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GATA2 deficiency is a monogenic transcriptopathy disorder characterized by bone marrow failure (BMF), immunodeficiency, and a
high risk of developing myelodysplastic neoplasms (MDS) and acute myeloid leukemia (AML). Although informative mouse models
have been developed, the mechanisms by which GATA2 haploinsufficiency drives disease initiation in humans remain incompletely
understood. To address this, we developed a novel humanized model using CRISPR/Cas9 technology to knock-in GATA2-R398W
variant in primary cord blood CD34* cells. Additionally, we introduced specific mutations in SETBP1 and ASXL1 to model distinct
premalignant stages of GATA2 deficiency. Through clonal competition and serial transplantation assays, we demonstrated that
human CD34" cells harboring the GATA2 mutation exhibit significantly reduced fitness in vivo when compete with wild-type cells.
Notably, this fitness disadvantage persists even when GATA2 mutations are combined with oncogenic SETBP1 and ASXL1 drivers,
underscoring the dominant, deleterious effect of GATA2 deficiency on hematopoietic stem cell function. Functional in vitro analyses
revealed that GATA2-R398W mutation impairs cell proliferation, disrupts cell cycle progression, and induces mitotic defects, which
may contribute to hematopoietic stem/progenitor cell loss and impaired self-renewal. Transcriptomic profiles of GATA2-mutant
cells revealed that these functional defects are associated with reduced HSC self-renewal capacity and upregulation of the pre-
aging phenotype. Our work highlights the feasibility of generating a human GATA2 deficiency model suitable for studying the
biological consequences of various GATA2 variants and the generation of a platform to test potential phenotype-rescuing
therapeutics.
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INTRODUCTION

GATA2 is a transcription factor required for the generation and
survival of hematopoietic stem and progenitor cells (HSPCs) [1]. In
humans, heterozygous germline GATA2 mutations cause hema-
tologic, immunologic and vascular disorders, collectively known as
GATA2 deficiency [2-5]. The patients suffer of immunodeficiency,

bone marrow failure (BMF), and high propensity to develop
myelodysplastic neoplasms (MDS) and acute myeloid leukemia
(AML), with the median age at diagnosis estimated at 17-21 years
[6, 7]. The mutational landscape of GATA2 deficiency continues to
expand, comprising 850 published cases with 230 distinct familial
or de novo germline GATA2 mutations [2-15]. These mutations
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can be categorized into four major types: truncating mutations,
missense mutations (predominantly in zinc finger domain 2, ZF2),
noncoding mutations disrupting the auto-enhancer site in intron
4, and synonymous mutations causing monoallelic RNA degrada-
tion [11]. Missense mutations impair DNA binding capability,
whereas others act through haploinsufficiency mechanisms
[2, 3, 16, 17]. MDS and leukemia arise as secondary events in
GATA2 carriers and are usually associated with the acquisition of
somatic or cytogenetic alterations. Monosomy 7 [6] and somatic
mutations in SETBPT and ASXL1 genes are common in GATA2-
related pediatric MDS patients [7-9, 15, 18]. Zebrafish and mouse
models have been used to study GATA2 haploinsufficiency. In
zebrafish, Gata2a’~ mutants display deficient marrow with
hypocellularity and neutropenia while maintaining erythropoiesis
[19, 20], on the other hand Gata2b™~ show reduced HSPC
function with impaired myeloid differentiation [21-23]. Gata2™~
mice showed a reduction in HSC number and lower functionality
[24-29]. Other studies based on the ablation of the upstream
Gata2-77 enhancer demonstrated abrogation of the multilineage
differentiation potential of fetal liver progenitors’ cells without
affecting HSC emergence, which is diminished by the intronic +9.5
enhancer deletion [26, 30-32]. Recent studies report that GATA2
haploinsufficiency results in lethal BMF and leukemia progression
after serial transplantation, likely due to proliferative defects and
genomic instability [29]. In addition, mouse models with missense
mutation in the ZF2 (L359V, R396Q, and R398W) have been
developed [17, 33-35]. Mouse models carrying the R396Q
mutation exhibit loss of stemness, myeloid bias, and premature
aging [34, 35], while the R398W mutation impairs DNA binding
and induces dendritic cell, monocyte B and NK lymphoid (DCML)-
like phenotype [17].

While these models have significantly advanced our under-
standing of how GATA2 mutations impair hematopoiesis, they fail
to accurately replicate the hematological phenotype observed in
patients. Additionally, GATA2-deficient models using patient-
derived [36] or CRISPR/Cas9-edited induced pluripotent stem cells
iPSCs [37] show only a mild hematopoietic defect. Finally, the
challenges associated with patient-derived xenograft from MDS
cells, including those from GATAZ2 carriers, underscoring the need
for physiologically relevant systems. CRISPR/Cas9-engineered
human cord blood (CB) CD34* HSPCs offer a promising alternative,
with high engraftment potential and preserved long-term
repopulation.

Here, we developed a novel human model by introducing
GATA2-R398W, SETBP1, and ASXL1 mutations into CB CD34" cells
using CRISPR/Cas9. This approach mimics the mutational land-
scape observed in pediatric GATA2-related MDS patients [15] and
provides a unique platform to investigate the functional and
cooperative effects of these mutations in a human context.

METHODS

CD34" HSPCs culture

Frozen or freshly purified CD34" cells were prestimulated for 24-48 h
before nucleofection on SFM StemPro-34 + 1%P/S + 1%Glu (Gibco; Wal-
tham, MA, USA) supplemented with early hematopoietic cytokines. Cell
incubation conditions were maintained 37 °C, 5% CO, and 20% O, for the
liquid culture conditions.

Genome editing of CD34" HSPCs

Chemically modified Alt-R CRISPR-Cas9 sgRNAs and Alt-R S.p.HiFi Cas9
Nuclease V3 (IDT), were used to edit CD34" cells at GATA2, SETBPI, and
ASXL1. RNPs were complexed with 100 pmol of HiFi Cas9 and 120 pmol of
sgRNA at 25 °C for 10 min before electroporation with the 4D-Nucelofector
(Program DZ-100; Lonza; Basel, Switzerland). Immediately after the
nucleofection, rAAV6 was supplied to the cells at 2 x 10* vector genomes
per cell for overnight incubation. For control condition, 5 x 10° cells were
nucleofected without RNP complex.
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Mice transplantation and follow-up

NOD-scid IL2Rg™"mice (NSG; n = 38) were used for primary transplantation
and NOD-scid |L2Rg"”"-3/GM/SF (NSG-S; n =30) were used for secondary
transplantation, which improves multilineage hematopoietic reconstitu-
tion. For primary transplantation between 1x 10> and 3 x 10° unsorted
HSPCs (control, GATA2 and multiplex conditions) were intra BM
transplanted (IBMT) four days after nucleofection. Peripheral blood (PB)
was analyzed periodically until they reached the end point (16-weeks). In
the secondaries at least 2x 10° BM cells were injected into recipients,
animals were bled periodically until the end point (24-weeks).

Statistical analysis

Unless otherwise specified, the Student’s t test and one-way ANOVA was
applied for variables that meet normality assumptions, while the
Mann-Whitney U test or Kruskal-Wallis test was used for non-normally
distributed variables. Statistical analyses were performed with GraphPad
Prism v9.1.

RESULTS
In vivo engraftment of multiplex-engineered CD34" cells
While germline GATA2 mutations have been studied in animal
models, their effects in human HSPCs remain unclear. Disease
progression often involves secondary mutations (e.g., SETBP1,
ASXL1), whose roles are not yet defined. To investigate the effect
of these mutations, we utilized multiplex CRISPR/Cas9 genome
editing in CB CD34" cells, followed by competitive serial
transplantation assays (Fig. 1A). To maximize homologous
recombination (HR) and enable tracking of cells edited for
GATA2-R398W, we combined the CRISPR/Cas9 with recombinant
adeno-associated virus serotype 6 (rAAV6) for donor template
delivery. The single-stranded AAV6 donor was designed with
homology arms targeting GATA2 exon 6 and incorporated (i) the
clinically relevant GATA2 ¢.1192C>T (p.R398W) mutation, along
with silent SNPs to prevent Cas9 re-cutting, and (i) an in frame
green fluorescent protein (GFP) cassette to enable efficient
selection and tracking of edited cells. For hotspot leukemia driver
mutations SETBP1 (c.2602 G > A; D868N) and ASXL1 (c.1934dupG;
G646Xfs*12), single-stranded oligodeoxynucleotides (ssODNs)
served as donor templates (Fig. 1A). Three experimental condi-
tions were assessed [1]: Control: Mock-unedited CD34" cells [2],
GATA2: cells edited with GATA2-R398W mutation, and [3] Multi-
plex: cells simultaneously edited for GATA2, SETBP1, and ASXL1
(Fig. TA). Four days after nucleofection, flow cytometry analysis of
GFP* cells revealed average HR efficiencies of 10% for GATA2 and
5% for multiplex condition (Fig. 1B). To assess the efficiency of
gene targeting in CB CD34* cells, we performed colony-forming
unit (CFU) assays using GFP* and GFP- sorted cells from both
GATA2 and multiplex conditions, followed by genomic analysis of
single-cell-derived colonies. In the GATA2 condition, 74% of
colonies derived from GFP* cells carried the GATA2-R398W
mutation in a monoallelic state, and 26% showed biallelic editing.
In contrast, 44% of colonies derived from GFP" cells harbored
indels. In the multiplex condition we detected mutations across all
the three targeted genes, with SETBP1 being the most frequently
edited (Fig. 1C). Genomic analysis of colonies generated from
GFP* cells revealed a strong enrichment for dual and triple gene
editing: 69% carried mutations in both SETBP1 and GATA2-R398W,
while 12.5% showed simultaneous targeting of SETBP1, ASXL1, and
GATA2-R398W in heterozygous. These results demonstrate the
high efficiency of our multiplex CRISPR/Cas9 strategy, enabling
functional modeling of GATA2 deficiency in a human context.
Next, we assessed engraftment using multiclonal competition
assays by transplanting unsorted GATA2 and multiplex-edited
cells into NSG mice (Fig. 1A, total mice n=38). Notably, our
transplantation model serves as a competitive assay where wild-
type cells, GATA2-mutant cells, and cells harboring oncogenic
somatic mutations compete within the same environment. Flow
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cytometry analysis (Fig. S1A) at 16 weeks post-transplantation
revealed more than 10% of human cell engraftment in PB and
20% in BM (Fig. 1D, E; Fig. S1B) for all conditions. Moreover,
multilineage reconstitution was observed without significant bias
across the different conditions (Fig. 1D, E). To study long-term
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clonal evolution, we performed secondary transplants in NSG-S
mice. At 24 weeks 18 out of 30 mice showed >1% in BM
engraftment. PB flow cytometry analysis revealed that a subset of
mice in the multiplex condition exhibited a significant increase in
hCD45" cell engraftment (6%) compared to control (1%) and
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Fig. 1 Multiplex CRISPR/Cas9 allows the introduction of multiple GATA2, SETBP1 and ASXL1 mutations. A Schematic representation of the
experimental workflow. Control condition: unedited cord blood-derived CD34" (CB-CD34™) cells. GATA2 condition: CB-CD34" cells edited to
introduce the GATA2®**®W mutation via CRISPR/Cas9 and rAAV6-GATA2®9¥W.EGFP template delivery. Multiplex condition: simultaneous
editing of GATA2®9®Y, SETBP1, and ASXL1 using CRISPR/Cas9 and rAAV6-GATA2™**®W_EGFP. Four days post-nucleofection, edited and unedited
cells from all conditions were transplanted into primary NSG mice for 16 weeks. Secondary transplantation was performed in NSG-S mice for
an additional 24 weeks. Schematic illustration of the edited genes. In GATA2, the exon 6 has been modified with silent single nucleotide
polymorphisms (SNPs), and the EGFP is introduced in-frame immediately following exon 6. The SETBP1 donor introduces the ¢.2602 G > A
(D868N) mutation, and the ASXL1 donor introduces the ¢.1934dupG (G646Wfs*12) mutation. B Percentage of GFP* cells four days after
nucleofection showing the efficiency of GATA2 editing (GATA2-R398W-EGFP) (n > 10). C Pie plots summarizing the results of targeted DNA
sequencing for GATA2, SETBP1, and ASXL1 genes across four conditions: GATA2-GFP™, GATA2-GFP", multiplex-GFP™, and multiplex-GFP". Data
was obtained from isolated colonies cultured in methylcellulose for 14 days (n > 8). D Peripheral blood (PB) human chimerism (hCD45" > 1%)
of the primary mice at the 16-week endpoint. The data includes the number of engrafted mice and the distribution of CD34" and CD33™ cells
within the hCD45™ population in PB. E Bone marrow (BM) human chimerism (hCD45" > 1%) of the primary mice at the 16-week endpoint. The
data includes the number of engrafted mice and the distribution of CD34" and CD33™ cells within the hCD45" population in PB. F PB human
chimerism (hCD45" > 1%) of the secondary mice at the 24-week endpoint. The data includes the number of engrafted mice and the
distribution of CD34" and CD33™ cells within the hCD45™ population in PB; Student’s t test. G BM human chimerism (hCD45" > 1%) of the
secondary mice at the 24-week endpoint. The data includes the number of engrafted mice and the distribution of CD34" and CD33" cells

within the hCD45™ population in PB; Student’s t test. *p < 0.05.

GATA2 (2%) (Fig. S1C). By 24 weeks, the average percentage of
hCD45* cells in PB reached 26% in the multiplex condition,
compared to 3% and 6% in the control and GATA2 conditions,
respectively (Fig. 1F; Fig. S1C). This trend persisted in the BM,
where engraftment levels remained higher in the multiplex
condition compared to the control and GATA2 groups (Fig. 1G).
Flow cytometry analysis revealed a predominantly myeloid profile
(CD33%), consistent with the mouse strain used (Fig. 1G), with no
differences in monocytes (CD14%) or granulocytes (CD15%)
subpopulations across conditions (Fig. S1D). In summary, these
data demonstrate that multiplex gene editing of human CB CD34*
cells targeting the GATA2, SETBP1, and ASXL1 genes is feasible and
does not compromise engraftment potential.

Clonal dynamics reveal that GATA2 mutation impairs HSPC
fitness in vivo

To dissect the clonal architecture of human engrafted cells, we
assessed GFP* cells by flow cytometry and performed deeper
genomic studies of BM engrafted hCD45" cells of primary and
secondary mice (hCD45" > 1%). Primary mice exhibited low GFP*
percentage (0.02-1.6%) in both GATA2 and multiplex conditions
(Fig. S2A), which disappeared in the corresponding secondary
recipients. Since the decrease in GFP expression could reflect
downregulation of GATA2 expression, to detect GATA2-R398W
and related indels, we performed genomic analysis of sorted
hCDA45* cells s from primary and secondary BM. Of 102 single-cell-
derived colonies analyzed from eight different primary mice under
the GATA2 condition, only 4 colonies (4%) harbored a hetero-
zygous GATA2-R398W mutation, while 28% (3% homozygous and
26% heterozygous) of the colonies carried indels. Additionally,
whole exome sequencing (WES) and DNA sanger analysis of
sorted bulk hCD45* cells revealed that in the GATA2 condition
only 1 out of 6 secondary mice showed the presence of indels in
the GATA2 locus (Fig. 2A; Table S1), which likely explains why
engraftment levels in the GATA2 group were comparable to those
in control (Fig. 1F, G). Specifically, primary mouse #57656 harbored
six distinct indels at the GATA2 locus, with a cumulative variant
allele frequency (VAF) of 17%. However, after secondary trans-
plantation into two mice, only one mouse maintained a clone
carrying the likely pathogenic L399fs mutation (Fig. 2A; Table S1).
These data suggest that, in a competitive setting with wild-type
cells, GATA2-mutant cells declined over the first 4 months post-
transplantation. A similar trend was observed for the multiplex
condition. Genomic analysis of hCD45* single-cell-derived colonies
from primary mice (#28344 and #23339) revealed no detectable
GATA2 mutations. In contrast, the predominant expanded clones
carried either SETBPT mutations alone or co-occurring SETBP1 and
ASXL1 mutations (Fig. 2B; Fig. S2B; Table S1). These findings were
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further validated by WES, which consistently identified SETBPT and
ASXL1 as the dominant mutations within the most competitive
clones (Fig. 2C, D; Fig. S2C, D; Table S1). Notably, primary mouse
#22984 harbored multiple mutations across GATA2, SETBPI1, and
ASXL1; however, only clones with double SETBPT and ASXL1
mutations expanded in the secondary recipients (Fig. 2C; Fig. S2G;
Table S1), further supporting the enhanced fitness conferred by
these oncogenic drivers. This clonal advantage was reflected in
the high levels of human BM engraftment observed in mice
#53070 and #39249, both exceeding 50% (Fig. STE; Table S1).
Overall, the lack of expansion of GATA2-mutant clones in this
competitive setting aligns with previous reports [25, 28, 35],
reinforcing the concept that GATA2 mutations impair HSC fitness.

GATA2-R398W mutation induced cell cycle arrest and mitotic
defects in CD34" cells

To better understand the in vivo disadvantage of GATA2-mutant
cells, we conducted deeper functional in vitro assays. We FACS-
sorted three populations: GFP* (R398W-mutant), GFP~ (they could
contain either wild-type cell or with indels in GATA2, as described
in Fig. 1C), and control cells (Fig. 3A). In liquid culture, GFP* cells
from both GATA2 and multiplex conditions exhibited a marked
proliferation defect emerging at day 10 when compared with GFP”
and control cells, leading to near depletion by third week (Fig. 3B).
Consistently, GFP* HSPCs displayed a marked reduction in the
total number of colonies compared to their GFP~ counterparts and
controls, indicating impaired clonogenic potential (Fig. 3G
Fig. S3A). To assess the temporal dynamics of mutant clones,
cells were seeded at different time points during liquid culture
(days 0, 7, and 14), and colonies were counted. Notably, colonies
derived from GATA2-R398W-mutant cells declined over time and
disappeared earlier than controls, further indicating reduced
proliferative capacity and fitness (Fig. S3B). Longitudinal analysis
of single-cell-derived colonies showed loss of GATA2 biallelic
mutants by day 7, confirming the essential role of GATA2 and the
unviability of complete knockout in HSPCs (Fig. S3C). Based on
these data, all functional analysis were performed starting on day
10 of culture, ensuring that our findings reflect GATA2 haploin-
sufficiency rather than mixed-population effects. Flow cytometry
analysis revealed a marked reduction in CD34* cells within the
GFP* population when compared with GFP~ and control cells
(Fig. 3D). This decline was associated with a reduction in the G2/S/
M cell cycle phases rather than apoptosis rates, suggesting
impaired self-renewal capacity in GATA2-mutant cells (Fig. 3E, F).
Consistent with the observed defects in proliferation and
stemness, mitotic analysis of GFP* cells revealed a significantly
reduced mitotic index, as observed by the rates of mitotic cells
compared with controls, indicating impaired cell cycle progression
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Fig. 3 GATA2 mutation impairs proliferation and clonogenic capacity in vitro. A Schematic representation of the in vitro experimental
design. GATA2 condition: The GATA2-R398W mutation was introduced into CD34" cells using CRISPR/Cas9 combined with rAAV6-GATA2398W.
EGFP for template delivery. Multiplex condition: MultiJ)Ie simultaneous mutations (GATA2-R398W, SETBP1, and ASXL1) were introduced into
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downstream in vitro studies. B In vitro expansion of liquid cultures initially seeded with control, GATA2-GFP", GATA2-GFP’, multiplex-GFP" and
multiplex-GFP in fold increase (n > 6); Student'’s t test and Mann-Whitney U test. C Clonogenic (CFU) potential of control, GATA2-GFP™", GATA2-
GFP", multiplex-GFP* and multiplex-GFP" in primary and secondary replating (n > 4); Student’s t test and Mann-Whitney U test. D Percentage
of CD34" cells after 14 days in vitro (n > 4); Student’s t test and Mann-Whitney U test. E Cell cycle analysis at day 14 for control, GATA2-GFP™,
GATA2-GFP", multiplex-GFP™* and multiplex-GFP™ (n = 3); Student’s t test. F Apoptotic percentage at day 14 for control, GATA2-GFP", GATA2-
GFP’, multiplex-GFP™ and multiplex-GFP™ by Annexin-V staining (n > 3). G Percentage of mitotic cells quantified by semiautomatic analysis of
large sets of high-resolution images at day 7. Between 50,000 to 150,000 cells were scored; Mann-Whitney U test. H Left panel shows
representative images of normal mitotic phases and common mitotic defects by immunofluorescence. CellMask DR (red) was used to stain cell
membranes, DAPI (blue) was used for DNA. Images were taken in the Opera Phenix. Right panel shows the percentage of mitotic defects in
control and GATA2-GFP™ in more than 50,000 analyzed cells at day 7; Student’s t test; Scale bar = 10 pm. All data represent mean + SEM.
*p < 0.05; **p < 0.01, **p < 0.001, ****p < 0.0001.
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(Fig. 3G). GATA2-mutant cells showed a two-fold increase in
mitotic abnormalities compared to controls, predominantly
characterized by the presence of chromosome bridges, lagging
chromosomes, multipolar spindles, and a significant increase in
chromosome misalignments (n> 1000 mitotic cells analyzed)
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(Fig. 3H). Our data are in line with previously findings where
GATA2 functions as a mitotic bookmark [38] and reveals a new
role in mitosis regulation. These defects point to compromised
mitotic fidelity and suggest that the GATA2-R398W mutation
disrupts critical mechanisms of cell division, potentially
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Fig. 4 GATA2-R398W mutation leads to chromatin and transcriptomic changes. A Volcano plot displaying gene expression changes, with
log2 fold change on the x-axis and —log10 (p-value) on the y-axis. Dashed lines indicate thresholds for significance: p-adj = 0.05 and |log2 fold
change | > 0.5: Relevant differentially expressed genes (DEGs) are labeled. B Volcano plot displaying chromatin accessibility changes, with log2
fold change on the x-axis and —log10 (p-value) on the y-axis. Dashed lines indicate thresholds for significance: p-adj = 0.05 and |log2 fold
change | > 0.5. Relevant differentially accessible peaks (DAPs) are labeled. C Correlation analysis between DEGs and DAPs from RNA-seq and
ATAC-seq data, demonstrating an 86% concordance between the two datasets. D Allele-specific expression (ASE) of wild-type (WT) and
R398W GATA2 in control and GATA2-GFP* conditions from RNA-seq analysis. Data represent mean + SEM. E Lollipop plot illustrating the Gene
Set Enrichment Analysis (GSEA) for selected signatures on GATA2 vs control gene expression data. The dot size corresponds the number of
genes belonging to the signature, the color gradient represents the adjusted p-value, and the x-axis reflects the Normalized Enrichment Score
(NES) in GATA2-GFP" condition to control conditions. F ATAC-seq profiles showing representative chromatin accessibility regions in control
(CTL) and GATA2-R398W-mutant cells. The squares highlight loci with increased accessibility (GATAT, GATA2, ITGA2B, CDKN2A, CLU, ATXNT) or
decreased accessibility (TERT, CSF1R, MEF2C, MYCN) in GATA2-R398W cells compared to control. G Telomer length quantification of at least 30
nuclei by fluorescence in situ hybridization (FISH) in control and GATA2-R398W cells 7 days after sorter. Representative image obtained with
Zeiss LSM880 confocal microscope equipped with AxioObserver Z1 inverted microscope. Telomers are label with Cy3 (red) and DNA with DAPI
(blue); Student'’s t test; Scale bar = 10 pm. H Bar plot showing Pearson correlation values of normalized read counts for ATAC-seq peaks that
overlap between control and GATA2-R398W cells and primary normal hematopoietic stem cell (HSC), multi-potent progenitor (MPP), common
myeloid progenitor (CMP), and granulocyte-monocyte progenitor (GMP), megakaryocytic-erythroid progenitor (MEP) from Corces et al. [47].
I Graphical representation of the GSEA for a select group of genes that are upregulated (UP) or downregulated (DN) in GATA2 patients [39]

**6xp < 0,0001.
«

contributing to genomic instability and further leading to HSPCs
exhaustion.

Transcriptomics and chromatin accessibility analysis of
GATA2-R398W-mutant cells reveal a pre-aging phenotype

To identify dysregulated pathways in GATA2-mutant cells we
performed transcriptomic (RNA-seq) and chromatin accessibility
analysis (Assay for Transposase-Accessible Chromatin; ATAC-seq)
of sorted GATA2-R398W GFP* cells at day ten of liquid culture
comparing them to control unedited cells. We identified 678
downregulated and 878 upregulated significant differentially
expressed genes (DEGs) (Table S2), along with 1642 regions of
decreased and 5894 regions of increased chromatin accessibility
(differentially accessible peaks, DAPs) (Table S3), in GATA2-mutant
cells relative to control (Fig. 4A, B). A correlation analysis was
performed using all the DEGs and DAPs. This analysis revealed a
strong concordance between transcriptional and chromatin
accessibility changes with a total of 86% (67% up and 19% down)
correlation between RNA-seq and ATAC-seq profiles (Fig. 4CQ).
Notably, GATA2 gene expression increased by approximately 2.5-
fold in GATA2-R398W-mutant GFP* cells, primarily driven by
overexpression of the mutant R398W allele, rather than the wild-
type (Fig. 4D). This observation is consistent with previously
published studies [23, 35, 39, 40].

Gene Set Enrichment Analysis (GSEA) revealed downregulation
of pathways associated with HSC maintenance, including genes
such as CD34, PROM1, SPINK2, HOXA9 and FLT3 (Fig. 4E; Fig. S4A).
This data is consistent with the observed loss of the CD34" cells in
vitro (Fig. 3). Conversely, genes associated with the
megakaryocyte-erythroid progenitor (MEP) lineage, such as
GATAI, ITGA2B, EPOR, and NFE2, were upregulated, indicating a
shift in lineage priming (Fig. S4A). Moreover, genes associated
with proliferation and chromosome segregation were down-
regulated, including TERT, its regulators (MYCN, HMGA2, HMGB3,
MXDT1) and other key genes (e.g., MYCL, STARDY, and CEP68).
Additionally, key genes involved in cell cycle inhibition, CDKN2A
(p16INK4A), CDKN2B (p15INK4B), CDKN2D (p19INK4D), were
upregulated in GATA2-R398W cells (Fig. 4E; Fig. S4A). These
findings might explain the impaired cell cycle progression and loss
of stemness observed in GATA2-mutant cells in vitro (Fig. 3).
Finally, the GSEA revealed an enrichment of pathways related to
p53 signaling, apoptosis, and cellular aging in GATA2-mutant cells,
including genes such as CLU, ATXN1, CEBPB and SOCS1 (Fig. 4E;
Fig. S4A) [41-44], suggesting activation of cellular stress
responses. To evaluate whether the GATA2-R398W-mutant protein
directly contributes to the transcriptional changes observed in our
model, we intersected our list of DEGs with a publicly GATA2
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chromatin immunoprecipitation sequencing (ChiIP-seq) dataset
[45, 46]. This approach allowed us to assess which of the
dysregulated genes are direct targets of GATA2. Notably 64% of
the upregulated and 58% of the downregulated genes were
GATA2 targets (Fig. S4B). Key examples such as CD34, HOXA9, FLT3,
SPINK2, MYCL, CDKN2A, CDKN2B, STARDY, CEP68, etc. are under-
scored in Fig. S4A, highlighting the significant involvement of
GATA2 in the regulation of these transcripts.

These transcriptomic changes were corroborated at the
chromatin level. GATA2-R398W cells exhibited increased chroma-
tin accessibility at loci associated with GATA1, GATA2, ITGA2B,
CDKN2A, CLU and ATXN while showing reduced accessibility at
TERT, CSF1IR, MEF2C and MYCN (Fig. 4F). To validate the
downregulation of TERT observed at both the transcriptomic
and chromatin levels, we performed fluorescence in situ hybridi-
zation (FISH) analysis to assess telomere length in GATA2-R398W
GFP* cells. These analyses revealed a reduction in telomere signal
intensity compared to control cells, strongly suggesting impaired
telomere maintenance in GATA2-mutant cells (Fig. 4G).

Furthermore, the observed HSC/MEP transcriptional phenotype
was validated by comparing our ATAC-seq data with published
chromatin accessibility profiles of primary human hematopoietic
populations [47]. This analysis revealed that the chromatin landscape
of GATA2-R398W cells closely resembled that of MEP cells, in contrast
to control cells, which more closely matched HSC/MPP and GMP
populations (Fig. 4H). We next evaluated the predicted activity of
transcription factors (TF) using DiffTF, based on chromatin accessi-
bility peaks and TF binding motifs from the HOmo sapiens
COmprehensive MOdel COllection (HOCOMOCO) database. Out of
766 TF analyzed, 228 binding sites were differentially accessible
(FDR<0.1) between control and GATA2-mutant cells. Of these,
107 sites exhibited downregulated activity, while 121 showed
upregulated activity. In agreement with our RNA and published data
[35], key transcription factor family motifs associated with hemato-
poiesis and proliferation (including GFI1B, IRF, MEIS, SPI, MYC) were
downregulated. Conversely, increased activity was observed at motifs
for the GATA2, SP, and CEBP transcription factor families (Fig. S4C).

Finally, to further validate our data we integrated our
transcriptomic dataset with published data from BM-derived
CD34" cells of GATA2 patients. A pseudobulk matrix [39] was
generated from the single-cell RNA data to enable direct
comparison. Interestingly we observed that our GATA2-mutant
cells clustered together with GATA2-mutant patient cells (Fig. S4D).
Additionally, we used the DEG list from GATA2 patients compared
to healthy donors to define GATA2-Up and GATA2-Down
signature gene set. GSEA revealed that our GATA2-mutant cells
were significantly enriched for the GATA2-Up, whereas our control
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cells were enriched for the GATA2-Down, recapitulating transcrip-
tional patterns observed in GATA2-deficient patients (Fig. 4l).
Overall, these findings indicate that GATA2-R398W drives
chromatin and transcriptional changes associated with reduced
proliferative and mitotic activity and the activation of
aging-related signatures, in line with the in vitro observations.

DISCUSSION

We developed a humanized model using CRISPR/Cas9-edited CB
CD34* cells with the GATA2-R398W mutation, alone and combined
with SETBP1 and ASXL1 mutations, enabling detailed phenotypic,
functional, and transcriptional analyses. In vivo expansion of
edited clones through serial transplantation resulted in multi-
lineage reconstitution and clonal selection of specific genetic
combinations. Notably, our transplant model constitutes a
competitive assay in which wild-type cells, GATA2-mutant cells,
and cells harboring oncogenic somatic mutations compete. We
observed a reduced fitness of GATA2-mutant cells compared to
the wild-type cells, a disadvantage that persisted even in the
presence of co-occurring mutations in SETBP1 and/or ASXLIT.
These findings highlight a cell intrinsic defect conferred by GATA2
mutation. Clinically, this observation is particularly relevant, as
patients with germline GATA2 mutations lack a wild-type
counterpart. Our data provide a compelling rationale for
therapeutic gene editing approaches, whereby correction of
GATA2 in a subset of HSPCs may endow those cells with a
selective advantage, enabling them to outcompete mutant clones
and potentially restore normal hematopoiesis.

Our in vitro analyses reveal important novel observations
regarding the role of GATA2-R398W mutation in human CD34*
cells. First, we demonstrated that the GATA2-R398W mutation
leads to pronounced mitotic defects in HSPCs. While previous
work has highlighted the role of GATA2 as a mitotic bookmark
[38], our findings go further by showing that the R398W mutation
not only might disrupt mitotic chromatin retention but also
impairs the mitotic process itself suggesting a direct role on
chromosome segregation and genome maintenance. This novel
insight supports a link between GATA2 protein dysfunction and
mitotic instability, leading to compromised proliferative capacity
of CD34* cells, and potentially contributing to the reduced
hematopoietic fitness in vivo. Future work will explore the
mechanisms behind GATA2 mitotic role and disease progression.

Previous studies have suggested that allele-specific expression
(ASE) affects GATA2 deficiency phenotype [17, 35, 40, 48]. More-
over, Hasegawa et al. [17] using an elegant mouse model of
R398W mutation demonstrated that elevated levels of mutant
GATA2 protein can exert dominant-negative effects, impairing
wild-type GATA2 function and leading to cytopenia. Consistent
with these findings, our transcriptomics revealed mutant allele
upregulation in GATA2-R398W cells, linked to impaired prolifera-
tion and a pre-aging phenotype.

We observed a downregulation of MYC family members (MYCN,
MYCL) which are essential regulators of proliferation [49, 50] and
the upregulation of CDKN2A (p16), CDKN2B (p15), and CDKN2D
(p19), key inhibitors of CDK4/6 that block the G1/S transition and
tightly associated with cell cycle regulation [51, 52]. Most
interestingly, in our GATA2-edited cells, we observed down-
regulation of known GATA2 targets that act as positive regulators
of TERT, including the chromatin architectural proteins HMGA2
[53, 54] and HMGB3 [55], along with upregulation of the TERT
repressor JARID2 [56]. Based on these findings, we hypothesize
that GATA2 mutations lead to dysregulation of TERT regulators,
resulting in decreased TERT expression at both the transcriptomic
and chromatin levels, ultimately contributing to telomere short-
ening. Although reduction of telomers length is frequently
observed in patients with inherited BMF syndromes [57] it would
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be interesting to determine whether preventing or reversing
telomere shortening could benefit GATA2-deficient cells.

In line with mitotic defects, we also observed the down-
regulation of CEP68 and STARDY, which are essential for
centrosome integrity and proper mitotic spindle formation.
Disruption of these genes is known to cause chromosome mis-
segregation and mitotic arrest or apoptosis [58, 59].

Collectively, these dysregulations give rise to a phenotype
reminiscent of HSPC aging and exhaustion. Supporting this, we
observed increased expression of aging-associated markers such
as CLU, SOCS, GATAI, ITGA2B (CD41), and SLAMF1(CD150), in line
with previous reports describing similar profiles in aged HSPCs
[35, 41, 43, 60, 61]. Furthermore, similar transcriptional profiles
were recently reported in two independent GATA2-R396Q mouse
models [34, 35]. Most importantly, our transcriptomic data closely
mirror gene expression patterns observed in CD34" cells from
GATA2-deficient patients, highlighting the clinical relevance and
translational value of our model. These findings together with
recent studies demonstrating mitochondrial dysfunction in
GATA2-deficient cells [62] emphasize the complexity of GATA2
deficiency and its associated mutations.

Finally, emerging evidence suggests that CRISPR/Cas9/AAV6-
mediated gene editing can activate senescence and inflammatory
programs in edited HSPCs, potentially delaying, but not abolish-
ing, their in vivo engraftment capacity [63]. In contrast, our in vitro
and in vivo analyses consistently show a rapid and selective loss of
GATA2-R398W-mutant cells within the first weeks following
editing. Additionally, our transcriptomic profiling of GATA2-
R398W-mutant cells revealed no upregulation of senescence or
inflammatory signatures. These findings strongly suggests that the
impaired fitness is not due to the editing process itself but rather
is an intrinsic consequence of the GATA2-R398W mutation.
Supporting this, in multiplex conditions, SETBP1- and ASXL1-
mutant cells expanded efficiently despite similar AAV6 exposure,
highlighting a selective disadvantage for GATA2-mutant HSPCs.
The discrepancy from Conti et al. [63] may reflect timing of sample
collection or targeted locus. Moreover, our transcriptomic analysis
suggests that activation of the p53 pathway in our system may
results as a downstream consequence of TERT downregulation,
telomere shortening, and mitotic defects, ultimately leading to a
pre-aging phenotype.

Our work highlights the feasibility of generating a human
GATA2 deficiency model suitable for studying the biological
consequences of various GATA2 variants and the generation of a
platform for testing therapeutic compounds that might rescue
their phenotype.

Limitations of the study

This study has some limitations. WES analysis was performed on
bulk BM CD45" cells, limiting clonal resolution and requiring VAF-
based inference. The lack of clonal expansion in GATA2-mutant
cells may be attributed to several factors. First, the absence of a
mutant BM niche and a functional human immune system, both
present in GATA2 patients. Second, GATA2 patients often suffer
from chronic inflammation and recurrent infections, which may
act as selective pressures driving clonal evolution. Lastly, our study
focused on somatic mutations commonly associated with MDS,
which typically require additional potent oncogenic hits, such as
monosomy 7 or trisomy 8, for full leukemic transformation.

DATA AVAILABILITY

Bulk RNAseq and ATACseq data has been deposited in the National Center for
Biotechnology Information’s Gene Expression Omnibus with the following accession
numbers: GSE282250 and GSE282251 respectively.
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