
DOBLE GRAU DE MATEMÀTIQUES I
ENGINYERIA INFORMÀTICA

Treball final de grau

F1 RACE SIMULATOR

Autor: David Díez Vidueira

Director: Dr. Santiago Seguí Mesquida
Realitzat a: Departament de Matemàtiques

i Informàtica
Barcelona, June 3, 2025

Faculty ofMathematics and Computer Science
University of Barcelona
Barcelona on June 3, 2025

To all the artists on Spotify,
singing to me 24/7.

Contents

Abstract 1

Resum 2

1 Introduction 3

2 Formula 1 strategy 5

3 Previous literature 8

4 State of the art: Transformers 11
4.1 Input embedding . 13
4.2 Positional encoding . 16
4.3 Attention . 23
4.4 Feed-forward network . 34
4.5 Activation function . 45

5 Race strategy simulator 48
5.1 Data sources and variables . 49
5.2 Data pipeline . 51
5.3 Transformer implementation . 53

6 Results 59

7 Real race simulation 70

8 Conclusions 75

Bibliography 77

A Mathematical proofs 80

B Positional encoding heatmap script 88

Abstract

This thesis presents the design and implementation of a real-time Formula 1 strategy sim-
ulator, built on state-of-the-art Transformer architectures to enable dynamic, data-driven
decision-making during a Grand Prix. The project explores how Transformer models, orig-
inally developed for language processing, can be adapted to predict and optimise race strate-
gies using sequential motorsport data.

The simulator relies on two specialised models: the PitStopTransformer, which pre-
dicts the optimal lap to pit, and the CompoundTransformer, which selects the most ap-
propriate tyre compound. Both models are based on the Transformer architecture, incor-
porating multi-head attention, positional encoding and feed-forward layers to capture com-
plex temporal patterns and race dynamics.

Data is sourced from Fast F1 for historical records and Open F1 for real-time telemetry. Lap-
by-lap features such as laps times, gaps, weather and strategy phase are processed through a
PostgreSQL database and structured into sequences for TensorFlow pipelines.

Live deployment confirms the system’s ability to generate accurate, low-latency predictions
during evolving race scenarios. The simulator adapts to events like tyre degradation or
Safety Cars, offering strategic insights as conditions change.

By combining mathematical rigour with cutting-edge architecture, this work delivers a scal-
able tool for real-time race strategy, bridging theoretical machine learning and applied mo-
torsport analytics.

Resum

Aquesta tesi presenta el disseny i la implementació d’un simulador d’estratègia en temps
real per a la Fórmula 1, construït sobre arquitectures Transformer d’última generació per
permetre una presa de decisions dinàmica i basada en dades durant un Gran Premi. El pro-
jecte explora com els models Transformer, inicialment desenvolupats per al processament
del llenguatge, poden adaptar-se per predir i optimitzar estratègies de cursa a partir de dades
seqüencials del món del motor.

El simulador es basa en dos models especialitzats: el PitStopTransformer, que prediu
la volta òptima per fer una parada, i el CompoundTransformer, que selecciona el com-
post de pneumàtic més adequat segons les condicions actuals. Ambdós models parteixen
de l’arquitectura Transformer, incorporant mecanismes com l’atenció multi-capçal, les cod-
ificacions posicionals i les xarxes feed-forward per capturar patrons temporals complexos i
la dinàmica estratègica de la cursa.

Les dades provenen de Fast F1, que ofereix registres històrics i d’Open F1, que aporta teleme-
tria en temps real. Variables com els temps per volta i el clima s’emmagatzemen en una base
de dades PostgreSQL i es transformen en seqüències per a TensorFlow.

Les proves en directe confirmen que el sistema pot generar prediccions precises i ràpides en
contextos canviants. El simulador reacciona a situacions com degradació extrema o Safety
Car, ajustant les decisions estratègiques en temps real amb un model sòlid i escalable.

Combinant les matemàtiques amb una arquitectura d’avantguarda, aquesta tesi ofereix una
eina per a l’estratègia en temps real, a mig camí entre la teoria i la pràctica del motorsport.

Chapter 1

Introduction

Formula 1 represents the pinnacle of motorsport, where innovation, precision and compe-
tition intersect. In this arena, mere tenths of a second can separate a future Hall of Fame
from a footnote in racing history. With team budgets capped at 145 million euros per sea-
son for development purposes [For21], every decision, whether technical or strategic, bears
significant consequences.

The championship features ten teams, each fielding two drivers, competing across approx-
imately 24 races held over nearly an entire calendar year. While the engineering challenge is
immense, the role of race-day strategy continues to stand out as a decisive factor in overall
performance.

Two distinct titles are awarded each season: the Drivers’ Championship (WDC), based on
individual driver results and the Constructors’ Championship (WCC), awarded to the team
whose drivers collectively score the most points. Although the two titles are interrelated,
they are not always won simultaneously. For example, in the 2024 season, Max Verstappen
clinched the WDC with Red Bull, while McLaren secured the WCC.

Formula 1 is as much a testament to human endurance as it is to technological excellence.
Drivers are subjected to extreme physical forces, such as 5.6 g under braking at Monza
[Soy19], conditions more severe than those experienced by astronauts. Reaction times as
fast as 0.2 seconds [For23], coupled with the ability to suppress blinking at speeds exceed-

ing 350 km/h [Sci23], highlight the extraordinary physiological demands placed on them.

Strategic and engineering departments operate in parallel. Teams such as Mercedes and
Ferrari employ over 1,000 professionals across a wide array of domains including aerody-
namics, power-train design, logistics and race strategy. The goal is not merely to construct
the fastest car in a vacuum, but to optimise performance across a full lap, tuning downforce
and drag to suit the specific characteristics of each circuit.

A Grand Prix weekend is structured into four primary phases: car setup on Thursday, free
practice sessions on Friday, qualifying on Saturday and the race on Sunday. Qualifying is
organised into three knockout rounds: Q1, Q2 and Q3 with only the top ten drivers advanc-
ing to the final session. Sunday’s race typically covers a total distance of 305 kilometres or
the full lap count defined for each circuit. Since their introduction in 2021, sprint races have
added another layer of complexity by altering the weekend structure and offering additional
points.

Alongside the drivers, race strategists play a vital, yet often understated, role in determining
race outcomes. Working in real time, they monitor hundreds of telemetry variables, sim-
ulate possible race scenarios and make critical decisions regarding pit stops, tyre selection
and reaction to on-track incidents. These professionals must weigh tyre degradation, fuel
load, weather evolution and the behaviour of rival teams to optimise both short-term race
position and long-term championship points. In many cases, a single strategic call can be
the difference between victory and defeat.

This thesis aims to simulate the role of a Formula 1 race strategist through the develop-
ment of a real-time strategy engine. The proposed framework employs advanced machine
learning techniques, specifically Transformer-based architectures, to predict both the opti-
mal lap for a pit stop and the most suitable tyre compound under dynamic race conditions.
Historical data is sourced from the Fast F1 API for model training, while live telemetry is ob-
tained via the Open F1 API during inference. By combining mathematical modelling with
modern deep learning methods, the resulting system aspires to become a robust, data-driven
decision-support tool capable of delivering high-impact strategic insights in real time.

4

Chapter 2

Formula 1 strategy

Strategy is a core function within every Formula 1 team, responsible for determining when
to pit and which tyres to use. These decisions must account for a range of dynamic variables,
making race strategy one of the most nuanced areas in the sport.

To formalise the discussion, several key definitions are introduced

Definition 2.1: Pit stop. A pit stop is a brief but crucial halt in the pit lane where a car
receives service, primarily for tyre changes, adjustments or repairs, playing a crucial role
in race strategy and performance.

A well-timed pit stop can offer a decisive advantage, while a poorly executed one may result
in significant time loss, traffic, or a compromised race position. Including the time to enter
and exit the pit lane, the total time loss is usually around 30 seconds.

Definition 2.2: Tyre compound. A tyre compound refers to the rubber mixture used
in an F1 tyre, which determines its grip, durability and overall performance characteris-
tics.

Pirelli supplies all teams with both slick and wet-weather tyres. Slick tyres, used in dry con-
ditions, are divided into five compounds (C1 to C5), with C1 being the hardest and C5
the softest [Pir25]. For each Grand Prix, three compounds are selected and labelled hard,

medium, and soft. Softer tyres provide superior grip but degrade quickly, whereas harder
compounds offer endurance at the expense of outright performance.

Definition 2.3: Strategy. Strategy in Formula 1 refers to a team’s race plan, including
tyre choices, pit stop timing and fuel management, aimed at maximizing performance
and race position.

To illustrate the essence of strategy, consider a simplified 20-lap race scenario with ideal
conditions and linear tyre degradation. To further simplify, it is assumed that a lap time
on this circuit with hard tyres is 110 seconds, with medium tyres is 105 seconds and with
soft tyres is 100 seconds. Additionally, tyre degradation follows a linear model: the hard
tyres degrade at a rate of 0.25 seconds per lap, meaning each subsequent lap is 0.25 seconds
slower. The degradation rate for medium tyres is 0.75 seconds per lap, while for soft tyres
it is 1.5 seconds per lap.

The total pit stop duration, denoted as 𝑡𝑝, is assumed to be 30 seconds. This includes the
time required to enter the pit lane, change tyres and exit.

0 2 4 6 8 10 12 14 16 18 20

100

110

120

Lap

La
p

tim
e(

se
co

nd
s)

Hard
Medium

Soft

Figure 2.1: Lap times as a function of tyre compound and lap number.

In the early stages, the soft compound yields the fastest lap times. However, its steep degra-
dation soon negates the initial advantage, allowing the medium and later the hard com-
pound to become more effective across longer stints.

Consider a one-stop strategy in which soft tyres are used for the first six laps, followed by a
switch to hard tyres. The total race time is computed as:

6

Formula 1 strategy

1. First six laps on soft tyres:

𝑡𝑠 =

5∑︁
𝑙=0

(100 + 1.5𝑙) = 600 + 1.5 · 6(6 − 1)
2

= 622.5

2. Pit stop on lap 7 adds 𝑡𝑝 = 30.

3. Final 14 laps on hard tyres:

𝑡ℎ =

13∑︁
𝑙=0

(110 + 0.25𝑙) = 1540 + 0.25 · 14(13)
2

= 1562.75

Total time is computed as 𝑡 = 𝑡𝑠 + 𝑡𝑝 + 𝑡ℎ = 622.5 + 30 + 1562.75 = 2215.25 seconds.

Definition 2.0.1: Stint. A stint refers to the continuous period a driver spends on track
between two pit stops while using the same set of tyres. The length of a stint is influenced
by tyre degradation, race strategy and track conditions.

Now consider a second one-stop strategy, using medium tyres for the first 10 laps and softs
for the final 10, this is, 𝑡 = 1083.75 + 30 + 1067.5 = 2181.25 seconds.

This approach is 34 seconds faster. Finally, the optimal strategy in this simulation is a two-
stop plan: softs for 7 laps, mediums for 6, and softs again for the last 7 laps:

𝑡 = 731.5 + 30 + 641.25 + 30 + 731.5 = 2164.25 seconds

Although it requires two pit stops, the lower average lap time compensates for the added
stationary time. This illustrates that the best race time is not necessarily achieved by min-
imising pit stops, but by striking the right balance between degradation and pit time.

In real Formula 1, tyre degradation is non-linear and typically accelerates over time. This is
especially relevant when compounds approach their thermal or structural limits, leading to
phenomena such as graining or blistering. Weather conditions, fuel loads and track evolu-
tion further complicate strategic decisions. For instance, heavier cars at the start of a race
experience more degradation, favouring harder compounds early. As fuel burns off and the
track rubberises, softer tyres become increasingly viable.

Rain and temperature shifts demand reactive strategy updates, particularly regarding the
timing of switches between slicks and wet-weather compounds. Pit decisions must also
account for traffic: rejoining behind slower cars or in dirty air can neutralise the benefit of
a fresh tyre set. Additionally, neutralisation phases, such as Safety Cars or red flags, reduce
pit lane time losses, often triggering opportunistic stops.

7

Chapter 3

Previous literature

The study of race strategy in Formula 1 has become an increasingly popular field for both
academic and applied research. The intersection between motorsport, mathematics and
computer science offers a fascinating environment for experimentation with optimisation
algorithms, machine learning models and simulation techniques. In this context, a num-
ber of works have laid the groundwork by proposing models based on stochastic processes,
Monte Carlo simulations, neural networks and reinforcement learning. While none of
these fully capture the complexity and speed of real-time decision-making in F1, they each
contribute valuable components for building a complete strategic simulator.

A significant portion of the literature focuses on using Monte Carlo Simulation (MCS) to
evaluate thousands of possible race scenarios by simulating stochastic elements such as tyre
degradation, fuel weight, pit stops and the appearance of safety cars. These methods pro-
vide solid estimations and are frequently combined with statistical validation metrics like
hypothesis testing or Spearman’s rank correlation [Jim22]. Some authors also introduce en-
hancements such as Latin Hypercube Sampling to reduce computational overhead and im-
prove coverage across scenarios [Meh+21]. However, these models often rely on hardcoded
strategies or last-year winner heuristics, which limit adaptability and novelty [Mur21].

Another widely explored avenue is the application of machine learning, especially Artificial
Neural Networks (ANNs), to predict optimal strategies. These models are typically trained

Previous literature

on historical data to make decisions. Some works propose multi-network systems, assign-
ing separate neural networks to each parameter to improve accuracy [Hei+20b]. Others
experiment with architectures such as LSTMs to handle sequential decision-making under
time dependency [LF20]. However, while useful for offline predictions, these models often
fail to adapt dynamically during a live race [Ron22].

Several papers delve into Reinforcement Learning (RL) for simulating the strategic space of
a race, often framing it as a Markov Decision Process (MDP). Proximal Policy Optimisation
(PPO) and Advantage Actor-Critic (A2C) algorithms are used to learn policies that max-
imise rewards based on simulated race outcomes. These approaches show great promise,
especially when trained using simplified track models, yet they tend to require a significant
number of episodes and usually simulate only the early part of a race due to computational
constraints [Jim23].

Other authors propose the use of Monte Carlo Tree Search (MCTS) to make branching
decisions based on a simulation tree. MCTS is especially useful in dynamically changing
environments like motorsport, as it allows reevaluating the best strategy based on real-time
events such as the deployment of a safety car or weather changes [Pic+21]. Nevertheless,
MCTS struggles with computational cost, limiting the number of simulations that can be
feasibly executed in real time [Hei+20a].

What stands out in the literature is that few works address race strategy with a holistic and
real-time adaptive perspective. Most approaches either focus on pre-race planning or lack
the ability to adjust their predictions during the event. Furthermore, very few integrate a
solid mathematical backbone with a modern software stack capable of handling data inges-
tion, transformation and prediction with low latency.

In light of these gaps, the use of a Transformer-based model for F1 strategy prediction in-
troduces a novel and highly promising approach. Unlike traditional sequence models such
as RNNs or LSTMs, Transformers are designed to handle long-range dependencies with
greater efficiency and parallelism, making them ideal for modelling the sequential and con-
ditional nature of race events. The self-attention mechanism enables the model to weigh
different moments in the race contextually, allowing the system to reason about overtaking
opportunities, tyre performance and timing in a more flexible manner.

By training the Transformer to predict the optimal lap to pit and the best tyre compound
to use, it becomes possible to offer data-driven strategy suggestions both before and during
the race. The model can be updated in real time as new telemetry or race conditions are fed
into the system, overcoming the static nature of most previous works. Instead of simulating
thousands of outcomes, the Transformer directly estimates the best action over the next lap,
balancing speed with interpretability.

9

In summary, this thesis aims to build upon the foundations laid in previous research by
combining the robustness of simulation, the adaptability of machine learning and the ef-
ficiency of Transformers. The resulting system is designed to operate entirely in real time,
continuously generating and refining strategic recommendations based on live data streams
throughout the race. This dual focus on mathematical rigour and software implementation
reflects the interdisciplinary nature of the project, bridging the gap between academic in-
sight and real-world applicability in motorsport engineering.

The structure of this thesis is as follows:

1. Chapter 1 provides a general introduction to the world of Formula 1. It outlines the
structure of a race weekend, introduces the key stakeholders such as teams and drivers
and explains how different sessions unfold and how teams typically operate.

2. Chapter 2 delves into the intricacies of race strategy in Formula 1. This section offers a
comprehensive breakdown of strategic decision-making illustrated through a simple
example, an analysis of the various factors that influence strategy and several real-world
case studies.

3. Chapter 3 presents a review of relevant literature, including previous work and re-
search conducted in this field. It highlights the contributions made by others and
situates the current project within the broader academic and technical context.

4. Chapter 4 introduces the Transformer architecture in detail. This chapter is intended
to familiarise the reader with the model’s internal mechanisms including its structure,
mathematical foundations and why it is particularly suited for sequential decision-
making tasks such as race strategy prediction.

5. Chapter 5 outlines the development of the race strategy simulator, which is built upon
the theoretical principles and machine learning techniques discussed in Chapter 4.
It includes the engineering and software aspects required to bring the model into a
functional system.

6. Chapter 6 presents the theoretical results from training the models. It highlights key
design changes and evaluates performance using different metrics.

7. Chapter 7 evaluates the performance of the simulator using real race data. This eval-
uation demonstrates the applicability and potential of the proposed approach in real-
world Formula 1 scenarios highlighting strengths

8. Finally Chapter 8 summarises the main findings and reflects on the outcomes of the
project. It also considers future directions and possible improvements, both from a
technical and strategic perspective.

10

Chapter 4

State of the art: Transformers

Transformers represent the current state of the art in machine learning. They were first
introduced by Google in their seminal 2017 paper [Vas+17], where it was observed that tra-
ditional sequential models such as Recurrent Neural Networks (RNNs), Long Short-Term
Memory networks (LSTMs) and Gated Recurrent Units (GRUs) suffered from limitations
in training speed and memory usage due to their inherently sequential nature and lack of
parallelisation.

To address these issues Google proposed a novel architecture built entirely around atten-
tion mechanisms. This innovation enabled significantly faster training and better perfor-
mance on various tasks. For context and motivation it is worth noting that many of today’s
most powerful models, such as ChatGPT, are entirely based on transformers. In fact, the
T in GPT stands for Transformer. Given their success and relevance this thesis will explore
transformers in depth, both from a computer science and mathematical perspective.

The original paper [Vas+17], which primarily focuses on machine translation tasks, in-
troduces the Transformer architecture and presents the following diagram to illustrate its
structure:

Figure 4.1: The Transformer architecture.

At first glance, the diagram may appear complex or overwhelming. However by breaking
it down step by step it becomes much more approachable. The architecture is divided into
two main components: the Encoder and the Decoder (the left and right blocks in Figure 4.1,
respectively). Each component serves a distinct function:

1. Encoder: The encoder transforms an input sequence of tokens into a sequence of
embedding vectors. As illustrated in Figure 4.1, the encoder consists of 𝑁𝑥 stacked
layers each containing two sub-layers. The first sub-layer is a multi-head self-attention
mechanism and the second is a fully connected feed-forward neural network. Notably
each sub-layer is equipped with residual connections followed by layer normalization
which helps to stabilise and accelerate training.

2. Decoder: The decoder takes the encoder’s output and generates the output sequence
of tokens iteratively. Like the encoder, it comprises 𝑁𝑥 layers, but with an additional
key feature: masked multi-head attention. This masking, in conjunction with shifting
the output sequence by one position, ensures that the prediction at position 𝑖 depends
only on the known outputs at positions less than 𝑖. Finally the output passes through
a linear layer followed by a softmax function to produce a probability distribution.

Now that a general overview of the transformer architecture has been established, each com-
ponent will be analysed in depth. The goal is to provide a thorough understanding, sup-
ported by rigorous mathematical formulation and intuitive explanation, of how each part
contributes to the overall performance of the model.

12

State of the art: Transformers

4.1 Input embedding

The input embedding sublayer plays a fundamental role within the Transformer architec-
ture. Its primary objective is to convert input tokens into numerical vectors of a predefined
dimension through learned embeddings. The motivation behind this layer lies in enabling
neural networks to capture the semantic meaning of each token. This semantic understand-
ing allows the model to work with fixed-size vector representations that can be processed
effectively in subsequent layers.

The overall procedure can be broken down into two steps: tokenisation and vector embed-
ding.

Tokenisation is defined as a map

𝑡 : I −→ P (I)

where I denotes the input sequence and P (I) is the corresponding set of tokens after to-
kenisation.

The next step is embedding, defined by the map

𝐸 : P (I) −→ R𝑑𝑚𝑜𝑑𝑒𝑙

which transforms each token 𝑡 into a vector in R𝑑𝑚𝑜𝑑𝑒𝑙 , where 𝑑𝑚𝑜𝑑𝑒𝑙 is the dimensionality
of the model’s internal representation space. It is essential that 𝑑𝑚𝑜𝑑𝑒𝑙 is an even number as
several operations and derivations presented in the following chapters rely on this assump-
tion. If 𝑑𝑚𝑜𝑑𝑒𝑙 were odd, many of the subsequent formulations would break or become
ill-defined.

These vectors are then assembled into a matrix using the following transformation

𝐺 : R𝑑𝑚𝑜𝑑𝑒𝑙×𝑛 −→ R𝑑𝑚𝑜𝑑𝑒𝑙×𝑠𝑖 𝑧𝑒

𝑣1, 𝑣2, . . . , 𝑣𝑛 −→ (𝑣1, 𝑣2, . . . , 𝑣𝑛, padding)

where 𝑛 ⩽ 𝑠𝑖 𝑧𝑒 is the number of tokens in the input and 𝑠𝑖 𝑧𝑒 is the fixed maximum se-
quence length. Padding is applied when necessary to maintain consistent input dimensions.

Putting it all together, the full embedding pipeline can be expressed as the composition
𝑀 = 𝐺 ◦ 𝐸 ◦ 𝑡 , or explicitly

𝑀 : I −→ R𝑑𝑚𝑜𝑑𝑒𝑙×𝑠𝑖 𝑧𝑒

𝑖 −→ 𝑚

where the input 𝑖 is transformed into a matrix𝑚 of shapeR𝑑𝑚𝑜𝑑𝑒𝑙×𝑠𝑖 𝑧𝑒, ready to be processed
by the Transformer.

13

An illustrative example can help to make the process more tangible.

Suppose the input sentence is: Max won the 2024 Championship. The first step is tokenisa-
tion, which involves splitting the input into individual components. While different mod-
els use different tokenisation algorithms (some subword-based, others character-level), for
simplicity, let us assume a word-level tokenisation. The tokenised result becomes

𝑡 (Max won the 2024 Championship) = ["Max", "won", "the", "2024", "Championship"]

Thus, the original sentence is transformed into the list

["Max", "won", "the", "2024", "Championship"]

Additionally, it is common practice to include special tokens such as <start> and <end>
to explicitly mark the boundaries of the sentence. The token list then becomes

[<start>, "Max", "won", "the", "2024", "Championship", <end>]

At this stage the input has been segmented and the next step consists of converting each
token into a numerical vector, a format suitable for processing by neural networks. This
transformation is performed by an embedding layer which is itself a neural network trained
to assign a dense vector representation to each token. Further details on the internal mech-
anisms of neural networks, along with a justification for why this approach is appropriate
for computing 𝐸 , are provided in Section 4.4. An illustrative example of how 𝐸 operates is
as follows

𝐸 (Max) =

©­­­­­­«

56.21
32.05
−14.72
...

70.89

ª®®®®®®¬
, 𝐸 (won) =

©­­­­­­«

12.34
−7.80
45.67
...

22.13

ª®®®®®®¬
, 𝐸 (the) =

©­­­­­­«

−4.56
88.90
−32.10
...

14.75

ª®®®®®®¬
,

𝐸 (2024) =

©­­­­­­«

0.12
−19.43

6.78
...

33.33

ª®®®®®®¬
, 𝐸 (Championship) =

©­­­­­­«

42.76
−23.87
17.29
...

−9.01

ª®®®®®®¬
Each vector has a fixed dimensionality 𝑑𝑚𝑜𝑑𝑒𝑙 . The model can handle a maximum number
of input tokens, defined by 𝑠𝑖 𝑧𝑒. If the number of tokens is smaller than 𝑠𝑖 𝑧𝑒, padding
vectors are appended. If the input exceeds the limit the model may truncate the input or
raise an exception, depending on the implementation.

14

State of the art: Transformers

These vectors are finally concatenated into a matrix in R𝑑𝑚𝑜𝑑𝑒𝑙×𝑠𝑖 𝑧𝑒

©­­­­­­«

56.21 12.34 −4.56 0.12 42.76 padding · · ·
32.05 −7.80 88.90 −19.43 −23.87 padding · · ·
−14.72 45.67 −32.10 6.78 17.29 padding · · ·
...

...
...

...
... padding · · ·

70.89 22.13 14.75 33.33 −9.01 padding · · ·

ª®®®®®®¬
This matrix is the final output of the embedding layer.

It is important to highlight that this layer behaves deterministically, every token always maps
to the same embedding. For instance, the word bank will yield the same vector representa-
tion whether it appears in the bank of the river or in get money from the bank, despite the
difference in meaning. The disambiguation based on context is handled by deeper layers in
the Transformer, particularly the positional encoding and attention mechanism.

Another key insight is the interpretation of these embedding vectors. Each of the 𝑑𝑚𝑜𝑑𝑒𝑙
components can be considered as a latent feature of the token. These features are not explic-
itly defined but are learned through training and can represent properties such as syntactic
roles, sentiment or topic.

Analysis of the embedding space reveals that directions within it have semantic meaning.
For example the word house tends to lie close to vectors for building, roof, home and con-
struction, reflecting their shared semantics.

Perhaps even more impressively, certain relationships between words manifest as vector
arithmetic. A well-known and illustrative example is

𝐸 (man) − 𝐸 (female) ≈ 𝐸 (king) − 𝐸 (queen)

Other similar analogies also emerge naturally from the learned embedding space like

𝐸 (man) − 𝐸 (female) ≈ 𝐸 (uncle) − 𝐸 (aunt)
𝐸 (man) − 𝐸 (female) ≈ 𝐸 (nephew) − 𝐸 (niece)
𝐸 (man) − 𝐸 (female) ≈ 𝐸 (father) − 𝐸 (mother)
𝐸 (man) − 𝐸 (female) ≈ 𝐸 (brother) − 𝐸 (sister)

These relationships hint at the remarkable capacity of the embedding layer to capture un-
derlying structures of the input, forming the foundation upon which the rest of the Trans-
former builds.

15

4.2 Positional encoding

This component represents a fundamental aspect of the transformer architecture. As pre-
viously discussed, one of the key advantages of transformers lies in their ability to process
data in parallel. Unlike traditional sequential models, transformers can handle entire input
sequences simultaneously, significantly accelerating both training and inference.

However this parallelism introduces a challenge: if all input tokens are processed at once,
how does the model retain any information about the original order of the sequence? After
all, time-series data are inherently ordered and ignoring that order would result in a loss of
crucial context.

This is precisely where positional encoding becomes essential.

As introduced in Section 4.1, the input sequence is first transformed into a sequence of to-
ken embeddings, essentially numerical vector representations of each item. The goal now is
to enrich these embeddings with information about their position in the original sequence.
In other words, a mechanism must be added that allows the model to distinguish between
tokens based on their relative or absolute position, even when processed in parallel.

To fully understand the concept behind positional encoding, it is beneficial to develop the
idea step by step, starting from the most intuitive perspective.

Let us briefly recall the objective: to provide the model with information about the original
position of each token within the input sequence. Ideally any positional encoding scheme
should satisfy the following criteria:

1. The encoding process must be deterministic, ensuring consistent outputs for the same
inputs.

2. It should produce a unique encoding for each time step.

3. The relative distance between any two positions should remain consistent across input
sequences of varying lengths.

4. The model should be capable of generalising to longer sequences without requiring
additional training.

To achieve this the goal is to define a function

𝑃𝐸 : {1, 2, . . . , 𝑛} −→ R𝑑𝑚𝑜𝑑𝑒𝑙

where {1, 2, . . . , 𝑛} denotes the valid positions within an input sequence of length 𝑛 and
the output lies in R𝑑𝑚𝑜𝑑𝑒𝑙 , representing the positional vector associated with each token.

16

State of the art: Transformers

This mapping serves to enrich the embedding space with positional information aligning
with the requirements outlined above.

A naive approach might involve adding a positional vector to each token embedding, this
vector having the same dimensionality as the embedding vector: 𝑑𝑚𝑜𝑑𝑒𝑙 . In its simplest
form this positional vector could be a constant vector filled entirely with the token’s posi-
tion index 𝑖, that is, [𝑖, 𝑖, . . . , 𝑖].

While this method encodes absolute position it leads to problems when dealing with longer
sequences. In such cases, the magnitude of the positional vector can dominate that of the
embedding vector, potentially overwhelming the semantic content encoded in the embed-
dings. As a result the model might lose valuable information about the token’s meaning in
favour of its position.

To mitigate this issue, one could normalise each positional vector by the total length of the
input sequence, denoted as𝑛 (as previously defined in Section 4.1). This would yield vectors
such as [𝑖/𝑛, 𝑖/𝑛, . . . , 𝑖/𝑛], ensuring that no single positional vector disproportionately
outweighs the embedding it is added to. However this solution introduces ambiguity. Since
the normalised position is relative different input lengths can produce identical vectors for
different absolute positions. For example, in a sequence of length 4, the first token would
receive a positional vector of [0.25, 0.25, . . . , 0.25]. In a sequence of length 16, the fourth
token would receive exactly the same vector. From the model’s perspective these vectors are
indistinguishable and the original position cannot be uniquely recovered.

To resolve this ambiguity one can attempt to combine both previous ideas: use absolute
position values but restrict them within a fixed range. One simple way to achieve this is
through binary encoding. Instead of assigning a vector of repeated decimal values (e.g.,
[3, 3, . . . , 3]), one can encode the position using binary digits. For instance, the third po-
sition (which is decimal 3) can be represented by the binary vector [0, . . . , 0, 1, 1], which
clearly captures the position without overwhelming the original embedding.

Interestingly, consecutive binary values exhibit a regular pattern of bit transitions,

Decimal Binary

0 0 0 0 0
1 0 0 0 1
2 0 0 1 0
3 0 0 1 1
4 0 1 0 0
5 0 1 0 1
6 0 1 1 0

Table 4.1: Binary representation of decimal numbers using 4 bits.

17

In Table 4.1, it becomes apparent that the least significant bit toggles at a higher frequency
than the more significant bits. This observation leads to the next idea: if we view each bit
as a signal that alternates between high and low states we can represent the full pattern of
bit transitions as a matrix and then transpose it:

B4 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1
B3 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1
B2 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1
B1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

Visualising these transitions as signals over time reveals a set of wave-like behaviours, as
shown in the timing diagram in Figure 4.2.

B4
B3
B2
B1

Figure 4.2: Bit transitions from decimal 0 to 15 represented as timing diagram.

Taking this idea further, these square waveforms can be approximated using sine functions
of increasing frequency, producing a smoothly varying encoding that is both continuous
and differentiable, ideal for use in neural networks.

−1
0
1

B4

−1
0
1

B3

−1
0
1

B2

0 1 2 3 4 5 6 7 8
−1

0
1

Time

B1

Figure 4.3: Stacked sine waves approximating digital bit transitions from B4 to B1.

Each wave corresponds to a frequency component of the signal and the values of these sine
functions, evaluated at each token position, form the actual positional encoding.

In this simplified example the positional encoding is defined as

sin
(
𝑖

𝑛

)
18

State of the art: Transformers

where 𝑖 is the token’s position in the input and 𝑛 is the total sequence length.

In the original Transformer architecture [Vas+17] a more sophisticated version was pro-
posed using sine and cosine functions at multiple frequencies

𝑃𝐸 (𝑖)𝑡 =


sin

(
𝑖

10000
2𝑡

𝑑𝑚𝑜𝑑𝑒𝑙

)
if 𝑡 is even

cos

(
𝑖

10000
2𝑡

𝑑𝑚𝑜𝑑𝑒𝑙

)
if 𝑡 is odd

In this formulation 𝑃𝐸 (𝑖) denotes the positional encoding vector associated with position
𝑖 in the input sequence and 𝑡 refers to a specific coordinate within this vector. Each pair of
coordinates (2𝑡, 2𝑡 + 1) shares the same frequency with one using a sine function and the
other a cosine. This structure allows the model to encode both the magnitude and phase
of the position using complementary signals. The use of sine for even indices and cosine
for odd indices ensures that each position is mapped to a unique, continuous and differen-
tiable encoding. Furthermore, the denominators form a geometric progression, allowing
the model to capture both short and long-range dependencies in the sequence.

This mapping can be formally defined as follows

Definition 4.2.1: Positional encoding. Let 𝐸 ∈ R𝑛×𝑑𝑚𝑜𝑑𝑒𝑙 be a matrix that contains
𝑑𝑚𝑜𝑑𝑒𝑙 dimensional column vectors 𝐸𝑖,which encode the position 𝑖 in an input sequence
of length 𝑛. The mapping 𝑃𝐸 : {1, 2, . . . , 𝑛} −→ R𝑑𝑚𝑜𝑑𝑒𝑙 is referred to as positional
encoding. It assigns to each position 𝑖 a unique vector 𝑃𝐸 (𝑖) = 𝐸𝑖,, defined as follows

𝑃𝐸 (𝑖) = 𝐸𝑖, =

©­­­­­­­­­­­­­­«

sin (𝑖𝜔1)
cos (𝑖𝜔1)
sin (𝑖𝜔2)
cos (𝑖𝜔2)

...

sin
(
𝑖𝜔 𝑑𝑚𝑜𝑑𝑒𝑙

2

)
cos

(
𝑖𝜔 𝑑𝑚𝑜𝑑𝑒𝑙

2

)

ª®®®®®®®®®®®®®®¬
where 𝜔𝑡 =

1

10000
2𝑡

𝑑𝑚𝑜𝑑𝑒𝑙

.

Regardless of the mathematical formulation, the core idea remains the same: positional
encoding is a clever way to inject sequential order into a model that is otherwise completely

19

parallel.

The final output at the 𝑖-th position is a vector 𝑣𝑖 ∈ R𝑑𝑚𝑜𝑑𝑒𝑙 defined as

𝑣𝑖 = 𝐸 (𝑖) + 𝑃𝐸 (𝑖)

where 𝐸 (𝑖) represents the token embedding obtained through the mapping described in
Section 4.1 and 𝑃𝐸 (𝑖) denotes the positional encoding corresponding to the 𝑖-th position
in the input sequence. The addition of these two components allows the model to retain
both the semantic meaning of the token and its position within the sequence.

Once these position-aware vectors are computed for the entire sequence, the grouping map
𝐺 is applied to assemble them into a matrix in R𝑑𝑚𝑜𝑑𝑒𝑙×𝑠𝑖 𝑧𝑒, which is subsequently passed as
input to the Transformer Encoder.

It is now necessary to verify that 𝑃𝐸 satisfies the four desired properties of a valid positional
encoding function.

Firstly, 𝑃𝐸 is clearly well-defined, as its output depends solely on the position index 𝑖 and
the component index 𝑡 . The function is entirely deterministic meaning that the same input
will always yield the same output.

Secondly, to ensure that each time step receives a unique encoding, it must be shown that
𝑃𝐸 is an injective function, that is a one-to-one mapping where different inputs produce
different outputs. This can be rigorously proven as follows

Proposition 4.2.1. Let 𝑃𝐸 be the positional encoding function. Then 𝑃𝐸 is an injective
function.

As described in the original paper introducing the Transformer architecture [Vas+17], this
specific choice of positional encoding was motivated by its compatibility with relative po-
sition reasoning. The authors claim that for any fixed offset 𝑘, the positional encoding
𝑃𝐸 (𝑖 + 𝑘) can be expressed as a linear function of 𝑃𝐸 (𝑖). However, while the intuition is
mentioned, no formal derivation or proof is provided in the original work. The following
proposition presents a rigorous mathematical demonstration of this property.

Proposition 4.2.2. Let 𝑃𝐸 be the positional encoding function. There exists a linear
transformation𝑇 : {1, 2, . . . , 𝑛} −→ R𝑑𝑚𝑜𝑑𝑒𝑙×𝑑𝑚𝑜𝑑𝑒𝑙 such that

𝑇 (𝑘)𝑃𝐸 (𝑖) = 𝑃𝐸 (𝑖 + 𝑘)

holds for any positional offset 𝑘 ∈ {1, 2, . . . , 𝑛} at any valid position 𝑖 ∈ {1, 2, . . . , 𝑛− 𝑘}
in the sequence.

20

State of the art: Transformers

This result highlights the stability and scalability of sinusoidal positional encoding as it en-
ables efficient computation of future positions through a linear transformation. Once the
transformation 𝑇 (𝑘) is known predicting 𝑃𝐸 (𝑖 + 𝑘) reduces to a simple matrix-vector
multiplication avoiding the recomputation of trigonometric values.

More importantly, Proposition 4.2.2 shows that the encoding supports relative positioning.
That is, the representation of 𝑖 + 𝑘 can be derived from 𝑖 without referring to the start of
the sequence. This is especially useful in sequence modelling where relative distances often
carry more meaning than absolute positions.

These results collectively demonstrate that the sinusoidal positional encoding used in Trans-
former models satisfies all four of the desired properties, making it a valid and effective
choice.

To better understand the structure of these encodings, a visualisation of the orbits gener-
ated by 𝑃𝐸 is shown in Figure 4.4. This figure was generated using the script provided in
Appendix B.

0 20 40 60 80 100 120
Embedding coordinate (t)

0

20

40

60

80

To
ke

n
po

sit
io

n
in

 th
e

se
qu

en
ce

 (i
)

Positional encoding

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

Figure 4.4: Heatmap visualisation of the sinusoidal positional encoding matrix. Rows represent sequence
positions (𝑖) and columns correspond to embedding coordinates (𝑡).

Each row of the matrix corresponds to a token in the input sequence (in this case 100 tokens
were considered, representing the total sequence length 𝑛), while each column represents

21

a specific coordinate of the embedding vector. The full range of embedding indices 𝑡 ∈
{0, 1, 2, . . . , 𝑑𝑚𝑜𝑑𝑒𝑙} is considered, where 𝑑𝑚𝑜𝑑𝑒𝑙 was set to 128.

The purpose of this heatmap is to provide a visual understanding of how each token in the
sequence is assigned a distinct positional encoding. This allows the Transformer model to
retain information about the original position of each token in the sequence which is essen-
tial for handling sequential data in a context where positional information is not inherently
present, such as in self-attention mechanisms.

The values in the encoding matrix range from -1 to 1, with the colour gradient indicating
these values, blue representing -1 and red representing 1, as shown in the colour bar on the
right-hand side of the figure.

The first row, corresponding to position 0, can be intuitively compared to the binary num-
ber 000000. As one moves down the matrix, that is as the token position 𝑖 increases, the
patterns evolve in a manner reminiscent of binary counting. This analogy illustrates how
lower positions exhibit faster oscillations in the encoding.

On the leftmost side of the heatmap, the lower embedding coordinates are shown. These
exhibit high-frequency oscillations, analogous to the least significant bits in a binary rep-
resentation. Conversely, the rightmost columns correspond to higher embedding coordi-
nates, which vary more slowly, resembling the behaviour of the most significant bits. This
hierarchical encoding of frequencies enables the model to capture both short-range and
long-range dependencies within the input sequence.

22

State of the art: Transformers

4.3 Attention

Attention mechanisms are a fundamental component of the Transformer architecture. It
is no coincidence that the seminal paper introducing Transformers, [Vas+17], is entitled
Attention is all you need. This section provides a detailed explanation of how attention
mechanisms operate, ensuring a comprehensive understanding of their role.

To begin, it is important to consider the motivation behind their development. As pre-
viously discussed, prior to the advent of Transformers, sequence-to-sequence models pro-
cessed data in a strictly sequential manner, token by token. This approach proved ineffi-
cient, as a token at position 𝑖 could only incorporate information from the token at position
𝑖−1. The introduction of attention mechanisms allowed models to process entire sequences
simultaneously, leveraging the full context at once. In this manner, a token at position 𝑖
gains access to information from all other tokens, enabling global context-awareness.

To formalise this process, [Vas+17] defined the attention mechanism as follows

Attention : R𝑑𝑘×𝑑𝑘 × R𝑑𝑘×𝑑𝑘 × R𝑑𝑣×𝑑𝑣 −→ R𝑑𝑣×𝑑𝑣

𝑄, 𝐾 ,𝑉 −→ softmax

(
𝑄𝐾𝑇√︁
𝑑𝑘

)
𝑉

Here, 𝑄 , 𝐾 and𝑉 represent the query, key and value matrices, respectively. The term
𝑄𝐾𝑇 denotes the dot product between𝑄 and the transpose of𝐾 , reflecting pairwise com-
parisons between the rows of𝑄 and the columns of 𝐾 . The division by

√︁
𝑑𝑘 serves to scale

the dot products, preventing them from becoming excessively large as the dimensionality
𝑑𝑘 increases. Without this scaling, the softmax function could be driven into regions where
its gradients become vanishingly small, impeding effective learning.

At this stage, it is natural to ask: what do these matrices𝑄 , 𝐾 and𝑉 represent intuitively?
An analogy that proves particularly insightful, originally encountered in [Dot21], compares
each token to a Tinder profile, where each token describes both what it is (the key) and
what it is seeking (the query). This metaphor provides an accessible way to understand the
interaction between tokens. Specifically, for any given token, the query vector encodes what
the token is looking for, while the key vector expresses its characteristics. The attention
mechanism computes the dot product between a token’s query and the keys of all other
tokens, effectively measuring compatibility between them. A higher dot product signifies a
stronger match.

This process is performed for all tokens in parallel, which highlights one of the key advan-
tages of attention mechanisms. Since the compatibility scores between any pair of tokens
are independent of other pairs, these computations can be fully parallelised. For instance,
the compatibility between the first and second tokens can be computed simultaneously

23

with the compatibility between the first and third tokens, as there are no sequential depen-
dencies. This parallelisation enables significant computational efficiency.

With the fundamentals of attention mechanisms now established, it is worthwhile to ex-
plore further theoretical insights that have emerged in recent research. Several studies, in-
cluding [VBC20], [FHP24] and [Ges+24] present alternative perspectives and formal in-
terpretations of attention. These approaches remain fully aligned with, and mathemati-
cally equivalent to, the original self-attention framework introduced by [Vas+17], yet offer
valuable viewpoints that deepen our understanding of its underlying principles.

To begin, it is essential to introduce the rigorous definition of attention, a concept that
underpins numerous modern machine learning architectures.

Definition 4.3.1: Attention. LetQ ⊆ R𝑑𝑞 ,K ⊆ R𝑑𝑘 andV ⊆ R𝑑𝑣 represent the query
space, key space and value space, respectively. Consider 𝐾 = {𝑘1, 𝑘2, . . . , 𝑘𝑁 } ⊂ K as a
set of keys and𝑉 = {𝑣1, 𝑣2, . . . , 𝑣𝑁 } ⊂ V as a corresponding set of values. Let 𝑞 ∈ Q
denote a query. Furthermore, let 𝑎 : Q×K −→ Rbe a similarity function that quantifies
the relationship between a query and a key.

The attention mechanism is then defined as the mapping,

Attention(𝑞, 𝐾 ,𝑉) =
𝑛∑︁
𝑖=1

softmatch𝑎(𝑞, 𝐾)𝑖 · 𝑣𝑖

where softmatch𝑎(𝑞, 𝐾) is a probability distribution over the set of keys 𝐾 defined as

softmatch𝑎(𝑞, 𝐾)𝑖 =
exp(𝑎(𝑞, 𝑘𝑖))∑𝑁
𝑗=1 exp(𝑎(𝑞, 𝑘𝑗))

= softmax𝑗 ({𝑎(𝑞, 𝑘𝑗)}𝑗)

While Attention(·, 𝐾 ,𝑉) is formally defined for a single query, in practice it is typically
applied to an entire set of queries 𝑄 = {𝑞1, 𝑞2, . . . , 𝑞𝑀 } ⊂ Q in parallel. Therefore, it is
customary to write

Attention(𝑄, 𝐾 ,𝑉) =
{

Attention(𝑞𝑖 , 𝐾 ,𝑉)
}𝑀
𝑖=1

It is important to note that, while the cardinalities of 𝐾 and𝑉 must be equal (i.e., |𝐾 | =
|𝑉 | = 𝑁), there is no such requirement for𝑄 and in general 𝑀 ≠ 𝑁 .

Definition 4.3.2: Self-attention. When the query set, key set and value set coincide,
that is𝑄 = 𝐾 =𝑉 , the attention mechanism is referred to as self-attention

SelfAttention : 𝑄 −→ Attention(𝑄,𝑄, 𝑄)

24

State of the art: Transformers

To proceed towards a more general mathematical framework, consider (𝐸, ε) as a measur-
able subset of R𝑑 endowed with its Borel 𝜎 -algebra and let P (𝐸) denote the space of all
probability measures on 𝐸 . For any real-valued measurable function 𝑓 , the expectation
with respect to a probability measure 𝜇 is denoted as

𝜇(𝑓) =
∫
𝑓 (𝑥)𝜇(𝑑𝑥)

whenever the integral exists. In the case of a vector-valued function 𝐹 : 𝐸 −→ R𝑙 , where
𝐹 (𝑥) = [𝐹1(𝑥), 𝐹2(𝑥), · · · , 𝐹𝑙 (𝑥)]𝑇 , the expectation is similarly defined component-wise
as

𝜇(𝐹) =
[
𝜇(𝐹1), 𝜇(𝐹2), · · · , 𝜇(𝐹𝑙)

]𝑇
whenever all components exist.

Definition 4.3.3: Markov kernel. A Markov kernel is an 𝐸 -indexed family of prob-
ability measures 𝑀 (𝑥, 𝑑𝑦) ∈ P (𝐸) such that, for every measurable set 𝐴 ∈ ε, the
function 𝑥 ↦→ 𝑀 (𝑥, 𝐴) is measurable.

A Markov kernel 𝑀 defines a linear operator on the space of probability measures

𝜇𝑀 (𝑑𝑦) : P (𝐸) −→ P (𝐸)
𝑥 −→

∫
𝜇(𝑑𝑥)𝑀 (𝑥, 𝑑𝑦)

Additionally, it defines a linear operator acting on measurable functions 𝑓

𝑀 (𝑓) (𝑥) =
∫
𝑓 (𝑦)𝑀 (𝑥, 𝑑𝑦)

Markov kernels can also be composed. Given two kernels, 𝑀 and 𝑁 , their composition is
defined through integration as

𝑀𝑁 (𝑥, 𝑑𝑧) =
∫
𝑀 (𝑥, 𝑑𝑦)𝑁 (𝑦, 𝑑𝑧)

We now proceed to develop a comprehensive construction of the attention mechanism,
framed as a non-linear Markov transport on P (𝐸), the space of probability measures on a
measurable set 𝐸 . This formulation reinterprets standard linear algebraic and pointwise op-
erations within the attention model as operator-based transformations on P (𝐸), thereby
enriching the theoretical framework.

The key components of attention, as presented in Definition 4.3.1, are the softmatch oper-
ation, the key-value correspondence and the value aggregation according to the softmatch
distribution. Each of these elements will be addressed in turn, beginning with the soft-
match.

25

4.3.1 Softmatch

At the heart of the softmatch function, and indeed the attention mechanism as a whole, lie
the interactions between queries and keys. These interactions can be viewed as a particular
instance of a non-linear measure transformation known as the Boltzmann-Gibbs transfor-
mation.

Definition 4.3.4: Boltzmann-Gibbs transformation. Let 𝑔 : 𝐸 −→ R+ be a bounded
measurable function. The Boltzmann-Gibbs transformation associated to 𝑔 is the map-
ping 𝜓𝑔 : P (𝐸) −→ P (𝐸) defined by

𝜓𝑔 (𝜈) (𝑑𝑥) =
𝑔 (𝑥)𝜈 (𝑑𝑥)
𝜈 (𝑔)

where 𝜈 (𝑔) =
∫
𝐸
𝑔 (𝑥)𝜈 (𝑑𝑥) denotes the expected value of 𝑔 under the measure 𝜈.

Definition 4.3.5: Interaction potential. An interaction potential is defined as the map-
ping

𝐺 : 𝐸 × 𝐸 −→ R+

(𝑥, 𝑦) −→ exp(𝑎(𝑥, 𝑦))
where 𝑎 is the similarity function introduced in Definition 4.3.1.

Definition 4.3.6: Softmatch kernel. Given an interaction potential𝐺, the softmatch
kernel is the family of Markov kernels {𝜓𝐺 (𝜈)}𝜈∈P (𝐸) indexed by 𝜈 ∈ P (𝐸). For any
measurable set 𝐴 ∈ ε, this kernel is defined as

𝜓𝐺 (𝜈) (𝑥, 𝐴) =
∫
𝐴

𝜓𝐺 (𝑥,·) (𝜈) (𝑑𝑦)

To illustrate how 𝜓𝐺 models the softmatch operation, we introduce a fundamental con-
struction from measure theory. Denote by P𝛿 (𝐸) = {𝛿𝑥 : 𝑥 ∈ 𝐸} the subset of Dirac
measures withinP (𝐸). There exists a natural bijection between the set 𝐸 andP𝛿 (𝐸), given
by 𝑥 ←→ 𝛿𝑥 . This correspondence forms the primary entry point for embedding discrete
structured data into the measure-theoretic framework.

For any realisation of structured data 𝑋 = {𝑥1, 𝑥2, . . . , 𝑥𝑇 } ⊂ 𝐸 , an empirical measure
can be associated as follows

𝑋 ↦→ 𝑚(𝑋) = 1
|T |

∑︁
𝑡∈T

𝛿𝑥𝑡

where |T | denotes the cardinality of the index set T .

26

State of the art: Transformers

In the subsequent discussion, we shall interchangeably use 𝑋 and {𝛿𝑥1, 𝛿𝑥2, . . . , 𝛿𝑥𝑇 } to
represent the collection of individual vectors and 𝑚(𝑋) to denote their joint configura-
tion as a probability measure. This representation will prove instrumental in modelling the
behaviour of attention mechanisms.

Consider now a query representation 𝛿𝑞 and key representations 𝐾 = {𝛿𝑘1, 𝛿𝑘2, . . . , 𝛿𝑘𝑁 },
together with their empirical measure 𝑚(𝐾). The softmatch kernel models the interac-
tion between the query 𝑞 and the set of keys 𝐾 via the left action of the Markov kernel
𝜓𝐺 (𝑚(𝐾)) on the Dirac measure 𝛿𝑞, defined by

𝛿𝑞𝜓𝐺 (𝑚(𝐾)) =
∫
𝛿𝑞 (𝑑𝑞′)𝜓𝐺 (𝑞′,·) (𝑚(𝐾)) = 𝜓𝐺 (𝑞,·) (𝑚(𝐾))

𝑁∑︁
𝑠=1

𝐺 (𝑞, 𝑘𝑠)∑𝑁
𝑟=1𝐺 (𝑞, 𝑘𝑟)

𝛿𝑘𝑠

Extending this framework to a set of queries𝑄 = {𝛿𝑞1, 𝛿𝑞2, . . . , 𝛿𝑞𝑀 }, the linearity of inte-
gration enables us to model the interaction between𝑄 and 𝐾 as follows

𝑚(𝑄)𝜓𝐺 (𝑚(𝐾)) =
1
𝑀

𝑀∑︁
𝑡=1

∫
𝛿𝑞𝑡 (𝑑𝑞)𝜓𝐺 (𝑞,·) (𝑚(𝐾))

=
1
𝑀

𝑀∑︁
𝑡=1
𝜓𝐺 (𝑞𝑡 ,·) (𝑚(𝐾))

=
1
𝑀

𝑀∑︁
𝑡=1

𝑁∑︁
𝑠=1

𝐺 (𝑞𝑡 , 𝑘𝑠)∑𝑁
𝑟=1𝐺 (𝑞𝑡 , 𝑘𝑟)

𝛿𝑘𝑠

This resulting measure represents the joint configuration of the set of queries𝑄 after inter-
acting with the keys𝐾 via the interaction potential𝐺 and the associated Boltzmann-Gibbs
transformation. It forms a weighted combination of particle measures, providing a proba-
bilistic interpretation of the softmatch operation introduced in Definition 4.3.1.

4.3.2 Key-value relationship

To generalise the relationship between keys and values within the attention mechanism, we
introduce the concept of the lookup kernel.

Definition 4.3.7: Lookup kernel. Assume that the key and value spaces are measurable
spaces (K,K) and (V ,V), respectively. A lookup kernel is a Markov kernel 𝐿 : K×V −→
[0, 1], also denoted as 𝐿(𝑘, 𝑑𝑣), that maps each key 𝑘 ∈ K to a probability distribution
over the value space V .

In the special case where this mapping corresponds to a deterministic lookup table, the

27

kernel reduces to

𝐿(𝑘, 𝑑𝑣) =
𝑁∑︁
𝑖=1

I{𝑘=𝑘𝑖}𝛿𝑣𝑖 (𝑑𝑣)

where {(𝑘𝑖 , 𝑣𝑖)}𝑁𝑖=1 represents the finite set of key-value pairs. Here, each key 𝑘𝑖 is deter-
ministically associated with its corresponding value 𝑣𝑖 via the Dirac measure 𝛿𝑣𝑖 .

This formulation of the key-value relationship allows us to represent both deterministic
and probabilistic associations between keys and values, providing a flexible framework for
modelling the lookup process in attention mechanisms.

4.3.3 Averaging

The final component required for the construction of attention is the averaging operation
over the set of values being attended to. To formalise this we introduce the concept of
moment encoding within measures and define a family of measures parametrised by their
moment vectors.

Definition 4.3.8: Moment encoding. Let 𝐹 : 𝐸 −→ 𝐸′ ⊂ R𝑙 be a measurable map,
referred to as a feature map, which maps elements of 𝐸 to an 𝑙-dimensional feature space
𝐸′. A measure 𝜇 ∈ P (𝐸) is said to encode a moment vector 𝑓 ∈ 𝐸′ with respect to 𝐹 if

𝜇(𝐹) = 𝑓

where 𝜇(𝐹) =
∫
𝐸
𝐹 (𝑥)𝜇(𝑑𝑥) denotes the expectation of 𝐹 under the measure 𝜇.

A particularly useful case arises when 𝐸 = 𝐸′ and 𝐹 (𝑥) = 𝑥. In this setting, for a Dirac
measure 𝛿𝑥 , it holds that 𝛿𝑥 (𝐹𝑗) = 𝑥𝑗 , meaning that 𝛿𝑥 encodes the moment vector corre-
sponding to 𝑥. This correspondence facilitates the translation between vector-space repre-
sentations and measure-theoretic notions.

Definition 4.3.9: Moment subspace of P (𝐸). Given a measurable map 𝐹 : 𝐸 −→
𝐸′, suppose there exists an injective mapping 𝑓 ↦→ 𝜈𝑓 ∈ P (𝐸) such that 𝜈𝑓 encodes
the moment vector 𝑓 with respect to 𝐹 . The moment subspace associated with 𝐹 is then
defined as

F𝐹 = {𝜈𝑓 : 𝑓 ∈ 𝐸′}
where, for convenience, the subscript 𝐹 may be omitted when the context is clear.

28

State of the art: Transformers

Definition 4.3.10: Moment projection. The moment projection onto the moment sub-
space F is defined as the mapping

∏
: P (𝐸) −→ F given by∏
F (𝜇) = 𝜈𝜇(𝐹)

where
∏

F (𝜇) is the unique measure in F that encodes the moment vector 𝑓 = 𝜇(𝐹).

In the context of attention mechanisms, the averaging over the input values is achieved via
the moment projection

∏
=

∏
F described in Definition 4.3.10, where F = P𝛿 (𝐸) and

𝐹 (𝑥) = 𝑥. This projection effectively computes the empirical average over the attended
values, aligning with the conventional aggregation step in attention.

4.3.4 The attention kernel

The preceding sections have laid the groundwork for reinterpreting the attention mecha-
nism in measure-theoretic terms. Bringing these components together, we now introduce
the attention kernel, which formalises the composition of the softmatch, lookup and aver-
aging operations into a unified framework.

Definition 4.3.11: Attention kernel. The attention kernel 𝐴 is defined as the compo-
sition of the moment projection

∏
, the softmatch kernel and the lookup kernel. For

𝑥 ∈ 𝐸 and 𝜇 ∈ P (𝐸), the attention kernel is given by

𝐴𝜇(𝑥, 𝑑𝑧) =
∏(𝜓𝐺 (𝑥,·) (𝜇)𝐿) (𝑑𝑧) = ∏ (∫

𝜓𝐺 (𝑥,·) (𝜇) (𝑑𝑦)𝐿(𝑦, ·)
)
(𝑑𝑧)

This formulation of the attention kernel provides a general operator-based view of atten-
tion mechanisms, consistent with the classical definition of attention (Definition 4.3.1) for
appropriate choices of the interaction potential𝐺 and lookup kernel 𝐿.

Proposition 4.3.1. Let 𝐺 (𝑥, 𝑦) = exp(𝑎(𝑥, 𝑦)) and let the lookup kernel be given by
𝐿(𝑘, 𝑑𝑣) =

∑𝑁
𝑖=1 I{𝑘=𝑘𝑖}𝛿𝑣𝑖 (𝑑𝑣). Consider 𝑄 , 𝐾 and𝑉 as in Definition 4.3.1. Then,

using the left action of kernels on measures, the mapping

(𝑄, 𝐾 ,𝑉) ↦→
{
𝛿𝑞1𝐴𝑚(𝐾), 𝛿𝑞2𝐴𝑚(𝐾), . . . , 𝛿𝑞𝑀 𝐴𝑚(𝐾)

}
recovers the standard attention mechanism as defined in Definition 4.3.1.

29

This proposition demonstrates that the measure-theoretic formulation of the attention ker-
nel fully aligns with the classical vector-based formulation of attention, bridging the two
perspectives seamlessly.

Proposition 4.3.2. Let 𝑋 = {𝑥1, 𝑥2, . . . , 𝑥𝑁 } ⊂ R𝑑 be a collection of inputs. The non-
linear Markov transport equation

𝛿𝑥𝑖 ↦→ 𝛿𝑥𝑖𝑇𝑚(𝑋)

where 𝑇𝑚(𝑋) is an appropriately defined transport kernel, implements the self-attention
mechanism of the Transformer architecture.

This final result frames self-attention as a particular instance of non-linear Markov trans-
port, offering a principled probabilistic interpretation of the Transformer model within the
context of measure theory.

Now that the full construction of the attention mechanism has been presented and its
equivalence with the standard formulation from Definition 4.3.1 established, it is natural
to ask whether the traditional linear-algebraic definition of attention can be recovered di-
rectly from this measure-theoretic framework. The answer is affirmative.

Consider the case where 𝐸 is a discrete set, specifically 𝐸 = {1, 2, . . . , 𝑁 } and let 𝑄 =

{𝑞1, 𝑞2, . . . , 𝑞𝑁 }, 𝐾 = {𝑘1, 𝑘2, . . . , 𝑘𝑁 } and𝑉 = {𝑣1, 𝑣2, . . . , 𝑣𝑁 } be subsets of R𝑑. De-
fine the interaction potential𝐺 : 𝑄 × 𝐾 −→ R+ by

𝐺 (𝑖, 𝑗) = exp(𝑄 [𝑖] · 𝐾 [𝑗])

where 𝑄 [𝑖] and 𝐾 [𝑗] denote the 𝑖-th and 𝑗 -th vectors in 𝑄 and 𝐾 , respectively. The
lookup kernel 𝐿 : 𝐾 × 2𝑉 −→ [0, 1] is the discrete Markov kernel

𝐿(𝑖, 𝑑𝑗) = 𝛿𝑖 (𝑑𝑗)

Finally, define the moment projection
∏

: P (𝑉) −→ R𝑑 by∏(𝜇) = 𝑁∑︁
𝑗=1
𝑉 [𝑗]𝜇𝑗

where 𝜇𝑗 represents the probability weight associated with 𝑣𝑗 . This corresponds to the
standard weighted sum used in linear attention.

Under these definitions, the analogue of the attention kernel becomes the attention map

𝐴𝑚(𝐾) (𝑖) =
∏(𝜓𝐺 (𝑖,·) (𝑚(𝐾))𝐿)

where𝑚(𝐾) denotes the empirical measure over the keys 𝐾 .

30

State of the art: Transformers

We can now make several observations that illustrate how this discrete framework recovers
the classical attention mechanism:

1. The Dirac measure 𝛿𝑞𝑖 (𝑑𝑗) reduces to the Kronecker delta 𝛿𝑗
𝑖

and the empirical mea-
sure𝑚(𝐾) becomes the uniform distribution over 𝐾 , represented as

𝑚(𝐾) = 1
𝑁
[1, 1, . . . , 1]

of dimension 𝑁 .

2. The Boltzmann-Gibbs transformation 𝜓𝐺 (𝑖,·) (𝑑𝑗) simplifies to the standard softmax
function

𝜓𝐺 (𝑖,·) (𝑚(𝐾)) (𝑑𝑗) = softmax
(
𝑄 [𝑖]𝐾𝑇

)
The softmatch kernel in this setting corresponds to the stochastic matrix

𝜓𝐺 (𝑚(𝐾)) = softmax
(
𝑄𝐾𝑇

)
3. The composition of kernels becomes standard matrix multiplication

𝜓𝐺 (𝑚(𝐾))𝐿 = softmax
(
𝑄𝐾𝑇

)
𝐼 = softmax

(
𝑄𝐾𝑇

)
since 𝐿 is the 𝑁 × 𝑁 identity matrix.

Finally, the attention map simplifies to the familiar matrix multiplication form

𝛿𝑄 [𝑖]𝐴𝑚(𝐾) =
∏ (

𝜓𝐺 (𝑖,·) (𝑚(𝐾))𝐿
)
=

𝑛∑︁
𝑗=1
𝜓𝐺 (𝑖,·) (𝑚(𝐾)) (𝑑𝑗)𝑉 [𝑗]

=

𝑛∑︁
𝑗=1

softmax
(
𝑄 [𝑖]𝐾𝑇

)
[𝑗]𝑉 [𝑗] = softmax

(
𝑄 [𝑖]𝐾𝑇

)
𝑉

This precisely recovers the standard definition of attention given in Definition 4.3.1, widely
used in machine learning.

Having established the equivalence between the probabilistic and algebraic perspectives of
attention, we now explore an important property of attention mechanisms: their Lipschitz
continuity. This property is crucial in ensuring the stability and robustness of attention-
based models.

To formalise this we begin with several key definitions.

31

Definition 4.3.12: Lipschitz continuity. Let 𝑓 : S −→ T be a mapping between
metric spaces (S , 𝑑S) and (T , 𝑑T). The function 𝑓 is said to be Lipschitz continuous if
there exists a constant 𝐾 > 0 such that

𝑑T (𝑓 (𝑥), 𝑓 (𝑦)) ⩽ 𝐾𝑑S (𝑥, 𝑦)

for all 𝑥, 𝑦 ∈ S .

Definition 4.3.13: Wasserstein distance. LetP1(𝐸) denote the set of probability mea-
sures on 𝐸 with finite first moments. The 1-Wasserstein distance between two measures
𝜇, 𝜈 ∈ P1(𝐸) is defined as

W1(𝜇, 𝜈) = inf
𝜋∈C (𝜇,𝜈)

∫ ∫
𝐸×𝐸
∥𝑥 − 𝑦∥1𝜋 (𝑑𝑥, 𝑑𝑦)

where C (𝜇, 𝜈) is the set of joint distributions on 𝐸 × 𝐸 with marginals 𝜇 and 𝜈.

Proposition 4.3.3. The 1-Wasserstein distance W1 defines a metric on the space P1(𝐸) of
probability measures with finite first moments. Moreover, the metric spaceW1 = (P1(𝐸),W1)
is complete and separable.

Definition 4.3.14: Wasserstein contraction coefficient. Given a mapping 𝜙 : P1(𝐸) −→
P1(𝐸), the Wasserstein contraction coefficient of 𝜙 is defined as

𝜏 (𝜙) = sup
𝜇≠𝜈

W1(𝜙(𝜇, 𝜙(𝜈))
W1(𝜇, 𝜈)

The following lemma establishes a bound on the contraction coefficient for the attention
kernel.

Lemma 4.3.1. Let 𝐸 ⊂ R𝑑 be compact, F = P𝛿 (𝐸) and
∏

=
∏

F . Let 𝐴 be the atten-
tion kernel from Definition 4.3.11 with 𝐿(𝑥, 𝑑𝑦) = 𝛿𝑙 (𝑥) (𝑑𝑦). Suppose the interaction
potential𝐺 satisfies

𝐺 (𝑥, 𝑦) ⩾ ε(𝐺) > 0, ∥𝐺∥𝐿𝑖 𝑝,∞ < ∞ and ∥𝐺∥∞,𝐿𝑖 𝑝 < ∞

Then, the contraction coefficient 𝜏 (𝐴) of 𝐴, considered as a mapping 𝐴 : 𝜇 −→ 𝜇𝐴𝜇

on P (𝐸), satisfies
𝜏 (𝐴) ⩽ 𝜏 (∏)𝜏 (𝜓𝐺)𝜏 (𝐿)

32

State of the art: Transformers

where
𝜏 (∏) = 𝑑, 𝜏 (𝜓𝐺) =

2(∥𝐺∥𝐿𝑖 𝑝,∞+∥𝐺∥∞,𝐿𝑖 𝑝)diam(𝐸)
ε(𝐺) , 𝜏 (𝐿) = 𝐾𝑙

This lemma leads to the following result on the Lipschitz continuity of the attention mech-
anism.

Theorem 4.3.1: Lipschitz continuity. Let 𝐾 = {𝑘1, 𝑘2, . . . , 𝑘𝑁 } ⊂ 𝐸 ⊂ R𝑑 and
𝑉 = {𝑣1, 𝑣2, . . . , 𝑣𝑁 } ⊂ 𝐸 ⊂ R𝑑. Assume that the attention function Att(·, 𝐾 ,𝑉), as
introduced in Definition 4.3.1, satisfies the conditions of Lemma 4.3.1. Then, the func-
tion

Att(·, 𝐾 ,𝑉) : R𝑑 −→ R𝑑

𝑞 −→ Attention(𝑞, 𝐾 ,𝑉)
is Lipschitz continuous with respect to the Euclidean norm. Moreover, for all 𝑞1, 𝑞2 ∈
R𝑑, the following inequality holds

∥Att(𝑞1, 𝐾 ,𝑉) − Att(𝑞2, 𝐾 ,𝑉)∥2 ⩽
√
𝑑3∥𝑙∥𝐿𝑖 𝑝

2∥𝐺∥𝐿𝑖 𝑝,∞diam(𝐸)
ε(𝐺) ∥𝑞1 − 𝑞2∥2

Corollary 4.3.1. The mapping defined in Theorem 4.3.1 is continuous.

Attention is the core of the Transformer architecture, providing the mechanism that al-
lows information to flow dynamically across sequences. Its ability to model dependencies,
regardless of distance, is what makes Transformers so powerful. Without attention, the ar-
chitecture would lack the flexibility to adapt to varying inputs. With this key mechanism
now formalised and understood, we move on to the next fundamental component: the
feed-forward network, which complements attention by enriching representations at each
layer.

33

4.4 Feed-forward network

Neural networks have significantly evolved since the development of the earliest models.
The initial concept aimed to construct an architecture capable of replicating human thought
processes. From this foundation, researchers introduced the formal abstraction of a neu-
ron, which has since become a fundamental building block in the field.

Definition 4.4.1: Neuron. An abstract neuron is defined as a quadruple (𝑥, 𝑤, 𝜑, 𝑦)
where 𝑥𝑇 = (𝑥0, 𝑥1, . . . , 𝑥𝑛) denotes the extended input vector with 𝑥0 = −1 used
to incorporate the bias and 𝑤𝑇 = (𝑤0, 𝑤1, . . . , 𝑤𝑛) is the corresponding weight vector
with 𝑤0 = −𝑏. The function 𝜑 is an activation function and the output of the neuron
is computed as

𝑦 = 𝜑

(
𝑥𝑇𝑤

)
= 𝜑

(
𝑛∑︁
𝑖=0
𝑥𝑖𝑤𝑖

)
Using this formalism, a neuron can be understood as a unit designed to emulate the be-
haviour of its biological counterpart. The input vector 𝑥 represents the incoming signals,
the weights 𝑤 simulate the synaptic strengths and the activation function 𝜑 mimics the
firing mechanism of a real neuron.

In 1959, Frank Rosenblatt proposed the perceptron as an attempt to mathematically model
the functioning of a biological neuron. The model was simple yet effective and can be for-
mally described as follows:

Definition 4.4.2: Perceptron. A perceptron is a neuron whose input values are binary,
that is 𝑥𝑖 ∈ {0, 1} and whose activation is defined by the Heaviside step function

𝜑(𝑥) =
{

0 if 𝑥 < 0
1 otherwise

The output of the perceptron is computed using a threshold rule,

𝑦 = 𝜑(𝑥𝑇𝑤 − 𝑏) =
{

0 if 𝑥𝑇𝑤 − 𝑏 < 0
1 otherwise

Here𝑤 denotes the weight vector, 𝑥 the binary input vector and 𝑏 represents the thresh-
old, which can be interpreted as a measure of inhibition.

Thus, a perceptron operates as a decision-making rule that weighs the evidence provided
by its inputs. The threshold 𝑏 determines the difficulty of producing an output of 1, acting

34

State of the art: Transformers

as a boundary that must be surpassed for the unit to activate.

The perceptron also admits a geometric interpretation. It defines an (𝑛 − 1)-dimensional
hyperplane in R𝑛 given by

H =
{
𝑥 ∈ R𝑛 : 𝑥𝑇𝑤 = 𝑏

}
where H represents the decision boundary. The normal vector to this hyperplane is deter-
mined by the weights, namely 𝑁𝑇 = (𝑤1, 𝑤2, . . . , 𝑤𝑛). The hyperplane passes through a
point 𝑝 such that 𝑏 = 𝑝𝑇𝑤, where 𝑏 corresponds to the bias. The output 𝑦 of the percep-
tron assigns the value 1 to one of the half-spaces defined by H and 0 to the other.

Although simple and elegant, the perceptron suffers from a fundamental limitation when
tackling more complex tasks. As a single neuron, its capacity for modelling non-linear rela-
tionships is severely restricted. A classic example illustrating this shortcoming is the inability
of a perceptron to compute the XOR function.

To overcome these limitations more expressive architectures are required. This necessity
gave rise to the concept of neural networks. These consist of multiple layers of intercon-
nected neurons, where the outputs of one layer serve as the inputs for the next. The result-
ing structure resembles a web and is typically represented as follows

Figure 4.5: Visualization of a neural networks with two hidden layers.

The leftmost layer is known as the input layer, while the rightmost layer is referred to as
the output layer. All layers positioned between these are called hidden layers. In the exam-

35

ple above there are two hidden layers, though in practice a network may include as many
hidden layers as necessary to capture the complexity of the problem at the expense of in-
creased computational resources. From this point forward, the total number of layers in
the network will be denoted by 𝐿.

To formalise the notation, the synaptic connections between neurons are represented as
edges in the network with each edge associated to a weight denoted by 𝑤 (𝑙)

𝑖𝑗
. Here the su-

perscript 𝑙 indicates the layer1, the subscript 𝑖 refers to the input neuron2 and𝑗 corresponds
to the output neuron. These three indices uniquely determine a specific connection within
the network, specifying the layer it belongs to, its origin neuron and its destination neuron.

While the underlying computations can become intricate, the core principle is relatively
intuitive: the output of each layer depends directly on the outputs of the previous one.
This relationship can be concisely expressed using matrix notation

𝑦 (𝑙) = 𝜑
(
𝑊 (𝑙)𝑎(𝑙−1) + 𝑏(𝑙)

)
where

1. 𝑊 (𝑙) is the weight matrix for layer 𝑙 with dimensions 𝑑(𝑙) × 𝑑(𝑙−1) .

2. Each row of𝑊 (𝑙) corresponds to the connections from neurons in layer 𝑙 − 1 to a
specific neuron in layer 𝑙.

3. 𝑎(𝑙−1) is a column vector of size 𝑑(𝑙−1)× 1 containing the activations from the previous
layer.

4. 𝑏(𝑙) is the bias vector for layer 𝑙 of size 𝑑(𝑙) × 1.

5. 𝑦 (𝑙) denotes the output of the current layer after applying the activation function 𝜑.

This matrix formulation can be expanded into its element-wise form as

𝑦
(𝑙)
𝑖

= 𝜑
©­«
𝑑 (𝑙−1)∑︁
𝑗=1

𝑤
(𝑙)
𝑖𝑗
𝑥
(𝑙−1)
𝑗
+ 𝑏(𝑙)

𝑖

ª®¬
where, again, 𝑖 indexes the neurons in the current layer and 𝑗 indexes those in the previous
one. The activation of each neuron is thus a weighted sum of the activations from the
previous layer, adjusted by a bias term and passed through a non-linear activation function
𝜑.

The next step involves elevating the level of abstraction to describe neural networks in a
more formal functional framework.

1The case 𝑙 = 0 refers to the input layer.
2The case 𝑖 = 0 typically represents the bias unit.

36

State of the art: Transformers

Definition 4.4.3: Real-valued functions. LetF (U) =
{
𝑓 : U −→ R

}
denote the set

of real-valued functions defined on the set U .

Let U𝑙 =
{

1, 2, . . . , 𝑑(𝑙)
}

denote the index set corresponding to all neurons in layer 𝑙. De-
fine the affine transformation

𝛼𝑙 : F (U𝑙−1) −→ F (U𝑙)
𝑥 (𝑙−1) −→ 𝑠(𝑙)

which maps the output of layer 𝑙 − 1 to a new set of pre-activations 𝑠(𝑙) at layer 𝑙.

The activations at layer 𝑙 are then computed as

𝑥 (𝑙) =
(
𝜑 (𝑙) ◦ 𝛼𝑙

) (
𝑥 (𝑙−1)

)
where 𝜑 (𝑙) is the non-linear activation function applied element-wise to the output of the
affine transformation 𝛼𝑙 .

With this setup, a feed-forward neural network can be formally defined as follows.

Definition 4.4.4: Feed-forward neural network. Let U𝑙 =
{

1, 2, . . . , 𝑑(𝑙)
}

for each
𝑙 ∈ {0, 1, . . . , 𝐿}. Consider a sequence of affine transformations 𝛼1, 𝛼2, . . . , 𝛼𝐿 such
as 𝛼𝑙 : F (U𝑙−1) −→ F (U𝑙) and a sequence of activation functions 𝜑 (𝑙) : R −→ R.
Then, the corresponding feed-forward neural network is defined as a sequence of func-
tions 𝑓0, 𝑓1, . . . , 𝑓𝐿, where

𝑓𝑙 = 𝜑
(𝑙) ◦ 𝛼𝑙 ◦ 𝑓𝑙−1

for all 𝑙 ∈ {1, 2, . . . , 𝐿}, with 𝑓0 given.

In this formulation, a deep feed-forward neural network constructs a sequence of progres-
sively more abstract representations 𝑓𝑙 by transforming the initial input 𝑓0 through succes-
sive compositions of affine transformations 𝛼𝑙 and non-linear functions 𝜑 (𝑙) .

The final output of the network is therefore given by the full composition

𝑓𝐿 = 𝜑 (𝐿) ◦ 𝛼𝐿 ◦ 𝜑 (𝐿−1) ◦ 𝛼𝐿−1 ◦ · · · ◦ 𝜑 (1) ◦ 𝛼1

A wide range of topics remain uncovered, as neural networks span an extensive landscape
within machine learning. Subjects such as back-propagation, the mechanism through which
gradients are propagated backwards through the network or gradient descent, the optimi-
sation algorithm guiding the learning process, are fundamental to neural network training.
Additional concepts such as weight initialisation, where naïve random strategies may not

37

always yield effective results, as well as activation functions, cost functions and advanced
optimisers like Adam or AdaGrad are also critical components.

However, having now established a general understanding of how neural networks func-
tion, attention can be turned to a more profound and theoretical question: why are these
architectures capable of learning and making predictions at all?

The answer lies in the Universal Approximation Theorem, first formally stated in [HSW90].
The purpose of the remainder of this section is to state and prove this remarkable result.

In general, when modelling a system, the goal is to find a function 𝑓 that maps a set of
inputs to an output. That is

𝑓 (𝑥1, 𝑥2, . . . , 𝑥𝑛) = 𝑦

where the 𝑥𝑖 represent the 𝑛 inputs and 𝑦 is the corresponding output. The modelling
problem is trivial when the function 𝑓 is known, one can simply evaluate it for any input
to obtain the desired output.

The difficulty arises when the function 𝑓 is entirely unknown and only a collection of
input-output pairs (𝑥, 𝑦) is available. In this scenario neural networks become relevant.
The Universal Approximation Theorem essentially states that any continuous function 𝑓
can be approximated, to any degree of desired accuracy, by a neural network with a single
hidden layer and a sufficiently large number of neurons.

The process of approximating this unknown function is referred to as the learning process.
In what follows, the existence of such a learning process will be formally proved. However
no explicit construction of the network’s weights will be provided, as the goal here is to
establish existence, not a specific implementation.

From this point forward the formal theory underlying this result will be introduced. While
the notation may become more abstract, the core idea remains: neural networks are pow-
erful because they can approximate arbitrary functions.

The first key result that must be stated, due to its fundamental role in what follows, is
the Stone–Weierstrass theorem. Before stating the theorem, a few definitions are neces-
sary.

Definition 4.4.5: Dense. Let (S , 𝑑) be a metric space and let A ⊆ S . The set A is said
to be dense in S if for every element 𝑔 ∈ S there exists a sequence (𝑓𝑛)𝑛 of elements in
A such that lim𝑛→∞ 𝑑

(
𝑓𝑛, 𝑔

)
= 0.

Equivalently, this means that for every ε > 0 there exists an 𝑁 > 0 such that

𝑑
(
𝑓𝑛, 𝑔

)
< ε

38

State of the art: Transformers

for all 𝑛 ⩾ 𝑁 .

Intuitively, the topological notion of density implies that the elements of the subset A can
get arbitrarily close to any element in the space S . In other words, the subset A is rich
enough to approximate any function in S as closely as desired.

Definition 4.4.6: Algebra. A family A of real-valued functions defined on a set S is
said to be an algebra if it is closed under addition, multiplication and scalar multiplica-
tion.

In other words, combining functions from the set A by adding them, multiplying them
together or scaling them by real numbers will always produce a new function that also be-
longs to A. This ensures that the set maintains a consistent algebraic structure under these
standard operations.

Definition 4.4.7: Separated points. A family A of real-valued functions is said to
separate points on S if for every pair of distinct elements 𝑥, 𝑦 ∈ S there exists a function
𝑓 ∈ A such that 𝑓 (𝑥) ≠ 𝑓 (𝑦).

This property implies that the family of functions is expressive enough to distinguish be-
tween any two different points in the domain. In a sense, if two inputs are not the same
then the family always includes at least one function that can notice the difference.

Definition 4.4.8: Vanishes at no point. A family A of real-valued functions vanishes
at no point of S if for every 𝑥 ∈ S there exists a function 𝑓 ∈ A such that 𝑓 (𝑥) ≠ 0.

This means the setAnever entirely goes quiet at any point in the domain. No matter which
𝑥 is considered, at least one function in the family has a non-zero output there, making sure
every point gets some attention.

Theorem 4.4.1: Stone-Weierstrass. Let A be an algebra of real-valued continuous
functions defined on a compact set K. If A separates points in K and vanishes at no
point of K then A is dense in the space of all real-valued continuous functions on K.

Essentially, this theorem states that under the given conditions the set A is rich enough to
approximate any continuous function defined on the compact set K to any desired level of
accuracy. This result provides a strong mathematical foundation for the idea that neural
networks, with the right components, can learn to mimic virtually any behaviour or pat-
tern.

The following definitions introduce mathematical objects and function classes that will be

39

useful for the upcoming results.

Definition 4.4.9: Set of affine functions. For any 𝑛 ∈ N let A𝑛 denote the set of all
affine functions from R𝑛 to R. Explicitly,

A𝑛 = {𝐴 : R𝑛 −→ R : 𝐴(𝑥) = 𝑤 · 𝑥 + 𝑏}

where𝑤, 𝑥 ∈ R𝑛 are vectors, · denotes the dot product and 𝑏 ∈ R is a scalar.

As introduced earlier, the vector 𝑥 corresponds to the input of the network, 𝑤 represents
the weight vector connecting the input to the next layer and 𝑏 is the bias term.

Definition 4.4.10: Borel map. A map 𝑓 : X −→ Y between two topological spaces
is a Borel map if the pre-image 𝑓 −1(I) is a Borel set for any open set I ⊆ Y .

Being Borel is an important property in real analysis, probability theory and integration
theory as it guarantees that the function behaves well with respect to measurable sets. From
now on only Borel functions will be considered. This is not a strong restriction since almost
every function encountered in practical applications satisfies this condition. Non-Borel
functions do exist, but they tend to be pathological.

Definition 4.4.11:
∑

class. For any measurable function𝐺 : R −→ R and 𝑛 ∈ N let

∑𝑛(𝐺) =
 𝑓 : R𝑛 −→ R : 𝑓 (𝑥) =

∞∑︁
𝑗=1
𝛽𝑗𝐺 (𝐴𝑗 (𝑥))


where 𝑥 ∈ R𝑛, 𝛽𝑗 ∈ R and 𝐴𝑗 ∈ A𝑛.

Definition 4.4.12: Squashing function. A function 𝜓 : R −→ [0, 1] is a squashing
function if it is non-decreasing and satisfies lim𝑥→∞ 𝜓 (𝑥) = 1 and lim𝑥→−∞ 𝜓 (𝑥) = 0

Definition 4.4.13: Class of network output functions. For any measurable function
𝐺 : R −→ R and 𝑛 ∈ N let

∑∏𝑛(𝐺) =
 𝑓 : R𝑛 −→ R : 𝑓 (𝑥) =

∞∑︁
𝑗=1
𝛽𝑗

𝑙𝑗∏
𝑘=1

𝐺 (𝐴𝑗𝑘 (𝑥))


where 𝑥 ∈ R𝑛, 𝛽𝑗 ∈ R, 𝐴𝑗 ∈ A𝑛 and 𝑙𝑗 ∈ N.

40

State of the art: Transformers

Definition 4.4.14: Set of continuous functions. Let C𝑛 be the set of continuous func-
tions from R𝑛 to R. Explicitly

C𝑛 =
{
𝑓 : R𝑛 −→ R : 𝑓 is continuous

}
Definition 4.4.15: Set of Borel measurable functions. LetM𝑛 denote the set of Borel
measurable functions from R𝑛 to R. Explicitly

M𝑛 =
{
𝑓 : R𝑛 −→ R : 𝑓 is Borel measurable

}
Definition 4.4.16: Borel 𝜎 -field. The Borel 𝜎 -field on R𝑛 is denoted by B𝑛.

The function classes
∑𝑛(𝐺) and

∑∏𝑛(𝐺) are subsets of M𝑛 for any Borel measurable
function 𝐺. Furthermore, the set C𝑛 is itself a subset of M𝑛 and includes all functions of
interest in the present work.

To quantify the similarity between functions 𝑓 and 𝑔 belonging to either C𝑛 or M𝑛, a
metric 𝜌 is used. The notion of one function class being able to approximate another is
captured by the concept of denseness.

Definition 4.4.17: 𝜌-dense. A subset S of a metric space (X , 𝜌) is 𝜌-dense in a subset
T if for every ε > 0 and every 𝑡 ∈ T there exists 𝑠 ∈ S such that 𝜌(𝑠, 𝑡) < ε.

In simpler terms, elements of S can approximate any element of T to an arbitrary level of
accuracy. From this point onwards, T andX are taken to be either C𝑛 orM𝑛, S represents
either

∑𝑛(𝐺) or
∑∏𝑛(𝐺) for specific choices of𝐺 and the metric 𝜌 is selected accordingly.

Definition 4.4.18: Uniformly dense. A subset S ⊂ C𝑛 is said to be uniformly dense
on compacta in C𝑛 if for every compact subset K ⊂ R𝑛 the set S is 𝜌K-dense in C𝑛,
where, for 𝑓 , 𝑔 ∈ C𝑛 we define

𝜌K(𝑓 , 𝑔) = sup
𝑥∈K
| 𝑓 (𝑥) − 𝑔 (𝑥) |

Theorem 4.4.2:
∑∏𝑛(𝐺) is uniformly dense. Let𝐺 : R −→ R be any continuous

non-constant function. Then
∑∏𝑛(𝐺) is uniformly dense on compacta in C𝑛.

In simpler terms, feed-forward networks of the form
∑∏

are capable of approximating any
real-valued continuous function on a compact set with arbitrary precision. This approxi-
mation property holds as long as the domain of the input variable 𝑥 is bounded.

41

An especially appealing aspect of this result is that the activation function 𝐺 can be any
continuous non-constant function. It does not need to be a standard squashing function,
although such functions are certainly admissible.

Lemma 4.4.1. The space C𝑛 is 𝜌𝜇-dense in M𝑛 for any finite measure 𝜇.

Lemma 4.4.2. Let
{
𝑓𝑛
}

be a sequence of functions in M𝑛 that converges uniformly on
compacta to a function 𝑓 . Then 𝜌𝜇(𝑓𝑛, 𝑓) → 0.

Theorem 4.4.3: Universal approximation in
∑∏

. For every continuous function
𝐺, every 𝑛 ∈ N and every probability measure 𝜇 on (R𝑛,B𝑛), the class

∑∏𝑛(𝐺) is
𝜌𝜇-dense in M𝑛.

In other words, single-hidden-layer
∑∏

feed-forward networks can approximate any Borel
measurable function to arbitrary precision. This holds irrespective of the choice of the con-
tinuous non-constant activation function𝐺, the dimension 𝑟 or the input distribution 𝜇.
In this precise and satisfying sense,

∑∏
networks are universal approximators.

Lemma 4.4.3. Let 𝐹 be a continuous squashing function and let 𝜓 be any squashing
function. For every ε > 0 there exists a function 𝐻ε ∈

∑𝑛(𝜓) such that

sup
𝑥∈R
|𝐹 (𝑥) − 𝐻ε(𝑥) | < ε

Lemma 4.4.4. For every squashing function 𝜓 , every ε > 0 and 𝑀 > 0 there exists a
function cos𝑀 ∈

∑𝑛(𝜓) such that

sup
𝑥∈[−𝑀,𝑀]

|cos𝑀 (𝑥) − cos(𝑥) | < ε

Lemma 4.4.5. Let it be

𝑔 =

𝑄∑︁
𝑗=1
𝛽𝑗 cos(𝐴𝑗)

where each 𝐴𝑗 ∈ A𝑛. For any squashing function 𝜓 , compact set K ⊂ R𝑛 and ε > 0
there exists a function 𝑓 ∈ ∑𝑛(𝜓) such that

sup
𝑥∈K

��𝑔 (𝑥) − 𝑓 (𝑥)�� < ε

42

State of the art: Transformers

Lemma 4.4.6. For every squashing function 𝜓 the class
∑𝑛(𝜓) is uniformly dense on

compacta in C𝑛.

Theorem 4.4.4: Universal approximation in
∑

. For every squashing function 𝜓 ,
every 𝑛 ∈ N and every probability measure 𝜇 on (R𝑛,B𝑛) the class

∑𝑛(𝜓) is uniformly
dense on compacta in C𝑛 and 𝜌𝜇-dense in M𝑛.

In other words, standard feed-forward neural networks with only a single hidden layer can
approximate any continuous function uniformly on any compact set and any measurable
function arbitrarily well in the 𝜌𝜇 metric. This result holds regardless of the choice of
squashing function 𝜓 (as long as it is a squashing function), the dimension 𝑟 of the in-
put space or the underlying probability measure 𝜇. Thus, the class

∑
is also a universal

approximator.

Now that the central theorems have been established we can derive some corollaries that
highlight more practical consequences of these results.

Corollary 4.4.1. For every function 𝑔 ∈M𝑛 there exists a compact subset K ⊂ R𝑛 and
a function 𝑓 ∈ ∑𝑛(𝜓) such that for any ε > 0 we have 𝜇(K) < 1 − ε and for every 𝑥 ∈ K
we have

��𝑓 (𝑥) − 𝑔 (𝑥)�� < ε regardless of 𝜓 , 𝑛 or 𝜇.

In other words, there exists a single hidden-layer feed-forward neural network capable of
approximating any measurable function to any desired degree of accuracy on a compact
subset K of input patterns, where this approximation holds on a set of measure arbitrarily
close to 1.

Moreover, the Universal Approximation Theorem 4.4.4 and Corollary 4.4.1 extend natu-
rally to the case of multi-output, multi-layer architectures

∑𝑟,𝑠

𝑙
(𝜓), allowing approxima-

tion of functions in both C𝑛 and M𝑟,𝑠. Therefore, neural networks of the class
∑𝑟,𝑠

𝑙
are

universal approximators of vector-valued functions.

Having now established the theoretical foundations, we return to the motivation of this
work. The original challenge arises in scenarios where the target function 𝑓 is entirely un-
known and only a collection of input-output pairs (𝑥, 𝑦) is observed. The preceding results
confirm that neural networks, as universal approximators, are well-suited to approximate
such unknown functions. Hence, one can effectively model 𝑓 using a neural network, ren-
dering it no longer unknown in practice.

This perspective directly informed the construction of the embedding mapping 𝐸 in Sec-
tion 4.1. Recall that 𝐸 was not defined analytically but rather learned—implicitly—through
the training of a neural network. The approximation results above now justify this ap-

43

proach: the function 𝐸 is well-defined in the functional sense as the setting satisfies all con-
ditions required by the theorems.

Having established the expressive capabilities of feed-forward networks through the Univer-
sal Approximation Theorem it becomes clear why they play a pivotal role in contemporary
deep learning architectures. In particular, feed-forward networks appear recurrently within
Transformer models where they are applied position-wise following the multi-head atten-
tion mechanism. These intermediate components, commonly referred to as position-wise
feed-forward layers, enable the model to introduce non-linearity and to refine the latent
representations generated by the attention mechanism.

By applying an identical feed-forward transformation independently to each position in
the input sequence, the Transformer preserves permutation equivariance, which is essen-
tial for handling sequential data without introducing positional bias. This architectural
choice significantly enhances the model’s ability to capture complex, high-level patterns
across different positions in the input.

Therefore, the theoretical insights discussed in this section not only provide justification
for the integration of feed-forward layers within the Transformer framework but also em-
phasise their fundamental contribution to the model’s capacity to approximate intricate
functions during both training and inference phases.

44

State of the art: Transformers

4.5 Activation function

Activation functions play a fundamental role in neural networks, enabling models to learn
non-linear mappings between inputs and outputs. Without them, the network would be-
have as a linear system, regardless of its depth. These functions introduce the non-linearity
required to approximate complex relationships within data.

In the final layer of the Transformer architecture, as described in [Vas+17], a linear transfor-
mation followed by a softmax activation is used. The linear layer maps the model output to
the target dimension, while the softmax function transforms the result into a probability
distribution over classes.

This section presents the key activation functions used throughout this thesis. The selec-
tion includes classical and widely adopted functions that enable both binary and multi-class
decision-making.

4.5.1 Threshold step function

Inspired by the all-or-nothing behaviour of biological neurons, the threshold step function,
also known as the Heaviside function, is defined as

𝐻 (𝑥) =
{

0 if 𝑥 < 0
1 if 𝑥 ⩾ 0

−2 2

0.5

1

Figure 4.6: Plot of the Heaviside step function 𝐻 (𝑥).

Although𝐻 (𝑥) is not differentiable at 𝑥 = 0, it can be represented in the sense of distribu-
tions by the Dirac delta function, i.e.,𝐻 ′(𝑥) = 𝛿 (𝑥). Despite its simplicity, this function is
rarely used in modern deep learning due to its lack of gradient information, which limits its
applicability in gradient-based optimisation. However, it remains a theoretical foundation
and is directly related to ReLU, as discussed below.

45

4.5.2 Rectified Linear Unit (ReLU)

One of the most prevalent activation functions in modern deep learning, ReLU is defined
as

ReLU(𝑥) = max{𝑥, 0} =
{

0 if 𝑥 < 0
𝑥 if 𝑥 ⩾ 0

−2 2

2

4

Figure 4.7: Plot of the ReLU function.

ReLU introduces non-linearity while preserving simplicity and computational efficiency.
Its derivative is the Heaviside function, ReLU′(𝑥) = 𝐻 (𝑥), which allows for efficient
back propagation. Unlike sigmoid functions, ReLU does not saturate in the positive range,
which mitigates the vanishing gradient problem and accelerates training.

4.5.3 Sigmoid function

The sigmoid function is a smooth, S-shaped curve mapping the real line to the interval
(0, 1)

𝜎 (𝑥) = 1
1 + 𝑒−𝑥

−5 5

0.5

1

Figure 4.8: Plot of the sigmoid function 𝜎 (𝑥).

This function is commonly used in binary classification problems and models where out-
puts are interpreted probabilistically. The sigmoid satisfies the identity 𝜎 (−𝑥) = 1 − 𝜎 (𝑥)
and its derivative, useful in training, is 𝜎 ′(𝑥) = 𝜎 (𝑥) (1 − 𝜎 (𝑥)).

46

State of the art: Transformers

However, sigmoid activations can suffer from saturation and vanishing gradients for large
input magnitudes, which has led to their reduced use in hidden layers of deep networks.

4.5.4 Hyperbolic tangent

The hyperbolic tangent is another sigmoid-like function, defined as

tanh(𝑥) = 𝑒
𝑥 − 𝑒−𝑥
𝑒𝑥 + 𝑒−𝑥

−5 5

−1

1

Figure 4.9: Plot of the hyperbolic tangent function tanh(𝑥).

Unlike the sigmoid, tanh(𝑥)maps inputs to the interval (−1, 1) and is centred at zero, which
can improve convergence in some architectures. The function is related to the sigmoid
through the identity tanh(𝑥) = 2𝜎 (2𝑥) − 1. Its derivative is tanh′(𝑥) = 1 − tanh2(𝑥)

4.5.5 Softmax function

Definition 4.5.1: Softmax. Let 𝑥 ∈ R𝑛 be a vector. The softmax function is defined as

softmax(𝑥)𝑖 =
𝑒𝑥𝑖∑𝑛
𝑗=1 𝑒

𝑥𝑗
, for 𝑖 = 1, . . . , 𝑛

The softmax function maps a real-valued vector into a probability distribution over multi-
ple classes. It ensures non-negative outputs that sum to one, making it ideal for multi-class
classification tasks. In the Transformer architecture, it is used in the final layer to produce
the model’s class predictions.

Each of the activation functions described above plays a specific role depending on the task
and location within the network. ReLU dominates modern deep learning architectures
due to its simplicity and empirical performance, while sigmoid and tanh remain relevant in
contexts where probabilistic interpretation or zero-centred outputs are beneficial. The soft-
max function is indispensable for classification, particularly in the output layer of models
such as the Transformer.

47

Chapter 5

Race strategy simulator

With the theoretical framework now established, the focus shifts to the design and devel-
opment of the race strategy simulator. This chapter aims to synthesise the content from
the previous sections where an in-depth overview of Formula 1 strategy was provided in
Chapter 2, the gap in the literature regarding real-time strategy simulation was discussed in
Chapter 3 and the Transformer architecture was introduced and mathematically analysed
in Chapter 4. The implementation presented here builds directly upon those foundations
and it will often be necessary to refer back to the earlier chapters.

At a high level, the simulator is based on two specialised Transformer models: one designed
to predict optimal pit stop timing (PitStopTransformer) and another dedicated to pre-
dict the most suitable tyre compound under given conditions (CompoundTransformer).
Each model incorporates the architectural elements and mechanisms detailed in Chapter 4,
tailored to the requirements of the strategy prediction task.

The model cannot be built in a vacuum. Therefore, this thesis relies on two key APIs to
gather relevant data: Fast F1 and Open F1. The Fast F1 API provides comprehensive histori-
cal data, including lap-by-lap performance covering every race from 2018 to 2025. This rich
dataset serves as a critical resource for training the models. The Open F1 API, while more
limited in historical scope (available only since 2023), offers the advantage of real-time data
access, which is essential for simulating live conditions and adapting strategies on the fly.

https://docs.fastf1.dev/
https://Open F1.org/

Race strategy simulator

5.1 Data sources and variables

As previously mentioned, data for this project is collected using two primary sources: Fast
F1 and Open F1. The dataset provided by these sources is extensive, though not exhaustive
and the simulator must adapt to the type and quality of data available. This section outlines
the variables employed by the model, which are selected based on the factors influencing
race strategy as introduced in Section 1.

One of the most critical aspects when making strategic decisions in Formula 1 is the combi-
nation of lap time, tyre compound and tyre life. Lap time reflects the performance of a car
per lap, the tyre compound indicates the type of tyres being used and tyre life represents
the number of laps completed on the current set. These three variables form the corner-
stone of any race strategy analysis and they are sufficient for constructing a basic simulator,
especially when data availability is limited, as discussed in Chapter 2.

Tyre degradation is another fundamental parameter. Ideally one would utilise a direct
measure of degradation, but this information is proprietary and not publicly released by
teams. As a workaround, degradation is estimated indirectly through related variables such
as telemetry data, lap times, weather conditions, tyre compound and tyre life. These proxies
help model the wear experienced by tyres under varying race circumstances.

The car’s fuel load would be highly beneficial for modelling degradation and performance,
as it directly influences vehicle weight and lap times. Unfortunately, this information is also
not publicly disclosed. Nevertheless, some inference can be made based on telemetry and
lap data.

Telemetry is particularly useful for understanding whether a driver is pushing the car ag-
gressively. Variables such as RPM, speed and throttle usage across a lap help infer driving
style and, consequently, the stress placed on the tyres. Lap times are used as an auxiliary
metric in the absence of detailed telemetry, providing a rough indication of performance
intensity.

Weather conditions also play a vital role in tyre degradation. Factors such as air and track
temperature, humidity, atmospheric pressure, rain and wind are all relevant. For instance, a
hot day typically accelerates tyre wear, whereas lower track temperatures may prolong tyre
life.

Strategic decisions are also influenced by the identity of the driver and the team. A highly
skilled driver may execute complex or high-risk strategies more effectively than a less experi-
enced one. Similarly, top-tier teams often have more refined decision-making tools and pit
crew operations, which may allow for riskier but more rewarding strategies.

49

https://docs.fastf1.dev/
https://docs.fastf1.dev/
https://Open F1.org/

The lap number is another essential variable. Pitting at the beginning or very end of a race
is generally suboptimal, so the strategy must consider the race phase. Therefore, lap count
serves as a constraint when simulating or evaluating possible strategic choices.

Each Formula 1 circuit presents unique characteristics, from layout to typical weather pat-
terns. However, beyond the circuit name, no specific technical data such as corner profiles,
g-forces or downforce requirements is publicly available. Ideally, detailed circuit metadata
would improve model accuracy, but in its absence, the simulator is designed to learn these
nuances from historical data.

Qualifying results are another key input. By using the fastest laps from Q1, Q2 and Q3,
the model gains an understanding of each car’s peak performance under ideal conditions.
Additionally, grid position is crucial, as it heavily influences race dynamics. A driver starting
out of position may adopt an alternative strategy to gain track position, a common tactic
for overtaking competitors.

As previously discussed, track status, especially during Safety Car and Virtual Safety Car
periods, has a significant effect on pit stop timing. These scenarios often provide a cost-
effective opportunity to change tyres and the model must take this increased pitting likeli-
hood into account.

Time gaps to the leader and to adjacent cars offer valuable tactical information. When a
driver is closely trailing a rival, strategic decisions such as the undercut or overcut may be
viable. Consequently, gap data contributes directly to pit stop timing and compound se-
lection.

Although the dataset is broad, several key parameters remain inaccessible due to confiden-
tiality. These include tyre degradation metrics, fuel loads, engine modes and detailed car
setups. This data scarcity introduces uncertainty, particularly when using Free Practice
sessions to forecast race performance and generate pre-race strategies. In Practice sessions
teams experiment with different setups, fuel levels and engine mappings, none of which are
publicly disclosed. As a result, even if one driver appears significantly faster than another,
it is unclear whether this is due to a lighter fuel load, a favourable setup or genuine per-
formance superiority. This uncertainty complicates efforts to produce accurate predictions
based solely on Free Practice data.

To conclude, it is essential to ensure that all data used for model training via the Fast F1
API is also available in real time through the Open F1 API during a race. Failing to do so
would compromise the model’s predictive capabilities when deployed in a live environment.
This compatibility was thoroughly verified during development. Most variables used in the
model meet this criterion. For those that do not, features were engineered from existing
data, always within realistic constraints and avoiding speculation.

50

Race strategy simulator

5.2 Data pipeline

As data is sourced from two distinct APIs and the ultimate goal is to feed this into the model,
careful and precise data management is essential. This section outlines the complete data
processing pipeline prior to inputting the data into the model.

Given that Transformer architectures process sequence data, race information is structured
by laps. Specifically, each sequence is represented as an array of 𝑛 values, where each value
corresponds to a given attribute at a particular lap. Here𝑛 is set to a fixed value, with𝑛 = 80,
accounting for the longest race on the calendar, Monaco, with 78 laps.

To illustrate, consider a driver whose lap times from lap 1 to 5 are: 91.220, 91.233, 90.956,
91.125 and 91.056 seconds and whose gap to the next driver in those same laps are: 0.529,
0.456, 0.320, 0.428 and 0.251 seconds. Each attribute is stored in a vector, where the value
at position 𝑖 corresponds to lap 𝑖. For example:

lap number =
(
1 2 3 4 5 · · ·

)
lap times =

(
91.220 91.233 90.956 91.125 91.056 · · ·

)
gap to next =

(
0.529 0.456 0.320 0.428 0.251 · · ·

)
These are referred to as lap-dependent features, as their values vary across laps. In contrast,
other features, such as driver, team, circuit, qualifying result, year and round number re-
main constant across the race. These are classified as non lap-dependent features and are
processed as single, static values.

The full input to the Transformer is formed by concatenating lap-dependent and non lap-
dependent features. Although the original Transformer architecture introduced by [Vas+17]
was designed for text input, as discussed in Section 4.1, any structured input can be adapted.
From this point onward, it is assumed that all input data is represented using integers. Cat-
egorical data such as driver names, teams, compounds or circuits are mapped to integers
using lookup tables, which is a standard and straightforward transformation.

With the final data structure defined, the processing pipeline is split into two main stages:

1. API to database: In this step, raw data is retrieved from the respective APIs and
stored in a PostgreSQL database for persistent and accessible storage.

A dedicated script processes lap-by-lap race data, cleaning the dataset and applying
necessary transformations, including type conversions, filtering irrelevant rows and
computing derived values where appropriate.

51

Similarly, a separate script is used for telemetry data. Given that telemetry is recorded
at high frequency (approximately every tenth of a second), the raw volume is consid-
erable. To manage this, the mean value of each telemetry attribute is computed per
lap and per driver. This ensures alignment between the telemetry and lap tables in
terms of granularity.
A final script in this phase merges the processed lap and telemetry tables, carrying out
post-processing tasks such as ordering columns, removing duplicates and performing
integrity checks to ensure the dataset is consistent and ready for the next stage.

2. Database to .tfrecord: This stage retrieves the cleaned and merged data from the
database and converts it into a .tfrecord file, the preferred format for TensorFlow
pipelines. During this conversion both lap-dependent and non lap-dependent fea-
tures are formatted according to the structure defined at the start of this section.

Each script in this pipeline presents specific challenges. The lap and telemetry scripts are re-
sponsible for managing API requests and thus must be robust and flexible enough to handle
differences between the Fast F1 and Open F1 APIs. Data from both sources is standardised
before being stored, ensuring that a user querying the PostgreSQL database cannot distin-
guish the origin of a given entry.

In contrast, the merging script is relatively straightforward, as it operates on data already
stored locally in the database.

However, the final conversion script, from database to .tfrecord, is more complex. The
structural differences between SQL and .tfrecord formats require careful manipulation
to ensure data consistency and to avoid errors during training or inference phases.

During real-time prediction, two additional components become essential. The first is re-
sponsible for collecting the necessary information about the current lap and driver. Unlike
offline data, live timing data is streamed in fragments as events occur, meaning that the full
sequence is not available upfront. Therefore, before applying the complete data pipeline, a
pre-processing step is required to gather and assemble relevant lap-level data. This file inter-
acts with the Open F1 API, retrieves the real-time information and passes it along for further
processing as previously described. Additional implementation details and examples can be
found in Chapter 7.

The second component is in charge of retrieving data from the existing .tfrecord file
and preparing it for use in inference. Specifically, it extracts the required features and for-
mats them in the same way as was done during training, ensuring consistency between the
model’s training and deployment phases.

52

Race strategy simulator

5.3 Transformer implementation

The model has been implemented entirely in Python, employing an object-oriented design
to ensure modularity and clarity. This section outlines the implementation strategy, pro-
viding pseudocode for core components while intentionally omitting full code listings to
preserve readability.

The architecture is structured into three principal scripts:

1. transformer.py contains the complete Transformer model which is subsequently
used during testing to generate predictions.

2. loss.py defines a custom loss function to mitigate the class imbalance problem.
Each class is weighted inversely to its frequency ensuring that less frequent events con-
tribute more significantly to the loss.

3. stopping.py defines a custom callback that halts training once a specified accuracy
threshold is reached, helping to optimise training time and resources.

The following subsections delve into the implementation details of each component.

5.3.1 Transformer

As mentioned previously, this class encapsulates the implementation of the Transformer
architecture as introduced in [Vas+17]. The initial plan was to develop two separate classes
for different predictions however, after extensive experimentation, it was determined that
a single, deep Transformer capable of performing both tasks offered superior performance.

Earlier implementations reached sizes of approximately 600MB, rendering the model cum-
bersome, difficult to store and unsuitable for platforms with storage limitations (e.g., GitHub’s
1GB limit). The current implementation has been significantly optimised, reducing the
model size to approximately 40MB while simultaneously improving performance and porta-
bility.

For clarity and modularity each instance of the Transformer is assigned a distinct identifier:
PitStopTransformer for pit stop prediction tasks and CompoundTransformer for tyre
compound selection. Although both instances share an identical architecture, they differ
in terms of internal weights, learned representations and task-specific performance metrics.
As a result, it is both semantically and practically appropriate to distinguish them by name
and treat them as separate entities.

The pseudocode for the Transformer model is presented below,

53

Transformer /

1 class Transformer(Layer):
2 def call(self, inputs):
3 lapDependent, mask, nonLapDependent = inputs
4

5 # Input normalization
6 lapDependent = self.lapDependentNormalizer(lapDependent)
7 nonLapDependent = self.nonLapDependentNormalizer(nonLapDependent)
8

9 # Input and positional encoding
10 x = self.inputDense(lapDependent)
11 pos = tf.range(self.maxSeqLength)[None, :]
12 x = x + self.positionalEncoding(pos)
13

14 # Encoder stack
15 for i in range(len(self.encoders)):
16 # Multi-head attention
17 attentionOut = self.encoders[i](x, x, mask)
18 x = self.layerNorm1[i](x + attentionOut)
19

20 # Feed-forward network
21 ffnOut = self.ffns[i](x)
22 x = self.layerNorm2[i](x + ffnOut)
23

24 # Add non lap-dependent context
25 nonLapDepenedentProjection = self.nonLapDependentProj(nonLapDependent)
26 x = tf.concat([x, nonLapDepenedentProjection], axis=-1)
27 x = self.finalDense(x)
28

29 # BiLSTM and TimeDistributed for further processing
30 x = self.biLSTM(x, mask)
31 x = self.timeDense(x)
32

33 # Output
34 output = self.outDense(x, activation="softmax")
35

36 return output

It is evident that this implementation closely resembles the architecture shown in Figure 4.1.
The following list describes each of the components in detail:

1. Initially, the model receives its input and separates it into three components: lap-
dependent data, a mask indicating which values should be considered and non-lap-
dependent data. A critical first step involves normalising the inputs. Since training
is conducted on normalised data to improve convergence, it is essential that the same
normalisation be applied during inference to avoid invalid predictions.

Early versions of the model introduced a standalone Normalization class to handle

54

Race strategy simulator

this but the approach proved inefficient in terms of storage and practicality. The cur-
rent design integrates the normalisation layers directly into the Transformer class
allowing them to be recovered automatically during training. This not only simplifies
the model usage but also enhances its flexibility and reusability as data can be directly
fed into the model without requiring prior preprocessing.

2. After normalisation the input embedding and positional encoding are applied, as de-
scribed in Section 4.1 and Section 4.2. These steps embed the input data into a richer
representation space while encoding temporal structure via position.

3. The encoded data then passes through the encoder stack. This mirrors the standard
Transformer encoder block. Each encoder layer comprises a multi-head attention
mechanism followed by residual connections and layer normalisation. The result is
then passed through a feed-forward neural network with a second residual connec-
tion and normalisation.

Each of these components serves a specific role: attention mechanisms capture global
dependencies across the sequence, feed-forward networks inject non-linearity and layer
normalisation promotes numerical stability and accelerates convergence. This multi-
layer design is central to the model’s effectiveness on sequential data.

The use of masking is fundamental in this context, as it prevents the attention mecha-
nism from accessing future information. Without it, the model would be able to "see"
data from upcoming laps when making predictions about the current one, which is
unrealistic and violates the temporal nature of real-world racing scenarios, where fu-
ture events are inherently unknown and cannot be used for decision-making.

Initial versions of the model lacked proper masking and, although they yielded highly
accurate results with full race data, these were misleading. The model exploited future
information, leading to overfitting. When tested under real-time conditions predic-
tions became erratic, underscoring the need for causal masking to ensure realistic and
reliable outputs.

4. After the encoder stack, the non-lap-dependent data is reintegrated. It is projected
to the appropriate shape and concatenated with the encoder output. This enriched
representation is then processed using bidirectional Long Short-Term Memory (BiL-
STM) layers followed by TimeDistributed layers, enabling further temporal refine-
ment of the sequence.

5. Finally, the model output is produced via a dense layer with a softmax activation func-
tion (see Definition 4.5.1). This generates a probability distribution across the output
classes, providing the final prediction.

55

5.3.2 Loss

The dataset exhibits a clear class imbalance. This is particularly evident when considering
the number of laps remaining until the next pit stop. Intuitively, if at a given lap there are
𝑛 laps left to pit then at the following lap there will be 𝑛 − 1, and so forth. As a result, it is
straightforward to observe that the value 0 appears most frequently, followed by 1, then 2
and so on. Figure 5.1 illustrates this distribution in detail, highlighting the skewed frequency
of laps remaining until a pit stop. Similarly, the distribution of tyre compounds is also
unbalanced, as shown in Figure 5.2.

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75

0

1,000

2,000

3,000

4,000

Laps remaining to pit

Fr
eq

ue
nc

y

Figure 5.1: Frequency of laps until next pit

Hard

Inter
mediat

e

Medium Soft Wet
0

10,000

20,000

30,000

34,113

4,362

26,570

9,368

201

Compound

Fr
ec

ue
nc

y

Figure 5.2: Frequency of compounds

56

Race strategy simulator

To mitigate the effects of this imbalance, a custom loss function has been implemented via
the WeightedSequenceLoss class. Its structure is as follows

WeightedSequenceLoss /

1 class WeightedSequenceLoss(Loss):
2 self.weights = tf.constant(weights, dtype = tf.float32)
3

4 def call(self, yTrue, yPred):
5 # Convert true labels to one-hot encoding
6 yTrueOneHot = tf.one_hot(yTrue, depth = tf.shape(yPred)[-1])
7

8 # Compute sample-specific weights
9 sampleWeights = tf.reduce_sum(self.weights * yTrueOneHot, axis=-1)

10

11 # Compute standard categorical crossentropy
12 loss = sparse_categorical_crossentropy(yTrue, yPred)
13

14 # Apply weights and return average loss
15 return tf.reduce_mean(loss * sampleWeights)

This class receives a set of weights, typically calculated during the training phase, which
assigns higher importance to under-represented classes. The true labels are one-hot en-
coded and the corresponding weight is extracted and applied to the loss values. The use
of sparse_categorical_crossentropy allows efficient computation while preserving
the original label format. By applying class-based weighting to the loss, the model is encour-
aged to learn under-represented patterns more effectively, thereby mitigating the effects of
imbalance.

5.3.3 Stopping

The EarlyStoppingByAccuracy class implements a simple yet effective early stopping
mechanism based on a user-defined accuracy threshold. Its implementation is as follows

EarlyStoppingByAccuracy /

1 class EarlyStoppingByAccuracy(Callback):
2 def on_epoch_end(self, logs = None):
3 # Retrieve monitored accuracy metric
4 accuracy = logs.get(self.monitor)
5

6 # Stop training if threshold is reached
7 if accuracy is not None and accuracy >= self.value:
8 self.model.stop_training = True

During model training, it is often necessary to monitor specific performance metrics to de-

57

termine whether the learning process is progressing as expected. This callback is designed
to track such a metric, most commonly sparse_categorical_accuracy, as defined by
self.monitor. At the end of each epoch, the callback checks whether the current accu-
racy has surpassed a predefined threshold (self.value). If the condition is met, training
is halted early. This approach not only saves computational resources but can also help pre-
vent overfitting by stopping the learning process once satisfactory performance has been
achieved.

A crucial aspect, not explicitly shown in the code above, is that every custom class must be
decorated with @register_keras_serializable(). This decorator ensures that the
model is fully serializable and can later be recovered using load_model(). Without this,
although the model can be trained and saved without issues, it becomes irrecoverable when
attempting to reload it for inference.

Moreover, it is essential that all model inputs are correctly defined and stored. Failure to do
so can lead to inconsistencies during deserialization. To address this, each class should im-
plement a get_config() method, which explicitly defines the model configuration and
facilitates seamless saving and loading of models.

Using these custom classes, in conjunction with the data pipeline described in Section 5.2,
enables efficient training of the models. The dataset used comprises lap-by-lap data for
every driver across all Formula 1 races from 2022 through 2024. This dataset is split using a
standard 70/15/15 ratio for training, validation and testing, respectively.

While the training process is conceptually straightforward once the codebase is properly
configured, it posed significant practical challenges. The computational demands exceeded
the capabilities of a standard personal computer.

Given the intensive nature of the computations, CPU-based training proved ineffective and
the onboard GPU was insufficient for the task. The most viable solution was to offload
training to Google Colab, which provides access to NVIDIA T4 GPUs. This significantly
accelerated the training process compared to local resources.

However, the use of Google Colab came with its own limitations. The platform imposes
usage caps on GPU access and sessions can be terminated unexpectedly without prior no-
tice. To circumvent these restrictions and allow for extensive experimentation with differ-
ent configurations and hyper-parameters, a practical workaround was employed: creating 15
separate Google accounts. These accounts shared a common Google Drive folder contain-
ing the complete project codebase. This setup provided a flexible and scalable environment
for experimentation, effectively bypassing GPU usage constraints and enabling parallel test-
ing.

58

Chapter 6

Results

The most effective way to assess the success of the training process is through a careful ex-
amination of the resulting metrics. This chapter presents the theoretical outcomes and
provides a detailed walk-through of the entire training process highlighting the evolution
of the model over time. It also addresses the main challenges encountered during develop-
ment and concludes with an analysis of the final results.

It is important to emphasise that the model underwent continuous refinement throughout
this process. Consequently, any variations in performance metrics reflect changes in the
model’s structure, data processing pipeline or training strategy.

Initially, model performance was primarily evaluated using accuracy. The early stages of
development were thus centred around improving this metric. The evolution of the model
and its corresponding metrics are summarised below:

1. The first training run yielded approximately 50% accuracy in both predictions, with a
loss value of around 1.7. Although far from ideal, this result was acceptable for a first
benchmark and provided a useful starting point.

2. By modifying the labelling approach and the way the data was presented, the model’s
accuracy in predicting the tyre compound significantly improved, reaching 88.89%
with a corresponding loss of 0.4995. However this improvement came at the cost of

the pit stop prediction which dropped to 27.61% accuracy and a loss of 1.4516. This
indicated that the model was learning to predict one feature effectively but was ne-
glecting the other.

3. Further data preprocessing focused on the pit stop feature while maintaining the im-
provements made to the compound predictions. As a result the compound accu-
racy remained largely stable while pit stop accuracy increased to 44.26%, albeit with
a higher loss of 1.8588. This was seen as a step forward as the compound accuracy
remained high while the pit stop prediction improved.

4. Incorporating LSTM layers into the Transformer architecture provided a notable boost
in pit stop prediction performance. While the compound accuracy remained consis-
tent the pit stop accuracy increased significantly to 70.98% and the loss decreased to
0.7206. This configuration represented the best results obtained up to that point.

5. A key breakthrough occurred when the model architecture was modified to use two
separate Transformers instead of a single shared one. Initially a single Transformer
was responsible for predicting both outputs, meaning that both tasks shared the same
weights and internal structure. By splitting the model into two distinct Transform-
ers, one dedicated to compound prediction and the other to pit stop timing, results
improved considerably. The compound prediction accuracy increased to 91.04% and
the pit stop accuracy soared to an impressive 95.15%.

6. In an attempt to further refine the model’s performance a custom training callback
was developed. Its goal was to halt the training process once the model reached a pre-
defined accuracy threshold. The training was allowed to run for up to 1000 epochs,
ensuring that the model had sufficient time to reach these targets. The target accu-
racies were set at 99.1% for pit stop prediction and 96.2% for compound prediction.
These values were inspired by the television series Breaking Bad, in which the char-
acter Walter White achieves a 99.1% purity in his product and Jesse Pinkman later
reaches 96.2%, reflecting his growth and mastery. While anecdotal, this reference adds
a personal and motivational touch to the experimentation process.

At this stage, the obtained metrics suggested that the model was performing exceptionally
well in theory. However, real-world testing painted a different picture. When evaluated
on pre-constructed datasets the model delivered outstanding results. Yet, when applied to
live data streams, simulating the lap-by-lap progression of an actual race, the predictions
deteriorated significantly.

Upon close inspection, the issue was traced back to the masking mechanism in the Trans-
former block. The model had been inadvertently allowed to access future information dur-
ing training due to the absence of appropriate causal masking. This meant the Transformer

60

Results

could "see" beyond the current time step, leading to artificially inflated performance on full
datasets. However, during live data injection, where the future is unknown by design, the
model’s performance collapsed. The solution was straightforward: integrate causal mask-
ing into the multi-head attention layers and ensure proper sequence handling within the
LSTM blocks.

Once this issue was resolved, a new problem emerged. The model began producing con-
stant predictions, meaning that it always predicted the same outcome, irrespective of the
race context. This behaviour was traced to the data normalisation step. During training,
input data had been normalised but this preprocessing was not replicated during live infer-
ence. As a result the model received inconsistent inputs and, despite this, still attempted to
deliver reasonable predictions. The fix involved embedding the normalisation logic directly
within the Transformer model itself, as discussed in Section 5.3.

With these adjustments in place performance improved considerably. However, yet an-
other issue surfaced during real-time testing with sliced, sequential input data. Two main
anomalies were observed:

1. The model consistently predicted that a pit stop should occur in the next lap, i.e., the
number of laps remaining until the next stop was always zero.

2. The model exhibited a lack of temporal consistency in its predictions. That is, pre-
dictions made at consecutive laps were not coherent with one another. For instance,
a prediction at lap 𝑛might suggest that there are 𝑥 laps remaining until the next pit
stop, but the prediction at lap 𝑛 + 1 would then indicate 𝑥 + 1 laps remaining. This
counter-intuitive behaviour implies that the model was not effectively integrating new
information as the race progressed. Instead it appeared to shift its entire prediction
horizon forward by one lap regardless of the updated context.

In summary, the model appeared to generate a reverse succession of values decreasing to
zero. That is, if the model predicted 0 at lap 𝑛, then at lap 𝑛− 1 it would predict 1, at 𝑛− 2 it
would predict 2 and so on, forming a decreasing sequence. Consequently, when using 𝑛+ 1
laps as input instead of 𝑛, all values shifted upwards by one, thus introducing a systematic
offset.

This challenge proved to be the most difficult to address. The root cause lay in the nature
of the model’s output. At the time the Transformer was designed to return a full sequence
of prediction, one for each lap, indicating how many laps remained until the next pit stop.
Since the model had access to the entire sequence during training, it learned to anchor the
final value at 0 (representing the pit stop) and then inferred prior values in reverse. As a
result, the output was essentially a descending line from (0, 𝑛) to (𝑛, 0).

61

The key insight was to reformulate the problem. Rather than predicting the entire se-
quence, the model should instead output a single integer representing the number of laps
remaining until the next pit stop based on the current state of the race. By focusing the
output in this way, compressing the prediction into a single point rather than a sequence,
the model became far more robust in live real-time scenarios.

After this modification, the model’s behaviour improved significantly producing plausi-
ble and consistent predictions. From this point onward no further architectural changes
were made to the Transformer model. The final version yielded the following performance
metrics.

The overall training parameters and outcomes are summarised below

Prediction Accuracy Loss

Pit stop 0.9249 0.3325
Compound 0.9820 0.0856

Table 6.1: Final accuracy and loss for each prediction type.

For additional granularity, the performance across training, validation and test datasets is
shown in Table 6.2

Prediction Dataset Accuracy Loss

Pit stop
Train 0.9831 0.0762
Validation 0.9255 0.3287
Test 0.9249 0.3325

Compound
Train 0.9832 0.0715
Validation 0.9823 0.0873
Test 0.9820 0.0856

Table 6.2: Accuracy and loss for each prediction task across the training, validation and test splits.

These results reflect a high level of performance. The slightly better accuracy in compound
prediction is due to the nature of the task: compound prediction is a 5-class classification
problem (Hard, Medium, Soft, Intermediate and Wet), whereas pit stop prediction spans
31 discrete classes (corresponding to laps), making it inherently more challenging. Even so,
achieving such metrics in a 31-class problem is particularly noteworthy.

Let us now evaluate the performance of the pit stop model in greater depth. A classification
report was generated to summarise how well the model performs across each class.

62

Results

Class Precision Recall F1-score Support

Class 0 0.94 0.92 0.93 604
Class 1 0.90 0.90 0.90 536
Class 2 0.91 0.92 0.92 556
Class 3 0.95 0.92 0.94 535
Class 4 0.95 0.94 0.94 516
Class 5 0.95 0.94 0.95 504
Class 6 0.96 0.95 0.95 468
Class 7 0.95 0.94 0.95 514
Class 8 0.92 0.94 0.93 492
Class 9 0.93 0.94 0.94 454
Class 10 0.93 0.95 0.94 437
Class 11 0.94 0.92 0.93 447
Class 12 0.90 0.94 0.92 397
Class 13 0.92 0.92 0.92 396
Class 14 0.94 0.93 0.93 403
Class 15 0.94 0.95 0.94 333
Class 16 0.93 0.94 0.94 315
Class 17 0.94 0.92 0.93 297
Class 18 0.93 0.92 0.93 309
Class 19 0.88 0.93 0.90 270
Class 20 0.87 0.86 0.87 241
Class 21 0.84 0.90 0.87 220
Class 22 0.91 0.89 0.90 206
Class 23 0.93 0.88 0.90 189
Class 24 0.88 0.94 0.91 158
Class 25 0.84 0.92 0.88 133
Class 26 0.92 0.87 0.90 148
Class 27 0.89 0.89 0.89 123
Class 28 0.84 0.88 0.86 105
Class 29 0.82 0.66 0.73 101
Class 30 0.95 0.96 0.95 784

Table 6.3: Classification metrics for the PitStopTransformer across all 31 classes.

In this table, precision represents the proportion of predicted instances for a given class that
were correct, recall denotes the proportion of actual instances correctly predicted and the
F1-score is the harmonic mean of both. The support indicates the number of true occur-
rences of each class in the test set.

Overall, thePitStopTransformerperforms robustly across most classes, particularly those
with higher support. Naturally, performance tends to decline slightly for less frequent
classes, which is a common effect in multi-class classification due to imbalanced data.

In addition to classification metrics, other valuable indicators include the Mean Absolute
Error (MAE) and Root Mean Squared Error (RMSE). MAE captures the average abso-

63

lute difference between predicted and true class indices, while RMSE penalises larger errors
more heavily. For this model, the MAE is 0.2535 and the RMSE is 1.8230.

Another insightful metric is the top-𝑘 accuracy which assesses whether the true label ap-
pears within the top 𝑘 predictions. The top-2 accuracy is 0.9704 and the top-3 accuracy
reaches 0.9808, indicating that even when the exact class is missed the model’s alternative
predictions remain highly relevant.

Calibration quality is assessed using the Expected Calibration Error (ECE) which evaluates
how well the predicted probabilities reflect true likelihoods. Lower values indicate better
calibration. The ECE for the pit stop model is 0.0122, suggesting that the model’s confi-
dence scores are highly reliable.

For visual inspection, the confusion matrix offers a detailed view of prediction versus ground
truth

Figure 6.1: Confusion matrix for the PitStopTransformer.

The strong diagonal pattern indicates accurate predictions, where the predicted class matches
the true class. Occasional off-by-one errors are visible and are naturally captured by the top-
𝑘 metrics. In some cases, seemingly extreme mismatches such as predicting class 23 when
the true value is 0 may appear, but these can often be explained contextually. For instance,
such offsets may occur when the model anticipates a pit stop slightly earlier than it actu-
ally happens. Since the classes represent a circular concept (laps until stop) such cyclical
behaviour may arise and still align with race dynamics.

A normalised version of the confusion matrix further highlights the strength of the diagonal

64

Results

Figure 6.2: Normalised confusion matrix for the PitStopTransformer.

To conclude the pit stop evaluation, calibration curves are presented to visually assess how
well the model’s predicted probabilities align with true outcomes

Figure 6.3: Calibration curves for the PitStopTransformer.

As expected, the closer the calibration line is to the diagonal, the better calibrated the model
is, which is certainly the case here.

Turning now to the CompoundTransformer, we observe the following classification re-
port

65

Class Precision Recall F1-score Support

Class 0 0.99 0.99 0.99 5086
Class 1 0.96 0.97 0.96 660
Class 2 0.98 0.98 0.98 4027
Class 3 0.97 0.98 0.98 1397
Class 4 0.43 0.90 0.58 21

Table 6.4: Classification metrics for the CompoundTransformer across all 5 classes.

The model demonstrates strong performance across all compound classes, with particu-
larly high precision and recall for the most common tyre types. The exception is Class 4,
which corresponds to the Wet compound. Due to its low support in the dataset (only 21
examples), performance on this class is notably lower, a typical outcome in the presence of
data imbalance.

Additional metrics offer further insights into the model’s reliability. The top-2 accuracy is
0.9985 and the top-3 accuracy reaches 0.9996, indicating that even when the model’s top
prediction is incorrect, the correct class is nearly always among its top alternatives.

In terms of calibration, the Expected Calibration Error (ECE) is 0.0039, suggesting a very
strong alignment between the predicted probabilities and actual outcome frequencies.

The confusion matrix shown in Figure 6.4 provides a visual summary of how well the model
differentiates between tyre compounds.

Figure 6.4: Confusion matrix for the CompoundTransformer.

It is instructive to examine the nature of the misclassification. These errors generally make
sense within the domain context. For instance, Class 1 (Intermediate tyres) is occasionally
misclassified as Class 4 (Wet tyres). This is reasonable given that both compounds are in-
tended for wet weather conditions and the distinction can be subtle based on track humid-
ity, rainfall intensity or temperature.

66

Results

Similarly, Class 2 (Medium tyres) is sometimes confused with either Class 0 (Hard) or Class
3 (Soft), but not with the wet-weather compounds. A similar pattern is observed for Class 3
(Soft tyres), which may occasionally be predicted as Mediums, but is rarely, if ever, classified
as a Wet or Hard compound. Likewise, Intermediate and Wet compounds are never con-
fused with slick compounds, when misclassified, they tend to be mistaken for each other,
which again reflects a reasonable error profile given the similarity in conditions under which
they are used.

To further clarify the model’s performance across all categories, the normalised confusion
matrix is shown below

Figure 6.5: Normalised confusion matrix for the CompoundTransformer.

Finally, the calibration curves further confirm that the model’s predicted probabilities are
well-aligned with observed outcomes

Figure 6.6: Calibration curves for the CompoundTransformer.

To conclude this section, it is insightful to examine the attention matrices of the models.

67

In Section 4.3, the attention mechanism was explained in detail. Now, this mechanism can
be visualised to better understand what each model "sees" during the prediction process.

Figure 6.7: Attention matrices for the CompoundTransformer.

Figure 6.8: Attention matrices for the PitStopTransformer.

In these heat-maps, attention values are visualised across all 16 heads and 8 layers of the
model architecture. Brighter areas indicate higher attention weights, while darker regions
reflect lower attention. Each square in the grid represents an individual attention head at a
specific layer, providing insight into how information flows through the Transformer.

A particularly interesting observation can be made in the first layer of the compound model,
where many heads assign relatively high attention scores across a broad input range. This
phenomenon is partly due to the nature of self-attention at the earliest stage of processing,
these heads are still aggregating broad contextual information. Additionally, towards the
lower right of each attention map, darker regions appear consistently. This is a direct con-
sequence of the attention masking mechanism applied during sequence modelling. Once

68

Results

the model reaches the lap currently being predicted, all subsequent inputs are masked out,
resulting in zero attention beyond that point, effectively simulating future ignorance.

Another notable detail is how different heads appear to specialise in distinct patterns or
structural behaviours. Some focus on local information (i.e., strong diagonal or near-diagonal
attention), while others capture long-range dependencies or global interactions, such as
sudden attention spikes to distant input positions. This diversity is a hallmark of multi-
head attention and demonstrates how the model decomposes the task into subtasks dis-
tributed across layers and heads.

Altogether, these visualisations confirm that both models learn structured and interpretable
attention patterns, with specific heads focusing on unique aspects of the input. This qual-
itative insight supports the theoretical architecture design and provides further confidence
in the model’s internal consistency.

With these results, the theoretical validation phase of the model is considered complete.
The next step involves deploying the models in live scenarios to enable real-time inference
and dynamic race strategy simulation.

69

Chapter 7

Real race simulation

The final stage of testing for both Transformer models focuses on real-time prediction dur-
ing an actual Formula 1 race. This section aims to provide insight into the results obtained
when deploying the models in a live environment.

As previously mentioned, the simulator outputs, for each lap, the number of laps left before
an optimal pit stop and the recommended tyre compound. These results are visualised in
a graph where the x-axis corresponds to the lap number, the y-axis shows the number of
laps until the next stop and colour encodes the suggested tyre compound. Gradient lines
are used to indicate transitions between compounds.

To assess model performance, a real-world scenario was evaluated using Max Verstappen’s
race at Suzuka, an iconic track and driven by arguably the most consistent performer on the
grid. The predicted race strategy is shown in Figure 7.1

Real race simulation

0 6 12 18 24 30 36 42 48 54
Lap number

0

4

8

12

16

20

24

28

32

La
ps

 to
 p

it

Pit stop prediction over race laps
Compound

Soft
Medium
Hard
Intermediate
Wet

Figure 7.1: Max Verstappen’s race strategy prediction for the 2025 Japanese Grand Prix.

Several key insights can be drawn from this visualisation:

1. The model suggests starting the race on medium tyres and switching to hard tyres at
lap 18.

2. It correctly identifies lap 18 as the optimal point for the tyre change, accounting for all
contextual input features and external variables.

3. The predicted laps-to-pit peak at lap 21, which aligns with the actual pit stop, suggest-
ing a high level of predictive accuracy.

4. The plot exhibits the expected behaviour: a downward-sloping diagonal of constant
colour, reflecting a consistent reduction in laps to pit over time.

5. Although the real pit stop occurred on lap 21, the model continued decreasing the
laps to pit prediction until lap 25, where it reassessed and determined the current tyres
could still be optimal.

6. The absence of alternative compounds (e.g. soft or intermediate) suggests that the
model has filtered out suboptimal strategies, showing strong confidence in the selected
compound.

7. The post-pit stint displays high compound stability, further validating the model’s
inference under typical dry conditions.

71

Ideally, the model would change compounds (i.e., colour change) exactly when the pre-
dicted laps to pit reach zero and then begin a new segment with a different colour. This
ideal behaviour is better observed in the simulation for Oscar Piastri during the 2025 Ital-
ian Grand Prix at Imola (Figure 7.2)

0 8 16 24 32 40 48 56 64
Lap number

0

4

8

12

16

20

24

28

32

La
ps

 to
 p

it

Pit stop prediction over race laps
Compound

Soft
Medium
Hard
Intermediate
Wet

Figure 7.2: Oscar Piastri’s race strategy prediction for the 2025 Italian Grand Prix.

Here, the tyre change prediction aligns perfectly with the zero-crossing of the laps to pit,
suggesting an accurate timing decision. However, the expected clean diagonal is less evident
due to some stochasticity in the predictions. Still, the underlying pattern remains visible.
For example:

1. At lap 2 the model predicts 27 laps until the next stop. By lap 12 this value drops to 18
demonstrating a steady, albeit noisy, decline.

2. Between laps 14 and 22 a similar pattern appears. The model adjusts from 30 to 22 laps
to pit, showcasing a consistent reduction over time.

Additional observations further validate model robustness:

1. The absence of mid-stint compound switches indicates low volatility in predictions
and suggests that the model has learned track-specific strategy profiles, particularly
relevant for circuits like Imola where undercuts and track position are critical.

2. The transition from prediction to action (i.e. compound change at zero-crossing) re-
flects a strong grasp of timing, arguably one of the most difficult aspects in F1 strategy
planning.

72

Real race simulation

Perhaps most striking is the model’s ability to adapt dynamically. As race conditions evolve,
it not only re-evaluates strategy but also advances the pit stop when beneficial. This high-
lights the model’s capacity to interpret context and respond intelligently. In Piastri’s case, it
identifies the precise moment to switch compounds, reflecting real-time decision-making
comparable to that of a seasoned race engineer.

Finally, another illustrative example of the model’s overall behaviour can be observed in the
case of Lando Norris during the 2025 Chinese Grand Prix

0 6 12 18 24 30 36 42 48 54
Lap number

0

3

6

9

12

15

18

21

La
ps

 to
 p

it

Pit stop prediction over race laps
Compound

Soft
Medium
Hard
Intermediate
Wet

Figure 7.3: Lando Norris’s race strategy prediction for the 2025 Chinese Grand Prix.

This graph exhibits the desirable diagonal structure, where the number of laps remaining
before a pit stop steadily decreases. The tyre change aligns closely with the actual pit stop
event. In the opening stint, the model opts for medium tyres. While the trend appears
slightly irregular, the underlying diagonal behaviour remains evident. Notably, one lap be-
fore the predicted pit, the model momentarily suggests switching to soft tyres, likely the
result of prediction noise or local uncertainty in compound suitability. However, at the
actual pit stop, the model corrects its course and recommends transitioning to hard tyres.

Further insights include:

1. The model shows strong post-pit confidence by locking into the hard compound
without subsequent fluctuation, confirming that the decision is both deliberate and
stable.

2. No suggestion of intermediate or wet compounds appears throughout the race, indi-

73

cating that the system correctly identified the dry race conditions and excluded irrele-
vant alternatives.

3. The momentary soft compound suggestion could point to an interesting avenue for
future probabilistic exploration strategies, where the model briefly entertains high-
risk alternatives but then converges to optimal decisions.

This second stint showcases a clear diagonal pattern, confirming the model’s intended be-
haviour and its ability to maintain strategic coherence across evolving race conditions. The
combination of tactical stability, low compound variance and timing precision positions
the simulator as a reliable tool for real-time race strategy analysis.

Across all three races, the simulator consistently demonstrates desirable characteristics: a
descending diagonal pattern in laps-to-pit predictions, compound switches aligned with
logical transition points and a coherent overall strategy. Minor fluctuations reflect race dy-
namics rather than model instability.

These findings indicate that the simulator can serve as a dependable decision-support sys-
tem, capable of delivering realistic and timely race strategies with minimal manual interven-
tion.

74

Chapter 8

Conclusions

This thesis has successfully demonstrated the feasibility of applying Transformer-based ar-
chitectures to real-time race strategy simulation within the domain of Formula 1. The dual
emphasis on mathematical foundations and computer science implementation has pro-
duced a robust and adaptable system capable of delivering strategic recommendations in
live race scenarios.

Through the careful design and implementation of two specialised models, known respec-
tively as thePitStopTransformer and theCompoundTransformer, this work integrates
the mathematical depth of the Transformer, multi-head attention mechanisms, positional
encodings and feed-forward network with the complexities of race strategy. These mod-
els process sequential race data, capturing temporal dependencies essential for making in-
formed strategic decisions, while maintaining the flexibility required for real-time applica-
tion.

A key contribution lies in the design of the data pipeline, which bridges historical and real-
time data sources. The integration of Fast F1 and Open F1 APIs ensures that the simula-
tor remains grounded in real-world constraints, processing variables such as lap times, tyre
compounds and weather conditions with a consistent methodology. The simulator’s ability
to operate within strict API rate limits, leveraging timestamp-based querying and telemetry
downsampling, highlights its engineering robustness.

Live testing validated the simulator’s capability to provide actionable recommendations
throughout a race. The system adapts dynamically, updating its predictions in response to
unfolding events. This real-time adaptability distinguishes the simulator from traditional
static models, offering a practical tool for motorsport engineers and strategists.

However, certain limitations persist. The unavailability of proprietary data like fuel loads,
detailed car setups and tyre degradation metrics introduces uncertainty into the models’
predictions. While the Transformer models infer these dynamics indirectly through ob-
servable variables, access to such data could significantly enhance accuracy. Computational
constraints also posed challenges, with training and inference requiring GPU resources be-
yond standard personal hardware.

Several avenues for future work remain open, both in terms of model optimisation, data
accuracy and mathematical exploration:

1. Model optimisation: Applying advanced memory management techniques, such
as those used in the DeepSeek R1 architecture, could enhance training efficiency by
reducing the memory footprint per token through optimised matrix storage. This
would enable larger batch sizes or deeper models without exceeding hardware limits.
Access to GPUs with greater memory and computational power would further sup-
port the training of larger architectures or datasets.

2. Enhancing F1 accuracy: Extending the current database by incorporating Free Prac-
tice sessions could provide valuable insights into car setups and performance vari-
ations. Although limited by the lack of setup and oil data, a more comprehensive
dataset would refine model inputs and improve pre-race strategy predictions. This
would help address some of the uncertainty stemming from undisclosed team param-
eters.

3. Mathematical refinement: Exploring the application of Topological Data Analysis
to uncover latent structures within race data could offer a more nuanced understand-
ing of performance dynamics. Further, introducing differential equations to model
race state evolution as an initial value problem could provide an analytical framework
to complement the data-driven models, blending classical mathematics with modern
machine learning.

In summary, this project provides a solid foundation for further exploration at the inter-
section of machine learning, mathematics and motorsport strategy. It offers a clear path-
way for future enhancements, whether through model refinement, expanded datasets or
deeper mathematical analysis, all with the potential to deliver more sophisticated and accu-
rate strategic tools for Formula 1 and beyond.

76

Bibliography

[Cyb89] G. Cybenko. “Approximation by Superpositions of a Sigmoidal Function”. In: Mathematics
of Control, Signals, and Systems 2 (1989), pp. 303–314. doi: 10.1007/BF02551274.

Establishes that continuous functions can be approximated by neural networks with a single hidden
layer and a sigmoidal activation function.

[HSW90] K. Hornik, M. Stinchcombe, and H. White. “Universal Approximation Using Neural
Networks”. In: Neural Networks 3 (1990), pp. 359–366.

Establishes that standard multilayer feedforward networks are universal approximators.

[Lon17] Imperial CollegeLondon. “Improving the Aerodynamic Performance of Formula One Racing
Cars”. In: Research Impact Case Study (2017).

Study on improving the aerodynamic efficiency of Formula 1 cars.

[Vas+17] Ashish Vaswani et al. “Attention Is All You Need”. In: Advances in Neural Information Pro-
cessing Systems (NIPS) 31 (2017).

Introduces the Transformer model, solely based on attention mechanisms.

[Sul18] Claudia Sulsters. “Simulating Formula One Race Strategies”. In: Vrije Universiteit Amster-
dam (2018).

Research paper on simulating race strategies in Formula 1 using mathematical models.

[BT19] Rory P. Bunker and Fadi Thabtah. “A Machine Learning Framework for Sport Result Pre-
diction”. In: Applied Computing and Informatics 15 (2019), pp. 27–33. doi: 10.1016/j.aci.
2017.09.005.

A study on machine learning techniques applied to predicting sports results.

[Rem+19] AdrianRemondaet al. “Formula RL: Deep Reinforcement Learning for Autonomous Racing
Using Telemetry Data”. In: Preprint (2019). doi: 10.13140/RG.2.2.30678.09283.

Application of deep reinforcement learning for optimizing autonomous racing strategies.

[Soy19] SoyMotor. Técnica: El funcionamiento de los frenos en Monza 2019. 2019. url: https://
soymotor.com/f1/articulos/tecnica-el-funcionamiento-de-los-frenos-
en-monza-2019.

Accessed: February 7, 2025.

[Hei+20a] Alexander Heilmeier et al. “Application of Monte Carlo Methods to Consider Probabilistic
Effects in a Race Simulation for Circuit Motorsport”. In: Applied Sciences 10 (4229 2020). doi:
10.3390/app10124229.

Study on MCS methods for modeling probabilistic race effects in circuit motorsport.

[Hei+20b] Alexander Heilmeier et al. “Virtual Strategy Engineer: Using Artificial Neural Networks for
Making Race Strategy Decisions in Circuit Motorsport”. In: Applied Sciences 10 (7805 2020).
doi: 10.3390/app10217805.

Application of neural networks for automated race strategy decision-making in motorsport.

77

https://doi.org/10.1007/BF02551274
https://doi.org/10.1016/j.aci.2017.09.005
https://doi.org/10.1016/j.aci.2017.09.005
https://doi.org/10.13140/RG.2.2.30678.09283
https://soymotor.com/f1/articulos/tecnica-el-funcionamiento-de-los-frenos-en-monza-2019
https://soymotor.com/f1/articulos/tecnica-el-funcionamiento-de-los-frenos-en-monza-2019
https://soymotor.com/f1/articulos/tecnica-el-funcionamiento-de-los-frenos-en-monza-2019
https://doi.org/10.3390/app10124229
https://doi.org/10.3390/app10217805

[Kap+20] JaredKaplanet al. “Scaling Laws for Neural Language Models”. In: arXiv preprint arXiv:2001.08361
(2020).

Study on empirical scaling laws for language model performance.

[LF20] Xuze Liu and Abbas Fotouhi. “Formula-E Race Strategy Development Using Artificial Neu-
ral Networks and MCTS”. In: Neural Computing and Applications 32 (2020), pp. 15191–15207.
doi: 10.1007/s00521-020-04871-1.

Study on race strategy optimization for Formula-E using AI-based decision models.

[Pic20] DiegoPiccinotti. “Open Loop Planning for Formula 1 Race Strategy Identification”. Politec-
nico di Milano, 2020.

MSc thesis on race strategy identification using open-loop planning.

[VBC20] JamesVuckovic, AristideBaratin, and Remi Tachet desCombes. “A Mathematical Theory
of Attention”. In: arXiv preprint arXiv:2007.02876 (2020).

Framework to analyze attention using measure theory.

[Dot21] DotCSV. ¿Qué es un Transformer? La Red Neuronal que lo cambió todo! 2021. url: https:
//www.youtube.com/watch?v=aL-EmKuB078.

Accessed: February 20, 2025.

[For21] Formula 1. The 2021 F1 Cost Cap Explained: What Has Changed and Why. 2021. url: https:
//www.formula1.com/en/latest/article/the-2021-f1-cost-cap-explained-
what-has-changed-and-why.5O1Te8udKLmkUl4PyVZtUJ.

Accessed: February 7, 2025.

[Meh+21] Aditi Mehta et al. “Applications of Operations Research in Formula One”. In: International
Journal of Engineering Applied Sciences and Technology 6 (6 2021), pp. 270–275.

Study on the use of operations research in Formula 1 for optimization and simulation.

[Mur21] James Murkin. “Faster than Hamilton! - Optimising F1 Strategies”. In: University of Leeds -
Mathematics Research Paper (2021).

Optimization study on Formula 1 race strategies using mathematical modeling techniques.

[Pic+21] Diego Piccinotti et al. “Online Planning for F1 Race Strategy Identification”. In: Proceedings
of the AAAI Conference (2021).

Application of online planning and MCTS to optimize Formula 1 race strategy decisions.

[Hei22] Alexander Maximilian Heilmeier. “Simulation of Circuit Races for the Objective Evaluation
of Race Strategy Decisions”. PhD thesis. Technische Universität München, 2022.

PhD dissertation on evaluating race strategy decisions using circuit race simulation.

[Jim22] Miguel JiménezTardós. “Real Time Formula 1 Strategy Decision Problem Modeled as a Dis-
crete Event Stochastic Process”. Cranfield University, School of Aerospace, Transport and Man-
ufacturing, 2022.

MSc thesis on modeling F1 strategy decisions using stochastic processes.

[Ron22] MassimoRondelli. “The Future of Formula 1 Racing: Neural Networks to Predict Tyre Strat-
egy”. Alma Mater Studiorum - Università di Bologna, 2022.

Explores the use of neural networks for predicting optimal tire strategies in Formula 1 racing.

78

https://doi.org/10.1007/s00521-020-04871-1
https://www.youtube.com/watch?v=aL-EmKuB078
https://www.youtube.com/watch?v=aL-EmKuB078
https://www.formula1.com/en/latest/article/the-2021-f1-cost-cap-explained-what-has-changed-and-why.5O1Te8udKLmkUl4PyVZtUJ
https://www.formula1.com/en/latest/article/the-2021-f1-cost-cap-explained-what-has-changed-and-why.5O1Te8udKLmkUl4PyVZtUJ
https://www.formula1.com/en/latest/article/the-2021-f1-cost-cap-explained-what-has-changed-and-why.5O1Te8udKLmkUl4PyVZtUJ

[Sic22] Horatiu Sicoie. “Machine Learning Framework for Formula 1 Race Winner and Champi-
onship Standings Predictor”. Tilburg University, 2022.

Ppredicting Formula 1 race winners using supervised machine learning models.

[Thi22] JohnThickstun. “The Transformer Model in Equations”. In: arXiv preprint arXiv:2022.00000
(2022).

Mathematical definitions and interpretations of the Transformer model.

[TWW22] Lewis Tunstall, Leandro von Werra, and Thomas Wolf. Natural Language Processing
with Transformers: Building Language Applications with Hugging Face. O’Reilly Media, 2022.

Comprehensive guide on using transformers for NLP tasks with the Hugging Face library.

[Alb+23] Silas Alberti et al. “Sumformer: Universal Approximation for Efficient Transformers”. In:
Proceedings of the 2nd Annual Workshop on Topology, Algebra, and Geometry in Machine Learn-
ing (TAG-ML) (2023).

Introduces Sumformer, demonstrating universal approximation for efficient transformers.

[For23] Formula 1. Rapid Decisions, Driver Skills and Intricate Procedures: Why Race Starts Are So
Important. 2023. url: https://www.formula1.com/en/latest/article/rapid-
decisions-driver-skills-and-intricate-procedures-why-race-starts-
are.3uziERC5iPE5EYOPRmerXU.

Accessed: February 7, 2025.

[Jim23] Miguel Jiménez Tardós. “Design of Formula 1 Race Strategies using Reinforcement Learn-
ing”. Escuela de Ingeniería y Arquitectura, 2023.

Master’s thesis on using reinforcement learning for optimizing Formula 1 race strategies.

[Sci23] Science News Explores. Race Car Drivers Blink Strategically to Stay Focused. 2023. url:
https://www.snexplores.org/article/race-car-drivers-blink-strategy#:
~:text=The%20drivers’%20blinking%20was%20surprisingly,while%20changing%
20speed%20or%20direction..

Accessed: February 7, 2025.

[Su+23] Jianlin Su et al. “RoFormer: Enhanced Transformer with Rotary Position Embedding”. In:
arXiv preprint arXiv:2104.09864 (2023).

Proposes Rotary Position Embedding (RoPE) for transformer models.

[Bea24] Cédric M. L. Beaume. “Formula 1 Strategy Competition”. In: University of Leeds (2024).

Competition framework for optimizing Formula 1 strategies using mathematical models.

[FHP24] Takashi Furuya, Maarten V. de Hoop, and Gabriel Peyré. “Transformers are Universal In-
context Learners”. In: arXiv preprint arXiv:2408.01367 (2024).

Study on the universality of transformers in handling an arbitrary number of tokens.

[Ges+24] Borjan Geshkovski et al. “A Mathematical Perspective on Transformers”. In: arXiv preprint
arXiv:2312.10794 (2024).

Mathematical framework analyzing transformers as interacting particle systems.

[Pir25] Pirelli. Formula 1: Technology, Performance, and Innovation by Pirelli. 2025. url: https:
//www.pirelli.com/tyres/en-ww/motorsport/car/formula-1.

Accessed: February 8, 2025.

79

https://www.formula1.com/en/latest/article/rapid-decisions-driver-skills-and-intricate-procedures-why-race-starts-are.3uziERC5iPE5EYOPRmerXU
https://www.formula1.com/en/latest/article/rapid-decisions-driver-skills-and-intricate-procedures-why-race-starts-are.3uziERC5iPE5EYOPRmerXU
https://www.formula1.com/en/latest/article/rapid-decisions-driver-skills-and-intricate-procedures-why-race-starts-are.3uziERC5iPE5EYOPRmerXU
https://www.snexplores.org/article/race-car-drivers-blink-strategy#:~:text=The%20drivers'%20blinking%20was%20surprisingly,while%20changing%20speed%20or%20direction.
https://www.snexplores.org/article/race-car-drivers-blink-strategy#:~:text=The%20drivers'%20blinking%20was%20surprisingly,while%20changing%20speed%20or%20direction.
https://www.snexplores.org/article/race-car-drivers-blink-strategy#:~:text=The%20drivers'%20blinking%20was%20surprisingly,while%20changing%20speed%20or%20direction.
https://www.pirelli.com/tyres/en-ww/motorsport/car/formula-1
https://www.pirelli.com/tyres/en-ww/motorsport/car/formula-1

A: Mathematical proofs

Proof of Proposition 4.2.1.

To prove that 𝑃𝐸 is injective it must be shown that for all 𝑥, 𝑦 ∈ {1, 2, . . . , 𝑛},

𝑥 ≠ 𝑦 =⇒ 𝑃𝐸 (𝑥) ≠ 𝑃𝐸 (𝑦)

This can be more easily approached by proving the contrapositive

𝑃𝐸 (𝑥) = 𝑃𝐸 (𝑦) =⇒ 𝑥 = 𝑦

Assume 𝑃𝐸 (𝑥) = 𝑃𝐸 (𝑦). Then, by the definition of 𝑃𝐸 , for every frequency compo-
nent 𝜔𝑡 both the sine and cosine terms must satisfy{

sin(𝑥𝜔𝑡) = sin(𝑦𝜔𝑡)
cos(𝑥𝜔𝑡) = cos(𝑦𝜔𝑡)

for all 𝑡 ∈
{

1, 2, . . . , 𝑑𝑚𝑜𝑑𝑒𝑙2

}
.

Since sine and cosine are 2𝜋 -periodic functions, this implies that for each 𝑡 there exists
some integer 𝑘 ∈ Z such that

𝑥𝜔𝑡 = 𝑦𝜔𝑡 + 2𝜋𝑘

Rearranging gives

𝑥 − 𝑦 =
2𝜋𝑘
𝜔𝑡

However, since the 𝜔𝑡 values are distinct for each 𝑡 , the right-hand side differs across com-
ponents. Therefore it is not possible for the same integer 𝑥−𝑦 to satisfy all these equations
simultaneously unless 𝑥 − 𝑦 = 0.

Hence, 𝑥 = 𝑦, which completes the proof that 𝑃𝐸 is injective.

■

Proof of Proposition 4.2.2.

The objective is to construct a definition of𝑇 (𝑘) that is independent of the specific posi-
tion 𝑖. Define𝑇 (𝑘) as a block-diagonal matrix composed of 𝑑𝑚𝑜𝑑𝑒𝑙2 rotation matrices 𝜙𝑡 (𝑘)

80

acting on each sinusoidal component pair

𝑇 (𝑘) =
©­­­­«
𝜙1(𝑘) 0 · · · 0

0 𝜙2(𝑘) · · · 0
...

...
. . .

...

0 0 · · · 𝜙 𝑑𝑚𝑜𝑑𝑒𝑙
2
(𝑘)

ª®®®®¬
where each 0 denotes a 2 × 2 zero matrix and each block 𝜙𝑡 (𝑘) is defined as a rotation
matrix

𝜙𝑡 (𝑘) =
(
cos(𝑟𝑡𝑘) − sin(𝑟𝑡𝑘)
sin(𝑟𝑡𝑘) cos(𝑟𝑡𝑘)

)
with 𝑟𝑡 denoting the angular frequency associated with the 𝑡-th sinusoidal component.
Note that 𝑟𝑡 is distinct from the previously defined 𝜔𝑡 used in positional encoding.

The goal is to find𝑇 (𝑘) such that𝑇 (𝑘)𝑃𝐸 (𝑖) = 𝑃𝐸 (𝑖 + 𝑘). Focusing on a single pair
of sinusoidal components for coordinate 𝑡 , this condition becomes(

cos(𝑟𝑡𝑘) − sin(𝑟𝑡𝑘)
sin(𝑟𝑡𝑘) cos(𝑟𝑡𝑘)

)
︸ ︷︷ ︸

𝜙𝑡 (𝑘)

(
sin(𝜔𝑡𝑘)
cos(𝜔𝑡𝑘)

)
=

(
sin(𝜔(𝑖 + 𝑘))
cos(𝜔(𝑖 + 𝑘)

)

where 𝜔𝑡 is the frequency defined by the positional encoding scheme.

This expression strongly resembles the trigonometric angle addition formulas

sin(𝜔𝑘 + 𝜔𝑖) = sin(𝑟𝑘) cos(𝜔𝑖) + cos(𝑟𝑘) sin(𝜔𝑖)
cos(𝜔𝑘 + 𝜔𝑖) = cos(𝑟𝑘) cos(𝜔𝑖) − sin(𝑟𝑘) sin(𝜔𝑖)

These identities confirm that a rotation matrix with angle 𝜔𝑡𝑘 applied to 𝑃𝐸 (𝑖) yields
𝑃𝐸 (𝑖 + 𝑘). Therefore one can identify 𝑟𝑡 = 𝜔𝑡 .

By applying this result and recalling the definition of the encoding frequency the rotation
matrix becomes

𝜙𝑡 (𝑘) =
(
cos(𝜔𝑡𝑘) − sin(𝜔𝑡𝑘)
sin(𝜔𝑡𝑘) cos(𝜔𝑡𝑘)

)
Hence, the transformation𝑇 (𝑘) is fully defined by the model dimension 𝑑𝑚𝑜𝑑𝑒𝑙 , the po-
sition offset 𝑘 and the component index 𝑡 , without any dependence on the actual position
𝑖.

This completes the proof.

■

81

Proof of Proposition 4.3.1.

By the construction outlined previously, for a given query 𝑞 ∈ Q, we have

(𝜓𝐺 (𝑞,·) (𝑚(𝐾))𝐿) (𝑑𝑣) =
𝑁∑︁
𝑗=1

∫
𝐺 (𝑞, 𝑘𝑗)∑𝑁
𝑝=1𝐺 (𝑞, 𝑘𝑝)

𝛿𝑘𝑗 (𝑑𝑘)𝐿(𝑘, 𝑑𝑣)

=

𝑁∑︁
𝑗=1

𝐺 (𝑞, 𝑘𝑗)∑𝑁
𝑝=1𝐺 (𝑞, 𝑘𝑝)

𝛿𝑣𝑗 (𝑑𝑣)

Applying the moment projection
∏

to this distribution yields

𝐴𝑚(𝐾) (𝑞, 𝑑𝑣) = 𝛿∑𝑁
𝑗=1

𝐺 (𝑞,𝑘𝑗)∑𝑁
𝑝=1 𝐺 (𝑞,𝑘 𝑝)

𝑣𝑗 (𝑑𝑣)

Finally, applying the left action of this kernel on 𝛿𝑞𝑡 gives

𝛿𝑞𝑡𝐴𝑚(𝐾) (𝑑𝑣) =
∫
𝛿𝑞𝑡 (𝑑𝑞)𝐴𝑚(𝐾) (𝑞, 𝑑𝑣) = 𝛿∑𝑁

𝑗=1
𝐺 (𝑞,𝑘𝑗)∑𝑁
𝑝=1 𝐺 (𝑞,𝑘 𝑝)

𝑣𝑗 (𝑑𝑣)

which corresponds exactly to the attention output from Definition 4.3.1, with𝐺 (𝑥, 𝑦) =
exp(𝑎(𝑥, 𝑦)). Using the canonical bijection 𝛿𝑥 ←→ 𝑥 between Dirac measures and
points in 𝐸 completes the proof.

■

Proof of Theorem 4.3.1.

By definition of the Wasserstein distance and using the contraction properties from Lemma 4.3.1,
we have

∥Att(𝑞1, 𝐾 ,𝑉) − Att(𝑞2, 𝐾 ,𝑉)∥2 ⩽ ∥Att(𝑞1, 𝐾 ,𝑉) − Att(𝑞2, 𝐾 ,𝑉)∥1

= W1(𝛿𝑞1𝐴𝑚(𝐾), 𝛿𝑞2𝐴𝑚(𝐾))

⩽ 𝑑∥𝑙∥𝐿𝑖 𝑝
2∥𝐺∥𝐿𝑖 𝑝,∞diam(𝐸)

ε(𝐺) W1(𝛿𝑞1, 𝛿𝑞2)

= 𝑑∥𝑙∥𝐿𝑖 𝑝
2∥𝐺∥𝐿𝑖 𝑝,∞diam(𝐸)

ε(𝐺) ∥𝑞1 − 𝑞2∥1

=
√
𝑑3∥𝑙∥𝐿𝑖 𝑝

2∥𝐺∥𝐿𝑖 𝑝,∞diam(𝐸)
ε(𝐺) ∥𝑞1 − 𝑞2∥2

82

where the last step uses the norm equivalence ∥𝑥∥1 ⩽
√
𝑑∥𝑥∥2 for vectors in R𝑑.

■

Proof of Lemma 4.4.1.

Let 𝑓 ∈M𝑛 be arbitrary and let ε > 0. The goal is to find a 𝑔 ∈ C𝑛 such that 𝜌𝜇(𝑓 , 𝑔) < ε.
For sufficiently large 𝑀 we have∫

min
{��𝑓 I{| 𝑓 |<𝑀 } − 𝑓 �� , 1} 𝑑𝜇 <

ε
2

There then exists a continuous function 𝑔 such that∫ ��𝑓 I{| 𝑓 |<𝑀 } − 𝑔 �� 𝑑𝜇 <
ε
2

Combining both inequalities yields∫
min

{
| 𝑓 − 𝑔 |, 1

}
𝑑𝜇 < ε

which proves the claim.

■

Proof of Lemma 4.4.2.

Pick ε > 0. It suffices to find 𝑁 ∈ N such that for all 𝑛 ⩾ 𝑁 we have∫
min

{
| 𝑓𝑛(𝑥) − 𝑓 (𝑥) |, 1

}
𝜇(𝑑𝑥) < ε

Without loss of generality assume that 𝜇(R𝑛) = 1. Since R𝑛 is a locally compact metric
space the measure 𝜇 is regular. Therefore, there exists a compact set K ⊂ R𝑛 such that
𝜇(K) > 1 − ε

2 .

Because 𝑓𝑛 → 𝑓 uniformly on K there exists 𝑁 such that for all 𝑛 ⩾ 𝑁

sup
𝑥∈K

��𝑓𝑛(𝑥) − 𝑓 (𝑥)�� < ε
2

The result then follows.

■

83

Proof of Theorem 4.4.3.

Given any Borel measurable, continuous and non-constant function 𝐺, it follows from
Proposition 4.4.2 and Lemma 4.4.2 that

∑∏𝑛(𝐺) is 𝜌𝜇-dense in C𝑛. Since C𝑛 is itself
𝜌𝜇-dense in M𝑛 by Lemma 4.4.1, the result follows by transitivity of denseness.

■

Proof of Theorem 4.4.2.

The proof follows from the Stone–Weierstrass Theorem. LetK ⊂ R𝑛 be any compact set.
For any𝐺 the class

∑∏𝑛(𝐺) forms an algebra on K.

If 𝑥, 𝑦 ∈ K are distinct then there exists an 𝐴 ∈ A𝑛 such that𝐺 (𝐴(𝑥)) ≠ 𝐺 (𝐴(𝑦)). To
see this, take 𝑎, 𝑏 ∈ R with 𝑎 ≠ 𝑏 and 𝐺 (𝑎) ≠ 𝐺 (𝑏). Choose 𝐴 such that 𝐴(𝑥) = 𝑎
and 𝐴(𝑦) = 𝑏. Then clearly𝐺 (𝐴(𝑥)) ≠ 𝐺 (𝐴(𝑦)). This shows that

∑∏𝑛(𝐺) separates
points on K.

Additionally, there exists 𝐺 (𝐴) that is constant and non-zero. For example, select 𝑏 ∈ R
such that 𝐺 (𝑏) ≠ 0 and set 𝐴(𝑥) = 0𝑥 + 𝑏. Then for all 𝑥 ∈ K, we have 𝐺 (𝐴(𝑥)) =
𝐺 (𝑏). Hence, the set

∑∏𝑛(𝐺) does not vanish on K.

By the Stone–Weierstrass Theorem, it follows that
∑∏𝑛(𝐺) is 𝜌K-dense in the space of

real-valued continuous functions onK. SinceK was arbitrary, the result holds for all com-
pact subsets.

■

Proof of Lemma 4.4.3.

Fix an arbitrary ε > 0 and without loss of generality, assume ε < 1. The goal is to construct
a finite collection of constants 𝛽𝑗 and affine functions 𝐴𝑗 such that

sup
𝑥∈R

������𝐹 (𝑥) −
𝑄−1∑︁
𝑗=1
𝛽𝑗𝜓 (𝐴𝑗 (𝑥))

������ < ε

Choose𝑄 so that 1
𝑄
< ε

2 and define 𝛽𝑗 = 1
𝑄

for 𝑗 ∈ {1, . . . , 𝑄 − 1}. Let 𝑀 > 0 be such
that 𝜓 (−𝑀) < ε

2𝑄 and 𝜓 (𝑀) > 1 − ε
2𝑄 . Since 𝜓 is a squashing function, such an 𝑀

exists.

84

For each 𝑗 ∈
{

1, . . . , 𝑄 − 1
}

, define

𝑟𝑗 = sup
{
𝑥 : 𝐹 (𝑥) =

𝑗

𝑄

}
𝑟𝑄 = sup

{
𝑥 : 𝐹 (𝑥) = 1 − 1

2𝑄

}
These values exist due to the continuity of 𝐹 .

For any 𝑟 < 𝑠, let 𝐴𝑟,𝑠 ∈ A𝑛 be the unique affine function such that 𝐴𝑟,𝑠 (𝑟) = 𝑀 and
𝐴𝑟,𝑠 (𝑠) = −𝑀 . Define the approximating function as:

𝐻ε(𝑥) =
𝑄−1∑︁
𝑗=1
𝛽𝑗𝜓 (𝐴𝑟𝑗 ,𝑟𝑗+1 (𝑥))

It can be checked that on each interval

(−∞, 𝑟1], (𝑟1, 𝑟2], . . . , (𝑟𝑄−1, 𝑟𝑄], (𝑟𝑄 ,∞)

the inequality |𝐹 (𝑥) − 𝐻ε(𝑥) | < ε holds.

■

Proof of Lemma 4.4.4.

Let 𝐹 be the cosine squashing function. By constructing linear combinations of affinally
shifted copies of 𝐹 it is possible to approximate the cosine function over any compact
interval [−𝑀,𝑀]. The result then follows from Lemma 4.4.3 and the triangle inequality.

■

Proof of Lemma 4.4.5.

Choose 𝑀 > 0 such that for all 𝑗 ∈
{

1, . . . , 𝑄 − 1
}

, the image 𝐴𝑗 (K) ⊂ [−𝑀,𝑀].
Since K is compact and each 𝐴𝑗 is continuous, such an 𝑀 exists.

Define

𝑄′ = 𝑄

𝑄∑︁
𝑗=1
|𝛽𝑗 |.

85

By Lemma 4.4.4, for all 𝑥 ∈ K we have������
𝑄∑︁
𝑗=1
𝛽𝑗 cos(𝐴𝑗 (𝑥)) − 𝑔 (𝑥)

������ < ε

Since each cos(𝐴𝑗 (𝑥)) can be approximated by elements in
∑𝑛(𝜓), it follows that

𝑓 =

𝑄∑︁
𝑗=1

cos(𝐴𝑗) ∈
𝑛∑︁
(𝜓)

■

Proof of Lemma 4.4.6.

By Proposition 4.4.2, the class of trigonometric polynomials
𝑄∑︁
𝑗=1
𝛽𝑗

𝑙𝑗∏
𝑘=1

cos(𝐴𝑗𝑘) : 𝑄, 𝑙𝑗 ∈ N, 𝛽𝑗 ∈ R, 𝐴𝑗𝑘 ∈ A𝑛


is uniformly dense on compacta in C𝑛. Using the trigonometric identity

cos(𝛼) cos(𝛽) = 1
2

(
cos(𝛼 + 𝛽) + cos(𝛼 − 𝛽)

)
every such polynomial can be rewritten as

𝑇∑︁
𝑖=1
𝛼𝑖 cos(𝐴𝑖)

where 𝛼𝑖 ∈ R and 𝐴𝑖 ∈ A𝑛. The result now follows directly from Lemma 4.4.5.

■

Proof of Theorem 4.4.4.

By Lemma 4.4.6 it is known that
∑𝑛(𝜓) is uniformly dense on compacta in C𝑛. Then

Lemma 4.4.1 implies that this class is 𝜌𝜇-dense in C𝑛. Finally, by applying the triangle in-
equality and Lemma 4.4.2 it follows that

∑𝑛(𝜓) is 𝜌𝜇-dense in M𝑛.

■

86

Proof of Corollary 4.4.1.

Fix ε > 0. From regularity of the measure 𝜇, there exists a compact set K1 such that
𝜇(K1) > 1 − ε

2 and the restriction 𝑔|K1 is continuous on K1. By the Tietze extension
theorem there exists a function 𝑔′ ∈ C𝑛 such that 𝑔′|K1

= 𝑔|K1 and sup
𝑥∈R𝑛 𝑔

′(𝑥) =

sup
𝑥∈K1

𝑔|K1(𝑥) .

By Lemma 4.4.6, we know that
∑𝑛(𝜓) is uniformly dense on compacta in C𝑛. Therefore,

there exists a compact set K2 with 𝜇(K2) > 1 − ε
2 and a function 𝑓 ∈ ∑𝑛(𝜓) such that

sup
𝑥∈K2

��𝑓 (𝑥) − 𝑔 (𝑥)�� < ε

Then sup
𝑥∈K1∩K2

��𝑓 (𝑥) − 𝑔 (𝑥)�� < ε and 𝜇 (K1 ∩K2) > 1 − ε.

■

87

B: Positional encoding heatmap script

The following code generates the positional encoding heatmap shown in Figure 4.4. The
implementation is written in Python, utilising the numpy and matplotlib libraries. The
script builds the sinusoidal encoding matrix by computing the appropriate angles for each
token position and then applies sine and cosine functions to even and odd dimensions,
respectively.

positionalEncoding.py /

1 import numpy as np
2 import matplotlib.pyplot as plt
3

4 def getAngles(pos, i, d_model):
5 """
6 Computes the angle rates used in sinusoidal positional encoding.
7 """
8 angle_rates = 1 / np.power(10000.0, (2 * (i // 2)) / d_model)
9 return pos * angle_rates

10

11

12 def getPositionalEncoding(n, d_model):
13 """
14 Generates a sinusoidal positional encoding matrix.
15 """
16 pos = np.arange(n)[:, np.newaxis] # Shape: (n, 1)
17 i = np.arange(d_model)[np.newaxis, :] # Shape: (1, d_model)
18

19 angles = getAngles(pos, i, d_model)
20 angles[:, 0::2] = np.sin(angles[:, 0::2]) # Apply sin to even indices
21 angles[:, 1::2] = np.cos(angles[:, 1::2]) # Apply cos to odd indices
22 return angles
23

24 n = 100
25 d_model = 128
26 pe = getPositionalEncoding(n, d_model)
27

28 plt.figure(figsize=(12, 8))
29 plt.imshow(pe, cmap="coolwarm", aspect="auto", vmin=-1, vmax=1)
30 plt.colorbar()
31 plt.title("Positional encoding")
32 plt.xlabel(r"Embedding coordinate (t)")
33 plt.ylabel(r"Token position in the sequence (i)")
34 plt.tight_layout()
35

36 plt.savefig("positionalEncoding.pdf", bbox_inches="tight")
37 plt.show()

88

	Abstract
	Resum
	Introduction
	Formula 1 strategy
	Previous literature
	State of the art: Transformers
	Input embedding
	Positional encoding
	Attention
	Softmatch
	Key-value relationship
	Averaging
	The attention kernel

	Feed-forward network
	Activation function
	Threshold step function
	Rectified Linear Unit (ReLU)
	Sigmoid function
	Hyperbolic tangent
	Softmax function

	Race strategy simulator
	Data sources and variables
	Data pipeline
	Transformer implementation
	Transformer
	Loss
	Stopping

	Results
	Real race simulation
	Conclusions
	Bibliography
	Mathematical proofs
	Positional encoding heatmap script

