [11] multicent (n = 13)	Sabé et al [12]	Mendoza-Enciso et al [13]	Origüen et al [14] Open label, single center	

Abbreviations: ASB, asymptomatic bacteriuria; ESRD, end-stage renal disease; ITT, intention-to-treat; KT, kidney transplant; KTRs, KT recipients; TIN, tubulo-interstitial nephritis; UTI, urinary tract infection; WT, Wilms tumor. ^aFor antibiotic therapy, the choice of agent, dosing, and route of administration were left to the discretion of the treating physician.

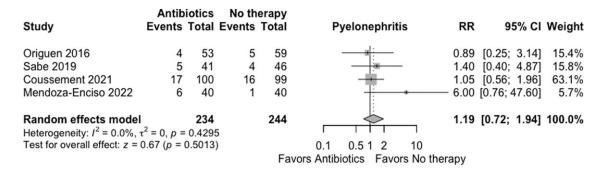


Figure 3. Forest plots from random-effects meta-analysis comparing the incidences of acute pyelonephritis between antibiotic and no-therapy groups [11–14]. Abbreviations: Cl, confidence interval; RR, relative risk.

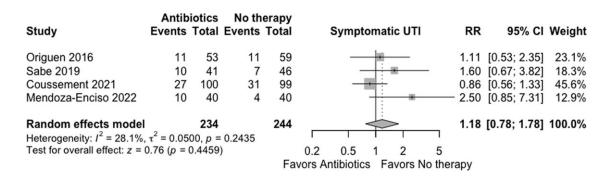


Figure 4. Forest plots from random-effects meta-analysis comparing the incidences of symptomatic urinary tract infection (UTI) between antibiotic and no-therapy groups [11–14]. Abbreviations: CI, confidence interval; RR, relative risk.

detailed sensitivity and subgroup analyses could not be performed in the previous systematic review and meta-analyses due to the paucity of data. Finally, all primary trials were limited by their relatively small size (80–199 participants per trial). Hence, this meta-analysis increases our confidence that antibiotics probably do not improve patient outcomes, including for relatively rare events such as pyelonephritis, which is less common than symptomatic UTI and therefore difficult to assess in small trials.

Our work has several limitations. First, the estimated effects of antibiotic therapy for preventing acute pyelonephritis and symptomatic UTI were relatively imprecise and compatible with either clinically relevant benefits or harms. This mainly stemmed from the limited number of patients enrolled in each trial, ranging from 80 to 199. Second, as symptomatic UTI can be subjectively reported, a number of biases may have influenced the measurement of this end point in the original RCTs. In addition, its impact on graft and patient outcome is minimal when not associated with other complications. Third, the great majority of the trials did not blind participants, recruiters, or trial statisticians. Since symptoms of UTI may be subjective, lack of blinding may augment the risk of biasing the results, particularly for patients within the first months after

kidney transplantation. Fourth, compliance to the intervention arm was limited in the majority of the RCTs included. For this specific reason, we also performed per-protocol analysis for coprimary outcomes (ie, acute pyelonephritis and symptomatic UTI), even though it may have a larger estimated treatment effect than intention-to-treat analysis and the balance gained by randomization may be lost with per-protocol analysis.

Fifth, the types, doses, and durations of antibiotics used in the antibiotic group were very heterogeneous across the trials. It can be assumed that types and doses of antibiotics used for treatment of ASB episodes are not uniform, mainly due to heterogeneities in the types of bacteria and their resistance profiles. The duration of antibiotic treatment for ASB in the included studies ranged from 3 to 10 days. It can be argued that 3 days of antibiotic treatment may not be sufficient to eradicate the bacteriuria in this population and that 10 days of antibiotic treatment may be relatively long among asymptomatic patients. While a 10-day duration may have covered potential cases of asymptomatic graft pyelonephritis, it may also have facilitated the emergence of resistant bacteria. Similarly, the duration of follow-up varied significantly between included studies, which might have affected the results. The short follow-up period in the study by Mendoza-Enciso et al [13] may be

Table 2. Summary of Findings: Certainty of Evidence per Outcome of Treatment With Antibiotics Versus No Treatment for Asymptomatic Bacteriuria in Kidney Transplant Recipients

	RR (95% CI)	Anticipa	ted Absolute Effects (95	% CI)	Contains (
Outcome		No Treatment	Antibiotic Treatment	Difference	Certainty of Evidence
Symptomatic UTI assessed based on urinary symptoms associated with positive urine culture (follow-up, 2–24 mo; n = 478; 4 RCTs)	1.18 (.78–1.78)	21.7%	25.6% (16.9%–38.7%)	3.9% (–4.8% to 16.9%)	⊕⊕⊖⊖ Low
Pyelonephritis assessed based on fever associated with bacteriuria and/or bacteremia and ≥ 1 of the following: chills, allograft tenderness, or cystitis (follow-up, 2–24 mo; n = 478; 4 RCTs)	1.19 (.72–1.94)	10.7%	12.7% (7.7%–20.7%)	2.0% (-3% to 10%)	⊕⊕⊕⊖ Moderate
All-cause mortality rate assessed using data from patient records and clinical follow-up (follow-up, 2–24 mo; n = 478; 4 RCTs)	1.56 (.54–4.52)	2.0%	3.2% (1.1%–9.3%)	1.1% (-0.9% to 7.2%)	⊕⊕⊕⊖ Moderate
Change in eGFR assessed based on serum creatinine measurements calculated with CKD-EPI equation (follow-up, 12–24 mo; n = 357; 3 RCTs)	-	Mean change in eGFR, 2.4828 mL/min/ 1.73 m ²	Mean change in eGFR, 1.0477 mL/min/ 1.73 m ²	MD, -2.77 mL/ min/1.73 m ² (-6.25 to 0.7)	⊕⊖⊖⊖ Very low
Change in serum creatinine levels assessed based on serum creatinine levels at baseline and end of follow-up (follow-up, 12–24 mo; n = 308; 3 RCTs)	-	Mean change in creatinine levels, –0.2244 mg/dL	Mean change in creatinine levels, -0.1484 mg/dL	MD, 0.4 mg/dL (-0.05 to 0.85 mg/dL)	⊕⊕⊖⊖ Low
Graft loss assessed by monitoring transplanted graft function with clinical evaluations and laboratory tests (follow-up, 12–24 mo; n = 398; 3 RCTs)	0.80 (.20–3.19)	2.0%	1.6% (.4%–6.3%)	-0.4% (-1.6% to 4.3%)	⊕⊕⊕⊖ Moderate
Graft rejection assessed using clinical, laboratory, and pathological evaluations (follow-up, 2–24 mo; n = 478; 4 RCTs)	0.89 (.46–1.70)	7.4%	6.6% (3.4%–12.5%)	-0.8% (-4% to 5.2%)	⊕⊕⊕⊖ Moderate
Hospital admission due to symptomatic UTI (follow-up, 2-24 mo; n = 478; 4 RCTs)	0.92 (.48–1.76)	8.6%	7.9% (4.1%–15.1%)	-0.7% (-4.5% to 6.5%)	⊕⊕⊕○ Moderate
Persistent or relapse ASB episodes (follow-up, 2–24 mo; n = 452; 4 RCTs)	0.86 (.69–1.06)	52.3%	45.0% (36.1%–55.5%)	-7.3% (-16.2% to 3.1%)	⊕⊕⊖⊝ Low
Symptomatic UTI caused by MDR bacteria (follow-up, 2–24 mo; n = 206; 4 RCTs)	1.31 (.63–2.74)	10.5%	13.7% (6.6%–28.7%)	3.2% (–3.9% to 18.2%)	⊕⊕⊕○ Moderate
Clostridioides difficile diarrhea (follow-up, 2–24 mo; n = 478; 4 RCTs)	0.75 (.23–2.42)	2.0%	1.5% (.5%–5%)	-0.5% (-1.6% to 2.9%)	⊕⊕⊕○ Moderate
Second ASB episode caused by MDR bacteria (follow-up, 2–24 mo; n = 267; 3 RCTs)	0.98 (.54–1.79)	35.2%	34.5% (19%–63%)	-0.7% (-16.2% to 27.8%)	$\bigoplus_{Low} \bigcirc$

Abbreviations: ASB, asymptomatic bacteriuria; CI, confidence interval; CKD-EPI, Chronic Kidney Disease–Epidemiology; eGFR, glomerular filtration rate; MD, mean difference; MDR, multidrug-resistant; RCTs, randomized controlled trials; RR, relative risk; UTI, urinary tract infection.

associated with underestimation of the rates of persistent or recurrent ASB episodes and symptomatic UTI. Finally, the results from our meta-analysis cannot be extrapolated to pediatric patients and recipients of combined transplants. Nonetheless, there is no strong reason to assume that antibiotic treatment of posttransplant ASB would be more beneficial in recipients of combined transplants (eg, kidney and pancreas transplants) than in KTRs.

In conclusion, current evidence does not support routine screening and treatment of posttransplant bacteriuria in KTRs. Given that KTRs within the first 2 months after kidney transplantation are usually severely immunocompromised and often have a ureteral catheter facilitating the ascent of bacteria from the lower urinary tract to the kidney graft, well-conducted large-scale trials are needed to determine the effects of antibiotic treatment in KTRs who develop ASB within the first 2 months after transplantation.

Supplementary Data

Supplementary materials are available at *Open Forum Infectious Diseases* online. Consisting of data provided by the authors to benefit the reader, the posted materials are not copyedited and are the sole responsibility of the authors, so questions or comments should be addressed to the corresponding author.

Acknowledgments

We thank all the patients and investigators who made the reviewed studies possible and all trialists for providing the requested data required to complete this analysis.

Author contributions. Conceptualization: A. T. A., L. H. T., A. V. H., and D. L. P. Methodology: A. T. A., L. H. T., and A. V. H. Formal analysis: L. H. T. and A. V. H. Data curation: A. T. A., L. H. T, U. A., K. K., S. C., J. C., A. G. J. M., J. O., and N. S. Writing of original draft: A. T. A., and L. H. T. Supervision: A. V. H. and D. L. P. Review and editing: All authors.

Data availability. Data will be made available on request to the corresponding author.

Potential conflicts of interest. P. N. A. H. reports a research grant from Gilead; has served on advisory boards for OpGen, Merck, and Sandoz; and has received speakers fees from OpGen, Sandoz, Pfizer, and

bioMerieux. M. A. reports research support from Pfizer and Gilead and was also a member of a GSK data review committee. D. L. P. reports receiving grants from Shionogi, Pfizer, Merck, BioVersys, bioMerieux, Johnson & Johnson, and Gilead and honoraria from Shionogi, Merck, GSK, bioMerieux, Cepheid, Aurobac, Arrepath, Menarini, CARB-X, and the AMR Action Fund. All other authors report no potential conflicts. Funding to pay the Open Access publication charges for this article was provided by The University of Queensland.

References

- Fiorante S, Fernández-Ruiz M, López-Medrano F, et al. Acute graft pyelonephritis in renal transplant recipients: incidence, risk factors and long-term outcome. Nephrol Dial Transplant 2011; 26:1065–73.
- Valera B, Gentil MA, Cabello V, Fijo J, Cordero E, Cisneros JM. Epidemiology of urinary infections in renal transplant recipients. Transplant Proc 2006; 38: 2414–5.
- Rao Z, Wang Z, Tang M, Shen L, Zhang K. Treatment of asymptomatic bacteriuria after kidney transplantation: a systematic review and meta-analysis of randomized controlled trials. Medicina 2023; 59:1600.
- Parasuraman R, Julian K; AST Infectious Diseases Community of Practice. Urinary tract infections in solid organ transplantation. Am J Transplant 2013; 13(suppl 4):327–36.
- Coussement J, Maggiore U, Manuel O, et al. Diagnosis and management of asymptomatic bacteriuria in kidney transplant recipients: a survey of current practice in Europe. Nephrol Dial Transplant 2018; 33:1661–8.
- Coussement J, Scemla A, Abramowicz D, Nagler EV, Webster AC. Antibiotics for asymptomatic bacteriuria in kidney transplant recipients. Cochrane Database Syst Rev 2018: 2:CD011357.
- Sabé N, Cruzado JM, Carratalà J. Asymptomatic bacteriuria in kidney transplant recipients: to treat or not to treat—that is the question. Clin Microbiol Infect 2021; 27:319–21.
- 8. Medina-Polo J, Falkensammer E, Köves B, et al. Systematic review and metaanalysis provide no guidance on management of asymptomatic bacteriuria within the first year after kidney transplantation. Antibiotics **2024**; 13:442.
- Page MJ, McKenzie JE, Bossuyt PM, et al. The PRISMA 2020 statement: an updated guideline for reporting systematic reviews. BMJ 2021; 372:n71.
- Nicolle LE, Bradley S, Colgan R, et al. Infectious Diseases Society of America guidelines for the diagnosis and treatment of asymptomatic bacteriuria in adults. Clin Infect Dis 2005; 40:643–54.
- Coussement J, Kamar N, Matignon M, et al. Antibiotics versus no therapy in kidney transplant recipients with asymptomatic bacteriuria (BiRT): a pragmatic, multicentre, randomized, controlled trial. Clin Microbiol Infect 2021; 27: 398–405.

- Sabé N, Oriol I, Melilli E, et al. Antibiotic treatment versus no treatment for asymptomatic bacteriuria in kidney transplant recipients: a multicenter randomized trial. Open Forum Infect Dis 2019; 6:ofz243.
- Antonio MEE, Cassandra BGC, Emiliano RJD, et al. Treatment of asymptomatic bacteriuria in the first 2 months after kidney transplant: a controlled clinical trial. Transpl Infect Dis 2022; 24:e13934.
- Origüen J, López-Medrano F, Fernández-Ruiz M, et al. Should asymptomatic bacteriuria be systematically treated in kidney transplant recipients? Results from a randomized controlled trial. Am J Transplant 2016; 16:2943–53.
- Magiorakos AP, Srinivasan A, Carey RB, et al. Multidrug-resistant, extensively drug-resistant and pandrug-resistant bacteria: an international expert proposal for interim standard definitions for acquired resistance. Clin Microbiol Infect 2012; 18:268–81.
- Sterne JAC, Savović J, Page MJ, et al. Rob 2: a revised tool for assessing risk of bias in randomised trials. BMJ 2019; 366:14898.
- 17. Balshem H, Helfand M, Schünemann HJ, et al. GRADE guidelines: 3. Rating the quality of evidence. J Clin Epidemiol 2011; 64:401–6.
- GRADEpro. GDT GRADEpro guideline development tool [software]. Hamilton, ON: McMaster University; 2020. Available at: http://www.gradepro.org. Accessed Ianuary 12, 2025.
- Tolkoff-Rubin NE, Cosimi AB, Russell PS, Rubin RH. A controlled study of trimethoprim-sulfamethoxazole prophylaxis of urinary tract infection in renal transplant recipients. Clin Infect Dis 1982: 4:614–8.
- Abbott KC, Swanson SJ, Richter ER, et al. Late urinary tract infection after renal transplantation in the United States. Am J Kidney Dis 2004; 44:353–62.
- Green H, Rahamimov R, Gafter U, Leibovitci L, Paul M. Antibiotic prophylaxis for urinary tract infections in renal transplant recipients: a systematic review and meta-analysis. Transpl Infect Dis 2011; 13:441–7.
- Amari EB E, Hadaya K, Bühler L, et al. Outcome of treated and untreated asymptomatic bacteriuria in renal transplant recipients. Nephrol Dial Transplant 2011; 26:4109–14
- Green H, Rahamimov R, Goldberg E, et al. Consequences of treated versus untreated asymptomatic bacteriuria in the first year following kidney transplantation: retrospective observational study. Eur J Clin Microbiol Infect Dis 2013; 32:177–31
- Goldman JD, Julian K. Urinary tract infections in solid organ transplant recipients: Guidelines from the American Society of Transplantation Infectious Diseases Community of Practice. Clin Transplant 2019; 33:e13507.
- Kranz J, Bartoletti R, Bruyère F, et al. European Association of Urology guidelines on urological infections: summary of the 2024 guidelines. Eur Urol 2024; 86: 27–41.
- Nelson Z, Aslan AT, Beahm NP, et al. Guidelines for the prevention, diagnosis, and management of urinary tract infections in pediatrics and adults: a WikiGuidelines Group consensus statement. JAMA Netw Open 2024; 7: e2444495.