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Abstract

Machine unlearning aims to remove the influence of specific data from trained models
to protect privacy and comply with legal standards such as the “right to be forgotten”.
However, existing Machine Unlearning research has largely overlooked how the cons-
truction of Forget Sets influences unlearning success. This project addresses this gap
by systematically designing and evaluating four distinct Forget Set strategies (ranging
from random sampling to adversarially motivated similarity) using a ResNet-18 classi-
fier trained on the CIFAR-10 dataset. Two unlearning techniques, basic fine-tuning and
fine-tuning with final-layer perturbation, are applied. To rigorously assess performance,
this study defines and applies multiple evaluation metrics: Forgetting (how effectively a
model erases targeted data), Utility (how well it retains performance on retained data),
and a composite metric that balances both. The results reveal how Forget Set composition
critically affects the effectiveness of Machine Unlearning strategies, offering new insights
for future research and development.






Resumen

El “Machine Unlearning” tiene como objetivo eliminar la influencia de datos especi-
ficos en modelos ya entrenados, con el fin de proteger la privacidad y cumplir con nor-
mativas legales como el “derecho al olvido”. Sin embargo, gran parte de la investigacién
existente ha pasado por alto cémo la composicion de los Forget Sets influye en el éxito del
proceso de olvido. Este proyecto aborda dicha carencia mediante el disefio y evaluacién
sistemadtica de cuatro estrategias distintas de seleccién de Forget Sets, que van desde mu-
estreo aleatorio hasta enfoques motivados por similitud estructural adversaria, utilizando
un clasificador ResNet-18 entrenado sobre el conjunto de datos CIFAR-10. Se aplican dos
técnicas de desaprendizaje: fine-tuning basico y fine-tuning con reinicializacién de la capa
final. Para evaluar rigurosamente el rendimiento, se definen y aplican diversas métricas:
Forgetting (grado en que el modelo olvida los datos objetivo), Utility (capacidad para man-
tener el rendimiento sobre los datos retenidos) y una métrica compuesta que equilibra
ambas. Los resultados demuestran que la composicion del Forget Set afecta criticamente
la eficacia de las estrategias de Machine Unlearning, proporcionando nuevas perspectivas
para la investigacién futura.






Resum

El “Machine Unlearning” té com a objectiu eliminar la influéncia de dades especifiques
en models ja entrenats per tal de protegir la privacitat i complir amb normatives legals
com el “dret a 'oblit”. Tanmateix, gran part de la recerca existent ha passat per alt com
la composici6 dels Forget Sets influeix en l'exit del procés d’oblit. Aquest projecte abor-
da aquesta mancanga mitjangant el disseny i ’avaluaci6 sistematica de quatre estrategies
diferents de seleccié de Forget Sets, que van des de mostres aleatories fins a aproxima-
cions motivades per la similitud estructural de tipus adversari, utilitzant un classificador
ResNet-18 entrenat sobre el conjunt de dades CIFAR-10. S"apliquen dues tecniques de des-
aprendre: fine-tuning basic i fine-tuning amb reinicialitzaci6 de la capa final. Per avaluar
el rendiment de forma rigorosa, s’han definit i aplicat diverses metriques: Forgetting (grau
amb que el model oblida les dades objectiu), Utility (capacitat per mantenir el rendiment
sobre les dades retingudes), i una metrica composta que equilibra ambdues. Els resultats
mostren que la composicié del Forget Set afecta criticament l'eficacia de les estrategies de
Machine Unlearning, aportant noves perspectives per a la recerca futura.
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1. Introduction

1.1. Machine Unlearning: Definition and Importance

The concept of Machine Unlearning (MU) emerges due to the increasing need to pro-
tect user privacy and comply with regulations such as the “right to be forgotten” [1]. It
refers to a set of techniques designed to reduce the influence of specific data on a machine
learning model that has already been trained. This process is crucial when it is necessary
to remove irrelevant, outdated or sensitive information, ensuring that the model no longer
reflects certain data.

Formally, let M be a model trained on a dataset D using a training algorithm A,
where we do not distinguish between M and its parameters, and write M = A(D). An
unlearning query is typically identified by a Forget Set D¢ and a Retain Set D, = D\
Dy. The goal of an unlearning algorithm U is to remove from M the influence of Dy,
producing an unlearned model M, = U(M, Dy, D;) [2]. A generic Machine Unlearning
(MU) pipeline is illustrated in Figure

There are two main approaches to Machine Unlearning: exact unlearning, which thor-
oughly eliminates data influence, and approximate unlearning, which aims to efficiently
reduce the data impact while maintaining model performance. The field is gaining trac-
tion due to its importance in both privacy protection and data governance, with challenges
remaining in terms of verifying the effectiveness of unlearning and ensuring efficiency
[3l4]. A more detailed discussion of these two main approaches, including their strengths
and limitations, is provided in the Related Work section (Section [2).

1.2. Motivations

A significant limitation in current Machine Unlearning research lies in the insufficient
exploration of strategies for constructing Forget Sets. Most existing approaches prioritize
the development of efficient unlearning mechanisms, but pay little attention to the selec-
tion criteria for the data points to be forgotten. In many cases, Forget Sets are chosen
arbitrarily, randomly or based on loosely defined heuristics without a thorough examina-
tion of how these choices impact the effectiveness of the unlearning process. This oversight
raises an important question: can the composition of the Forget Set influence the overall
success of unlearning?

This work is motivated by recent studies in the field [5], which highlight that the strat-
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Figure 1: Generic Machine Unlearning (MU) pipeline. A model M is initially
trained on a dataset D. Upon receiving a forget request defined by a subset
Dy, an unlearning algorithm U removes the influence of Dy, resulting in an un-
learned model M, that approximates the behavior of a reference model trained
from scratch on the retained set D,. Taken from the diagram presented in
Google’s Machine Unlearning Challenge announcement https://research.google/
blog/announcing-the-first-machine-unlearning-challenge/.

egy used to select the Forget Set plays a crucial role in both the efficiency and efficacy of
unlearning. Different unlearning strategies can lead to vastly different outcomes, affecting
not only how well a model forgets specific information, but also how much unintended
degradation occurs in its overall performance. If the Forget Set is poorly chosen, the model
may retain traces of the forgotten information or suffer an unnecessary loss of accuracy.
Conversely, a well-constructed Forget Set could encourage the research community to fur-
ther explore the potential for more powerful and efficient Machine Unlearning models,
while optimizing computational resources and ensuring a thorough removal of unwanted
data influence.

Moreover, despite recent advances, there is still no clear consensus or formal guarantee
regarding the forgetting capabilities of approximate unlearning techniques. As a result, it
is common practice to assess their effectiveness by comparing their outcomes to those of
exact unlearning methods [6] [7]. This comparative approach underscores the need for a
deeper understanding of how Forget Set composition interacts with different unlearning
paradigms, and highlights the potential benefits of more principled selection strategies.

1.3. Objectives

1.3.1 General Objective

The general purpose of this study is to evaluate different Machine Unlearning strate-
gies using multiple and carefully designed Forget Sets. By systematically examining dif-
ferent approaches, this research aims to identify optimal and suboptimal scenarios, assess
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the effects of diverse Forget Sets and unlearning strategies, and establish a foundational
understanding of their broader implications. Additionally, it seeks to determine which
types of data are more or less difficult to forget and how to achieve the best performance
in terms of Forgetting and Utility.

Machine unlearning can be applied to a wide range of scenarios and model architec-
tures, from large-scale language models to personalized recommendation systems and
medical applications. However, given the computational demands associated with train-
ing and evaluating large models, this work adopts a more constrained yet representative
setting as a proof of concept. Specifically, we define image classification as a case study
and use a simple, well-known dataset to conduct controlled experiments. This setup
enables a focused and feasible evaluation of unlearning behaviors, while still reflecting
meaningful dynamics that can generalize to more complex scenarios.

To this end, we apply the selected unlearning methods to a previously trained ResNet-
18 model on the CIFAR—l(ﬂ classification dataset, and assess their capacity to remove
the desired information while preserving satisfactory predictive performance. Further
details about the dataset and experimental design are provided in Section [3|and Section [4}
respectively.

1.3.2 Specific Objectives

Specifically, this project aims to:

* Investigate and implement various strategies for constructing Forget Sets, systemati-
cally comparing how different unlearning methods perform with each set to identify
the best and worst-case scenarios.

¢ Implement distinct unlearning techniques with the goal of retaining model accuracy
and achieving effective forgetting (within the context of each Forget Set), in order to
facilitate a thorough comparative analysis.

¢ Define precise and interpretable evaluation metrics to rigorously assess model per-
formance in terms of both forgetting efficacy and retention of useful knowledge.

* Analyze and compare all obtained results to derive insights into the impact of differ-
ent Forget Set selection strategies and unlearning methods, ultimately contributing
to a deeper understanding of optimal approaches for effective and reliable Machine
Unlearning.

* Use a ResNet-18 model trained on the CIFAR-10 dataset as a use case to apply the
unlearning method, serving as a proof of concept to evaluate its capacity to eliminate
the targeted information while preserving satisfactory predictive performance.

1.4. Structure of the Thesis

The project is divided into the following sections:

1CIFAR-10 dataset: https://wuw.cs.toronto.edu/ kriz/cifar.html
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Related Work: Section 2| reviews previous research on Machine Unlearning, un-
learning methods and Forget Set selection strategies. It highlights key findings,
methodologies, and gaps in the literature where this project can contribute.

Proposed Approach: Section[3|describes the different unlearning models, techniques
and evaluation metrics implemented in the study. It details how Forget Sets were
constructed, the algorithms used, and any modifications or improvements made to
existing methods.

Experiments and Results: Section [d] presents the experiments conducted to evaluate
the performance of various unlearning strategies. It includes a comparison of dif-
ferent Forget Sets, outlines the initial hypotheses, reports the results for each metric,
and discusses the key findings.

Conclusions and Future Work: Section [f|summarizes the main insights gained from
the study, discussing the effectiveness of different unlearning approaches and Forget
Set designs. It also outlines limitations and proposes future research directions to
improve unlearning methods and evaluation strategies.



2. Related Work

This section reviews the foundational concepts and recent developments in the field
of Machine Unlearning. We examine the main categories of MU techniques, highlighting
their respective advantages, limitations, and areas of application. The aim is to provide
the reader with a comprehensive understanding of how different approaches operate and
the trade-offs they involve in terms of forgetting effectiveness, computational efficiency,
and model Utility.

The structure of this section is as follows: First, we present and categorize existing
MU methods, distinguishing between exact and approximate unlearning techniques. We
then discuss commonly used evaluation metrics that allow researchers to assess the effec-
tiveness and reliability of unlearning mechanisms. Finally, we explore recent work that
focuses on the notion of challenging forgets, which emphasizes the importance of the
composition of Forget Sets and the difficulty of forgetting certain types of data. This or-
ganization aims to contextualize the motivation for our study and highlight the gaps this
work seeks to address.

2.1. Naive Retraining

Naive retraining is the most direct and basic method for Machine Unlearning. In this
approach, the model is entirely retrained from scratch using a modified dataset that ex-
cludes the data to be unlearned. This ensures that the reference model has no residual
influence from the removed data. In general terms, naive retraining is considered the base-
line for unlearning techniques because it guarantees the complete and accurate removal
of undesired information [3].

2.1.1 Limitations

Although naive retraining provides the strongest guarantees for unlearning, it is often
impractical in real-world applications because it presents several limitations:

1. Computational Expense: Retraining a model from scratch, especially when dealing
with complex architectures, demands significant computational resources and time.
For large-scale datasets, the cost can quickly become prohibitive.

2. Inaccessibility of Data: In scenarios like federated learning [8] or distributed sys-
tems, the original training dataset might no longer be available after the initial train-
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ing. Without access to the complete dataset, retraining is not feasible as it depends
entirely on it.

3. Lack of Scalability: As datasets grow and models become more complex, naive re-
training becomes increasingly difficult to scale, even more when frequent unlearning
requests are made.

Despite these challenges, naive retraining remains the benchmark against which other
unlearning techniques are evaluated due to its ability to ensure complete removal of the
target data’s influence.

2.2. SISA

SISA (Sharded, Isolated, Sliced, and Aggregated) is an exact unlearning framework
that enhances the efficiency and scalability of the unlearning process by structurally limit-
ing the influence of individual data points during training. It achieves this by partitioning
and incrementally processing the dataset, making unlearning requests localized and com-
putationally lightweight. SISA is particularly efficient even under worst-case scenarios,
where unlearning requests are uniformly distributed across the training set [9]. The gen-
eral pipeline of SISA, discussed next, is illustrated in Figure

2.2.1 SISA General Process

SISA operates through four coordinated steps:

¢ Sharding: The dataset is split into multiple independent shards, each containing a
disjoint subset of the training data. Models are trained separately per shard, allow-
ing unlearning operations to be confined to the affected shard, significantly reducing
retraining costs.

¢ Isolation: Within each shard, data is organized to minimize cross-sample influence.
This isolation enhances the traceability of individual data points and ensures that
forgetting a sample does not inadvertently affect unrelated data.

¢ Slicing and Incremental Learning: Each shard is further divided into sequential
slices. Training proceeds incrementally over these slices, and the model state is
saved after each slice. This enables efficient unlearning by allowing retraining to
resume from the slice where the forgotten sample was introduced, rather than from
the beginning.

e Aggregation: After all shards and slices have been trained, their models are aggre-
gated into a single global model. This step consolidates the contributions of each
isolated unit while preserving the efficiency benefits of distributed training.

Parameter Archiving: A key aspect of SISA is the archiving of model parameters
after each training slice. These checkpoints are critical to supporting fast and localized
retraining during unlearning operations, further reducing computational overhead.
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Figure 2: Overview of the SISA framework, obtained from [10]. The original dataset is di-
vided into several independent shards (sub-datasets), each of which is further partitioned
into sequential slices. Models are trained incrementally on each slice within a shard. Af-
ter training is completed for all shards and slices, the resulting models are aggregated to
produce the final model output. This design enables efficient and localized unlearning by
retraining only the affected shard and slice when a data removal request is made.

Unlearning with SISA: Upon receiving an unlearning request, SISA identifies the spe-
cific shard and slice containing the target data point. Retraining resumes from the archived
model state immediately preceding that slice, ensuring that the data point’s influence is
removed without affecting the rest of the model.

2.2.2 Limitations of SISA

Despite its efficiency advantages, SISA presents several limitations that affect its scala-
bility and accuracy, as detailed next.

First, the sharding mechanism can degrade model performance as the number of shards
increases. This is particularly problematic in tasks with high class imbalance or complex
patterns, such as image classification, where reducing the number of samples per shard
can harm generalization [11]].

Second, the use of slicing introduces a linear storage overhead, as intermediate model
checkpoints must be archived for each slice. This overhead becomes increasingly burden-
some with large models or when a high number of slices is used.

Finally, while sharding and slicing accelerate unlearning for sparse requests, their ef-
fectiveness diminishes as request volume grows. When the number of unlearning opera-
tions crosses a certain threshold, SISA’s performance begins to approach that of traditional



retraining methods. In large-scale datasets like ImageNet, this degradation is more pro-
nounced, and the accuracy of SISA-trained models may fall behind simpler baselines like
batch K-nearest neighbors (K-NN) [11].

These trade-offs underscore that while SISA is well-suited to scenarios involving oc-
casional, localized unlearning requests, its benefits may not extend to all domains or
workloads—especially those requiring high model fidelity or frequent forgetting.

2.3. Fine-Tuning

Fine-Tuning is one of the most straightforward and widely adopted techniques for
adapting a pre-trained machine learning model to a new task or dataset. In the context of
Machine Unlearning, Fine-Tuning serves as a baseline method for removing specific infor-
mation from a model. The core idea is to retrain the model on a modified version of the
original dataset, where the Forget Set has been excluded, in order to reduce the model’s
dependence on that data.

This process begins with a model that has been trained on a large and comprehensive
dataset, allowing it to learn general representations. During Fine-Tuning, this pre-trained
model is then updated (typically through backpropagation) using a new training set com-
posed only of the retained data. The learning rate is often reduced in this phase to preserve
previously acquired knowledge while allowing the model to adjust to the updated data
distribution.

Importantly, Fine-Tuning leverages the phenomenon of catastrophic forgetting — a well-
documented behavior in continual learning where a model rapidly loses previously ac-
quired knowledge when trained on new data. In the context of MU, this behavior is in-
tentionally exploited: by excluding the Forget Set and retraining on the retained samples,
the model is nudged to overwrite representations associated with the removed data. This
makes Fine-Tuning an effective, though approximate, strategy for inducing forgetting.
As discussed by [6], catastrophic forgetting forms the foundation of several unlearning
approaches aimed at eliminating specific information without full retraining.

However, Fine-Tuning does not offer formal guarantees of complete forgetting. Resid-
ual traces of the forgotten data may persist in the model’s internal parameters, particularly
when the Forget Set had a significant or unique impact on the learned features.

In summary, Fine-Tuning is a conceptually simple and accessible approach for un-
learning. It provides a flexible way to update a model and serves as a useful baseline
for evaluating more advanced methods that incorporate explicit forgetting mechanisms or
formal guarantees.

2.3.1 Limitations of Fine-Tuning

While Fine-Tuning can be effective in many scenarios, it presents several limitations
when used for unlearning:

¢ Residual Traces of Forgotten Data: Even though Fine-Tuning aims to remove the
influence of specific data, it does not guarantee complete erasure. The model may
retain residual traces of the forgotten data, particularly if that data had a strong



impact on the learned representations. This is especially problematic in privacy-
sensitive scenarios, where the goal is to ensure that the forgotten data cannot be
reconstructed or recalled by the model during inference.

* Risk of Overfitting: Fine-Tuning on a reduced dataset increases the likelihood of
overfitting, especially if the remaining data is insufficient or unbalanced. Overfitting
occurs when the model becomes too tailored to the new training set, losing its ability
to generalize to unseen data. In the context of unlearning, this can result in degraded
performance on unrelated tasks or test samples.

These limitations underscore the need for more refined and robust methods for Ma-
chine Unlearning, such as Fine-Tuning with Weight Perturbation, which aims to address
some of the issues related to residual traces and overfitting.

2.4. Fine-Tuning with Weight Perturbation

Fine-Tuning with Weight Perturbation is a variant of Fine-Tuning that aims to unlearn
specific data points by introducing small, targeted perturbations to the model’s weights,
rather than retraining the entire model from scratch. This approach involves adding per-
turbations to the model before performing fine-tuning on the already trained parameters.
The goal is to allow the model to recover from the influence of previous data while try-
ing to reduce its impact. One challenge with this method is identifying which parameters
should be perturbed, as well as defining the optimal magnitude of the perturbation, which
is crucial for achieving effective unlearning without significantly affecting the model’s
overall performance [12]. Despite these challenges, the approach offers significant com-
putational efficiency, particularly in scenarios where retraining the model from scratch
would be too resource-intensive.

24.1 Key Mechanisms and Workflow

The core of Fine-Tuning with Weight Perturbation lies in identifying and perturbing
parameters that are most relevant to the data to be unlearned. This targeted adjustment
aims to suppress the influence of the undesired data while preserving the model’s gener-
alization ability across the remaining dataset.

1. Identification of Critical Parameters: To selectively unlearn specific data points, the
first step involves identifying which parameters of the model are most influenced
by the data in question. This is typically done through gradient-based sensitivity
analysis. Specifically, the gradient of the loss function with respect to each parameter
is computed for the data to be forgotten. Parameters with the highest gradient
magnitudes are considered most critical, as they have the strongest influence on the
model’s predictions for the target data [12].

2. Perturbation Strategies: After identifying the critical parameters, small, controlled
perturbations are applied to reduce their sensitivity to the forget data. According
to [12], two primary strategies have been explored:



o Top-K Perturbation: The top K parameters with the highest sensitivity are se-
lected and perturbed. This strategy focuses the adjustment on the most influ-
ential components of the model.

* Random-K Perturbation: A random subset of K parameters is perturbed. While
less precise, the added randomness can still interfere with the encoded infor-
mation related to the forget data and promote unlearning.

o Alternative Perturbation Approaches: Other forms of perturbation can also be con-
sidered, such as reinitializing the weights of a specific layer or group of layers
before fine-tuning. For example, [13] propose resetting the weights of the fi-
nal classifier layer as a way to erase specific task-related knowledge prior to
retraining. These broader strategies highlight the importance and difficulty of
defining an effective perturbation scheme that ensures forgetting while main-
taining overall model Utility.

2.4.2 Advantages and Limitations
Advantages:

¢ Computational Efficiency: By focusing only on a subset of parameters, the approach
greatly reduces the cost compared to full retraining, making it attractive in resource-
constrained scenarios.

¢ Targeted Forgetting: Perturbing high-sensitivity parameters allows for more direct
removal of data influence, potentially improving unlearning effectiveness without
requiring many epochs of retraining.

* Lower Risk of Overfitting: Since fewer parameters are adjusted, the model is less
likely to overfit to the reduced dataset, preserving its ability to generalize to unseen
data.

Limitations:

¢ Sensitivity to Perturbation Choice: The success of the method depends critically on
how well the influential parameters and the perturbation values are selected. Poor
choices may result in insufficient forgetting or degraded model accuracy.

¢ Limited Guarantees: Unlike some exact unlearning methods, this approach pro-
vides no formal guarantees that the target data has been completely forgotten.

¢ Lack of Universality: The method may not generalize well to all model architectures
or unlearning scenarios, requiring manual tuning or hybrid strategies to achieve
satisfactory results.

2.5. Common Evaluation Metrics in Machine Unlearning

Evaluating the effectiveness of Machine Unlearning methods is a crucial aspect of re-
search in this field. The goal is not only to ensure that a model forgets the designated



data, but also to verify that it continues to perform well on the remaining tasks. A variety
of metrics have been proposed in the literature to measure both the forgetting success and
the retention of Utility. This section introduces the most common evaluation metrics used
in MU, which will be important to contextualize the analysis presented in later sections.

One of the most frequently used metrics is Membership Inference Accuracy (MIA), which
assesses whether an adversary can infer if a specific sample was part of the training data.
After a successful unlearning process, the MIA score for the forgotten samples should
drop to random chance levels. Another common approach is to directly measure the
forgetting accuracy, that is, the classification accuracy of the model on the Forget Set after
unlearning. Ideally, this accuracy should decrease significantly, indicating that the model
no longer retains useful information about those samples.

In contrast, retention accuracy evaluates how well the model performs on the remain-
ing (non-forgotten) data. A robust unlearning technique should maintain high retention
accuracy to ensure that only the target data is affected. The trade-off between forgetting
and retention is central to evaluating MU methods: a good method maximizes forgetting
while minimizing Utility loss.

A popular baseline used in many studies is to compare the unlearned model to a refer-
ence model retrained from scratch without the forget data. This leads to the definition of
approximation-based metrics, such as the distance between model parameters, differences in
output distributions (e.g., using KL-divergence), or prediction consistency across datasets.
The closer the unlearned model is to this ideal reference model, the more effective the
unlearning.

Finally, more advanced and resource-intensive evaluation strategies have emerged. For
example, Google’s work on SISA [11]] and later efforts by others [14] propose compre-
hensive auditing frameworks that rely on techniques such as shadow models, influence
functions, or privacy risk estimators. These methods offer a more rigorous assessment of
residual data influence but require significant computational resources, making them less
practical for smaller-scale or exploratory studies.

In this work, we adapt a selection of these standard metrics and other metrics devel-
oped by us as a practical and interpretable way to analyze unlearning outcomes. Further
details on the metrics used in our experiments are presented in Section [4]

2.6. Finding the Worst and Easiest Scenarios

This topic was first addressed by the paper “Challenging Forgets: Unveiling the Worst-
Case Forget Sets in Machine Unlearning” [5], which serves as the main motivation for this
project. The study highlights that evaluating Machine Unlearning methods using ran-
domly selected Forget Sets may overlook important insights about the robustness and
limitations of these approaches. In practice, certain data points are inherently more diffi-
cult to forget than others, and assessing the performance of unlearning strategies under
these more challenging conditions is essential to better understand their behavior and
improve their effectiveness.

The authors propose an adversarial evaluation perspective by introducing the concept
of worst-case Forget Sets—subsets of training data that are particularly hard to erase from a



model. Rather than relying on arbitrary or random selection, their goal is to systematically
identify those samples whose removal is most difficult for a given unlearning algorithm,
typically leading to poor forgetting effectiveness or significant Utility degradation.

To do so, the paper introduces a bi-level optimization framework, structured as follows:

e Upper level: This component searches for the subset of data points whose removal
will maximize the difficulty of the unlearning process. More specifically, it selects the
Forget Set that results in the largest discrepancy between the output of the unlearned
model and a fully reference model (the “oracle”). This stage effectively simulates an
adversary aiming to expose the weaknesses of the unlearning method.

* Lower level: At this level, the selected Forget Set is processed through the cho-
sen unlearning algorithm. The model is updated (e.g., via approximate retraining or
fine-tuning), and its performance is evaluated using metrics that capture both forget-
ting success (e.g., influence scores, prediction changes) and Utility preservation (e.g.,
accuracy on the retained data). This step provides feedback to guide the upper-level
search.

This iterative process allows the discovery of data samples that are particularly resis-
tant to forgetting. The study shows that these worst-case Forget Sets often include samples
with high influence on model parameters, such as those located near decision boundaries,
from rare classes, or representing atypical patterns. Forgetting such data is more likely to
leave residual traces in the model or harm its generalization ability.

On the other hand, identifying the easiest scenarios (samples that are simple to forget
without impacting model Utility) can also be informative. These may include redundant
or less informative samples that contribute little to the overall model behavior.

2.6.1 Main findings and open opportunities

The authors conducted extensive experiments using diverse datasets, including CIFAR-
10, CIFAR-100, CelebA, Tiny ImageNet, and ImageNet, to evaluate the performance of
different Machine Unlearning methods. These datasets cover a range of complexity, from
simple object categories to high-resolution images, allowing for a comprehensive analysis.
They also tested various models, such as image classifiers (e.g., ResNet and Vision Trans-
formers) and generative models (e.g., VAEs and GANSs), to assess how well unlearning
methods remove specific data while preserving overall performance.

The results revealed significant differences in the effectiveness of unlearning methods
when applied to worst-case Forget Sets compared to randomly selected subsets. While
traditional evaluations based on random data removal suggested that many unlearning
techniques performed well, the worst-case Forget Sets exposed their limitations. Some
data points proved much harder to forget, revealing that certain unlearning approaches
fail to fully erase sensitive information.

Among the evaluated methods, exact unlearning (which requires retraining the model
entirely) was the most effective, although computationally expensive. Approximate un-
learning approaches, such as fine-tuning and weight perturbation, struggled more with
worst-case Forget Sets, often leaving residual traces of the forgotten data. Gradient-based



unlearning showed some promise but remained unreliable when tested on adversarially
selected subsets.

These findings emphasize the need to assess unlearning techniques in adversarial con-
ditions rather than relying on random removal. By identifying the hardest-to-forget data
points, the study highlights weaknesses in current approaches and underscores the neces-
sity for more robust unlearning methods that can handle real-world challenges effectively.

Motivated by these insights, this work proposes an alternative approach to define and
approximate worst-case scenarios in a computationally efficient manner. Our method
focuses on simplicity and scalability, making it suitable for practical use in a variety of
settings. While it may not yield optimally adversarial Forget Sets like bi-level optimization
methods, it provides a strong approximation that can help reveal model weaknesses with
far less computational overhead. Given that this is a relatively new research direction in
Machine Unlearning, our goal is to advance the exploration of how Forget Set composition
influences unlearning effectiveness and to contribute new insights for designing more
resilient Machine Unlearning techniques.






3. Proposed Approach

To achieve the objectives outlined in this study, it is necessary to implement and uti-
lize multiple machine learning approaches. These methods provide the foundation for
understanding the extent to which Machine Unlearning can be effectively achieved and
the trade-offs involved in the process.

In this section, we describe the models and techniques used to conduct our experi-
ments. We establish a baseline for comparison, introduce an alternative approach that
represents an ideal forgetting scenario, and explore different unlearning strategies de-
signed to selectively remove information while preserving overall model performance.

This section also outlines the strategies employed to construct the various Forget Sets,
each with a distinct motivation aimed at identifying challenging and representative sce-
narios for evaluating unlearning performance. Finally, we present the evaluation metrics
adopted to assess both forgetting effectiveness and the preservation of Utility.

3.1. Original Model

The Original Model (M,) serves as the starting point for the unlearning process, rep-
resenting a fully trained classifier on the CIFAR-10 dataset before any data removal.

For this study, we selected ResNet-18 [15] as the architecture for the classifier. ResNet-
18 is a widely used convolutional neural network (CNN) known for its efficiency and
strong performance on image classification tasks. Its residual connections help mitigate
vanishing gradient issues, allowing for deeper networks while maintaining stability dur-
ing training. Given the relatively small size and complexity of CIFAR-10, ResNet-18 strikes
a balance between computational efficiency and accuracy, making it an ideal choice for our
experiments.

Moreover, training a model from scratch was neither feasible due to resource limita-
tions nor the primary objective of this study. Instead, we utilized a pretrained ResNet-18
model, which served as a reliable and consistent baseline for evaluating various unlearn-
ing strategies. This model was originally trained on the CIFAR-10 dataset, which consists
of 50,000 training images across 10 classes. The training process spanned 200 epochs, en-
suring a well-converged model with strong generalization performance. The pretrained
weights are publicly avaﬂableﬂ allowing reproducibility and consistency in experimenta-
tion.

’https://storage.googleapis.com/unlearning-challenge/weights_resnet18_cifar10.pth

15


https://storage.googleapis.com/unlearning-challenge/weights_resnet18_cifar10.pth

It is important to clarify that the samples selected for unlearning were drawn exclu-
sively from the CIFAR-10 training set. This guarantees that all forget samples were part
of the original training data used for the pretrained ResNet-18 model. As CIFAR-10 has
a standardized split, we avoid any overlap or confusion between training, validation and
test sets. Consequently, we ensure that unlearning operations target data that indeed
contributed to the original training process, making the evaluation both meaningful and
reliable.
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Figure 3: Architecture of the ResNet-18 model used in our experiments. ResNet-18 is a
convolutional neural network composed of 18 layers, including convolutional layers, batch
normalization, ReLU activations, and shortcut connections that enable residual learning.
This architecture is widely used for image classification tasks due to its balance between
performance and computational efficiency. In our setup, feature representations are ex-
tracted from the penultimate layer to compute similarity between samples for unlearning
analysis.

3.2. Reference Model

The reference model (M) represents the standard benchmark for evaluating the effec-
tiveness of Machine Unlearning methods. Rather than adapting an already trained model,
this approach involves training a new model from scratch after removing the Forget Set.
As aresult, M, has never been exposed to the data that is intended to be forgotten, making
it an ideal reference point to measure how closely an unlearning method approximates the
outcome of full retraining. This naive retraining baseline is widely used in the literature
to assess the success of unlearning strategies in fully eliminating the influence of specific
data while maintaining overall model Utility.

To ensure a fair comparison, we replicated the original model’s training process as
closely as possible. This included maintaining the same architecture (ResNet-18), hyper-
parameters, dataset preprocessing techniques, and optimization settings. By keeping all
conditions identical (except for the removal of the Forget Set) we ensure that significant
differences in performance can be attributed primarily to the impact of forgetting rather
than variations in training methodology. Although minor variation may occur due to
parameter initialization, experimental results indicate that the impact is minimal.



The reference model serves as a best-case reference, allowing us to assess how closely
different unlearning techniques approximate the ideal outcome—mnamely, a model that
behaves as if the target data had never been seen. While it is not possible to guaran-
tee complete removal of the forgotten data, Machine Unlearning is generally considered
successful when the resulting model is highly similar or indistinguishable from a model
trained from scratch without the Forget Set. Measuring this similarity, however, remains
an open challenge, as there is currently no universally accepted standard. Various met-
rics have been proposed to address this issue, each capturing different aspects of model
behavior, as discussed in Section 2.5

3.3. Unlearning Models

As mentioned in the previous section, resource limitations played a significant role
in determining which unlearning models to implement. For this reason, we chose to
develop two unlearning models based on the fine-tuning, described in Sections and
Additionally, since the main objective of this work is to compare various different
Forget Set scenarios, starting with simpler approaches rather than more complex methods
allows for a more manageable training process and facilitates result interpretation.

3.3.1 Basic Fine-Tuning

Basic Fine-Tuning is one of the simplest approaches to unlearning, where the model
continues training for a few epochs after the Forget Set has been removed from the training
data. Instead of enforcing forgetting through specialized mechanisms, this method relies
on the model’s natural adaptation to the modified dataset. The process follows these
steps:

1. Loading the Original Model: We use the Original Model, which has been trained
using the full CIFAR-10 dataset, ensuring it reaches an adequate accuracy before
proceeding with unlearning.

2. Defining the Forget Set: The subset of data that must be forgotten is identified and
removed from the training set.

3. Creating the Retain Set: The remaining training data, after removing the Forget Set,
constitutes the new training set (Retain Set).

4. Retraining with the Retain Set: The model is fine-tuned exclusively on the Retain
Set using a lightweight retraining procedure designed to promote forgetting while
preserving performance. Specifically, training continues for 10 additional epochs
with a reduced learning rate (0.01) using SGD with momentum and weight decay. A
CosineAnnealingLR scheduler is employed to gradually decay the learning rate over
the fine-tuning period. These settings aim to ensure that the model adjusts to the
new data distribution without diverging too far from its original parameters, thus
reducing its dependence on the forgotten samples while avoiding overfitting to the
Retain Set.



While this approach can reduce the model’s reliance on removed samples, it does not
ensure complete forgetting. Traces of the forgotten data may persist within the learned
representations, limiting the effectiveness of fine-tuning as a dedicated forgetting mecha-
nism. Nevertheless, due to its simplicity, low computational cost, and reasonable perfor-
mance, this method is widely regarded as a strong baseline in the Machine Unlearning
literature, providing a practical point of comparison for evaluating more complex strate-
gies [16]].

In terms of expected outcomes, the model should retain accuracy on the remaining
dataset, as most of the original training data remains unchanged. However, its perfor-
mance on the Forget Set is expected to degrade relative to the original model, indicating
partial unlearning. Ideally, the fine-tuned model would approximate the behavior of a
fully reference model on the Retain Set in terms of forgetting while preserving as much
useful knowledge as possible.

3.3.2 Basic Fine-Tuning with Perturbation

This method follows the same procedure as Basic Fine-Tuning but introduces an ad-
ditional step: resetting the parameters of the fully connected (FC) layer before retraining.
By resetting the FC layer, we eliminate its previously learned weights, forcing the model
to relearn the final mapping from features to class labels. This disruption is expected
to initially degrade overall performance due to the reinitialization of the fully connected
(FC) layer weights, but the model typically begins to recover accuracy after a few training
steps as it readapts to the retained data. However, in some cases, it may aid unlearning
by reducing reliance on pre-existing feature representations.

The reset is implemented by reinitializing the weights of the fully connected (FC) layer
using Kaiming normalization for the weight parameters and setting the bias terms to
zero. This modification allows us to study whether the forced adaptation of the final layer
influences the model’s forgetting behavior.

While our approach uses a straightforward perturbation focused on the FC layer, many
other strategies could be considered. For example, one could reset weights in earlier
layers, partially perturb subsets of neurons, or even introduce noise into specific feature
maps. Exploring such perturbation schemes could yield more unlearning solutions, but
this was beyond the scope of our study.

In this work, our goal was not to develop novel unlearning methods, but rather to
focus on the behavior of different Forget Set strategies. As such, we chose to adopt rela-
tively simple unlearning baselines, such as fine-tuning with and without perturbations, to
serve as proof-of-concept mechanisms in order to highlight the potential and limitations
of carefully designed Forget Sets. The impact of this reset is illustrated in Figure @, which
shows the parameter distribution before and after the reset.
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Figure 4: Distribution of the parameters in the final fully connected (FC) layer of the
“Basic Fine-Tuning with Perturbation” model before and after the reset operation. This
reset reinitializes the weights of the FC layer to break the direct memorization of class-
specific features. As shown, the distribution becomes centered around zero after the reset,
indicating that the parameters have been successfully reinitialized. This strategy is used
in the Fine-Tuning with Perturbation method to enhance unlearning by encouraging the
model to re-adapt its final decision boundaries.

3.4. Forget Sets Design

The primary objective of this study is to analyze and evaluate the effectiveness of
different Machine Unlearning strategies, identifying the best, worst, and intermediate
approaches that lead to strong, weak, or incomplete unlearning. A key aspect of this
analysis is the precise definition of Forget Sets and the methodologies used to construct
them.

To achieve this, we have defined and structured distinct Forget Sets, each representing
a different scenario and following different criteria: Arbitrary Forget Set Selection (Sec-
tion[3.4.1), Category-Based (Section [3.4.2), Confidence-Based (Section[3.4.3) and Similarity
Density-Based Forget Set Selection (Section [3.4.4). Rather than directly comparing all sets
at once, we have designed multiple experiments, each focusing on specific subsets of For-
get Sets. These experiments allow us to systematically assess different strategies under
varied conditions, providing a more comprehensive understanding of their effectiveness.

Each Forget Sets contain 5,000 samples selected from the original CIFAR-10 training
set, ensuring that each unlearning task is non-trivial yet still feasible within the experi-
mental scope. Fixing the Forget Set size across all experiments ensures fair comparison
between strategies, as the challenge introduced by the removal remains consistent. At the
same time, this size is large enough to potentially affect the learned model’s performance
significantly. This constraint thus highlights the impact of different selection criteria, al-
lowing us to isolate the effects of Forget Set construction strategies on unlearning efficacy.



3.4.1 Arbitrary Forget Sets

Next, we describe the design of two Forget Sets by randomly selecting samples from
the dataset without considering their significance, distribution, or relationship to the
learned model. These selections are independent of any structured forgetting strategy,
ensuring that the removed data points are chosen in an uninformed manner. The distri-
bution of the Forget Sets is illustrated in in Figure
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Figure 5: Class distribution of Forget Sets 1 and 2, which are defined through random
selection from the CIFAR-10 training data. These sets are constructed without considering
sample importance, structure, or feature relevance, serving as a baseline for evaluating
unlearning performance under uninformed data removal. The figure shows the number
of samples per class in each set, highlighting the balance inherent to their construction.

As we can see in Figure[5 the distribution of the selected data is fairly similar and well-
balanced. This is expected, as the random selection process ensures that all data points
have an equal probability of being chosen, leading to a distribution that closely reflects the
overall dataset. Since no bias or specific criteria were applied in the selection, the Forget
Sets naturally inherit the statistical properties of the original data, resulting in comparable
distributions. After defining the Forget Sets, we construct the corresponding Retain Sets
by removing the data points belonging to the Forget Sets from the original training set.
This ensures that the retained data does not contain any of the samples designated for
forgetting.

With these Retain Sets, we proceed to train two new models from scratch (one for
each Retain Set) that will be used as reference models to evaluate the unlearning process
in a later stage, using the same architecture and general training setup as the original
model trained on the full CIFAR-10 dataset. To ensure fairness in comparison, we apply
consistent hyperparameters (e.g., optimizer settings, learning rate schedule, and number
of maximum epochs). However, rather than training for a fixed number of epochs, we use
early stopping based on validation loss to prevent overfitting and improve generalization.



In each case, the model with the lowest validation loss is saved and used for evaluation,
rather than the model from the final epoch.

Furthermore, we apply standard data augmentation techniques during training (in-
cluding random cropping with padding and horizontal flipping) to enrich the training
data and improve robustness. This setup allows for a more reliable assessment of how
well the model adapts to training without the Forget Set.

Once the models are trained, we apply two different Machine Unlearning techniques,
Fine-tuning (FT) and Fine-tuning with Parameter Resetting (FTP), previously detailed in
Sections and respectively. Note that the unlearning process is applied on the
original model (M,), and not on the two new models trained from scratch on the retained
data, which will be used later in the evaluation process as reference models.

3.4.2 Category-Based Forget Sets

In this approach, two Forget Sets are constructed by removing all samples belonging
to a single class from the CIFAR-10 training set. The selection of the categories is not
random but based on the model’s performance during training: one Forget Set contains
all samples from the category with the highest training accuracy, while the other includes
all samples from the category with the lowest training accuracy. This structured removal
based on training accuracy provides a simple yet systematic way to define class-based
Forget Sets.
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Figure 6: Per-class training accuracy of the original model (M,).

Figure [6| shows the per-class training accuracy of the original model. As it can be
observed, the category with the highest accuracy is “ship”, while the lowest accuracy is
observed in the “cat” class. However, the accuracy differences across all categories are
minimal, suggesting that removing either the best or worst-performing category may not



drastically impact overall model performance.

3.4.3 Confidence-Based Forget Sets

The Forget Sets detailed in this section are constructed based on the model’s confidence
in its predictions over the training data. Specifically, we begin by evaluating all training
samples using the pretrained ResNet-18 model. For each sample, we compute a confi-
dence score defined as the softmax probability assigned to the predicted class—indicating
how certain the model is about its classification. The softmax function transforms the raw
output logits z; of the model into a probability distribution over classes, and is defined as:

e
Yl

where z; is the logit corresponding to class i, and the denominator sums over all class
logits z;. This yields a probability between 0 and 1 for each class, with higher values indi-
cating greater model confidence. The predicted class is the one with the highest softmax
score, and its associated probability is used as the sample’s confidence.

After computing these scores for all training samples, we sort the training set in de-
scending order of confidence. From this ordered list, we then define two distinct Forget
Sets. The Best Confidence Forget Set consists of the 5,000 samples with the highest confi-
dence values—i.e., those the model is most certain about. Conversely, the Worst Confidence
Forget Set includes the 5,000 samples with the lowest confidence scores, representing in-
puts that the model finds most uncertain.

By using confidence scores as the selection criterion, this method introduces a system-
atic and quantifiable way to explore how a model’s certainty impacts the effectiveness
of Machine Unlearning. Both sets are constrained to the same fixed size (5,000 samples)
to maintain experimental consistency and comparability across different forgetting strate-
gies.

softmax(z;) =

3.4.4 Similarity Density-Based Forget Sets

To investigate the impact of interconnectivity between the forget and Retain Sets, we
designed a methodology that quantifies this interconnection using a similarity-based ap-
proach. In this context, interconnectivity refers to the degree of structural or representa-
tional similarity between the data samples we wish to forget and the ones we intend to
retain. A high interconnectivity implies that the Forget Set shares strong internal repre-
sentations with the Retain Set, making the unlearning process potentially more difficult,
as the model may generalize shared features. Conversely, a low interconnectivity would
indicate that the Forget Set is structurally distinct, potentially making it easier to isolate
and remove its influence from the model.

The recent work in [17] highlights this concept with the assertion that: “Unlearning is
harder when examples from the Forget Set are structurally entangled with the Retain Set, and easier
when the Forget Set is structurally distinct.” This insight directly motivates our approach, in
which we design Forget Sets based on varying levels of similarity to the Retain Set, aiming
to empirically test how this structural entanglement impacts the forgetting performance.



To measure interconnectivity, we leverage the internal feature representations of the
last Fully Connected layer of the pre-trained ResNet-18 model trained on CIFAR-10 (using
the original model M,, trained on the whole train set). By extracting these deep features
for all training samples, we construct a similarity matrix that captures pairwise similarities
between data points.

The similarity between samples is computed from the Euclidean distance between
their feature representations, as detailed next. The Euclidean distance d(x;, x;) between
two feature vectors x; and x; is defined as:

2
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d(x;, xj) = (xix — xjx)

k

1

where xj and xj; are the k-th components of the feature vectors x; and x;, and  is the
number of dimensions in the feature space.

We then derive the similarity by inverting these distances, such that more similar sam-
ples have higher similarity scores. The similarity sim(x;, x;) is calculated as the inverse of
the distance:

1

SImi i) = T i)

Then, the number of strong cross-class similarities is counted for each sample. If the
count exceeds a predefined threshold T, the sample is marked as “eligible” for inclusion
in the Forget Set. The threshold is defined as a percentage (i.e., 95%) of the maximum sim-
ilarity observed across all training samples, ensuring that only samples with sufficiently
strong connections to other categories are considered. Specifically, a sample 7 is considered
eligible for inclusion in the Forget Set if the number of cross-class similarities S; exceeds a
predefined threshold Nj, defined as follows:

Si =Y 1(sim(x;,x;) > T)
j€Ci

where C; is the set of samples from different classes (i.e., not belonging to the same
category as sample i), T is the threshold based on the maximum similarity observed, and
1(-) is an indicator function that outputs 1 if the similarity between samples i and j exceeds
the threshold, and 0 otherwise.

Additionally, a parameter N; (set to N3 = 33 in our experiments) is used to specify
the minimum number of cross-class similarities required for a sample to be considered
eligible. This threshold was selected by computing the distribution of cross-class similarity
counts across all training samples and adjusting Nj such that the resulting eligible set
comprises approximately 30% of the full training set. The eligibility of a sample i is
defined as:

True, if S; > Np

Eligible(S;) =
gible(S:) {False, otherwise

Part of this process is illustrated in Figure [/} where a few samples are shown with the
respective and most similar samples from other categories.
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Figure 7: Examples of similar images across different categories. Each row starts with a
reference image from the CIFAR-10 training set, followed by its three most visually similar
images from other categories. As observed, these similar images belong to semantically
related categories and share notable visual characteristics.

The process described so far allows us to isolate structurally entangled examples—those
whose learned representations significantly overlap with multiple other classes. Moreover,
we also consider the interconectivity between the Forget Set and the Retain Set, as men-
tioned before. Thus, we propose to create different Forget Sets, composed of images
having strong cross-class similarities but also taking into account the amount of inter-
conectivity with respect to the Retain Set, as detailed next:

* Forget Set 7 (High Similarity Density): This set consists of 5,000 samples (100%)
selected exclusively from the pool of eligible samples—those identified as highly
interconnected based on their strong cross-class similarity. These examples exhibit
strong similarity to other categories and are expected to be the hardest to forget, as
there are many other similar in the Retain Set,

* Forget Set 8 (Medium Similarity Density): This set contains 3,500 samples from the
eligible group (70%) and 1,500 samples from the non-interconnected group (30%). It
serves as a transitional case, balancing structural entanglement and separation, and
allows us to assess how reduced feature-space entanglement between the forget and
Retain Sets affects unlearning performance.

¢ Forget Set 9 (Low Similarity Density): Composed of 2,000 samples from the eligible
group (40%) and 3,000 non-eligible ones (60%), this set is dominated by structurally
distinct examples. It is expected to represent the easiest unlearning scenario among
the three, as a majority of the target samples are relatively well-separated from the
Retain Set in the feature space, though some degree of entanglement still remains.
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Figure 8: Distribution of interconnected and non-interconnected samples across the three
Forget Sets. Each bar represents the composition of a Forget Set in terms of structural
similarity density. Forget Set 7 consists entirely of highly interconnected samples, while
Forget Set 9 contains a majority of non-interconnected ones, illustrating a gradient from
theoretically complex to simpler unlearning scenarios.

Figure [§illustrates the distribution of interconnected and non-interconnected samples
across the three Forget Sets. As shown, Forget Set 7 contains only highly interconnected
examples, indicating strong entanglement with the Retain Set. Forget Set 8 presents a
mixed composition, with a majority of interconnected samples, while Forget Set 9 shifts
the balance toward non-interconnected examples.

This three-tiered construction provides a controlled experimental setup for analyzing
the role of interconnectivity between the Forget Set and the Retain Set in unlearning
performance. By gradually decreasing the amount of interconnectivity of the Forget Set
to the Retain Set, we can examine how the structural composition of the data affects the
forgetting process.

3.5. Evaluation Metrics

Evaluation metrics are quantitative measures used to assess the performance of a ma-
chine learning model. In our analysis, we employed three metrics (Utility, Forgetting and
Final Metric), which provide detailed insights into different aspects of the model’s be-
havior. Notably, these metrics evaluate the model’s ability to forget certain information
(Forget Sets), its precision on the testing set and its retained Ultility. These three metrics
will be detailed next.

3.5.1 Accuracy

Accuracy is a commonly used evaluation metric in machine learning that measures
a model’s ability to correctly classify instances relative to the total number of instances



evaluated. It is defined as the ratio of correctly predicted samples to the total number of
samples:

Number of Correct Predictions
Total Number of Samples

Accuracy =

Accuracy can be measured on the training, validation, and testing sets. Training and val-
idation accuracy are typically monitored during the training process to track the model’s
progress and performance improvements. A higher accuracy on the testing set indicates
that the model generalizes well, meaning it can correctly classify unseen data and is not
simply memorizing the training samples. Good generalization is a fundamental goal in
machine learning, as it ensures the model is robust and reliable in real-world applications.
In our work, accuracy is used to compute Utility metric, as detailed next.

3.5.2 Utility

Let’s define Utility as a way to evaluate how well a model retains its predictive per-
formance after undergoing the unlearning process. Specifically, it measures the extent to
which the model’s accuracy aligns with that of a reference model M, — the model trained
from scratch using the Retain Set. By using this reference model as a benchmark, Utility
metric provides insight into whether the unlearning method allows the model to continue
making coherent and accurate predictions, despite the removal of certain data.

By evaluating Utility, we gain insight into the versatility of each model, allowing us to
understand how well they can adapt to new or adjusted tasks while retaining their accu-
racy. This allows us to assess not only the effectiveness of the unlearning process but also
the impact of various model characteristics on their overall robustness and adaptability.

Utility is computed by dividing the accuracy of an evaluated model (M,) by the ac-
curacy of a reference model (M), both evaluated on the test set D;, as defined in Equa-
tion

Accuracy(M,, Dy)
Accuracy (M, Dy)

The value of Utility provides insight into the relative performance of the evaluated
model compared to the reference model. If the Utility value is greater than 1 (Utility > 1),
it indicates that the evaluated model outperforms the reference model on the test set,
suggesting that it retained useful information and may generalize better. Conversely, if
the Utility value is less than 1 (Utility < 1), the evaluated model performs worse than the
reference model. A Utility value close to 1 (Utility ~ 1) suggests that both models perform
similarly, meaning that the evaluated model was able to maintain accuracy comparable to
the reference model.

Utility = (3.1)

3.5.3 Forgetting

The Forgetting metric quantifies how much a model has “unlearned” specific data
points after undergoing an unlearning process. This metric measures the difference be-
tween the outputs of the reference model and those of the evaluated model, allowing us
to determine whether the model has effectively “forgotten” the designated Forget Set.



It is important to clarify that there is no single “correct” way to verify that a model has
successfully forgotten, but we can assess whether its predictions are similar to those of
the reference model. If the evaluated model produces outputs that closely resemble those
of the reference model, this suggests that the unlearning process has been effective, as the
model’s behavior aligns with what would be expected if the data had never been learned
in the first place.

The Forgetting value is computed using the Equation
|D¢|

. Z'_1 d(Mr(xi)/ Me(xi))
Forgetting =1 — ==
gering D¢l x V2

(3.2)

where:

* |Ds|: The total number of samples in the Forget Set Dy.

* x;: A data sample from the Forget Set.

* M, (x;): The output of the reference model when processing sample x;.
* M,(x;): The output of the evaluated model when processing sample x;.

* d(M,(x;), M¢(x;)): The Euclidean distance between the softmax output distributions
of the reference model and the evaluated model for sample x;. Since the softmax
output represents a probability distribution (summing to 1), this distance measures
how much the model’s confidence in its predictions has shifted after unlearning.

To ensure the forgetting score lies within the range [0, 1], we normalize the Euclidean
distance by /2, which represents the maximum possible distance between two probability
distributions in a 10-class softmax.

We apply 1 — normalized distance so that this value can later be interpreted as a
weight: higher values indicate greater similarity to the reference model (i.e., more ef-
fective forgetting), while lower values reflect more substantial deviation (i.e., less effective
forgetting). This formulation becomes particularly relevant in the next section, where we
introduce the Final Metric that combines both forgetting and Utility components.

3.5.4 Final Metric (Combining Utility and Forgetting)

To obtain a comprehensive evaluation of a model’s overall performance after undergo-
ing an unlearning process, we define a Final Metric that combines the Utility and Forget-
ting metrics by multiplying them:

Final Metric = Utility x Forgetting

This Final Metric allows us to assess both how much a model has forgotten and how
well it retains its overall performance. A high value indicates that the model has success-
fully unlearned designated data while maintaining high accuracy, whereas a lower value
suggests that the model either did not forget effectively or suffered a performance drop.



By integrating both aspects, this metric provides a holistic view of unlearning effective-
ness.

Despite the utility of this aggregated measure, it is often necessary to analyze Util-
ity and Forgetting separately to gain deeper insights. Since both components contribute
equally to the final value, there can be cases where a model achieves a high Final Metric
score by excelling in only one of the two aspects.

For example, a model could have significantly higher accuracy than the reference
model (high Utility) but fail to properly unlearn certain information (low Forgetting).
Conversely, another model might effectively forget the designated data (high Forgetting)
but at the cost of a significant reduction in accuracy (low Utility). Depending on the
specific application and priorities, one model might be more suitable than the other. In
scenarios where unlearning is the top priority, a model with a slightly lower Final Metric
but superior forgetting capabilities might be preferred. On the other hand, if maintaining
predictive performance is critical, a model that retains high accuracy while forgetting less
may be more desirable.

Thus, while the Final Metric serves as a useful global indicator, a detailed examination
of both Utility and Forgetting independently is essential for making informed decisions
based on the requirements of the specific task.



4. Experiments and Results

This chapter presents the empirical component of our work, structured to progres-
sively analyze different strategies for constructing Forget Sets in the context of Machine
Unlearning. The overarching goal is not to benchmark or develop new MU methods,
but rather to identify and understand best/worst-case scenarios—specific Forget Sets that
are particularly easy/hard for existing unlearning techniques to remove effectively. We
begin by introducing the dataset and experimental setup. Then, we describe the experi-
ments and results, which are designed to explore various Forget Set configurations. This
will offer the necessary analysis to understand how different data characteristics impact
unlearning performance and help shed light on the factors that define best/worst-case
unlearning conditions.

For illustrative purposes, we also include the original model M, in the result tables to
support the analysis and discussion. However, it is important to note that, in the context
of Machine Unlearning evaluation, there is no practical reason to directly compare any
unlearning method with the original model since the original retains all training data and
thus serves as a theoretical upper bound rather than a baseline for forgetting effectiveness.

4.1. Dataset: CIFAR-10

The CIFAR-10 EI dataset (Canadian Institute for Advanced Research) is a widely used
dataset in the fields of Computer Vision and Machine Learning. It consists of 60,000 RGB
images, each with dimensions of 32x32 pixels. The images are distributed equally across
10 classes: airplane, automobile, bird, cat, deer, dog, frog, horse, ship, and truck, with
6,000 images per class. Each image is labeled with its respective class, ensuring that it
belongs exclusively to one category.

For our experiments, we utilized the predefined CIFAR-10 split, as described on the
official dataset webpage (refer to the footnote for details), which is commonly used in
the majority of experiments involving this dataset. This partitioning strategy allows us to
prepare the data in a manner that aligns well with the goals of our project. By maintaining
a clear and consistent separation between training, validation, and test sets, we minimize
the risks of overfitting and data leakage. This not only ensures that our evaluation metrics
provide a reliable and unbiased estimate of the model’s generalization performance, but
also facilitates reproducibility and fair comparison across different unlearning methods.

3CIFAR-10 dataset: https://www.cs.toronto.edu/“kriz/cifar.html

29


https://www.cs.toronto.edu/~kriz/cifar.html

4.2. Experiment 1: Arbitrary Forget Set Selection

In this experiment, we explore the effects of defining Forget Sets using randomly se-
lected data without any strategic criteria. The goal is to demonstrate that, although ran-
dom selection of Forget Sets is a common practice in Machine Unlearning, it can cover
meaningful differences in unlearning difficulty. This approach may accidentally mask
best/worst-case scenarios, leading to overly optimistic or inconsistent conclusions about a
method’s effectiveness. Moreover, such variability complicates reproducibility and makes
it harder to assess the robustness and general applicability of unlearning strategies.

The results obtained for the first two Forget Sets (randomly defined) are summarized
in Table

Table 4.1: Experimental results using two randomly selected Forget Sets (Df). M, rep-
resents the original model, trained on the whole train set; M ft Tepresents the model un-
learned with a simple Fine-tuning (FT) strategy, whereas Mg, using Fine-tuning (FIP)
with perturbation, as detailed in Sections and respectively. All metrics use the
reference model trained from scratch on the respective Retain set. The best and second
best results are shown in bold and underlined, respectively, per case and per metric.

Utility Forgetting Final Metric
Mo My Mgy | Mo Mg Mypp | Mo Mp Mgy

Random (1) | 1.229 1.226 1.215 | 0.707 0.718 0.718 | 0.870 0.880 0.872
Random (2) | 1.043 1.035 1.031 | 0.852 0.863 0.859 | 0.852 0.863 0.859

Dy

The results presented in Table 4.1|reflect the impact of using randomly selected Forget
Sets on the performance of unlearning strategies. Each model shows consistent behav-
ior across both random sets, though the absolute metric values vary—highlighting the
inherent unpredictability of random data removal.

From the perspective of Utility, the original model (M,) performs best, as expected,
since it retains access to the full training dataset, including the Forget Set. However,
both fine-tuning strategies (My; and My;,) also achieve Utility values greater than 1 when
compared to the reference model retrained without the Forget Set. This indicates that
they retain strong performance on the retained data, despite the removal of the Forget Set.
Among them, My, slightly outperforms M, across both random Forget Sets, suggesting
that the parameter perturbation introduced in FTP may lead to mild instability in the
unlearning process.

Regarding the Forgetting metric, the original model consistently performs the worst,
reaffirming its full retention of the forget data. Interestingly, both unlearning strategies
achieve comparable forgetting scores in each Forget Set scenario, with My, slightly edg-
ing out My; in one case. However, the differences are modest, suggesting that neither
method is fully effective in eliminating traces of the forgotten data.

When looking at the final composite metric, which balances Forgetting and Utility,
M, outperforms other models in both Forget Sets when analyzed individually, implying
it provides the most favorable trade-off.



Overall, these results demonstrate that random selection of forget samples introduces
considerable variance and complicates interpretability. This further motivates the need for
more principled, adversarial, or influence-guided Forget Set design, which we explore in
subsequent experiments.

4.3. Experiment 2: Category-Based Forget Set Selection

In this experiment, we explore the effects of defining Forget Sets by eliminating entire
categories from the training set, as explained in The goal is to analyze how removing
semantically coherent groups of data impacts the unlearning process and whether the
significance of the removed category (measured by its original training accuracy) affects
the forgetting outcome.

Our initial hypothesis is that eliminating entire categories is not an effective way of
evaluating unlearning strategies, as it may lead to severe disruptions in the model’s in-
ternal feature representations. Machine Unlearning aims to remove specific information
while maintaining the integrity of the remaining knowledge. However, deep learning
models rely on shared features across categories, meaning that removing an entire class
could distort the learned feature space, affecting generalization and stability.

The results obtained for these two Forget Sets are summarized in Table

Table 4.2: Experimental results using two category-based Forget Sets (Dy). M, represents
the original model, trained on the whole train set; M ft Tepresents the model unlearned
with a simple Fine-tuning (FT) strategy, whereas My, using Fine-tuning (FIP) with per-
turbation, as detailed in Sections and respectively. All metrics use the reference
model trained from scratch on the respective Retain set. The best and second best results
are shown in bold and underlined, respectively, per case and per metric.

Utility Forgetting Final Metric
M, Mgy Mgy, | My Mg Mgy, | My My Mgy,

Best Acc. (3) | 1.171 1.071 1.036 | 0.099 0.599 0.625 | 0.115 0.641 0.648
Worst Acc. (4) | 1117 1.039 1.032 | 0.086 0.620 0.616 | 0.096 0.645 0.635

Dy

Starting with the Utility, all models maintain values above 1.0, indicating that their
general performance on retained data remains good. The original model Mo achieves
the highest Utility by design (1.171 and 1.117), as it retains the full training set, while
both MU methods experience a slight improvement in Utility compared to the reference
model. Among them, My; shows better Utility than My, on both scenarios, reflecting its
more conservative adaptation during fine-tuning. However, this comes with trade-offs in
forgetting effectiveness.

The forgetting metrics reveal the core difficulty of this experiment. Forgetting entire
categories proves far more challenging than removing randomly selected instances. The
original model retains nearly all of its knowledge (obtaining very low forgetting scores,
0.099 and 0.086), while both MU strategies succeed in partially forgetting the removed
categories. Yet, the maximum forgetting scores achieved (0.625 by My;, when using Forget



Set 3 and 0.620 by My; when using Forget Set 4) remain moderate. This suggests that the
model continues to retain significant latent information about the forgotten class, likely
due to entangled representations in the feature space that are not easily erased without
full retraining. Given that the fine-tuning process was conducted for a fixed number
of epochs, one possible explanation is that the model did not have sufficient training
iterations to fully adapt its internal representations and eliminate traces of the forgotten
data

These results are further reflected in the Final Metric, yet their scores are limited by
incomplete forgetting. The best result, 0.648, is achieved by My, in the Forget Set 3 case,
indicating that perturbation helps dislodge tightly integrated class knowledge—but still
not completely. The Forget Set 4, despite being a lower-performing category, is similarly
difficult to unlearn, which makes sense because the difference in performance was very
small.

Overall, these results emphasize a key limitation of current MU approaches: forget-
ting structured, semantically cohesive data such as full categories remains a difficult task.
The high intra-class consistency of such groups creates deeply embedded patterns in the
model, especially in its intermediate representations. Unlearning them may require more
than minor updates—it demands substantial changes to the model’s structure or distribu-
tional assumptions.

These findings ultimately validate our initial hypothesis: eliminating entire categories
is not a reliable strategy for evaluating unlearning methods. Although useful as a stress
test, it can introduce structural disruptions that distort the shared feature space across
classes and compromises the goal of selectively removing information while preserving
generalization. Future evaluations should include more fine-grained, realistic unlearning
scenarios that better reflect the strengths and limitations of current MU techniques.

4.4. Experiment 3: Confidence-Based Forget Set Selection

In this experiment, we explore an alternative method for defining Forget Sets based on
the model’s confidence in its predictions (confidences being evaluated on the training set)
as explained in Section Unlike Experiment 2, where Forget Sets were constructed
by eliminating entire semantic categories, this approach focuses on the certainty with
which the model classifies individual samples. The goal is to assess how removing high-
confidence versus low-confidence samples impacts the unlearning process and whether
confidence-based selection provides a more effective strategy than category-based forget-
ting to support the evaluation of Machine Unlearning methods.

Our initial hypothesis is that forgetting high-confidence samples will result in greater
overall forgetting compared to removing low-confidence samples. High-confidence sam-
ples correspond to well-learned and highly representative patterns that play a central role
in the model’s generalization. Removing such samples has the potential to disrupt fun-
damental feature representations, thereby inducing substantial forgetting across multiple
related categories. However, it is important to consider that in the “Best Confidence” set-
ting, the presence of similar samples remaining in the Retain Set may still support the
model in maintaining those core representations.



In particular, forgetting high-confidence or highly representative examples (especially
when they constitute a substantial portion of the data) could propagate broader changes
throughout the model. However, the exact thresholds or conditions under which such
disruption becomes critical remain unclear, suggesting an important direction for future
work: to better understand how factors such as the number, confidence, or representa-
tional role of forgotten samples impact the effectiveness and stability of the unlearning
process.

As in the previous experiments, the results are summarized in Table

Table 4.3: Experimental results using two confidence-based Forget Sets (Df). M, repre-
sents the original model, trained on the whole train set; M £+ represents the model un-
learned with a simple Fine-tuning (FT) strategy, whereas My, using Fine-tuning (FTP)
with perturbation, as detailed in Sections and respectively. All metrics use the
reference model trained from scratch on the respective Retain set. The best and second
best results are shown in bold and underlined, respectively, per case and per metric.

Utility Forgetting Final Metric
M, Mgy Mgy, | Mo Mg Mgy, | My My Mgy,

Best Conf. (5) | 1.040 1.033 1.031 | 0.964 0964 0.965 | 1.003 0.996 0.994

Dy

Worst Conf. (6) | 1.047 1.043 1.039 | 0.549 0.597 0.601 | 0.575 0.622 0.629

In this experiment, Utility scores remain slightly above 1.0 in both Forget Sets, indicat-
ing good performance on the retained data. As expected, the original model M,, trained
on the full training set, achieves the highest Utility scores (1.040 and 1.047). The MU mod-
els (My; and Mp;p) show similar results, with My, slightly outperforming Mg, in both
cases. This suggests that the fine-tuning-based updates introduce only minor improve-
ments to overall performance, consistent with the goal of preserving retained knowledge
during unlearning.

Turning to forgetting, the results appear, at first glance, to strongly support the initial
hypothesis: removing high-confidence samples leads to significantly higher forgetting
scores. For instance, in the “Best Confidence” setting, all models (including M,) achieve
remarkably high forgetting values (0.964-0.965), while in the “Worst Confidence” scenario,
the forgetting scores are notably lower (0.549-0.601). However, these results require careful
interpretation.

The unexpectedly high forgetting value given the adopted metric in the “Best Con-
fidence” case do not necessarily indicate that the unlearning strategies were especially
effective. Instead, this likely reflects the nature of the Retain set used to train the refer-
ence model. Because many high-confidence samples remained in the Retain set, as we
predicted in our initial hypothesis, the retrained reference model closely resembled the
original model M,, which still contained the Forget Set. As a result, the measured forget-
ting (which compares outputs between the unlearned model and this reference) appears
artificially high—mnot due to deep forgetting, but because both the unlearned and reference
models are similar. This alignment creates the illusion of effective forgetting, even though
core representations may remain largely intact.



In the “Worst Confidence” setting, forgetting scores are notably lower (0.549-0.601),
indicating less effective forgetting according to the metric used. This likely stems from the
fact that low-confidence samples tend to be less distinct and more sparsely represented,
making it harder for the model to adjust its internal representations solely by removing
these samples.

This also explains why the original model M, achieves such surprisingly high forget-
ting scores in the “Best Confidence” condition. Since M, still contains all samples (includ-
ing those supposedly forgotten) it should, in principle, score poorly on forgetting. Yet, its
high score (0.964) suggests that its predictions match the reference model’s not because
it forgot, but because the reference itself learned from many of the same high-confidence
patterns still present in the Retain set.

Looking at the Final Metric, which balances Utility and forgetting, the “Best Confi-
dence” setting again shows higher values (1.003, 0.996, 0.994) than the “Worst Confidence”
scenario (0.575, 0.622, 0.629). Here, too, the results suggest that the advantage observed in
the high-confidence case is driven less by actual forgetting success and more by alignment
with the reference model.

Overall, these results provide qualified support for our hypothesis that removing high-
confidence samples induces greater forgetting score, given the adopted metric—but also
reveal that the apparent forgetting may be overestimated due to shared information be-
tween the Retain set and the original model. These findings underscore the complexity of
evaluating unlearning via reference-based metrics and highlight the importance of care-
fully selecting Forget Sets to avoid misleading conclusions.

This contrast becomes even more insightful when revisiting the previous experiment
on category removal, where forgetting scores remained consistently low despite the scale
of the intervention. That experiment showed how removing an entire class disrupted
the model’s structure without producing effective forgetting. In contrast, removing high-
confidence examples, though smaller in scale, aligns better with how deep models encode
information, targeting crucial points without destabilizing broader patterns.

In conclusion, while the metrics here initially suggest strong forgetting, a deeper analy-
sis reveals that this is partly an artifact of overlap between training and reference sets. Still,
the experiment reinforces a key takeaway: unlearning high-confidence, well-integrated
knowledge is non-trivial, and its evaluation requires careful experimental design. Fu-
ture protocols should ensure that Forget and Retain Sets are more distinctly separated to
accurately reflect unlearning performance.

4.5. Experiment 4: Similarity Density-Based Forget Set Se-
lection

This experiment further explores the impact of data entanglement on Machine Un-
learning performance by evaluating Forget Sets constructed based on feature-space simi-
larity. While the ideas presented in Section [2.6| broadly inspired our approach across all
experiments, they are particularly relevant to the hypothesis tested here. By grouping
and comparing data samples with high and low internal similarity, we aim to understand
how structural properties of the data influence the effectiveness of unlearning methods.



In addition, it is strongly supported by recent developments such as the work presented
in [17], a highly relevant and contemporary study that emphasizes the structural relation-
ships within data in the context of unlearning.

The central idea behind this experiment is to evaluate the role of data interconnectivity
in the effectiveness of the unlearning process. More specifically, the degree of similarity
between the Forget Set and the Retain Set.

To this end, we construct three distinct Forget Sets characterized by their average simi-
larity density (detailed in Sec. with respect to the Retain Set: High Similarity Density,
Medium Similarity Density, and Low Similarity Density. These similarity levels are computed
based on the representation space of the model, using internal embeddings to capture how
“close” or interconnected the Forget Set samples are to those we intend to retain.

The underlying hypothesis is that Forget Sets with higher interconnectivity with the
Retain Set will lead to lower forgetting scores due to residual influence and feature over-
lap, making effective unlearning more challenging. Conversely, Forget Sets with lower
interconnectivity with the Retain Set are expected to facilitate more effective unlearn-
ing, as they will be less entangled with the retained data. The goal of this experiment
is to determine whether high similarity between the forget and Retain Sets impedes the
unlearning process, potentially due to overlapping or entangled features, while low simi-
larity might enable a more distinct and effective removal of the target data. By analyzing
the forgetting metrics across these three configurations, we aim to uncover the extent to
which interconnectivity between the forget and Retain Sets plays a decisive role in the
model’s ability to unlearn.

This analysis not only builds on prior theoretical findings but also strengthens the
practical dimension of our study, offering insight into how the structural composition of
data affects unlearning outcomes. The results of this experiment are expected to pro-
vide a deeper understanding of the internal dynamics of forgetting and help guide more
principled strategies for Forget Set selection in future applications.

The results obtained are presented in Table allowing us to assess how varying
levels of interconnectivity influence the forgetting performance.

Table 4.4: Experimental results using two Similarity Density-Based Forget Sets (D). M,
represents the original model, trained on the whole train set; My; represents the model
unlearned with a simple Fine-tuning (FT) strategy, whereas My, using Fine-tuning (FTP)
with perturbation, as detailed in Sections and respectively. All metrics use the
reference model trained from scratch on the respective Retain set. The best and second
best results are shown in bold and underlined, respectively, per case and per metric.

Utility Forgetting Final Metric
M, Mgy Mgy, | My Mg Mgy, | My My Mgy,

High Sim. (7) 1179 1172 1.165 | 0.662 0.678 0.678 | 0.780 0.794 0.790
Medium Sim. (8) | 1.169 1.164 1.157 | 0.728 0.740 0.737 | 0.851 0.861 0.853
Low Sim. (9) 1.051 1.043 1.038 | 0.843 0.851 0.853 | 0.886 0.888 0.886

Dy

Analyzing the results in Table we observe a clear and consistent trend across all



three similarity-based Forget Sets. As the similarity density between the Forget Set and the
rest of the Retain Set decreases (from high to medium to low) the forgetting performance
improves accordingly. Specifically, the forgetting metric (My;) increases from 0.678 for the
high similarity set to 0.740 and 0.851 for the medium and low similarity sets, respectively.
This clearly and consistently confirms the hypothesis that interconnectivity between the
forget and Retain Set plays a significant role in the effectiveness of Machine Unlearning:
the more isolated or dissimilar the data we aim to forget is, the easier it is to unlearn it
without negatively impacting the rest of the model’s knowledge.

Interestingly, the Utility metrics (M) follow a mild downward trend, indicating a
slight degradation in retained performance as the similarity decreases. This is expected,
as lower similarity may indicate that the data is more specialized or resembles outlier
examples, which the model may deem less relevant for generalization. Nevertheless, the
Final Metric consistently shows improvement.

These findings emphasize the importance of considering the structural relationships
within the dataset when constructing Forget Sets. This underlines the importance of
incorporating similarity-based strategies in real-world applications where data separation
and interdependence significantly affect unlearning dynamics.

It is important to note that the current experiment should not be directly conflated
with the previous one, as they explore different dimensions of the unlearning challenge.
In the earlier experiment, we examined how sample-level confidence influences forget-
ting, with some indirect implications regarding similarity. However, the focus there was
on how well-learned (i.e., high-confidence) samples affect the forgetting process—leading
to high forgetting scores that were later interpreted with caution due to overlap between
the original and reference models. In contrast, the present experiment explicitly controls
and varies interconnectivity between Forget and Retain Sets based on feature-space sim-
ilarity. Although both experiments touch upon the concept of overlap, they do so from
fundamentally different angles, making them inherently non-comparable.

The results for the forgetting metric presented in Table 4.4/ become even clearer when
visualized graphically. In Figure 9] we isolate the forgetting values for the three similarity-
based Forget Sets and observe how forgetting consistently improves as the similarity den-
sity decreases. This creates a smooth and ascending curve that visually reinforces the
trend: the lower the interconnection between the forget and Retain Sets, the more effective
the unlearning process becomes.

4.6. Discussion: Summary of Experiments

Across four systematically designed experiments, we explored different strategies for
constructing Forget Sets in order to evaluate and challenge the capabilities of Machine
Unlearning methods. Each experiment introduced a distinct perspective on Forget Set
selection (random, semantic, confidence-based, and structural similarity-based), allowing
us to dissect how different types of data affect forgetting dynamics.

¢ Experiment 1: This experiment assessed the baseline performance of unlearning
methods using arbitrarily selected Forget Sets. Results across two randomly defined
sets revealed substantial variability—while Utility remained high for all models,
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Figure 9: Forgetting performance across the three similarity-based Forget Sets, each con-
structed with a different level of interconnection to the Retain Set. The figure displays the
evolution of the forgetting metric for each set, illustrating how lower similarity density
leads to more effective forgetting.

forgetting effectiveness varied, with moderate scores not strongly influenced by the
unlearning strategy. These findings underscore the limitations of arbitrary Forget
Set construction, which lacks reliability and interpretability due to uneven influence
of samples on the model’s internal structure.

¢ Experiment 2: This experiment investigated the impact of forgetting entire semantic
categories. While Utility remained reasonably high, forgetting scores were notably
limited, likely due to deep feature overlap across classes. These results support
the hypothesis that category-level removal, though intuitive, introduces structural
disturbances that complicate evaluation and limit practical unlearning effectiveness.

e Experiment 3: This experiment examined Forget Sets based on model confidence,
comparing high- vs. low-confidence sample removal. Eliminating high-confidence
samples led to better forgetting scores, though this was partly due to alignment
with the reference model. While Utility remained high, these results highlight the
importance of careful forget-retain separation when using confidence as a selection
criterion.

¢ Experiment 4: This experiment evaluated how increasing similarity between the For-
get and Retain sets affects unlearning. Higher similarity consistently weakened for-
getting, supporting the idea that structural entanglement makes unlearning harder.

These findings emphasize the need for improved unlearning benchmarks in classifi-
cation tasks—benchmarks that go beyond simple class-based or random removals. They
also highlight the importance of better defining and measuring overlap in learned repre-
sentations, to advance both MU techniques and their evaluation metrics.






5. Conclusions and Future Work

This final section brings the project to a close by summarizing the main outcomes,
reflecting on the challenges encountered, and outlining potential directions for future
research. We begin with a set of general conclusions that assess how well the initial
objectives were met and highlight the overall contributions of the work. We then review
the specific findings related to each Forget Set strategy and hypotheses made. Following
this, we discuss key limitations (both technical and methodological) that shaped the scope
and execution of the study. Finally, we present proposals for future work, including
improvements to the experimental setup, extensions to other domains, and avenues for
developing more robust and scalable unlearning techniques. Together, these sections aim
to consolidate the insights gained and provide a foundation for advancing research in
Machine Unlearning.

5.1. General Conclusions

This project set out to investigate how the structure and selection of Forget Sets impact
the effectiveness of different Machine Unlearning strategies. The primary goal was to un-
derstand which types of data are more difficult or easy to forget, and how to construct
Forget Sets in a way that maximizes forgetting while minimizing disruption to retained
knowledge. Additionally, this study aims to deepen our understanding of Machine Un-
learning and contribute toward the design of more robust evaluation protocols, helping to
assess MU methods more meaningfully.

Across all experiments, we systematically designed and analyzed a variety of Forget
Sets, ranging from entire semantic classes to more fine-grained subsets selected based on
model confidence or similarity between samples. This deliberate construction allowed us
to compare unlearning performance under both extreme and subtle forgetting scenarios.
Our findings highlight that the effectiveness of unlearning is highly dependent on the
properties of the Forget Set itself and its relation to the retain set: not all data is equally
forgettable.

These results underscore the critical importance of Forget Set design in any Machine
Unlearning pipeline. A well-constructed Forget Set, aligned with the model’s learned
structure, can make the difference between a successful unlearning operation and one
that disrupts the model without effectively removing the target information, with a direct
impact on how MU models are evaluated.
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In addition to evaluating forgetting effectiveness, we also developed and applied inter-
pretable metrics to assess both Utility and Forgetting. These metrics enabled a rigorous,
comparative analysis and revealed trade-offs inherent to different Forget Set strategies and
unlearning techniques. The combination of simple yet informative evaluation tools and
controlled Forget Set construction provided a solid foundation for our analysis.

In conclusion, all the original objectives of this work have been fulfilled. We demon-
strated that Forget Set construction is a central factor in MU performance and evaluation,
provided insights into which types of data are most resistant to forgetting, and laid out
a reproducible methodology for analyzing unlearning behaviors. While the experiments
were limited in scale due to computational constraints, the conclusions drawn from this
study contribute to a more principled understanding of Machine Unlearning and establish
a baseline for future research in this emerging field.

5.2. Key findings

The experiments collectively demonstrate that the difficulty of unlearning is strongly
influenced by the structural properties of the Forget Set and its relation to the retain set.
Arbitrary selection yields inconsistent results, as some samples are more entangled with
the model’s learned representations and harder to forget, highlighting the unreliability
of random baselines. Forgetting entire semantic categories proves particularly challeng-
ing, as these groups often share deep feature representations with retained data, leading
to limited forgetting despite significant interventions. Confidence-based selection shows
that high-confidence samples are harder to unlearn in practice, though evaluation can be
misleading when reference models share overlapping data. Most notably, similarity-based
Forget Sets reveal a clear trend: the more structurally distinct the Forget Set is from the
Retain Set, the more effective the unlearning process becomes. These findings validate
that entanglement and interconnectivity between data points are key obstacles in Machine
Unlearning, and that careful, structure-aware Forget Set design is essential for reliable
evaluation and progress in the field.

5.3. Challenges and Limitations

Machine Unlearning remains an emergent and evolving field, characterized by a lack
of standardized methodologies, scarce benchmarks, and limited consensus on evaluation
practices. Its recent emergence has resulted in a fragmented landscape, with relatively few
established strategies and minimal empirical validation across domains. This presents sig-
nificant challenges for new research, as practitioners must navigate an underdefined space
while designing, implementing, and evaluating their methods. Furthermore, the potential
for MU to be applied across a wide variety of domains (such as computer vision, natural
language processing, and multimodal learning) adds both to its appeal and its complexity,
as it is unclear how generalizable current techniques are across different modalities and
tasks.

Against this backdrop, one of the primary limitations of this project has been the avail-
ability of computational resources, which significantly influenced both the scope of the



unlearning techniques we could implement and the volume of experiments conducted.
Our work was developed using Google Colab, which provides access to a free GPU with
a memory cap of 15 GB. However, exceeding memory limits or prolonged execution time
leads to abrupt session termination, requiring long wait times (often up to 12 hours) for
the environment to become available again. These interruptions heavily delayed the train-
ing pipeline and constrained us to use lightweight, computationally efficient methods.
Consequently, we had to limit the complexity of the models and the number of experi-
mental configurations, despite the potential insights additional experiments might have
provided.

Together, the novelty of the field and the technical limitations formed a compounded
challenge. We often encountered implementation difficulties due to the scarcity of well-
documented prior work, and resolving these issues required extensive trial-and-error and
validation. This iterative process, although time-consuming, was essential to ensuring the
methodological soundness of our approach within the constraints we faced.

5.4. Future Work

Future research and development in this project could follow multiple directions to en-
hance the effectiveness and robustness of the unlearning techniques explored. One of the
primary areas for future work is the implementation of more advanced and computation-
ally efficient unlearning methods, leveraging recent advancements in Machine Unlearning.
Exploring techniques such as knowledge distillation [18]], influence functions [19], or more
sophisticated model pruning approaches [20] could significantly improve the balance be-
tween performance and forgetting efficiency.

Another crucial avenue is expanding the scope of the experiments by utilizing larger
and more diverse datasets. Testing on high-dimensional, real-world datasets with greater
variability in data distributions would provide more comprehensive insights into how dif-
ferent unlearning methods generalize across various domains. Moreover, going beyond
image classification to include tasks such as natural language processing, multimodal
learning, or structured prediction could expose different challenges and dynamics of Ma-
chine Unlearning, potentially requiring task-specific adaptations.

Furthermore, refining the definition of Forget Sets presents another important area
for improvement. While our approach provides an initial framework for constructing and
analyzing these sets, it represents only a small step toward understanding their full impact
on unlearning performance. Since different strategies can be used to define what data
should be forgotten, it would be valuable to explore multiple approaches. Investigating
how the structure and selection of Forget Sets influence unlearning performance could
help establish best practices for different use cases.

Beyond these experimental improvements, integrating unlearning verification tech-
niques would also be an important step forward. Developing systematic methods to assess
whether a model has genuinely forgotten data, potentially through explainability tools or
adversarial validation, would enhance the reliability of unlearning methods.

By addressing these challenges, future work can contribute to making Machine Un-
learning a more reliable, scalable, and practically applicable field, ensuring stronger pri-



vacy guarantees while maintaining high model performance.
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