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Cover Letter

Dear Editor,

We are submitting to QSR our original research entitled “Coastal raptors and raiders:
new bird tracks in the Pleistocene of SW Iberian Peninsula”. In this paper we proposed
and described the first two bird ichnotaxa from the Pleistocene of Europe,
Corvidichnus odemirensis and Buboichnus vicentinus. Besides erecting the new igenn.
et ispp. and providing morphometric comparisons with extant likely producers, among
corvids and strigids, we discuss probable behaviors in the context of the coastal
aeolianites where these tracks were found. Among them, there is rather interesting
evidence of bioturbation produced by a raptorial bird (Eagle Owl)-prey interaction. We
discuss the new occurrences and other tracks found under a wider understanding of
the shorebird ichnofacies, with the intentional raiding for the abundant food resources
of coastal environments by birds not directly related to these habitats. In this work we
give a fresh look to the lithostratigraphy of the Pleistocene coastal successions in SW
Portugal mainland and provide new OSL and calibrated 14C age estimates for the
tracksites under study. We believe that this research provides new data to better
understand the ecology of coastal aeolianites between MIS7-to-6 and MIS 3 and can
be of great interest to a broad audience of QSR, including Quaternary stratigraphers,
vertebrate ichnologists, Quaternary paleontologists and evolutionary paleoecologists.
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Highlights

Highlights

Coastal raptors and raiders: new bird tracks in the Pleistocene of SW Iberian Peninsula

- Two new bird tracksites are described from the Middle-to-Late
Pleistocene coastal aeolianites of SW Portugal

- Corvidichnus odemirensis and Buboichnus vicentinus igenn. et ispp. nov.
record behaviors of western jackdaw and a large eagle-owl

- Passeriform and raptorial birds are especially rare in the track fossil
record

- Atrace fossil of raptorial bird-prey interaction is described for the first
time

- New OSL age estimate of 187+11 ka (OSL), as well as previous OSL
and 14C ages obtained for the aeolianites and now calibrated, show that
the bird tracks were printed between MIS7-to-6 and MIS 3

- These tracks are the first avian ichnotaxa from the Pleistocene of
Europe.
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Abstract

Avian traces occurring in Pleistocene aeolianite and beach deposits are rare and
relatively poorly known, despite being good paleoenvironmental indicators.
Passeriform and raptorial birds are especially rare in the track fossil record.
Exceptional tracksites were found in the Malh&o formation, a Pleistocene coastal
aeolianite unit from the SW mainland Portugal, with subunits in the interval ~187
to ~27 ka. Two new forms of avian traces were identified, Corvidichnus
odemirensis and Buboichnus vicentinus - attributed to the locomotion of Western
jackdaw and the locomotion and predation/feeding behaviour of a large Eagle-
owl. The last trace fossil may correspond to the first evidence of a raptorial bird-
prey interaction found in action in the fossil record. Typical shorebird tracks and
trackways attributed to gulls (Laridae) and curlews, and others tentatively
compared with Rallidae, such as Eurasian coot, are also discussed within the
aeolianite ichnoassemblages. The tracks here described are the first avian

ichnotaxa from the Pleistocene of Europe.

Key-words: Perching bird tracks; zygodactyl tracks; shorebird tracks; coastal

habitat; Pleistocene; SW mainland Portugal

1. Introduction
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Birds (Neornithes sensu stricto) exhibit a huge variety of morphological patterns,
habitat specializations and in consequence many different behaviours. In
ecology, such behaviours are related to four main ‘substrates’: the air (e.g., active
flight, soaring), the water (e.g., swimming, diving), sedimentary environments
(e.g. courtship, walking), and organic substrates as plants or even animals (e.g.,
nesting, perching); potentially, many of these behaviours may produce an
ichnological record (see Belalustegui et al., 2018). Among this record, those
traces left on or in soft (bioturbation structures) and hard substrates (bioerosion
structures) as well as those produced, accumulated or generated by the birds
themselves (biodeposition structures), are especially interesting for ichnologists
and paleontologists in general. Among bioturbation structures and due to their
abundance worldwide, tracks and trackways are probably the most studied traces
within this group of animals. They exhibit a huge morphological variability and
consequently, a plethora of ichnospecies (from Mesozoic and Cenozoic strata)
have been erected (see Lockley and Harris, 2010). Currently, over 23
ichnogenera and 45 ichnospecies are known as valid in the Cenozoic, according
to Lockley and Harris (2010), and several ichnotaxa were erected since their
synthesis  publication. Relatively common ichnogenera, such as
Phoenicopterichnum Aramayo & Manera de Bianco, Charadriipeda Panin &
Avram or Anatipeda Panin & Avram, are good examples of this diversity. All these
tracks and trackways, ethologically classified as locomotion traces or repichnia
(Seilacher, 1953), are the direct result of walking, running and hopping gait
behaviours. The general morphological pattern of these tracks varies from
imprints of feet usually with three to four digits, wide or slender toes, the presence

and magnitude of the hallux imprint and its angular relation to toe lIll, and the
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divarication angle pattern between toes, that in turn may or may not possess
interdigital webbing (Brown et al., 2002). Additionally, aspects such as the gait,
walking speed, anatomical features, pathological malformations and feeding
behaviour of the producer may also be inferred from this kind of bioturbation

structures.

Although diverse for the Cenozoic, avian tracks and trackways are relatively rare
and still poorly known in Pleistocene sedimentary successions around the world.
The fossil record is dominated by the tracks of shorebirds, with a minor
component attributable to large flightless and cursorial forms (i.e., Lockley and
Harris, 2010). Among the most famous bird-tracksites is the late Pleistocene
Pehuen-Co in Argentina where Aramayichnus rheae Aramayo et al,
Phoenicopterichnum pehuencoensis Aramayo & Manera de Bianco,
Charadriipeda isp. and Gruipeda isp. were described by Aramayo and Manera
de Bianco (1987, 1996) and Aramayo et al. (2015). Also, in Argentina rhea tracks
from similar age are known in Monte Hermoso (Aramayo and Manera de Bianco,
2009). Another famous tracksite for birds from late Pleistocene is Jeju Island
(South Korea) where eight types of avian tracks, including from webbed-foot
birds, were identified in volcanoclastic shoreline deposits (Kim et al., 2004; Kim
et al.,, 2009). They are also known from at least seven different track
morphologies in 19 different tracksites in a still ongoing study and compared with
a small and large wader, gulls (Laridae), Gruidae(?), Numididae or Phasianidae,
Steminae, Struthionidae(?), Phoenicopteridae, Anatidae(?), and shorebirds
(Charadriidae) from the Cape south coast of South Africa (Roberts, 2008; Helm
et al., 2017, 2018, 2020). Bird tracks, some compared with oystercatchers and

including ones attributed to dromornithids, were described in Kangaroo Island



118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

and the Coorong coastal plain of western Australia by Camens et al. (2018), and
Bell and DeMerlo (1969), Vicker-Rich and Gill (1976) and Belperio and
Fotheringham (1990), respectively. Recently, Neto de Carvalho et al. (2020)
presents well-preserved trackways of geese and shorebirds from Matalacafnas
Trampled Surface in SW Spain dated to the Late Pleistocene. Other shorebird
tracksites, including tracks attributed to gulls, are known in Bermuda and
Bahamas (cf. Avipeda Vialov compared to the Willet tracks) by Hearty and Olson
(2011), Kindler et al. (2008) and Martin and Whitten (2015); they were described
also in SW Portugal under Charadriipeda isp. types A and B by Neto de Carvalho
et al. (2016) and Figueiredo et al. (2018). In Portugal, the fossil record of
Pleistocene birds, composed of bones only, was previously known in mainland
only from cave sites (a comprehensive synthesis of all occurrences can be found

in Figueiredo, 2010; Figueiredo and Rosa, 2014; Figueiredo, 2018).

The formation of aeolianites has been recorded worldwide (Brooke, 2001) under
varying glacio-eustatic and inland climate regimes ranging from intervals of sea-
level stability associated with interglacial highstands and periods of relative sea-
level change at the end of the stage (Helm et al., 2018). In Portugal, the first
record of bird fossil tracks was described by Neto de Carvalho (2011) in the
Malh&do formation at the Pessegueiro island, a Pleistocene coastal aeolianite unit
from the SW mainland Portugal. Another tracksite was identified in a lower level
of the aeolianite of Pessegueiro (Figueiredo et al., 2018). Bird tracks and
trackways found in the Pessegueiro island were among the first published record
of vertebrate locomotory behaviours from the Cenozoic in Portugal (Neto de

Carvalho et al., 2003; Neto de Carvalho, 2009). The new tracksites found in the
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Pleistocene aeolianite unit of Portugal provide a hitherto unreported potential for

interpreting the ecology and behaviour of the coeval fossil avifauna (Fig. 1).

Here we describe two new forms of bird tracks in sub-optimal preservation
according to the principles established by Marchetti et al. (2019). This is an
exceptional occurrence since tracks of perching birds, raptors and other groups
that are not directly dependent on sedimentary shorelines are quite rare (Lockley
and Harris, 2010). In this work we also include previously described tracksites
and interpret their expressions of behaviour. Our goal is to define a better
stratigraphic and ecological framework for the Pleistocene aeolianites from SW
Portugal mainland, emphasizing the importance of this fossil track record as the
most recent one in the lberian Peninsula, with the first two bird ichnotaxa

described in the Pleistocene of Europe.
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Pessegueiro Island
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Fig. 1. Location of the tracksites identified so far in the Pleistocene aeolianites of
SW Portugal mainland, framing the geographical position of the three sites under

study, i.e., from north to south (marked with rectangles in the views and in the
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maps): Pessegueiro island (37°50'5.05"N, 8°47'52.79"W) with Charadriipeda isp.
type I; Aivados sul beach (37°47'56.25"N, 8°47'59.18"W) showing Corvidichnus
odemirensis igen. et isp. nov. and Gruipeda aff. maxima; and Telheiro Beach
(37°2'49.98"N, 8°58'40.80"W), with an unnamed large tetradactyl track,
Buboichnus vicentinus igen. et isp. nov. and Charadriipeda type Il. Images

obtained from Google Maps 3D views and Google Earth (February 2021).

2. Geological setting

2.1. Stratigraphy and chronostratigraphic framework of the aeolianites

A lithostratigraphic scheme comprising up to six stages of aeolian mobilization
was proposed for the western coast of mainland Portugal (Pereira, 1990; Pereira
and Angelucci, 2004): the oldest from the Middle Pleistocene (ascribed to MIS 6),
three being Upper Pleistocene (supposed as MIS 4-3, MIS 3 and MIS 2), and two
Holocene (the Pre-Boreal and the last 3 ka). More recently, Costas et al. (2012)
studied Holocene aeolian dunes just south of Lisbon and identified five episodes
of aeolian deposition interpreted as related with cold events: 12.6 ka, 5.6 ka, 1.2
ka, 0.4 ka and 0.3 ka.

In mainland Portugal, the Pleistocene aeolianites under study (Malh&o formation)
crop out with interruptions ~300 km along the western coast (Pereira, 1990;
Pereira and Angelucci, 2004; Pereira et al., 2007; Neto de Carvalho, 2009, 2011).
This formation, composed of stacked aeolianite sub-units, is frequently covered
in disconformity by two main Holocene aeolian sand units, the older containing
paleosols and the younger consisting of mobile sand dunes, which can be
correlated to the MIS 2-1 (Pereira and Angelucci, 2004). In the study area, the

littoral zone has a generally NNE-SSW oriented coastline, which is directly
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exposed to the energetic Atlantic swells. The coast has steep cliffs, usually
developed in a highly deformed Paleozoic bedrock of schists and
metagreywackes discordantly overlain by Late Triassic-to-Late Jurassic
sedimentary rocks. The modern abrasion platform is narrow and the littoral zone
is dominated by a rocky-shore environment, with coarse sands present at pocket
beaches.

On the coastal slopes, the Pleistocene aeolianite unit onlaps older coastal units,
namely coastal terrace deposits ascribed from MIS 5 to MIS 13 (Pereira, 1990;
Figueiredo et al., 2013, 2015; Ressurreicéo et al., 2018). A culminant regional
wave cut platform, up to 10 km wide and with altitude usually between 40 and
160 m a.s.l., is associated with siliciclastic shallow marine deposits and more
inland deltaic and fluvial deposits (Pereira, 1990); it corresponds to the
allostratigraphic unit UBS13 (probably age of 3.7 to 1.8 Ma, uppermost Zanclean
to Gelasian; Cunha, 2019).

The largest continuous aeolianite outcrop is at the Malh&o area, located between
Séo Torpes (N: 37°55’) and the Mira River (S), 20 km long and 5 km wide, and
including the Pessegueiro island and Aivados Sul Beach (Fig. 1). In the section,
the aeolianite unit covers, by disconformity, a marine terrace with Glycimeris
shells at its basal level (at 17 m of altitude) which were dated, by amino-acid
racemization, indicating deposition during the MIS 13 (540-460 ka)
(Ressurreicao, 2018; Ressurreicao et al., 2018). At the Forte do Pessegueiro site,
between Pessegueiro island and Aivados sul Beach sections, the sedimentary
succession exposed at the coastal comprises: a) a lower unit of beach deposits
(a conglomerate, a lumachela and coarse sands); a middle unit of reddish sands

with paleosols; c) an upper unit of aeolianite subunits.
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Further south, at the Castelejo Beach aeolianite, the gravelly marine terrace
located close to the present sea-level has an intercalated sand level which was
dated using luminescence to ~110-112 ka; just above this MIS 5 unit, the base of
the aeolianite unit was dated as ~90 ka and its upper division as 42.3-38.8 ka cal
BP (**C) (Figueiredo et al., 2013, 2015; **C ages from Martins, 2014).

The Telheiro Beach section shows “C ages obtained for the aeolianite of 44.7-
40.3 ka cal BP (Monge Soares et al., 2012; Martins, 2014). At Sagres, the
southernmost section of the Portuguese western coast (37°00'N), ages of 27.8-
26.8 cal ka BP were obtained from apparent *C ages determined for the base

and top of the aeolianite unit (Monge Soares et al., 2012; Martins, 2014).

2.2. The stratigraphic levels with vertebrate trace fossils

In the study area, 18 stratigraphic levels with vertebrate trace fossils were already
found in the Pleistocene aeolianite units. These include tracks and trackways of
straight-tusked elephant, red deer, fox, Iberian lynx, rabbit and shorebirds (Neto
de Carvalho et al., 2016; Neto de Carvalho and Belo, 2020). Three tracksites
show avian tracks and trackways (Fig. 2).

Pessegueiro island is the northernmost site of the study area; the aeolianite unit
has a thickness of ~21 m and is composed of several stacked subunits with main
changes in the orientation and dip (up to 34°) of the foresets, separated by
reactivation surfaces. The aeolianite is heavily bioturbated by rhizoliths,
increasing towards the top. They show abundant large deer tracks in several
levels, but also rabbit, felid and shorebird tracks. Bird tracks are found in the lower
part of the aeolianite unit. In the scope of this study, a trampled bed upper surface

with Charadriipeda, Felipeda Panin & Avram and Bifidipes Demathieu et al. tracks
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and trackways, located 5 m above the aeolianite unit base, was sampled for OSL
dating (see Luminescence dating section; Fig. 2, Tables 1 and 2).

The Aivados Sul Beach section exposes (Fig. 2): a) a wave cut platform cut in
the basement covered with a beach gravel deposit (0.4 m thick), followed by a
silty layer (1.6 m thick), and a layer of fine to medium sand (6.0 m thick), with a
paleosol at the top; b) above a disconformity is the strongly cemented aeolian
unit, which is 4.5 m thick and comprising two subunits separated by a
reactivaction surface with a well-developed rubefacted paleosol; c) above a
disconformity, there are aeolian dune sands. The aeolianite unit shows low angle
lamina, wind ripples, rhizoturbation and different types of tracks found both in situ
and in the scree by the collapse of part of the cliff. The bird tracks are located at
several levels of the lower aeolianite subunit and could have approximately the
same Middle Pleistocene age obtained for the Pessegueiro island, based on
stratigraphic correlation. Also, as in Pessegueiro island, the Aivados Sul Beach
sedimentary succession may record interdune and backdune environments
(Roberts et al., 2008). Together, we found mustelid and abundant artiodactyl
tracks, some of the latter reaching a length of 15 cm; these will be described
elsewhere. Together with the new Corvidichnus odemirensis, we found a clear
trackway with the characteristic gait and track size of the European rabbit
Oryctolagus cuniculus (Linnaeus), and which is comparable with the previously
described new ichnogenus Leporidichnites malhaoi (Neto de Carvalho, 2009; Fig.

2).

Finally, the Telheiro Beach section is one of the southwesternmost aeolianites in
Europe and covers a small area between two creeks (Fig. 1). At the Quebrada

creek, above an angular unconformity with Lower Jurassic limestones, the
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aeolianite unit is composed of a lower colluvial layer with a developed rubefacted
soil, overlain by the aeolianite unit (~4 m thick). As previously referred, four
aeolianite levels were dated here between 44.7 and 40.2 ka cal BP (from C
ages obtained from marine bioclastic sand fraction by Monge Soares et al., 2012;
Martins, 2014). In the studied section, the calibrated age obtained from Martins
(2014) was 44.7-42.6 ka cal BP. The aeolianite unit shows several bioturbated
levels with bird tracks and other mammal and reptile tracks that, for its intrinsic
importance, will be described elsewhere. Tracks of Buboichnus vicentinus isp.
nov. and Charadriipeda isp. type Il are described in this section. A single large
tetradactyl track, 15 cm long showing low divarication angles between toes with
large claw imprints, was also found here but since it is an isolated case, we will

not describe it.
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272 Fig. 2. Stratigraphic logs of the three sections with bird tracks and trackways:
273  from north to south, Pessegueiro island, Aivados sul Beach and Telheiro Beach
274  (SW Portugal). Legend: 1 — Paleozoic turbidites; 2 — Lower Jurassic marls; 3 —
275  conglomerate; maximum clast size = 30-35 cm; 4 — cross-bedded aeolianite; 5 —
276  colluvial deposits; 6 — coarse sandstone; 7 — low-angle laminated sandstone; 8 —
277  gravel lens; 9 — carbonaceous fine sandstone; 10 — paleosol; 11 — Corvidichnus
278 odemirensis; 12 — Buboichnus vicentinus; 13 — Gruipeda aff. maxima; 14 —
279  Charadriipeda isp. type I; 15 — Charadriipeda isp. type II; 16 — Bifidipes isp.; 17 —

280 Leporidichnites malhaoi; 18 - Felipeda lynxi; 19 — mustelid track; 20 —land snails;
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21 - rhizoliths; 22 — plant remains; 23 - marine bioclasts; 24 — Paleolithic

artefacts; 25 - paleowind direction; 26 — OSL and #C sample ages.

3. Materials and methods

3.1. Preservational conditions of the occurrences

This study used a standard paleontological fieldwork approach, but also involving
topography, geomorphology, lithostratigraphy, sedimentology and numerical
dating of the Pleistocene aeolianites under study. The aeolianites extend up to 2
km inland. In general, they are lithologically homogeneous, without evident
textural and mineralogical contrasts that can be exposed differently by erosion.
They comprise bioclastic quartzarenites which are well-sorted, usually medium-
to coarse-grained (0.14 to 0.67 mm; Pereira, 1990), with bioclasts representing
up to 38% of the total rock (Romariz and Carvalho, 1975). The aeolianites are

strongly cemented by a calcite cement.

The bird trackways were found in exposed lamina surfaces of blocks collapsed
from the coastal cliffs subjected to wave erosion; the blocks are prone to a quick
weathering and erosion. For these reasons, the stratigraphic levels in which
tracks were found are located in sections where active erosion by breaking waves

or flowing waters in creeks is happening and periodic surveys are necessary.

Delicate tracks can be found in cross-bedding lamina surfaces of the medium to
coarse grained aeolianite sandstones. The sand of these ancient dune systems
was made cohesive in the superficial layers by rain, coastal fog or marine spray
(e.g., McLaren, 1995) or even occasional high phreatic level, preserving

sometimes in a quite detailed way the morphology of the tracks, even made by
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small and light animals, such as birds (Roberts et al., 2008). Fast and deep cover
by aeolian sand and later, an accelerated diagenesis in a seasonal contrasted
dry environment, with bioclastic dissolution and reprecipitation in the vadose zone
induced by the activity in the rhizosphere, resulted in the lithification of the sand

textures and the preservation of the ichnological record.

3.2. Digital photogrammetry and morphometric data acquisition for

ichnotaxonomy

For the study of such delicate tracks, we applied current standards of data
acquisition and 3D image analysis using photogrammetry, described in
Falkingham et al. (2018). Since the type material of the new ichnotaxa, which are
located in large slabs are thus uncollectable, was left in the field under fast
erosive conditions, 3D models developed and available are considered the
“digitypes” (sensu Adams et al., 2010; see also Neto de Carvalho et al., 2020);

they can be analysed from the Supplementary Material (Sketchfab link: xxxxx).

3D digital modelling is today one of the most used techniques to support
paleontological studies (including ichnology). This technique can be applied using
different equipment and techniques, which can be used separately or together,
such as computed tomography, laser scanning, structured light photogrammetry
and digital photogrammetry. Comparing cost, geometric accuracy, radiometric
accuracy, time to collect and produce records and equipment portability, each
technique has some advantages and disadvantages over the others, considering
the goals to be achieved and the characteristics of each site or object of work

(see Brecko and Mathys, 2020; Otero et al., 2020). The main advantages of
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digital modelling are: (i) its great capacity for the 3D non-intrusive registration of
surfaces and objects of interest, portraying the sites / objects of study with
realism, high geometric and radiometric precision; (ii) the possibility to survey
large areas (e.g. Romilio et al. 2017) and small objects (e.g. Bucchi et al., 2020),
at different aerial and terrestrial scales (Romilio et al. 2017, Petti et al., 2018,
Lkbir et al., 2020); (iii) the opportunity to analyse in a more appealing and
interactive digital environment, enhancing and facilitating the tasks of visual
interpretation and measurement and allowing the application of quantitative
statistical methods (Belvedere et al. 2018, 2019) and automated data extraction
(Lallensack 2019). In addition to the remarkable capacity for enhancing the micro-
relief (e.g., Muiiiz et al., 2019, Cerrillo-Cuenca et al., 2019), in ichnological studies
3D models provide important ichnotaxonomic information in the track-producer
interrelation, facilitating taphonomic, paleoenvironmental (Mujal et al., 2020) and
palaeoecological reconstitution (Neto de Carvalho et al., 2020). Among the
technologies presented, digital photogrammetry has been one of the most used
techniques by paleontologists worldwide, as it is an inexpensive method,
relatively fast and simple to perform, whose necessary equipment is very easily
transportable (considering the places sometimes distant and difficult to access,
where the objects of study are located) but, above all, for the quality of the results
obtained (Otero et al., 2020). In this study for the realization of the records,
analysis and interpretation of the tracks and trackways of birds in the SW of
Portugal, digital photogrammetry was used. The applied methodology was
adapted from Mallison and Wings (2014) and Falkingham et al. (2018), and is

described below.
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For the modelling of the Charadriipeda trail, 51 photographs were taken in
perpendicular and oblique views (resolution 4608x3456 pixels, in JPG format),
using a Nikon Coolpix P510 V1 camera. For Gruipeda, Corvidichnus odemirensis
and Buboicnus vicentinus tracks and trackways surveys, 70, 207 and 242
photographs were taken respectively, in perpendicular and oblique views with a
focal length of 16 mm (resolution 6480x4320 pixels, in JPG format), using a
Camera Samsung NX500 V2 with 16-50 mm lens. Three-dimensional scales
were used to improve accuracy along the x, y and z axes. The photogrammetric
processing of the tracks and trackways of Charadriipeda, Gruipeda, Corvidichnus
odemirensis and Buboichnus vicentinus, was carried out with the free open-
source software Meshroom 2020.1.1 (© 2010-2019 AliceVision contributors).
Photogrammetric processing produces several types of 3D data that can be used
for the intended analysis, such as dense point clouds, shadowing surface mesh
models and textured mesh models. In this case, the photogrammetric product
that we used for the post-processing of the data, were the textured mesh models.
Post-processing: the post-processing was carried out using free open-source
software MeshLab v2020.12 (Cignoni et al., 2008) and CloudCompare v2.11.0.
(CloudCompare, 2020). The post-processing phase involved the analysis,
treatment, fixation to the plane, orientation and scale assignment to the textured
photogrammetric models obtained. The attribution of techniques that allow the
microtopographic enhancement of the tracks and trackways under analysis,
substantially facilitate their interpretation and, consequently, the achievement of
more precise measurements and angles, often allowing observation of details
that, in fact, would not be easy or possible to observe in the field. For the purpose

of interpretation and visualization of the new tracks and trackways presented in



378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

this article, we opted for the presentation of 3D models in nadir and oblique views,
textured in real color (rgb), in false colors with shadows, representing the
altimetric variation (height maps) of the modelled surfaces and enhanced by the
Radiance Scaling (Vergne et al., 2010) and Ambient Occlusion PCV ShadeVis
(Zhukov et al., 1998) algorithms. 2D visualization and data measurements: after
post-processed, conveniently highlighted and analysed data in 3D environment,
these were extracted in nadir view, projected orthographically, to illustrate the
tracks and trackways and obtain the desired measurements. 2D images
obtained, scaled and previously ortho-rectified by photogrammetric processing
show metric and cartographic coherence. Measurements of 1) angle of
divarication between toes Il and Ill, and Il and 1V; 2) length of hallux and toes II,
[ll, and 1V; 3) track length; 4) track width; 5) pace length; 6) stride length; and 7)
angle of divarication from the midline, were performed over the produced images
using the free open-source software AragoJ (Aleixo et al., 2020). These
measurements were used to describe the tracks and to identify behaviours. The
figures presented were compiled in the free open-source software Inkscape
v0.92.3 (Inkscape, 2018). The models used are made available as

supplementary material, as suggested by Falkingham et al., 2018.

3.3. Luminescence dating

In order to obtain a geochronological control of the tracksites, in the different
sections of the Upper Pleistocene aeolianites of the SW Portugal our team is
developing a suitable sampling strategy for OSL dating in order to date the most
relevant track-bearing stratigraphic surfaces. For the purpose of the present

work, a trampled stratigraphic surface at the Pedreira sub-sector of the
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Pessegueiro Island (altitude: 5.0 m a.s.l.; L: 37° 50’ 05.06” N; L: 8° 47’ 52.86"W),
with vertebrate (including bird) tracks and trackways (Fig. 5e), was selected to be
dated by OSL. Under protection from sunlight exposure by using a thick black
plastic, a block of aeolianite about 20 kg was extracted from the exposure and
also covered by the black plastic; the given field code is Pessegueiro-1. An extra
sub-sample of the sediment was also collected, in order to be used to measure

the field and saturation water contents, respectively.

The preparation of the OSL mineral fractions from the inner part of the aeolianite
block was carried out in the sample preparation room of the Dept. of Earth
Sciences - University of Coimbra, under subdued red light to prevent resetting of
the luminescence signal. After the removal of the ~3 cm external part of the block
of sandstone, by dissolution of the carbonate cement under HCI (at 10%) attack,
its internal part was also disintegrated by the same procedure. Later, H202 (at
10%) was used to remove any organic particles (very rare). The sand obtained
was then sieved for obtaining several grain-size fractions. The 180-250 um
fraction was then selected to separate the K- rich feldspar fraction from the quartz
and silicates fraction, through differential flotation in a heavy liquid solution
(sodium polytungstate solution; p = 2.58 g/cm?). The quartz-rich fraction (p >2.58
g/cm?) was etched using concentrated (40%) HF for 60 min, to remove the outer

alpha-irradiated layer, followed by 10% HCI for 40 min (e.g., Cunha et al., 2019).

Radionuclide concentrations (23U, 2?Th and “°K) in the bulk sediment were
measured using high-resolution gamma spectrometry. The additional sediment
sample associated with the main OSL sample was first dried at 50°C. A
subsample of ~250 g was pulverized and homogenized, and then heated to

450°C for 24 h to remove any organic matter (weight loss recorded). Finally, this
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material was cast in wax to prevent radon loss and to provide a reproducible
counting geometry. Samples were stored for three weeks to allow 2??Rn to reach
equilibrium with its parent 2?°Ra before being measured on a high purity
germanium detector for at least 24 h. Details on the gamma spectrometry
calibration are given in Murray et al. (2018). The external beta and gamma dose
rate is the same to both quartz and K-feldspar grains. For quartz, a small internal
dose rate of 0.02+0.01 Gy/ka was assumed, consistent with Vandenberghe et al.
(2008). The radionuclide concentrations were converted to dose rate data using
the conversion factors from Guérin et al. (2011). The contribution from cosmic
radiation to the dose rate was calculated following Prescott and Hutton (1994)
assuming an uncertainty of 5%. The long-term water content of each sample was
estimated based on the average of the field water content and saturation water

content.

Quartz grains were mounted as large (8 mm) aliquots on stainless steel discs or
cups. Measurements were carried out on automated Risg TL/OSL (model DA-
20) luminescence readers (stimulation with blue diodes for 40 s at 125°C; preheat
and cut-heat temperatures were 260°C /10 s and 22°C /0 s, respectively). A
standard single-aliquot regenerative-dose (SAR) protocol was used to estimate
the quartz De (Wintle and Murray, 2000; Murray and Wintle, 2003); the blue
(470+30 nm) stimulated OSL signal was detected through a U-340 filter. All
samples had a strong fast component; the net OSL signal was calculated from
the initial 0.0-0.32 s of stimulation and an early background between 0.32 and
0.64 s. Dividing the De by the environmental dose rate (in Gy/ka) gives the

luminescence age of the sediment.

3.4. Calibration of radiocarbon ages
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The previous “C dates obtained by Martins (2014) were calibrated by using the
OxCal 4.4. [152] program provided by the University of Oxford and applying the
Marine 20 curve. However, as Martins (2014) clearly states, those dates may be

terminus ante quem for the deposition of the aeolianites.

4. Results
4.1. OSL dating results for the sampled aeolianite at the Pessegueiro island

The results of quartz OSL dating of the Pessegueiro-1 aeolianite sample,
collected immediately bellow the trampled surface located at the lower part of the
aeolianite unit at the Pessegueiro Island (Fig. 2) are presented in Tables 1 and
2. The quartz OSL signal is pure (no IR sensitivity) and is bright and dominated
by a fast component, a prerequisite for accurate De determination using SAR
(Wintle and Murray, 2006; Murray et al.,, 2021). The dose recovery ratio is
0.957+0.012 (n=12) suggesting that our SAR protocol is suitable to measure dose
given prior to heat treatment in these samples. The measured De (923 Gy) is
smaller than the average characteristic dose value (D¢ = 105+£3 Gy; Murray et al.,
2021) derived from fitting the dose response curve with a single saturating
exponential function. So the natural quartz OSL signal lies well below the
saturation level of the dose response curve. The resulting quartz OSL age is
187+11 ka pointing at deposition towards the end of MIS7 or the beginning of MIS
6.

Table 1 — Dry gamma and beta dose rate components, radionuclide
concentrations (23U, ??6Ra, 21°Pb, 232Th and 4°K), burial depth (b.d.) and
estimated average water content of the sample during burial (w.c.) used for

dose-rate calculations of the luminescence dating ages

Gamma b.d. |w.c.
dose Beta |*%®U (cm) | (%)
NLL Field rate | dose rate | (Bq/| ?*°Ra | #*?Th K
code code (Gylka) | Gylka) | kg) | (Ba/kg) | (Ba/kg) | (Ba/kg)
0.184 0.340
202201 | Pessegueiro-1 | +0.004 +0.010 | 943 |6.840.2 |5.3+0.2 | 954 | 1800 | 10
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Table 2 - Summary of quartz OSL results. (n) - number of measured and accepted
aliquots contributing to the equivalent dose (De). Total dose rate to 180-250um quartz
grains assuming 10% water content. Uncertainty (1c) on the ages incorporates both

systematic and random components

Dose rate OSL age
Lab code | Field code Protocol De (Gy) (n) estimate
(Gy/ ka) (ka)
202201 |Pessegueiro-1| Quartz-OSL 92+3 24 |10.51+0.03 187+11

4.2. Systematic Ichnology

Ichnogenus Corvidichnus igen. nov.

Type ichnospecies: Corvidichnus odemirensis isp. nov.

Derivatio nominis: The ichnogenus name includes the family Corvidae Vigors
after the inferred type of producers and “ichnus” for trace. The specific name

recalls the Odemira municipality where these tracks were found.

Diagnosis: Bipedal trackway of high pace angulation with mesaxonic tetradactyl,
anisodactyl tracks of moderate size with small positive rotation with the midline.
Tracks with three compared-sized digits directed forward showing clear
phalangeal pad impressions, and a long hallux pointing backward, but slightly
offset from the middle line; divarication angles between digits 1l-IV are small (i.e.

~700); track length/width ratio less than 2.

Corvidichnus odemirensis isp. nov.

Figs. 3-ba

Holotype: A trackway of 4 footprints left in situ (T1CO marked with yellow in Fig.

4). 3D digitype available as supplementary material (Sketchfab link: xxxxx).
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Diagnosis: Same as for the ichnogenus, for now the only known ichnospecies.

Horizon and locality: Malh&o formation located at Aivados Sul beach, coordinates
37°47°26.77”"N 8°48°'07.58”0; Chibanian (OSL dating of 187+11 ka for the lower

part of the Malh&o formation at Pessegueiro Island).

Description: The slab TPCorvLmAIVS with an area of 2.8 m? (Fig. 4) was found
in the scree from the cliff showing two main trackways and few paired tracks, in
a total of 12 imprints, preserved as concave epirelief. Description and
interpretation is based on the 3D model developed for this study (Fig. 3) because
the original specimen was damaged by wave action in less than one year. Two
trackways are present, T1Ca and T2Ca, with four tracks each, besides two
paired-tracks and one isolated imprint (Fig. 4). Measurements of the tracks and
trackways are presented in Table 3. Trackway’s breadth is <100 mm and the
paired tracks PiCo are 161 mm. Anisodactyl tetradactyl tracks with prominent
retroflexed hallux; the central metatarsal area is small. Thick toes with
characteristic phalangeal and interphalangeal pad impressions: the mean size of
the tracks is 62.8 mm in length and 38.9 mm in width; the mean length of the
digits is for digit 1, 23mm, for digit lll, 28.8 mm, and for digit IV, 22.5 mm, with the
hallux measuring 20.8 mm; toe | is slightly offset from central line and shorter
than toe lll. Divarication angle of the toes II-1V is 69.7 mm; inward rotation of the
track with respect to the midline with an average angle of 12°; pace length of 187
mm of and stride length of 368 mm (T2Ca). High pace angulation of 145-150°

resulting of each foot swinging around and from behind in arc.
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Fig. 3. General view of TPCorvLmAIVS,; ruler is 24.35 cm long.

Table 3 -

Measurements

for

Corvidichnus odemirensis isp. nov.

Corvidichnus odemirensis

Left Side Pes

Right Side Pes

Mean
Track measurements PiCoPel T2CoPel T2CoPe2 T1CoPel TiCoPe2 PiCoP?1 L PiCoPd1 T2CoPdl T2CoPd2 TiCoPdl T1CoPd2 PiCaP?2 MeanR Mean
Length (mm) 64 60 70 57 65 71 64,5 67 84 61 54 51 50 57,5 62,¢
Width (mm) 40 42 32 59 40 36 41,5 33 46 33 38 32 36 34,5 38,¢
Length digit Il (mm) 25 26 22 21 20 25? 23,1 26 33 20 19 18 23? 21,5 23
Length digit IIl (mm) 31 26 32 25 29 23 27,6 31 38 28 27 32 24 29,5 28,¢
Length digit IV (mm) 26 19 21 20 22 21? 21,5 21 30 21 24 21 21? 21 22t
Length of hallux (mm) 20 20 22 22 19 23 21 25 27 19 19 16 18 19 20,¢
Divarication between digits
-1V (°) 61 72 64 74 72 84 72 60 76 61 65 77 70 67,5 69,
Divarication between digits
1= (°) 30 21 22 22 23 36? 22 14 34 46 15 26 35?7 26 25,2
Inwards pace rotation (°) 15 13 9 22 12 - 13 11 8 14 9 7 - 9 12
Trackways Length Mean
T2CoPel - T2CoPd1 183
T2CoPd1 - T2CoPe2 187 183
T2CoPe2 - T2CoPd2 166
Pace (mm) T1CoPd1 - T1CoPel 186
TiCoPel - T1CoPd2 168 168
T1CoPd2 -
T1CoP32 128
T2CoPel -
T2CoPe2 368
Stride (mm) T2CoPd1 - T2CoPd2 347 352,5
T1CoPel - T1CoPe2 286
T1CoPd1 - T1CoPd2 358
<100 -
Trackway width (mm) <100 -
PiCoPel -
PiCoPd1 161 -
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Remarks: By their morphology these are typical tracks of large perching birds,
without any doubt compared with corvids (see discussion). The asymmetric
ripples and the direction of the trackways indicate that the bird(s) walked following
the wind direction. There is also a nice trackway of the rabbit Oryctolagus
cuniculus that was identified at the near Malh&o beach as Leporidichnites malhaoi

by Neto de Carvalho (2009).

Fig. 4. Corvid (Corvidichnus odemirensis) and the rabbit (Leporidichnites
malhaoi) trackways from TPCorvLmAIVS. A) False color height map (m) of the
trackways area. B) Trackways area enhanced by Ambient Occlusion PCV Shade
Vis algorithm (Zhukov et al., 1998). C) 3D model improved by Radiance Scaling
algorithm (Vergne et al, 2010). D) Interpretative drawing of the tracks and

trackways (white color correspond to the isolated tracks and red and yellow to the



543 trackways of Corvidichnus odemirensis, the green color corresponds to the

544  isolated tracks and the purple color to the trackways of Leporidichnites malhaoi).

545

546 Fig. 5. Avian trackways from the Pleistocene aeolianites of SW Portugal. A —
547  Corvidichnus odemirensis from Aivados Sul beach section. B - Corvus monedula
548 (Western jackdaw) trackways measured in Aivados beach for comparison with C.
549  odemirensis (see Table 6). C — Buboichnus vicentinus trampled area interpreted
550 as apredation/feeding trace; scale is 10 cm. D — Detail of B. vicentinus zygodactyl
551 track in Telheiro beach section. E — Detail of the trackways attributed to

552  Charadriipeda isp. type | in the trampled surface of Pedreira in Pessegueiro island
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section; scale is 10 cm. Main trackway of Charadriipeda isp. type | located in

Canto da Pedra dos Corvos tracksite, Pessegueiro island section.

Ichnogenus Gruipeda Panin and Avram

Diagnosis: Tracks showing four digits, three (Il to IV) directed forward and long;
toe | pointing backwards, spur-like and short. The interdigital angles between
digits Il and IIl and digits 11l and IV are less than 70°. The axis of digit | does not
correspond with that of digit Ill, the interdigital angle between digits | and Il is
greater than that between digits | and 1V. Webbing absent (emended by Sarjeant

and Langston, 1994).

Gruipeda aff. maxima Panin and Avram

Fig. 6

Description: Tetradactyl anisodactyl tracks longer than wide, of relatively large
size, with 10 cm long by 7 cm wide. They exhibit four digits, Il and IV directed
forward and diverging at an angle of about 65°, digit | directed backwards. Digits
Il and IV are similar in length, with sides almost parallel for most of their length
and tapering abruptly to a pointed tip. Digit | is short, spurlike and tapering; its
axis is offset at a low angle to the right from that of digit lll. The impressions of
digit Il and IV are connected proximally; digit | is separate. Webbing absent
(Sarjeant and Langston, 1994). Size of the track; length of the middle toe; length
and shape of the rear toe; size and angle between outer toes, and whether the

toes are long and slender or short and powerful. Digit | is short, makes an angle
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with digit Il but is not separated which is the result of a deep impression. Digits

Il and IV bends inwards.

Remarks: The slab PsAvipAIVS corresponds to a small block (~0.6m?), with three
poorly preserved tracks. Two of the tracks belong to a trackway. Only one track
could be detected without 3D image analysis. This is the second morphotype
attributed to birds recognized at the Aivados sul section. The ichnogenus
Ardeipeda Panin and Avram shows tetradactyl tracks with wider divarication
angles between digits than the tracks of Aivados sul (see Sarjeant and Langston,
1994). Leptoptilostipus pyrenaicus (Payros et al., 2000) reveals similarities with
our tracks, namely the digits Il and IV bending upwards and small digit
divarication, with a long and slender digit Ill, but in the Portuguese tracks lacks
the impression of the membrane. Therefore, the large tracks from Aivados sul are

better compared with Gruipeda maxima.
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Coord. Z

0.151 Right Pes

0.138
0.122

0.107
0.093
0.080
0.067

0.053
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Fig. 6. Gruipeda aff. maxima from the upper Pleistocene of Aivados sul; ruler is
25 cm. A) Real colors textured 3D model. B) 3D model enhanced with the

Ambient Occlusion PCV ShadeVis algorithm (Zhukov et al., 1998). C) False color
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height map (m) of the 3D model. D) Oblique views of the 3D model highlighted
by Radiance Scaling algorithm (Vergne et al, 2010). E) Interpretative draw of the

tracks and trackway. F) Dimensions and divarication angles of the right pes.

Ichnogenus Buboichnus igen. nov.
Type ichnospecies: Buboichnus vicentinus isp. nov.

Derivatio nominis: The ichnogenus name after the species Bubo bubo (Linnaeus),
the likely producer, and “ichnus” for trace. The specific name recalls to cape Sao

Vicente where these tracks were found.

Diagnosis: Moderate-sized tetradactyl zygodactyl tracks with well-developed
hallux impression; digital pads recognizable and with claw marks attached or
independent. Digits Il and Il point anteriorly with digits | and IV pointing

posteriorly with variable divarication angle, but showing mesaxonic symmetry.
Buboichnus vicentinus isp. nov.
Figs. 5¢-d, Figs. 7-9

Holotype: Paired-tracks TZTrk006L and TZTrk007/8R in Fig. 7. 3D digitype

available as Supplementary Material (Sketchfab link xxxx).
Diagnosis: The same as for the ichnogenus.

Horizon and locality: Telheiro aeolianite located in the Quebrada creek close to
the beach, coordinates 37°02’51.07”N 8°58’12.79”0. Taking in account that the

horizon with the bird tracks is located between dated levels by “C dating (44.7
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and 40.3 ka cal BP; Monge Soares et al., 2012; Martins, 2014) it is likely that

these tracks have a depositional age of, at least, ca. 45-43 ka (MIS 3).

Description: Zygodactyl four-toed tracks with a mean length of 113 mm and width
57 mm. Measurements of the ten tracks identified can be found in Table 4. Digits
Il and 11l pointing forward and | and IV pointing backwards. Toes are long and
powerful except in a few cases, probably due to preservational reasons. Digits I-
IV show a mean length of 37.9 mm, 49.5 mm, 50.8 mm and 44.7 mm,
respectively. Divarication angles of digits II-IV and lI-lll are 164.4° and 43.5°,
respectively. Claw marks are detached from the track in the holotype. Toe pad
impressions are identified (Fig. 7). High pace angulation in defined short

trackway, with a pace length of 39.2 cm and stride length of 67.7 cm in TZTrl.

Table 4 — Measurements for Buboichnus vicentinus isp. nov.

Buboichnus vicentinus

Side Left Side Pes Right Side Pes
Mean Mean Mean
rack measurements TZTrk00O1L TZTrl004L TZTrk0O6L TZTrk009L L TZTrk0OO2R TZTrl0OO3R TZTrl0O5R TZTrk0O7R TZTrkOO8R TZTrkO10R R LR
Length (mm) 106 137 103 118 102 70 141 - 137 102
Width (mm) 33 65 56 48 41 53 68 67 53 55
Length digit Il (mm) 40 58 46 51 43 37 61 55 50 54
Length digit 1l (mm) 46 55 51 49 39 41 67 50 64 46
Length digit IV (mm) 41 54 41 55 48 33 65 - 64 46
-ength of hallux (mm) 26 39 41 30 42 27 43 - 58 35
-ication between digits II-
IV (%) 180 >180 162 178 160 175 160 - 157 128
“ication between digits II-
11 (°) 18 47 60 36 30 49 40 68 37 50
Trackway Length Mean
Pace (mm) TZTrl003R - TZTrl004L 285 3385
TZTrl004L - TZTrl005R 392
Stride (mm) TZTrl003R - TZTrl0O05R 677
“rackway width (mm) TZTrl003004005 <80
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Fig. 7. Buboichnus vicentinus holotype. A) Real colors textured 3D model; B)
False color height map of the 3D model; C) 3D model enhanced with the Ambient
Occlusion PCV ShadeVis algorithm (Zhukov et al., 1998). D) Map highlighted by
Radiance Scaling algorithm (Vergne et al, 2010), of the type material of
Buboichnus vicentinus igen. et isp. nov. evidencing the morphology of the track
TZTrkOO8R; E) Interpretation drawing of the previous figures, with the location of
the paired-tracks, with the measurements of the toes I-IV and the divarication

angles between toes.
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Fig. 8. General view of the localized trampled block. A) Orthophoto of the real
colours textured 3D model. B) DSM False color height map of the 3D model, C)
PCV 3D model enhanced with the Ambient Occlusion PCV ShadeVis algorithm

(Zhukov et al., 1998).

Remarks: In a very localized area 10 zygodactyl tracks are recognized
surrounding the completely bioturbated substrate (Figs. 5c, 8). Due to this
preservation, only three tracks are clear individualized. We interpreted the
organization of the short trackways and tracks in multiple directions surrounding
a completely trampled area as evidence of predation (see Discussion and Fig. 9).
The two trackways of shorebirds converging to the trampled area can be just a
coincidence and may be made some hours before the disturbing action of the

larger bird.
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Fig. 9. A) High-resolution 3D vertical view of the track surface (improved by
Radiance Scaling algorithm (Vergne et al., 2010). The sediment disturbance
occurred possibly resulting from the preying action of the producer of Buboichnus
vicentinus intersecting two trackways converging to the same area (see the
interpretation scheme B). Present vegetation interferes in the upper right part of

the model.

Ichnogenus Charadriipeda Panin and Avram (1962)
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Charadriipeda isp.

Figs. 5e-f, Figs. 10, 11.

Description: Tridactyl anisodactyl and mesaxonic tracks, of moderate size and
slender digits, commonly showing claw marks. The first morphotype (type I) was
previously described in two different tracksites found at the Pessegueiro Island
(Figueiredo et al., 2018; Figs. 10, 11). In the trampled surface found at Pedreira
tracksite (Fig. 5e), 10 trackways plus 3 isolated prints were identified; three
trackways, the longer composed of 10 tracks, and some apparently isolated
tracks were found in the same level at Canto da Pedra dos Corvos tracksite (Fig.
5e). These are formed by a longer digit 11l (30 to 55 mm), with divarication angles
with toes Il and IV of between 30° and 42°. Digit Il measures 15 to 30 mm and
digit 1V, between 18 and 38 cm. These two digits are linear or bend upwards.
There is no impression of the hallux. The flat areas identified by 3D image
analysis are related to interdigital webbing. According to the emended diagnosis
of Sarjeant and Langston (1994), the ichnogenus Charadriipeda include avian
footprints having only three digits (1I-1V), directed forward and showing interdigital
angles of less than 70°, connected by webbing from their proximal end almost to
their tips. However, these features are not common in some of the ichnospecies
of Charadriipeda. Meanwhile, Sarjeant and Reynolds (2001) emended its
diagnosis to avian footprints showing four digits, with a spur-like hallux being
preserved in some ichnospecies. Because the ichnogenus needs a solid revision,
we do not intend in this study to differentiate ichnospecies despite the sub-optimal

preservation of the material.

Webbing seems to be one of the main characteristics to discriminate this

morphotype from the two trackways found at Telheiro tracksite (morphotype II;



690

691

692

693

694

695

696

697

698

699

700

Fig. 11). Table 5 presents the measurements made to the two trackways included
in type Il. Those are composed of four tracks each, smaller than type | (41.1 mm
long and 27.6 mm wide), displaced in a zigzag pattern and a narrow gauge,
showing also low divarication angles but the imprint of a spur-like hallux in just
one of the tracks (T2TrlOO3R). There is an isolated track on the same surface
which is larger, with a longer hallux, and therefore could be a different

morphotype from the previously described forms.

Table 5 — Measurements of Charadriipeda isp. type Il from Telheiro beach

section

Charadriipeda isp. type Il

Left side Pes Right Side Pes
Mean Mean Mean
Track measurements T1Trl102L TATrl104L T2Trl0O2L T2Trl004L L T1Trl101R T1Trl103R T2Trl001IR T2TrlOO3R R LR
Length (mm) 48 27 51 35 34 42 41 51
Width (mm) 29 21 26 30 - - 32 28
Length digit Il (mm) 36 18 31 27 26 28 28 23
Length digit Ill (mm) 48 27 51 35 34 42 41 33
Length digit IV (mm) 28 11 27 23 - - 27 24
Length of hallux (mm) - - - - - - - 13
Divarication between digits
-1V (°) 49 76 53 60 - - 66 50
Divarication between digits
1-111 (°) 24 33 23 25 50 - - 30
Trackways Length Mean
T1Trl101R - T1Trl102L 116
T1Trl102L - T1Trl103R 141 123,6
T1Trl103R - T1Trl104L 114
Pace (mm)
T2Trl001R - T2Trl002L 115
T2Trl002L - T2TrlO03R 174 135,3
T2TrlO03R - T2Trl004L 117
T1Trl101R - T1Trl103R 230 2755
. T1Trl102L - TATrl104L 221 ’
Stride (mm)
T2Trl001R - T2Trl003R 281 286
T2Trl002L - T2Trl004L 291
Trackway width (mm) Tl %
T2Trl 77
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Fig. 10. A and D) Nadir and oblique views of the real colors 3D textured model of
Charadriipeda type I; scale is 0.15 m, except for D and E which is 0.1m. B) False
color height map (m) of the 3D model. C) 3D model enhanced with the Ambient
Occlusion PCV ShadeVis algorithm (Zhukov et al., 1998). E) 3D model improved

by Radiance Scaling algorithm (Vergne et al., 2010).
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Fig. 11. Gull tracks interpretation based on digital image analysis. A) 3D surface
of the track T3P16 made of contour lines to enhance morphological features
described. B) to E) 3D surface of the tracks T3P15 and T3P16, viewed from
different angles by curvature algorithm (cold colors correspond to the convex

features and hot colors to the concave features). The flat areas between digits
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(evidenced in red) indicated a webbing impression (from Neto de Carvalho et al.,

2016).

5. Discussion: The track producers and associated behaviors

5.1. Corvidichnus odemirensis compared to Western jackdaw

The tracks TPCorvLmAIVS of Aivados Sul section can be attributed to perching
birds due to the asymmetrical toe alignment. The imprint of toe Il tends to turn
under and inwards, which is obvious and characteristic in corvid tracks (Brown et
al. 2002). Crow and raven tracks have a distinctive digital segmented
appearance. In corvids the three forward-pointing toes are often asymmetrical,
with different lengths and arranged at different angles from each other; the hind

toe points straight back and is almost as long as the front centre toe.

The fossil record of corvids extends since the Middle Miocene (Kessler, 2020).
According to comprehensive databases such as ebird.org and BirdLife, four
species of corvids have their present distribution covering the territory of Portugal:
Corvus corax Linnaeus, C. corone Linnaeus, Corvus monedula Linnaeus and
Pyrrhocorax pyrrhocorax (Linnaeus). During the Middle and Late Pleistocene,
besides these species, Corvus antecorax Mourer-Chauviré, C. frugilegus
(Linnaeus) and Pyrrhocorax graculus (Linnaeus) are known from the Paleolithic
cave records in Portugal (Figueiredo, 2010, 2018; Figueiredo and Rosa, 2014).
Carrion crow (Corvus corone) tracks are up to 140 mm long and 70 mm wide with
walking strides between 400 and 650 mm (Brown et al. 2002). Together with the
Common raven they are some of the largest corvids existing. The Rook is also a

large corvid that lives nowadays in North and Central Europe. The Alpine chough
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(or yellow-billed chough) and the Red-billed chough are in present typical from
mountain ecosystems but could also be present in other areas during the glacial
conditions interpreted for the MIS 6. Moreover, the Alpine chough was found in
the Upper Pleistocene deposits of the Furninha coastal cave (central Portugal),
which are much younger than the ages now obtained for the Pessegueiro island-
Aivados sul beach (Brugal et al., 2012; Figueiredo et al. 2017). Being not
possible to dismiss the Alpine chough as a possible producer of Corvidichnus
odemirensis, the size of these tracks fits closer with the Western jackdaw (Corvus
monedula), the second smallest member of the corvids, which is very common
among the Pleistocene birds record of Portugal (Figueiredo, 2010; Brugal et al.,
2012; Figueiredo and Rosa, 2014; Figueiredo, 2018; Figueiredo et al., 2017,
2018) and still lives nowadays in the coastal areas of SW Portugal, including the
area, visiting beaches and the dune systems on a daily basis foraging food.
These animals are opportunist omnivorous also searching for live invertebrates
such as echinoderms and carrion in the surf line, as well as beetles, snails,
spiders, eggs and chicks of birds that they can find in the dunes (Sievers et al.,
2014). The difference in size between hind toes in paired tracks (shorter) and in
trackways (longer) is clearly related to dragging during walking. The claw on toe
I is much longer and sharp and can thus also extend the size of this toe print.
Large passerines such as corvids walk and hop. Walking prints appear in a zigzag
or sometimes in a line. Paired tracks are associated to take-off or landing.
However, in corvids side by side tracks may indicate the bird was hopping along.
Table 6 presents the measurements made for two trackways of C. monedula in
the Aivados Sul section. Comparing with the data obtained from Corvidichnus

odemirensis in Table 3 (Figs. 5a, b), it is clear that proportions of track and toes,
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divarication angles, trackway width and pace rotation are comparable, the
somewhat larger pace length and clearly larger stride length could be explained
by faster walking or walking-hopping following the wind direction in Corvidichnus
odemirensis. Changing pace in the fossil trackway marked yellow in Fig. 4, from

186 mm to 128 mm, indicates slowing down.

Table 6 — Measurements for recent trackways of the Western jackdaw

Corvus monedula

Side Left Side Pes Right Side Pes
Mean Mean LR
Track measurements NT1 1L NT1 3L NT1.5L NT2_1L NT2. 3L NT2.5L L NT1_2R NT1_ 4R NT1 6R NT2 2R NT2_ 4R NT2 6R  MeanR
Length (mm) 56 67 60 76 57 70 56 49 61 63 68 67
Width (mm) 26 41 30 27 33 35 31 31 28 30 33 39
Length digit Il (mm) 26 25 25 29 26 25 21 21 23 21 29 22
Length digit 1l (mm) 33 33 32 40 27 30 27 25 24 35 36 31
Length digit IV (mm) 24 24 22 18 26 24 21 20 22 21 26 23
-ength of hallux (mm) 15 26 18 22 19 28 17 15 24 20 19 22
rication between digits II-
IV (°) 55 92 58 49 50 56 68 70 56 65 58 71
rication between digits II-
1 (°) 14 49 17 6 14 7 23 23 16 17 45 22
wards pace rotation (°) 7 10 19 20 13 18 12 20 10 22 15 9
Trackways Length  Mean

NT1_1L-NT1_2R 127
NT1_2R-NT1_3L 120
NT1_3L-NT1_4R 142 127
NT1_4R-NT1_5L 147
NT1_5L-NT1_6R 110

Pace (mm)
NT2_1L-NT2_2R 160
NT2_2R - NT2_3L 104
NT2_3L-NT2_4R 103 145
NT2_4R - NT2_5L 145
NT2_5L-NT2_6R 160
NT1_1L-NT1_3L 244
NT1_2R-NT1_4R 258
- - 254,5
NT1_3L-NT1_5L 271
NT1_4R - Ntl_6R 251
Stride (mm) = =
NT2_1L-NT2_3L 229
NT2_2R - NT2_4R 188
- - 236,5

NT2_3L-NT2_5L 244
NT2_4R-NT2_6R 290
NT1 68
NT2 %

Trackway width (mm)

5.2. The first evidence of a raptorial bird-prey interaction preserved in action

Arboreal birds show a K- or X-like pattern in track morphology. The only
zygodactyl tracks comparable with Buboichnus vicentinus found in the fossil
record is Shandongornipes muxiai from the Lower Cretaceous of China described
by Rihui et al. (2005). These are smaller tracks with mesaxonic asymmetry, digits

II, Il and IV pointing anteriorly and not united in the centre. Mainly for those
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morphological differences and the sub-optimal preservation conditions, the new

zygodactyl tracks from Telheiro deserve to be placed in a new ichnogenus.

The Eurasian eagle-owl is one of the largest species of owl, and females can
grow to a total length of 75 cm, being larger than males (Voous, 1988). They are
also one of the most widely distributed of all species. Owl tracks usually show two
toes pointing forward, one to the side and a very short toe pointing to the rear or
off to the side. The toes are thick and powerful, usually ending with sharp claws.
Owl feet is spread because both the inner and outer toe can function as a versatile
toe and work together with the rear toe (Brown et al. 2002). They use their feet to
constrict their prey to death, the talons serving only to hold the prey in place (Ward
et al.,, 2002). In average, Eurasian eagle-owls track length is up to 105 mm
(without claw marks) with an average toe lll length of 49-62 mm (Brown et al.
2002). Toe | and claw are sometimes indistinct, with the claw print extending
significantly the print. Also, the tracks tend to be dragged when the bird first lands
(Brown et al. 2002). The normal gait is a running hop, with the straddled tracks
almost in pairs and strides of 150 mm to 400 mm between them (Brown et al,
2002). The size and morphology of Buboichnus vicentinus fit conveniently in the
tracks of the Eagle-owl. The fossil tracks are also well inside the geographic area
of the modern Bubo bubo in the Iberian Peninsula (Gracia et al., 2015), which
can be compared with the Pleistocene fossil record distribution of this species in
Portugal (Fig. 12). Although the tracks and stride length apparently oversize the
average measurements known for B. bubo (Linnaeus) it is known that some of
these animals can grow larger, with a female in Britain having the middle toe
measured to 57.9 mm (MacGillivry, 1836). The only owl species slightly larger

than the Eagle-owl is the Great-grey-owl Strix nebulosa, presently living in
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northern latitudes (Voous, 1988). However, there is no record of the species in
SW Europe, both as fossils or living. During the Middle Pleistocene (Mindel
glaciation), Eagle-owls of southern France were 6-10% larger than recent
individuals (Bubo bubo davidi Mourer-Chauviré), and a still larger Bubo
binagadensis Burchak-Abramovich existed in Azerbaijan but disappeared in the
Late Pleistocene (Penteriani and Kenward, 2007). Eagle-owls have long and
robust claws, especially in toes Il and IV. In a soft substrate, like the sand dune,
the deeper impression of the feet can increase the apparent size of the digits

because the claw marks cannot be distinguished.

Eagle-owls are typical of rocky areas, near woodland and shrubby zones
(Martinez et al., 2003). The landscape of the surrounding area to the Telheiro
beach section may have been completely different ca. 45-43 ka ago. The area
may have been covered by forest and the rhizoliths provide evidence for shrub
vegetation stabilizing the secondary dune; Eagle-owls could breed at the cliff
edges (Penteriani and Delgado, 2019) of the high coastline found towards the
north. These animals are nocturnal predators, hunting for a range of different prey
species, from rodents, rabbits and larger mammals, but also birds of varying size
(Penteriani and Delgado, 2019). Their feeding activity is focused in the first few
hours after sunset and last few hours before sunrise (Delgado and Penteriani,
2007). At the Telheiro Beach tracksite we find Eagle-owl like tracks associated to
a confined irregular patch of heavy sediment trampling to where two shorebird
trackways converge (marked with a dashed line in Fig. 9), which we interpret as
new evidence of predation/feeding behaviour preserved as a trace fossil
snapshot. The action may have happened during or after the shorebirds visited

the place foraging for food, likely during the day. According to our interpretation,
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just after the sunset, the large Eagle-owl caught a prey and brought it to this place
or constricted the prey right here (if it was the shorebird represented in the two
trackways). The disturbed sediment, including a concentration of large zygodacty!l
tracks, with different directions, and track overprinting (Fig. 8), resulted from the
constricting to death of the prey and/or its manipulation during feeding. Except
for functional morphological evidence like bone accumulations (Worthy and
Holdaway, 1994; Berger and Clarke, 1995) and digestichnia commonly preserved
as owl pellets (e.g., Tobien, 1977; Andrews, 1991) and regurgitates (e.g.,
Seersholm et al., 2021), bird predation trace fossils are rare, and mostly restricted
to bill dabbling, scything, pecking and probing behaviors (Yang et al., 1995;
Fiorillo et al., 2011; Melchor et al., 2012; Falk et al., 2014 and references therein;
Abassietal., 2016; Helm et al., 2020). The trace fossil of predator-prey interaction
of raptorial birds described in this study has a rare potential to be preserved,
making the example of Telheiro’s finding singular and as far could be determined

the first example on the fossil record.

5.3. The shorebird track record

The shorebird tracks described in the aeolianite of Pessegueiro island by Neto
de Carvalho (2009), Neto de Carvalho et al. (2016) and Figueiredo et al. (2018),
are now dated by luminescence to 187+11 ka, very late MIS7 or very early MIS
6. The two trackways found in the stratigraphic surface at the Pessegueiro island
are composed of tracks with long and slender forward toes, with a moderate to
wide divarication and absence of hallux print, features that are found in shorebirds
from the order Charadriiformes. This order is nowadays represented in Portugal

by over 50 species belonging to 9 families, which typically live in the coastal area
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and commonly are seen looking for protection from storms and strong winds on
the beach and among the dunes. Shorebirds and especially gulls have long and
slender digits, widely open and connected by the interdigital web, which reveal to
be adaptations for efficient swimming and walking in soft, sandy substrates. We
attributed the variably sized web-prints of Charadriipeda isp. type | to different

species of Charadriiformes, especially gulls (Figueiredo et al., 2018).

The two trackways defined as Charadriipeda isp. type Il are different from the
webbed-type gull tracks described before. Considering the morphology and size
of the tracks, the apparent lack of web, but also the dune habitat and the expected
species found there by comparison with the present coastal dune environments
found in SW Portugal, any shorebird species such as Charadrius morinellus
Linnaeus, C. alexandrinus Linnaeus, Pluvialis apricaria (Linnaeus), Burhinus
oedicnemus Linnaeus, Limosa lapponica (Linnaeus), and Numenius phaeopus

Linnaeus, could have produced these tracks.

The poorly preserved large tracks of Aivados Sul Beach tracksite have slender
toes with short divarication angles, and a spur-like hallux, strongly reminding the
tracks of rallids. The Eurasian coot (Fulica atra (Linnaeus)) is member of the
family Rallidae. This omnivorous waterbird can still be found in coastal lagoons
and estuaries of the area where the tracks were found. They are medium-sized,
38 to 50 cm in length, robust birds with short legs and large feet. Coot shows
divarication angles of toes II-lll and llI-1V, 45° and 35° respectively. Toe lll is in
average 75 mm long (Brown et al., 2002). As in Aivados Sul, coot tracks show
evidence of connection of all the digits by the metatarsal imprint. The metatarsal
impression is the result of a plantigrade with the full length of the metatarsus in

contact with the ground.
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The shorebird ichnofacies described by Doyle et al. (2000) comprises
ichnocoenoses attributable to Charadriiformes, Anseriiformes and Ciconiiformes,
and has been interpreted as effectively lacustrine ichnofacies, although
associated with coastal environments. The Gruipeda tracks attributed to Eurasian
coots reinforce this ecological association. The identification of tracks of the
ichnogenus Gruipeda in Aivados Sul Beach section is consistent with the fossil
record of coastal deposits with body remains of Pleistocene birds in Portugal: in
the Gruta da Figueira-Brava (Setubal), a scapula of Grus primigenia was
identified (Mourer-Chauviré & Antunes, 2000) and in the Gruta da Casa da Moura
(Obidos) was identified a tibiotarsus of Grus grus (Figueiredo, 2010; Figueiredo
and Rosa, 2014). The presence of corvid and strigid tracks reflects however the
proximity of rocky areas, near the varied woodland edge and shrubby areas both
with openings and/or wetlands where Eagle-owls hunt most of their prey; Corvus
monedula are omnivorous and opportunists. This species was common in the
coastal areas of Portugal mainland during the Pleistocene (Fig. 12) (Figueiredo,
2010, 2018; Figueiredo and Rosa, 2014; Figueiredo et al., 2017, 2018) and
presently, although more common in hinterland areas (BirdLife.org), it is frequent
to find them in coastal dunes and beaches of SW Portugal raiding in large groups
for food. The moderate diversity of tracks found in the Middle and Late
Pleistocene aeolianites of SW Portugal reflects an ecological mosaic that still can

be found in the area nowadays.



900

901

902

903

904

905

906

907

908

909

[Rio Limal

o Braga

Castelo
Branco

Taxon 0-5Km 10-20 km 20 - 50 km >50 Km
Grus primigenia *

Grus grus

Larus fuscus

Larus sp

Bubo bubo

Pyrrhocorax pyrrhocorax
Pyrrhocorax graculus
Corvus monedula

Corvus corone

Corvus frugilegus

Corvus antecorax

Corvus corax

0 50 100 km
S ——

Fig. 12. A. Distribution of the occurrence of Paleolithic sites with the probable
producers of the tracks in the Pleistocene of Portugal. A and B — New tracksites
presented in this work: A — Aivados Sul Beach section; B — Telheiro Beach
section; 1 — 12: Previously known sites. 1 to 11 — Bone assemblages in caves: 1
— Gruta Nova da Columbeira; 2 - Gruta da Furninha; 3 - Gruta de Salemas; 4 -
Abrigo do Lagar Velho; 5 - Gruta das Fontainhas; 6 - Gruta da Casa da Moura; 7
- Lapa da Rainha; 8 - Gruta do Caldeirdo; 9 - Gruta da Figueira-brava; 10 - Gruta
do Escoural; 11 - Grutas do Almonda; 12 — Tracksite previously described —

Pessegueiro island. Taxonomic information: Yellow circles - Gruiformes; red
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circles — Charadriiformes; blue circles — Strigiformes; Green circle - Corvidae
(adapted from Figueiredo, 2018, Fig. 1). B - Distance to the coast of the
archeological occurrences of the bird species from the Pleistocene of Portugal
that are compared with the tracks described in this work (adapted from

Figueiredo, 2010).

6. Conclusions

The Pleistocene avifauna of mainland Portugal was previously and mostly known
from bone assemblages in cave sites. In the outbreak of the new wave of
ichnological research on Pleistocene coastal aeolianites 20 years ago, the first
Cenozoic vertebrate tracks from Portugal were described in 2003. Since then, 11
sections were recognized with vertebrate tracks, documented by 18 stratigraphic
levels. The Pessegueiro island sector included the first bird tracks described in
Portugal. New tracksites with avian trackways and tracks from the Middle and
Upper Pleistocene coastal aeolianites were described in this study for three
sections in SW Portugal: Pessegueiro island, Aivados Sul Beach and Telheiro
Beachs. According to the luminescence age of 187+11 ka in the Pessegueiro
island, as well as previous OSL and *C ages obtained, the aeolianite levels with
the bird tracks were deposited in several aeolian depositional episodes ranging
from the MIS 7/6 transition to the MIS 3. The tracksite in the aeolianite unit at
Praia do Telheiro site, with an apparent depositional age of ~45-43 ka (MIS 3), is

now the most recent fossil record of avian tracks in the Iberian Peninsula.

Two new ichnotaxa are described for the first time in the Pleistocene of Europe,

Corvidichnus odemirensis and Buboichnus vicentinus, attributed to corvids and a
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large Eagle-owl. Western jackdaw is the likely producer of Corvidichnus
odemirensis based on the direct morphometric comparison with tracks on beach
sands made by this animal still living in region, but the Alpine chough cannot be
dismissed as a likely producer since archeological evidence point to their
existence in the coast of central Portugal during the same period. In the younger
aeolianite of Telheiro Beach (~45-43 ka cal BP), a new predation/feeding trace is
described, with the multiple orientation and concentration of Eagle-owl! tracks,
together with two converging trackways of shorebirds, defining a snapshot of
active catching and manipulation of prey by the Eagle-owl. The rarity of perching
and raptorial bird behaviors in the fossil record give a special meaning to this
study with compelling evidence of their presence, together with Charadriiformes
(including Laridae), shorebirds and possibly coots, as well as small and large
mammals, that lived or raided for food in the wider coastal habitats of the Late

Pleistocene.
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