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Abstract

Background/Objectives: Antibiotic pharmacokinetics (PK) and pharmacodynamics (PD)
are altered during extracorporeal membrane oxygenation (ECMO). Meropenem and
piperacillin are among the most commonly prescribed antibiotics for infections in this
population. However, guidance on dosage adjustments in the ECMO setting remains lim-
ited. We aim to assess differences in meropenem and piperacillin concentrations achieved
and identify the clinical, physiological, and mechanical factors influencing antibiotic expo-
sure. Methods: This is a retrospective, single-centre, observational study comparing an
ECMO cohort with a population control group from a prior study, without renal dysfunc-
tion. Demographic, clinical, PK/PD parameters, and ECMO-related data were analysed
using univariate and generalised estimating equations. For both antimicrobials, the PK/PD
target was set at 100%f T>4xMIC. Results: A total of 130 critically ill patients were included:
18 in the ECMO group and 112 in the control group. The mean age was 65 years (23),
67% were male and 26.9% were classified as obese. For meropenem, renal function and
ECMO support significantly influenced drug exposure, with PK/PD targets being achieved
in 67% of measurements; in contrast, piperacillin exposure exhibited greater variability,
primarily driven by renal function and mechanical ventilation. Notably, PK/PD targets for
piperacillin were met in only 20% of measurements. Conclusions: Our findings highlight
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the considerable variability in β-lactam exposures and PK/PD target attainment in critically
ill patients. This study underscores the importance of therapeutic drug monitoring and
individualised dosing in attempts to improve antimicrobial efficacy and patient outcomes
in this challenging setting.

Keywords: extracorporeal membrane oxygenation; therapeutic drug monitoring; critically
ill patients; meropenem; piperacillin

1. Introduction
The rising prevalence of multidrug-resistant (MDR) microorganisms, coupled with the

ever-slower development of new antimicrobial agents, has intensified the need to imple-
ment strategies that extend the lifespan of existing antibiotics [1]. One promising approach
is the optimisation of antimicrobial pharmacokinetics (PK) and pharmacodynamics (PD) to
enhance the probability of therapeutic success [2].

For time-dependent antibiotics such as β-lactams, bactericidal activity is closely linked
to the percentage of time of the dosing interval (T) during which the free (f ) steady-state
serum concentration (f Css) remains above the minimum inhibitory concentration (MIC)
of the causative pathogen (%f T>MIC) [3–5]. To achieve optimal outcomes and overcome
resistance, current evidence suggests that f Css should be above 4 to 8 times the MIC
throughout the entire dosing interval (100%f T>4-8xMIC) [6–9].

Critically ill patients present a unique challenge due to the profound physiological
disruptions that significantly alter antibiotic PK parameters [10–15]. In the DALI study,
one-fifth and 40% of the critically ill patients receiving β-lactam therapy failed to achieve
50%f T>MIC and 100%f T>MIC, respectively [16]. One strategy to overcome suboptimal target
attainment with β-lactams is the use of high-dose and prolonged or continuous infusion
therapies, which maintain sustained drug concentrations throughout the dosing interval
and maximise antibiotic efficacy [17–19]. However, even with this dosing strategy, not
all patients achieve sufficient antibiotic concentrations [20]. An additional intervention
to optimise PK/PD target attainment of β-lactams is therapeutic drug monitoring (TDM)
with individualised dose adjustment, which has emerged as a key tool in this area [21].
Some experts advocate systematic TDM and individualised dose adjustments in critically
ill patients, a policy supported by recently published TDM algorithms [22,23]. Others
suggest a more selective approach, targeting specific subsets of patients likely to benefit
from β-lactam TDM [21,24].

The use of extracorporeal membrane oxygenation (ECMO) further complicates this
scenario. Widely applied as a rescue therapy for severe acute respiratory distress syndrome
and circulatory failure, ECMO introduces additional PK variability through circuit-related
absorption and sequestration of antimicrobials [23,25]. ECMO is also associated with
a high incidence of nosocomial infections [10,25]. Respiratory tract infections caused
by Gram-negative microorganisms are particularly common, often treated empirically
with antipseudomonal agents such as meropenem and piperacillin [26,27]. These factors
heighten the risk of therapeutic failure, toxicity, and the emergence of resistance, especially
when standard antibiotic dosages are used [2,28]. However, data available for guiding
the dosing of these antibiotics in ECMO patients are limited [20,29–32]. The ASAP study
described the PK of 11 antimicrobials in intensive care unit (ICU) patients receiving ECMO.
Only 56.5% of the concentration profiles achieved the predefined PK/PD target, and
those under meropenem or piperacillin, administered by intermittent infusion, exhibited
substantial variability in all PK parameters [33]. Studies of antibiotics administered by
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continuous infusion in ECMO are scarce and often lack a control group, thereby hindering
the identification of specific effects of ECMO on drug disposition [20,25,29]. Consequently,
robust evidence-based dosing recommendations for this complex population remain scarce.

This study aims to bridge this knowledge gap by comparing meropenem and
piperacillin f Css during continuous infusion in critically ill patients with and without
ECMO support. By identifying the clinical, physiological, and mechanical factors influenc-
ing antibiotic exposure, we seek to generate evidence that supports individualised dosing
strategies in order to optimise patient outcomes in this challenging setting.

2. Results
A total of 130 patients were included in the study, with a mean age of 65 years

(23 years old). The ECMO cohort comprised 18 patients, and the historical control cohort
112. Eighty-seven patients (67%) were male, and fifty-five (26.9%) were classified as obese.
The median estimated glomerular filtration rate (eGFR) was 98.31 mL/min/1.73 m2 (35.17),
with five patients having augmented renal clearance (ARC). Most patients had only one
sample analysed during their treatment, and the overall survival rate during the ICU
admission was 71% (92 patients).

Detailed baseline demographic and clinical characteristics are presented in Table 1.
ICU length of stay and the duration of mechanical ventilation (MV) were significantly
higher in the ECMO group than in the control group. All admissions in the ECMO cohort
were for medical conditions, mostly occurring during the SARS-CoV-2 pandemic, with no
neurocritical cases. Most patients (83.3%) received veno-venous ECMO support, namely,
ten and five patients in the piperacillin and meropenem cohorts, respectively (Table S1).

A total of 222 antibiotic samples were collected under steady-state conditions, includ-
ing 79 meropenem and 143 piperacillin plasma samples. Differences in clinical, analytical,
infectious, and PK/PD parameters between the groups by sample are summarised in Table
S2. Boxplots of the f Css and f Css/MIC ratio are shown in Figure 1. Only 48.50% of patients
had a positive culture with a pathogen isolation (63/130), and the actual MIC was only
available in about 50% of these samples (Table S2).
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Figure 1. Boxplot of meropenem and piperacillin (a) f Css and (b) f Css/MIC ratio sorted by group.
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Table 1. Baseline demographics, clinical and microbiological characteristics of the patients included
in the study.

Control Group ECMO Group p-Value

Meropenem

Number of patients 40 (85.1) 7 (14.9)
Sex (male/female) 26 (65)/14 (35) 7 (100)/0 (0) 0.086
Age, year 59.4 (13.5) 60.6 (18.4) 0.417
Weight, kg 74.34 (16.9) 85.1 (9.9) 0.540
BMI, kg/m2

Underweight (≤18.5)
Normal weight (18.6–24.9)
Overweight (25–29.9)
Obese (≥30)

3 (7.50)
12 (30.00)
14 (35.00)
11 (27.50)

0 (0)
0 (0)

5 (71.43)
2 (28.57)

0.205

Baseline eGFR 85.1 (21.9) 89.5 (5.5) 0.162
SOFA scale value 6.40 (3.28) 6.57 (1.90) 0.447
Neurocritical patient 6 (15.0) 0 (0) 0.571
Admission diagnosis

Surgical
Medical
Trauma

16 (40.0)
19 (47.5)
5 (12.50)

0 (0)
7 (100)
0 (0)

0.036

Days of hospitalisation 51.9 (44.6) 45.3 (24.4) 0.351
Days in ICU 20.5 (20.9) 37.7 (20.9) 0.025
Days of MV 11.1 (13.5) 39.9 (18.4) <0.001
Outcome (exitus) 10 (25.00) 4 (57.14) 0.173

Piperacillin

Number of patients 72 (86.75) 11 (13.25)
Sex (male/female) 45 (62.50)/27 (37.50) 9 (81.82)/2 (18.18) 0.211
Age, year 60.4 (16.1) 72.0 (12.5) 0.012
Weight, kg 75.9 (17.9) 88.6 (24.2) 0.020
BMI, kg/m2

Underweight (≤18.5)
Normal weight (18.6–24.9)
Overweight (25–29.9)
Obese (≥30)

3 (4.17)
25 (34.72)
26 (36.11)
18 (25.00)

0 (0)
3 (27.27)
4 (36.36)
4 (36.36)

0.782

Baseline eGFR 91.5 (20.9) 83.5 (12.5) 0.112
SOFA scale value 5.63 (3.16) 6.00 (4.36) 0.364
Neurocritical patient 22 (30.6) 0 (0) 0.032
Admission diagnosis

Surgical
Medical
Trauma

34 (47.22)
32 (44.44)
6 (8.33)

0 (0)
11 (100)

0 (0)
0.003

Days of hospitalisation 45.9 (41.4) 85.7 (43.3) 0.002
Days in ICU 19.9 (17.2) 70.6 (32.2) <0.001
Days of MV 20.9 (86.2) 67.2 (27.4) 0.041
Outcome (exitus) 19 (26.39) 5 (45.46) 0.194

Expressed as means (standard deviation). Bold p-values represent statistical significance (p < 0.05). Abbreviations:
BMI = body mass index. ECMO = extracorporeal membrane oxygenation. eGFR = estimated glomerular filtration
rate (mL/min/1.73 m2). ICU = intensive care unit. MV = mechanical ventilation.

The bottom and top extremes of the box represent the first (Q1) and the third quartile
(Q3) range of the data, respectively (Q3–Q1: interquartile range). The dark horizontal line
in the box is the median. ECMO = extracorporeal membrane oxygenation. MIC = minimum
inhibitory concentration. f Css = free plasma concentration at steady state. f Css/MIC = ratio
of f Css to MIC.
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Patients in the ECMO group had lower albumin and creatinine levels than controls,
higher rates of directed antibiotic therapy for respiratory tract infections or bacteraemia, and
a greater likelihood of MV. Despite these differences, patients on ECMO had significantly
lower drug exposure, as measured by f Css and area under the curve (f AUC), in both the
meropenem and piperacillin subgroups. However, no significant differences were observed
in the f Css/MIC ratio between groups. When assessing the proportion of episodes achieving
PK/PD targets, approximately 70% of the meropenem episodes in both groups reached
the PK/PD target of 100%f T>4xMIC (78.58% in the control group and 65.38% in the ECMO
group), but only 20% of the piperacillin episodes achieved the PK/PD target (20% in the
control group and 18.60% in the ECMO group).

Univariate analysis revealed that MV, eGFR > 90 mL/min/1.73 m2, and ECMO were
associated with significantly higher meropenem and piperacillin clearance and lower ex-
posure (as assessed by f Css, f Css/daily dose, and f AUC). Notably, patients with ARC
exhibited nearly half the f Css and f Css/daily dose of those without ARC, across both
meropenem and piperacillin cohorts. Multivariate analysis retained only eGFR and ECMO
support in the meropenem model and eGFR and MV in the piperacillin model as inde-
pendent clinical factors influencing antibiotic exposure. Detailed results of univariate and
multivariate analyses are presented in Tables 2 and 3.

Table 2. Effect of covariates on meropenem and piperacillin exposure and pharmacokinetic parameters.

Covariate fCss (mg/L) fCss (mg/L)/
Daily Dose lnCLu (L/h) fAUC

(mg·h/L) p-Value

Meropenem

Sex Male (59)
Female (20)

17.4 (17.2)
18.9 (18.1)

5.8 (5.7)
6.3 (6.1)

2.38 (0.94)
2.26 (0.86)

419.2 (412.1)
453.8 (436.1) 0.615

Neurocritical
status

Yes (11)
No (68)

21.8 (14.5)
17.2 (17.8)

7.3 (4.8)
5.7 (5.9)

1.99 (0.77)
2.40 (0.93)

522.8 (347.2)
412.6 (426.0) 0.169

Post-surgical
drainage

Yes (31)
No (48)

16.2 (14.9)
18.9 (18.8)

5.4 (4.9)
6.3 (6.3)

2.49 (1.01)
2.26 (0.85)

387.9 (359.3)
453.8 (450.2) 0.285

MV Yes (56)
No (23)

15.2 (14.1)
24.2 (22.4)

5.1 (4.7)
8.1 (7.5)

2.50 (0.92)
1.97 (0.82)

365.3 (339.7)
580.5 (538.4) 0.019

Vasoactive
drugs

Yes (26)
No (53)

18.9 (20.8)
17.3 (15.5)

6.3 (6.9)
5.7 (5.2)

2.33 (0.94)
2.36 (0.91)

454.8 (498.6)
414.8 (373.0) 0.908

Admission
diagnosis

Surgical (20)
Medical (51)

Trauma (8)

18.2 (17.0)
16.9 (18.1)
22.8 (12.9)

6.1 (5.7)
5.6 (6.1)
7.6 (4.3)

2.47 (1.18)
2.37 (0.83)
1.88 (0.68)

432.3 (408.9)
406.0 (435.6)
546.8 (311.3)

0.301

BMI

≤18.5 (3)
18.6–24.9 (12)

25–29.9 (18)
≥30 (13)

17.4 (7.2)
34.0 (28.1)
21.1 (17.1)
16.3 (14.8)

5.8 (2.4)
11.3 (9.4)
6.9 (5.8)
5.4 (4.9)

2.03 (0.44)
1.61 (0.84)
2.32 (1.27)
2.38 (0.86)

417.9 (171.7)
816.9 (673.4)
506.9 (410.4)
391.2 (356.3)

0.230

eGFR

60–89 (16)
90–119/129

(40)
≥120/130 (23)

33.4 (25.5)
15.7 (13.0)
10.7 (9.1)

11.1 (8.5)
5.2 (4.4)
3.6 (3.0)

1.64 (0.90)
2.44 (0.93)
2.68 (0.63)

800.7 (611.2)
377.4 (313.1)
256.6 (218.5)

0.001

ARC
60–119/129

(56)
≥120/130 (23)

20.8 (19.0)
10.7 (9.1)

6.9 (6.4)
3.6 (3.0)

2.21 (0.98)
2.68 (0.63)

498.3 (456.8)
256.6 (218.5) 0.014

ECMO Yes (26)
No (53)

9.4 (5.8)
21.9 (19.5)

3.1 (1.9)
7.3 (6.5)

2.76 (0.61)
2.14 (0.98)

226.6 (138.8)
526.7 (468.8) 0.001
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Table 2. Cont.

Covariate fCss (mg/L) fCss (mg/L)/
Daily Dose lnCLu (L/h) fAUC

(mg·h/L) p-Value

Piperacillin

Sex Male (102)
Female (41)

28.3 (18.7)
32.6 (23.9)

2.3 (1.6)
2.7 (1.9)

3.10 (0.62)
2.94 (0.64)

680.5 (448.3)
783.5 (572.8) 0.165

Neurocritical
status

Yes (31)
No (112)

25.0 (14.2)
30.8 (21.6)

2.1 (1.2)
2.5 (1.8)

3.15 (0.59)
3.03 (0.63)

600.9 (341.3)
740.2 (517.9) 0.315

Post-surgical
drainage

Yes (37)
No (106)

29.5 (19.9)
29.6 (20.5)

2.4 (1.7)
2.4 (1.7)

3.07 (0.67)
3.05 (0.61)

709.1 (478.8)
710.3 (492.7) 0.820

MV Yes (96)
No (47)

24.8 (14.6)
39.4 (26.2)

1.9 (1.2)
3.3 (2.2)

3.21 (0.57)
2.73 (0.62)

594.7 (349.4)
945.6 (629.9) <0.001

Vasoactive
drugs

Yes (39)
No (104)

28.2 (17.2)
30.1 (21.4)

2.2 (1.4)
2.5 (1.8)

3.12 (0.60)
3.02 (0.63)

676.0 (413.5)
722.8 (513.7) 0.438

Admission
diagnosis

Surgical (48)
Medical (88)

Trauma (7)

33.6 (19.9)
28.6 (20.7)
15.0 (4.5)

2.8 (1.7)
2.3 (1.7)
1.3 (0.4)

2.88 (0.63)
3.11 (0.61)
3.56 (0.39)

805.7 (479.4)
658.6 (497.4)
360.7 (107.1)

0.01

BMI

≤18.5 (3)
18.6–24.9 (28)

25–29.9 (31)
≥30 (22)

52.1 (24.1)
35.1 (25.5)
30.2 (23.8)
31.6 (16.9)

4.3 (2.0)
2.9 (2.1)
2.5 (1.9)
2.6 (1.4)

2.32 (0.43)
2.92 (0.75)
3.01 (0.61)
2.90 (0.54)

1250.5 (577.5)
842.8 (612.1)
721.8 (571.4)
757.9 (406.1)

0.372

eGFR

60–89 (38)
90–119/129

(74)
≥120/130 (31)

41.8 (24.8)
28.2 (18.2)
17.9 (7.1)

3.5 (2.1)
2.3 (1.5)
1.4 (0.6)

2.62 (0.53)
3.09 (0.61)
3.48 (0.39)

1002.25 (594.5)
677.2 (438.3)
430.0 (171.6)

<0.001

ARC
60–119/129

(114)
≥120/130 (29)

32.6 (21.5)
17.9 (7.3)

2.7 (1.8)
1.4 (0.6)

2.95 (0.63)
3.48 (0.41)

781.4 (515.4)
429.2 (174.8) <0.001

ECMO Yes (43)
No (100)

23.6 (14.8)
32.1 (21.8)

1.8 (1.2)
2.7 (1.8)

3.30 (0.49)
2.95 (0.65)

566.8 (356.2)
771.6 (523.7) 0.001

Expressed as means (standard deviation). Bold p-values represent statistical significance (p < 0.05). p-value was
the same for f Css/MIC, f AUC, and CLu. f Css/MIC, CLu, and f AUC log-transformed values. ARC values were
defined first for men and second for women. Abbreviations: ARC = augmented renal clearance. BMI = body
mass index. ECMO = extracorporeal membrane oxygenation. CLu = unbound antibiotic clearance. eGFR =
estimated glomerular filtration rate (mL/min/1.73 m2). f AUC = free area under the curve. f Css = free antibiotic
concentrations. F = female. M = male. MV = mechanical ventilation.

Table 3. Multivariate analysis of covariates’ influences on meropenem and piperacillin exposure.

Covariate Beta 95% CI p-Value

eGFR
ECMO

MV

0.070 0.001–0.012 0.014
Meropenem 0.453 0.015–0.891 0.043

0.089 −0.386–0.565 0.713

eGFR
ECMO

MV

0.130 0.002–0.009 <0.001
Piperacillin −0.187 −0.406–0.032 0.095

0.313 0.0577–0.200 <0.001
Bold p-values represent statistical significance (p < 0.05). Abbreviations: CI = confidence interval.
eGFR = estimated glomerular filtration rate (mL/min/1.73 m2). ECMO = extracorporeal membrane oxygenation.
MV = mechanical ventilation.

3. Discussion
This MEPIMEX study provides novel insights into the PK behaviour of β-lactams

in critically ill patients receiving ECMO support. It is the first to compare the PK/PD
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of β-lactams administered via continuous infusion in patients undergoing ECMO with
eGFR > 60 mL/min/1.73 m2. Our results revealed that in patients treated with meropenem,
PK/PD differences were predominantly influenced by renal function and ECMO support,
while in those receiving piperacillin, renal function and MV played the most significant
role. These findings suggest that renal function and MV appear to have a greater impact on
drug exposure than ECMO. However, larger prospective studies are required to confirm
this observation.

Preclinical studies examining ECMO-related alterations have consistently suggested
that drugs with high protein binding and lipophilicity are more prone to sequestration [34].
In our study, meropenem, characterised by minimal protein binding (2%) and low lipophilic-
ity [31], exhibited ECMO-related PK changes, diverging from most previously published
studies [32,33,35–38]. Of note, ECMO has also been shown to accelerate meropenem
degradation within the circuit, possibly attributable to the drug’s instability during blood
exteriorisation [39,40]. A plausible explanation for the discrepancies observed in our study
may relate to the continuous infusion strategy employed, as opposed to the intermittent
infusion regimen reported in prior studies, which could have mitigated the spontaneous
degradation of the antibiotic within the ECMO circuit. Beyond drug sequestration, addi-
tional mechanisms including altered capillary penetration, fluid shifts, and fluid retention
present in ECMO patients may alter the volume of distribution and, consequently, could
influence drug exposure, as previously described [41]. Notably, renal function remained the
principal determinant of meropenem exposure, consistent with previous studies that have
highlighted its importance [38–40]. Additionally, the low probability of target attainment
observed in our cohort is likely attributable to the stringent PK/PD target, consistent with
prior published studies [38,39,42].

Conversely, piperacillin, with a low level of protein binding (20%) and a hy-
drophilic profile, may have less predictable behaviour in the ECMO setting compared
to meropenem [35,43]. Fewer than 50% of patients in both control and ECMO groups
achieved the PK target. This was consistent with prior findings; however, in our study,
the proportion of patients failing to achieve the PK/PD target was higher than previ-
ously reported, at approximately 60–40% [20,24,33,35]. The low attainment rates in our
groups likely reflect the lack of microbiological isolation. The use of the theoretical MIC
for piperacillin to assess PK/PD target attainment may overestimate the actual MIC of
Pseudomonas aeruginosa in clinical isolates and overstate the rate of target failure.

Our study showed that piperacillin f Css was primarily influenced by renal function
and the presence of MV, regardless of ECMO support. Most studies concur that ECMO
does not significantly affect piperacillin f Css, with target attainment largely dependent
on creatinine clearance [29,30,33,35,44]. MV has been reported to influence cardiac output
as well as renal, hepatic, and splanchnic perfusion, in addition to modifying the intratho-
racic pressure, thereby leading to changes in PK parameters [45]. Although previous
studies have suggested that MV may increase the volume of distribution and reduce
the clearance of hydrophilic drugs, no statistically significant effects have been demon-
strated for β−lactams [11,21]. These findings reinforce the need for TDM to account for
inter-individual variability and to optimise dosing in critically ill patients.

Our study has several strengths. It is one of the largest and most homogeneous cohorts
described to date focusing on ECMO patients with preserved renal function, treated under
a standardised continuous infusion protocol. This approach minimises the heterogeneity
seen in previous studies, which included mixed ECMO modes (veno-venous and veno-
arterial) [30,31,35,38,44,46,47] and patients requiring renal replacement therapy [20,38,42]
or intermittent antibiotic regimens [29,38,42,46].



Antibiotics 2025, 14, 939 8 of 14

Nevertheless, the study has some limitations that should be acknowledged. The
main limitations are the small sample size, particularly in the ECMO cohort, in which
most patients were included during the SARS-CoV-2 pandemic, the imbalance between
groups, and the single-centre design. These can limit the generalisability of our findings
and may have reduced the statistical power to detect clinically relevant differences. The
temporal mismatch is also an important limitation because it introduces a potential bias
due to differences in case mix, ICU practices, and pathogen distribution between periods.
Other confounding factors related to severity of illness and type of patient not captured
by the variables analysed may also have influenced the results obtained. Additionally, the
retrospective nature of the study and the use of unmatched cohorts may have introduced
potential bias. Moreover, the use of a surrogate MIC for piperacillin because only half
of the patients had a positive culture with a pathogen isolation may have overestimated
the PK/PD target failure rate, especially for microorganisms with lower MICs. Future
studies incorporating organism-specific MICs in whole samples may provide a more
accurate assessment of PK/PD attainment. Free concentrations were calculated using a
fixed unbound fraction, which could underestimate patients’ real Css, especially in those
with hypoalbuminemia. Finally, a population PK modelling approach combined with
Montecarlo simulations represents the gold standard for assessing the impact of clinical
covariates on drug PK and accurately describes the elimination, but it requires rich data.

In our study, patients undergoing ECMO with both meropenem and piperacillin
displayed significantly higher elimination with no significant differences in PK/PD target
attainment between ECMO and non-ECMO groups. These alterations may reflect the
severity of illness in ECMO-treated patients rather than the ECMO therapy itself [29,33]. For
both drugs, continuous infusion provided f Css that remained above the MIC breakpoint for
the isolated microorganism 100% of the time. For meropenem, our findings suggest that the
standard dose of 3 g per day may be adequate for patients with ARC on ECMO, while lower
doses may be suitable for those without ARC or ECMO support [20,39,48]. For piperacillin,
the results highlight the need for caution when treating less susceptible microorganisms,
as more aggressive targets (e.g., f Css > 32 or 64 mg/L) were not consistently achieved.
The high inter-individual variability underscores the need for individualised therapeutic
strategies and supports role of routine TDM to achieve optimal PK/PD targets in high-risk
populations.

4. Materials and Methods
4.1. Study Design and Setting

The MEPIMEX study was a retrospective, single-centre, observational study conducted
in the 90-bed adult ICU at Bellvitge University Hospital in Barcelona, Spain. The study
included all adult ICU patients treated with a continuous infusion of meropenem or
piperacillin while undergoing ECMO therapy between 1 April 2020, and 1 July 2021 (the
ECMO group). This cohort was compared with a historical control group of critically
ill patients who received continuously administered piperacillin or meropenem without
ECMO support, derived from a previous study conducted in the same ICU between June
2015 and September 2018 [43]. Data collection and analytical procedures were identical in
both groups to ensure comparability, and no changes were made in TDM hospital protocols
between periods.

4.2. Eligibility Criteria

Inclusion criteria in the ECMO group were as follows: (i) age ≥ 18 years; (ii) diagnosis
of sepsis or septic shock according to the Surviving Sepsis Campaign Guidelines [49];
(iii) treatment with meropenem or piperacillin administered as continuous infusion; and
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(iv) receiving ECMO therapy, regardless of the indication or technique used. Control group
inclusion criteria have been described elsewhere [43].

Exclusion criteria for both groups were as follows: (i) pregnancy and (ii) impaired renal
function, defined as eGFR < 60 mL/min/1.73 m2 using the 2009 Chronic Kidney Disease
Epidemiology Collaboration (CKD-EPI) creatinine formula or requiring renal replace-
ment therapy. Neither microbiological findings nor the initial antibiotic dose influenced
patient inclusion.

4.3. Data Collection and Definitions

All the data were collected from electronic medical charts. Variables recorded in-
cluded demographic, clinical, biochemical, haematological, and therapeutic and ECMO-
related parameters.

The patient samples included in the ECMO group were defined as those concomitantly
receiving ECMO and the antimicrobial for at least 24 h.

Neurocritical care patients were considered those with traumatic brain injury, acute
ischemic stroke, intracerebral haemorrhage, or subarachnoid haemorrhage, conditions
associated with a higher risk of developing ARC.

The eGFR was calculated from the serum creatinine concentrations according to
the 2009 CKD-EPI creatinine formula. ARC was defined as an eGFR higher than
120 mL/min/1.73 m2 in women and 130 mL/min/1.73 m2 in men. Serum creatinine
was measured using molecular absorption spectrometry.

4.4. β-Lactam Treatment and Measurements

The antimicrobial treatment was selected by the critical care physician in charge of
the patient. The clinical indication of antimicrobial therapy could be either empirical or
directed. Patients received an initial loading dose of 4 g piperacillin and 0.5 g tazobactam,
infused over 30 min and immediately followed by a continuous infusion of 12 g piperacillin
and 1.5 g tazobactam in 150 mL 0.9% sodium chloride (80 mg/mL, stable for 24 h at 25 ◦C).
Those under meropenem received a loading dose of 1 g administered for 30 min, followed
by a continuous infusion of 3 g of meropenem administered in two infusions per day
(22 mg/mL in 0.9% saline, stable for 17 h at 25 ◦C).

Dose adjustments were made afterwards to achieve the targeted PK/PD of
100%f T>4xMIC as per hospital protocol and following the latest international guidelines [50].
Toxicity thresholds were defined as f Css greater than 44 mg/L for meropenem and f Css

greater than 156 mg/L for piperacillin. From a clinical perspective, pathogens with
meropenem MIC > 8 mg/L and piperacillin MIC > 16 mg/L are rarely treated with
these antibiotics.

To ensure steady-state conditions, samples were collected at least 24 h after the begin-
ning of the antibiotic therapy or after any dose modification. Samples were centrifuged
at 3000 rpm at 4 ◦C for 10 min, and the supernatant was removed and analysed by the
ultra-performance liquid chromatography–tandem mass spectrometry technique (UPLC–
MS/MS) [51]. Historical control samples were stored at -75 ± 3 ◦C for a maximum of
6 months before the analysis.

The tazobactam concentrations were not assessed. The total amount of antibiotic was
quantified and free antibiotic concentration was calculated using the published unbound
fraction (fu) of 0.3 for piperacillin and 0.02 for meropenem.

4.5. PK and PD Parameters

The following PK/PD parameters were calculated:

1. Unbound plasma clearance (CLu) [L/h] = daily dose [mg]/24 h · f Css
−1 [mg/L].
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2. f AUCss [mg·h/L] = daily dose [mg]/CLu [L/h].
3. Dose-normalised Css = f Css [mg/L]/daily dose [mg].

We assumed a stable f Css through the whole dosing period (100% of the time) be-
cause antibiotics were administered in continuous infusion. We calculated the ratio
f Css/MIC (=Css [mg/dL] · fu/MIC) to determine whether f Css values were above the
MIC (100%f T>MIC) and the number of times the MIC was achieved.

For patients with an isolated pathogen, actual MIC values were used for PK/PD
calculations. Otherwise, inferred theoretical MIC breakpoints were used: 2 mg/L for
meropenem and 16 mg/L for piperacillin, as recommended by the European Committee
on Antimicrobial Susceptibility Testing (EUCAST) [52].

Antibiotic exposure was assessed by f Css and f AUCss achieved. This allowed us
to determine differences in exposure achieved without bias due to differences in MIC
distributions among ICUs and actual and surrogate MIC values.

4.6. Statistical Analysis

Continuous variables are summarised as means and standard deviations (SD), while
categorical variables are presented as frequencies and percentages. Univariate analy-
ses were performed to identify covariates significantly associated with meropenem and
piperacillin f Css. The association between categorical and continuous variables was de-
termined using Student’s t-test and one-way analysis of variance (F distribution). The
association between continuous variables was stated by using simple linear regression
models. Significant variables were subsequently included in multivariate analyses. Gen-
eralised estimating equations (GEEs) were applied to study the association between f Css

and previously statistically significant variables obtained in the univariate analysis, as they
allowed analysis of repeated measures. Factors included were assumed to be categorical
variables, and cofactors were assumed to be continuous. Logarithmic transformation of
the dependent variable was performed. Mixed-effects models were not used due to the
absence of scale variables. Statistical significance was set at p < 0.05. Statistical analyses were
conducted using SPSS Statistics (version 30, SPSS Inc., an IBM Company, Chicago, IL, USA).

5. Conclusions
Our study reveals significant variability in β-lactam exposure and PK/PD target at-

tainment, influenced primarily by renal function and ECMO in patients under meropenem
and by renal function and MV in patients receiving piperacillin. These findings emphasise
the critical importance of TDM and personalised dosage strategies to enhance outcomes
in critically ill patients. Our results should be interpreted with caution due to the limited
sample size, and further prospective research is essential to validate these results in larger,
more diverse populations and across varied geographical settings.
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