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ABSTRACT

In this study, we investigated gene expression related to cholesterol efflux receptors in individuals at high cardiovascular risk
undergoing Mediterranean dietary interventions. Through transcriptomic analysis, we examined samples from two randomized
controlled trials: PREDIMED and PREDIMED-Plus, with 151 and 89 elderly adults, respectively. Blood cells were isolated at
baseline and after a 12-month intervention. In the PREDIMED trial, participants followed different Mediterranean diets: one
supplemented with extra-virgin olive oil (traditional Mediterranean diet enriched with extra-virgin olive oil [MedDiet-EVOO]),
another with nuts (MedDiet enriched with nuts MedDiet-Nuts [MedDiet-Nuts]), and a low-fat control diet. The PREDIMED-
Plus trial compared an energy-reduced Mediterranean diet (Er-MedDiet) with physical activity to an ad libitum Mediterranean
diet. Over time, mild but significant upregulation of genes like ATP binding cassette subfamily A member 1 (ABCAI), retinoid
X receptor alpha (RXRA), retinoid X receptor beta (RXRB), and Nuclear Receptor Subfamily 1 Group H Member 3 (NR1H3) was
observed in response to MedDiet-EVOO, MedDiet-Nuts, and Er-MedDiet. Notably, RXRA expression was higher in both MedDiet-
EVOO and MedDiet-Nuts compared to the control diet. Differences in gene expression, particularly RXRA, ATP binding cassette
subfamily G member 1 (ABCGI), NRIH3, and Peroxisome Proliferator Activated Receptor Delta (PPARD), were evident between
MedDiet-Nuts and the control diet. In the PREDIMED-Plus trial, no significant differences in gene expression were found between
dietary groups. Principal component analysis (PCA) and linear discriminant analysis (LDA) showed overlapping gene expression
profiles across different Mediterranean diet interventions. In conclusion, our study highlights the cardiovascular health benefits
of long-term adherence to a Mediterranean diet, both normocaloric and hypocaloric, primarily reflected by mild upregulation
of cholesterol efflux-related genes—specifically involving RXRA, RXRB, ABCAI, ABCGI, Nuclear Receptor Subfamily 1 Group H
Member 2(NR1H2), and PPARD—among elderly adults at high cardiovascular risk. This suggests a potential mechanism by which

these diets may exert cardiovascular protective effects.

1 | Introduction

Cardiovascular diseases (CVDs) are the leading cause of death
globally, representing an estimation of 17.9 million of deaths [1].
Lifestyle and dietary patterns are key factors in the development
of metabolic syndrome or its components [2, 3]. The traditional
Mediterranean diet (MedDiet) is characterized by a high intake of
extra-virgin olive oil, cereals, legumes, fish, vegetables, and fruit
[4], along with a lower consumption of red and processed meat.
This diet has demonstrated beneficial effects on cardiovascular
risk factors by reducing inflammatory biomarker levels and
improving the lipid profile, in particular, high-density lipoprotein
(HDL) functionality [5-8]. HDL function enhancement has been
reported under different MedDiet scenarios, such as a 12-month
longitudinal clinical trial with a MedDiet supplemented with
EVOO and nuts [8].

In the era of precision medicine, blood transcriptome has been
put forward as a surrogate and accessible tissue that allows to
infer or predict disease-related data for different purposes [9,
10], including CVDs and nutrients interaction [11, 12]. Previ-
ous PREDIMED substudies have examined blood transcriptome
response to dietary interventions supplemented with EVOO or
nuts. The effects of a 3-month MedDiet intervention on the
expression of cardiovascular risk-related genes were reported
using whole transcriptome microarray analyses in elderly sub-
jects at high cardiovascular risk (traditional Mediterranean diet
enriched with extra-virgin olive oil [MedDiet-EVOO] through
IL1b, ILIRN, TNF-a, and ICAM1) [13]. Furthermore, following
a 3-month intervention with the PREDIMED MedDiet enriched
with mixed nuts or EVOO, a downregulation of transcriptomic
pathways related to neuroinflammation (MedDiet enriched with
nuts MedDiet-Nuts [MedDiet-Nuts], with downregulation levels
of TNF-a, CCL3, IL-8, and IL10) was observed [14]. Additionally,

after a 3-month intervention with a traditional MedDiet, partic-
ularly when supplemented with virgin olive oil, decreased gene
expression linked to inflammation (INF-y, ARHGAPI5, and IL7R)
and oxidative stress (ADRB2, POLK) was observed in healthy
subjects [15]. Within the framework of the PREDIMED study,
following a long-term MedDiet intervention (3 years), no statis-
tically significant changes were observed between the MedDiet
groups and the control group, whereas the control group showed
a tendency to increase the gene expression of two inflammatory
receptors involved in the pathogenesis of atherosclerosis (CXCR2,
CXCR3) [16].

Based on the association between MedDiet and the overall
cardiovascular benefit, along with HDL functionality, we selected
a subset of candidate genes involved at different stages of
cholesterol efflux, to study the transcriptional landscape. First,
ATP binding cassette subfamily A and G member 1 (ABCAI and
ABCGI) are membrane-bound proteins involved in cholesterol
and phospholipid transport that are expressed in multiple tissues,
where they play a role in reverse cholesterol transport, HDL
lipoprotein formation, and pumping cholesterol to HDL particles
at different stages [17]. At the regulation stage, nuclear receptor
subfamily 1 group H members 2 and 3 (NRIH2 and NRIH3, also
known as LXRB and LXRA) belong to a superfamily involved
in the modulation of reverse cholesterol transport through the
translated protein’s ability to form partnerships with functionally
related molecules to regulate ABCAI and ABCGI expression [18-
20]. In a similar way, retinoid X receptors (RXRs) can operate
as lipid sensors and partner with a variety of molecules to
exert a wide range of functions including cholesterol efflux
capacity (CEC) promotion [21]. ABCA1, ABCG1, and scavenger
receptor Class B Type 1 (SCARBI, also called SR-BI) cholesterol
transporters are involved in cholesterol efflux from macrophages
to lipid-free apoA-I and HDL as a first stage of reverse cholesterol
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transport [22]. Caveolin-1 (CAV1) is a structural protein of caveo-
lae (or plasma membrane invaginations) involved in cholesterol
transport and signaling [23]. Finally, peroxisome proliferator
activated receptors (PPARs) are ligand-transcription factors with
upregulating activity in several proteins involved in CEC and
reverse cholesterol transport, fat storage, and oxidation [24, 25].

To understand these molecules behavior in well-established inter-
ventions with solid evidence of ameliorating HDL functionality,
the aim of the present study was to examine the transcriptomic
response of cholesterol efflux-related genes and assess the long-
term effects after 12 months of different Mediterranean diet
interventions in older adult subsamples at high cardiovascular
risk.

2 | Methods

2.1 | Study Design and Subject Recruitment

Our study population came from two clinical trial samples:
PREDIMED (PREvencion con Dleta MEDiterrdnea) and
PREDIMED-Plus. Both studies are randomized, parallel,
controlled, and nutritional trials. Baseline characteristics of the
subsample volunteers compared to the general population in
both studies, PREDIMED and PREDIMED-Plus, are described
in Table S1.

2.2 | PREDIMED Study

The PREDIMED study was a large-scale multicenter trial of
7447 participants, that assessed the effect of a supplemented
MedDiet on the primary prevention of CVD [26]. The PREDIMED
population for our study was a random subsample of volunteers
(n = 151, 77 women, and 74 men, MedDiet-EVOO [n = 54],
MedDiet-Nuts [n = 46], Control [n = 51]). The subsample
included individuals from seven different recruiting sites, with
similar baseline main characteristics (age, sex, hypertension,
weight, body mass index [BMI], smoking status, cholesterol,
triglycerides, and glucose levels, with the exception of diabetes
status proportion). The hypothesis was based on the comparison
of two traditional MedDiets, one supplemented with extra-virgin
olive oil (MedDiet-EVOO), another with nuts (MedDiet-Nuts),
plus a third one as low-fat diet advice (control group). Participants
in the MedDiet group received educational sessions on an ad
libitum MedDiet based on a 14-item nonenergy restricted score
[27]. No specific advice for increasing physical activity or losing
weight was provided.

Eligible participants of the PREDIMED trial were women aged
60-80 years and men between 55 and 80 years who met at least one
of the following criteria: (1) Type 2 diabetes or (2) >3 major car-
diovascular risk factors, out of the following: current smoking (>1
cig/day during the last month); hypertension (systolic blood pres-
sure (BP) >140 mmHg or diastolic BP > 90 mmHg or antihyper-
tensive medication); low-density lipoprotein cholesterol (LDL-c)
> 160 mg/dL or lipid-lowering therapy; high-density lipoprotein
cholesterol (HDL-c) < 40 mg/dL in men or < 50 mg/dL in women,;
BMI > 25 kg/m?; or family history of premature coronary heart
disease [28]. Exclusion criteria included: prior history of CVD,

severe chronic illness, drug or alcohol addiction, history of allergy
or intolerance to olive oil or nuts, a low predicted likelihood
of changing dietary habits according to the stages of change
model [29], or any condition that could impair study participation
[26]. Main subsample characteristics regarding anthropometric
measurements, glucose and lipid metabolism, and lifestyle habits
including diet and physical activity questionnaire scores are
described in Table 1. The data presented in Table 1 include results
from both the baseline and 12-month follow-up assessments, as
well as the changes observed between these two-time points.

2.3 | PREDIMED-Plus Study

The PREDIMED-Plus is a multicenter lifestyle intervention with
6874 eligible participants. It is a randomized trial conducted
in 23 Spanish centers with a large cohort presenting metabolic
syndrome recruited from primary healthcare centers [30]. In
the PREDIMED-Plus trial, the study population was a subgroup
of 89 participants randomly selected (39 women and 40 men,
intervention group [n = 44], Control group [45]) from the IMIM
(Hospital del Mar Research Institute) recruiting site. Inclusion
criteria were men aged 55-75 years and women 60-75 years,
with overweight/obesity (BMI: 27-40 kg/m?) and meeting at
least three metabolic syndrome components at baseline: (1)
triglycerides >150 mg/dL or triglyceride-lowering medication; (2)
fasting glucose >100 mg/dL or glucose-lowering medication; (3)
systolic/diastolic BP >130/85 mmHg or antihypertensive medica-
tion; (4) low HDL-c levels <50 mg/dL in women and <40 mg/dL
in men or medication; and/or (5) waist circumference in women
and >102 cm in men [31, 32].

Participants were randomly assigned to either an energy-reduced
MedDiet (Er-MedDiet) intervention or an ad libitum MedDiet
control group. Those in the active intervention group followed
an Er-MedDiet with physical activity promotion and behavioral
support to meet specific weight loss objectives. The participants
received recommendations based on a 17-item MedDiet score [33].
In addition, physical activity counseling to gradually increase
exercise intensity to 150 min/week and attitudinal lifestyle advice
through frequent sessions with dietitians (both individual and
collective) were provided. As used in the PREDIMED study,
participants in the control group received educational sessions on
an ad libitum MedDiet based on a 14-item nonenergy restricted
score, and no specific advice for increasing physical activity
or losing weight was provided. Main subsample characteris-
tics regarding anthropometric measurements, glucose and lipid
metabolism, and lifestyle habits including diet and physical
activity questionnaire scores are described in Table 2. The data
presented in Table 2 include results from both the baseline and
12-month follow-up assessments, as well as the changes observed
between these two-time points.

2.4 | Cardiovascular and Lifestyle Factors in
PREDIMED and PREDIMED-Plus Studies

Dyslipidemia was defined as meeting any of the following criteria:
HDL-c < 40 or 50 mg/dL (for men and women, respectively),
LDL-c > 100 mg/dL, triglycerides > 150 mg/dL, or taking any
lipid-lowering drugs [34].
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Adherence to diet was assessed with a previously validated
14-item questionnaire used in the PREDIMED Study [27, 35].
Additionally, a 17-item energy-restricted diet questionnaire was
adapted from the 14-item one for the energy-restricted interven-
tion in PREDIMED-Plus. PREDIMED-Plus participants reported
their physical activity level through the Regicor Short Physical
Activity Questionnaire [36], a validated version adapted from the
Minnesota leisure time physical activity questionnaire [37] which
was employed for PREDIMED participants.

2.5 | Blood Chemistry Analysis

Sample collection was performed after an overnight fasting period
at baseline and 12-month follow-up. Venous blood samples were
respectively collected in K3-EDTA anticoagulant to yield plasma
in PREDIMED, and vacuum tubes with a silica clot activator
for serum in PREDIMED-Plus (Becton Dickinson, Plymouth,
UK). Serum tubes were centrifuged after the completion of
the coagulation process, and plasma tubes immediately after
collection, both for 15 min at 1.700 X g room temperature. The
following analytes were quantified in serum with an ABX Pentra-
400 auto-analyzer (Horiba-ABX, Montpellier, France): glucose
(mg/dL), triglycerides (mg/dL), HDL-c (mg/dL), and total choles-
terol (mg/dL). LDL-c was calculated according to the Friedewald
formula whenever triglycerides were < 300 mg/dL.

2.6 | RNA Extraction, Reverse Transcription, and
Gene Expression Quantification

Gene expression related to receptors involved in cholesterol efflux
including nuclear receptors (retinoid X receptor alpha [RXRA],
retinoid X receptor beta [RXRB], NRIH2, NRIH3, PPARA, PPARD,
and PPARG), membrane transporters (ABCAl, ABCGI, and SR-
BI), and structural receptors (CAVI) were established.

Blood samples were collected, at baseline and 1-year postinter-
vention, and stored at —80°C until further analysis. Nuclear
cells were isolated from peripheral blood by using tubes for
purification of intracellular RNA from human whole blood (range
of white blood cells 4.8 x 10°-1.1 X 107 leukocytes/mL) for in vitro
diagnostics applications (PAXgene Blood RNA Tube, BRT). RNA
concentration (A260) and purity were calculated spectrophoto-
metrically (NanoDrop ND-1000; NanoDrop Technologies). RNA
integrity was assessed by using microcapillary gel electrophoresis
(Bioanalyzer, NanoChip; Agilent Technologies) and the RNA
integrity number value was calculated with Agilent 2100 Expert
Software (Agilent Technologies). Samples were selected with
RNA integrity number above 7.

Preamplification step was intended to increase low-input sam-
ples, whose concentration lied between 50 and 200 ng/pL.
Recommended target levels were above 200 ng/uL and were
obtained using TagMan PreAmp Master Mix (Applied Biosys-
tems). Reverse transcription to cDNA was carried out with
High-Capacity cDNA Reverse Transcription Kit with RNase
Inhibitor (Life Technologies). Microarray RT-PCR step was per-
formed using QuantStudio 12K Flex Real-Time PCR System (Life
Technologies) and TagMan OpenArray Real-Time PCR Master

Mix (Applied Biosystems). Subsequently, yielded results were
analyzed with QuantStudio 12K Flex Software.

2.7 | Normalization, Relative Quantification and
Gene Expression Change

We employed a relative quantification approach to present the
analysis of gene expression data. We tested multiple candidates
as possible control genes, allegedly being unaffected by the
treatment conditions (known as reference genes). Reference
genes used for normalization were selected following the geNorm
algorithm running a preliminary analysis to discriminate among
21 candidates, selecting gapdh due to the higher stability dis-
played. To study the differences between baseline value and
12-month follow-up, we compared the difference between cycle
threshold (Ct) and 12-month follow-up minus baseline values
(ACt). In compliance with the premise that the efficiency of
target and reference genes are approximately equal (100% + 10%)
[38-40], we applied the 2724 method to quantify the change
in gene expression. Therefore, the data is presented as a fold-
change (FC) value normalized to the reference gene and relative
to baseline value. Each pair of patient samples was allocated
in the same plate to remove potential run-to-run variation
[41-47].

2.8 | Statistics

The assessment of the normality distribution of the variables
was performed based on normality probability and box plots. To
examine temporal changes and group differences, we performed
paired Student’s ¢ test to assess temporal changes across the
intervention and between independent with respect to ACt val-
ues. Linear mixed-effect models were fitted to estimate whether
the evolution of ACt values differs among groups. These models
were further adjusted for possible confounding variables such
as age, sex, time, and weight, while individuals were included
as random effect factor. Finally, the interaction term between
time and intervention group was formulated to assess inter-
group variability across the trial. Inter-individual variability was
contemplated through random intercept. Linear mixed-effect
estimation was carried out with the use of restricted maximum
likelihood. Analysis was executed using the Ime function from
nlme R package [48].

Descriptive statistics (mean and standard values) and comparison
were calculated at baseline, postintervention, and 12-month
change to display nutritional parameters, energy intake, and
key food components. In the PREDIMED population, both
MedDiets were compared using independent Student’s ¢ test
with the control diet, while Er-MedDiet was compared with
MedDiet in the PREDIMED-Plus population. Mean of differences
between groups at baseline, postintervention, and 12-month
change (MedDiet-EVOO—control and MedDiet-Nuts—control
in PREDIMED; and Er-MedDiet—MedDiet in PREDIMED-Plus)
were also computed and displayed next to confidence intervals
from Student’s ¢ test comparison (Tables S2 and S3).

Principal component analysis (PCA) was conducted to represent
the individuals according to their expression along all genes
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(ABCA1, ABCGI1, CAV1, NRIH2, NRIH3, PPARA, PPARD, PPARG,
RXRA, RXRB, and SCARBI). This analysis aimed to visualize
outlier individuals or to depict the three PREDIMED groups
(Figure S1). PCA was executed with FactoMineR package. Along
with PCA, linear discriminant analysis (LDA) was executed to
classify individuals in predefined groups, maximizing between-
class variance and minimizing within-class (Figure S2). Complete
cases were selected for all analyses. The level of confidence
established for statistical procedures was 0.95. All analyses were
executed using R Statistical software.

2.9 | Statistical Power and Sample Size

The sample size of 31 and 23 participants allowed at least 80%
power to detect a statistically significant difference in ABCAI gene
expression, among the 3 and 2 groups, within the PREDIMED
and PREDIMED-Plus, respectively, of 0.5 units of the relative
quantification log,FC, assuming a two-sided type error of 0.05.
A common standard deviation of 0.6 is estimated.

2.10 | Untargeted Functional Analysis

Canonical pathways modulated by dietary interventions
were defined using Ingenuity (IPA, QIAGEN Redwood City,
www.qiagen.com/ingenuity), a web-based software application
that identifies biological pathways and functions relevant to
biomolecules of interest. Functional analysis was executed using
log,FC (Figure 3).

3 | Results

Finally, the present study employed samples from 151 and 89
participants of the PREDIMED and PREDIMED-Plus studies,
respectively. Samples from 3 and 2 participants from the PRED-
IMED and PREDIMED-Plus trials were respectively excluded due
to atypical gene expression values. Additionally, 14 and 5 values,
from the PREDIMED and PREDIMED-Plus trials, respectively,
were not included due to lack of amplification of either the target
or control gene.

The mean age was 65.8 (+6.29 years) and 65.5 years (+4.7 years) for
the PREDIMED and PREDIMED-Plus participants, respectively.
With respect to participants’ lifestyles at baseline, in both studies,
the diet and physical activity questionnaire scores did not show
statistically significant differences among groups, and they met
the minimal physical activity requirements suggested by the
American Heart Association (450-750 METxminxweek ™).

Energy intake, nutritional parameters, and key food components
are summarized in Tables S2 and S3 for the PREDIMED and
PREDIMED-Plus studies, respectively.

Cardiovascular risk factors stratified per group of intervention of
PREDIMED and PREDIMED-Plus are represented in Table S4.
The percentage of participants with hypertension and dyslipi-
demia is slightly higher in the PREDIMED-Plus study than in
PREDIMED.

3.1 | Gene Expression

2744C yalues correspondent to gene expression patterns (upregu-
lation or downregulation) were depicted through divergent bars
chart of both study populations (Figures 1 and 2, PREDIMED and
PREDIMED-Plus respectively and its correspondent numerical
values are collected in Tables S5a and S6a).

PREDIMED Study: Significant changes occurred along time
for baseline to endpoint comparison between baseline and
postintervention using Student’s ¢ test (baseline to 12 months
intragroup comparison, Table S5b). These changes occurred
in ABCAI and RXRA in MedDiet-EVOO and MedDiet-Nuts,
plus RXRB in MedDiet-EVOO, and NRIH3 in MedDiet-Nuts
group.

On the other hand, when conducting Student’s ¢ test comparison
between independent groups (baseline to 12 months intragroup
comparison, Table S5b) yielded statistically significant differ-
ences between RXRA genes between MedDiet-EVOO and control
groups (p value = 0.006). In the case of the MedDiet-Nuts and
control groups, our analysis revealed differences in RXRA (p
value = 0.011) and PPARD (p value = 0.034). Linear mixed-effects
models adjusted for sex, age, and weight resulted in statistically
significant differences for the interaction term time-group (linear
mixed-effects model time:group term (p value), Table S5b) of
intervention in RXRA (p value = 0.009) between MedDiet-EVOO
and control. In the comparison between MedDiet-Nuts and
control, we observed statistically significant results in RXRA (p
value = 0.006), ABCGI (p value = 0.038), NR1H3 (p value = 0.036),
and PPARD (p value = 0.023). In concordance, in the analysis
joining both MedDiet groups, ABCGI (p value = 0.048), PPARD
(p value = 0.036), and RXRA (p value = 0.002) were differently
expressed versus the control group.

PREDIMED-Plus Study: Comparison between baseline and end-
point results yielded statistically significant changes when per-
forming independent Student’s ¢ test (baseline to 12 months
intragroup comparison, Table S6b). These changes occurred after
Er-MedDiet in ABCAI and ABCGI1, PPARG, and RXRB. No statisti-
cally significant values resulted from linear model or independent
Student’s ¢ test between arms (intergroup comparison and linear
mixed-effects model time:group term [p value], Table S6b). No
differences were observed in gene expression when comparing
subjects with the most extreme outcomes regarding atherogenic
dyslipidemia in both groups in the PREDIMED-Plus study.

The LDA model demonstrated an overall poor classification
performance when utilizing the expression values of the selected
genes. When applied to PREDIMED, classified correctly 45.34%
of individuals using the selected genes and their relative expres-
sion values as predictor variables. Cross-validated table for the
classification of PREDIMED groups using combined MedDiets
shown in Table S7. When applied to PREDIMED-Plus trial the
estimated classification accuracy was reduced to 32.2% for Med-
Diet and Er-MedDiet groups. Cross-validated table is shown in
Table S8.

PCA and LDA performed in PREDIMED and PREDIMED-Plus
are depicted in Figures S1 and S2. The PCA method displayed
an overlapping profile of gene expression among the individuals
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FIGURE 1 |

Divergent bar plot depicting the fold-change mean values per group of PREDIMED (Green color: upregulation and red color:

downregulation of genes). Statistically significant (p value < 0.05): baseline to postintervention change (paired Student’s ¢ test) +; time:group interaction
(p value) from mixed-effects model compared to control #. Relative quantification (numerical values) of cholesterol efflux-related genes is presented in

Table S5a. Numerical p values from statistical analyses are presented in Table S5b.
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Divergent bar plot depicting the fold-change (FC) mean values per group of PREDIMED-Plus (Green color: upregulation and red color:

downregulation of genes). Statistically significant (p value < 0.05): baseline to postintervention change (paired Student’s ¢ test) +. Relative quantification
(numerical values) of cholesterol efflux-related genes is presented in Table S6a. Numerical p values from statistical analyses are presented in Table S6b.

in the different groups. Probability density function plots were
depicted for combined MedDiets versus control in PREDIMED,
and MedDiet versus Er-MedDiet in PREDIMED-Plus, accord-
ing to the selected genes. The density probability functions
overlapped in a broad area of both curves.

Pathway analysis illustrated the relationships between biological
functions efflux and transport of cholesterol with the selected
gene set: ABCAI, ABCGI, NRIH2, NRIH3, PPARA, PPARD,
RXRA, RXRB, CAVI1, and SCARBI. In accordance with our
findings, an upregulation pattern in cholesterol transporters and

key regulators was displayed when overlaying the correspon-
dent pathways to the provided nodes. Inconsistent predictions
were found for PPPARG, PPARA, and CAVI interaction with
cholesterol efflux and transport, as far as the selected genes.
A proposed scheme with expression quantification, relation-
ship, and signaling among the different nodes is displayed in
Figure 3. The network depiction represents the predicted interac-
tions between the selected molecules using MedDiets combined
dataset of PREDIMED. Gene expression values determine the
type of interaction (activation, inhibition) among molecules and
functions.
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Control diet (PREDIMED); Expr Other = AACt.

4 | Discussion

We observed an upregulation of the gene expression related
to receptors involved in cholesterol efflux function including
nuclear receptors (RXRA, RXRB, NRIH3, and PPARD), and
membrane transporters (ABCAI, ABCGI) within the frame of
two MedDiet-intervention trials after 1-year follow-up in elderly
adults at high cardiovascular risk.

ABCAI and ABCGI proteins actively participate in the choles-
terol removal, the first step of the reverse cholesterol trans-
port. Although ABCAI promotes cholesterol movement to
nascent HDL particles (lipid-poor apoA-I), probably induced
by cholesterol-loaded cells, ABCGI and scavenger receptor Bl
(SCARBI) perform a similar task to larger HDL lipoproteins [17,
49, 50]. Our experiment disclosed baseline to postintervention
mild changes in ABCAI expression after MedDiet-EVOO and
MedDiet-Nuts, and also when in the combined MedDiet group.
Weight-adjusted model attested also significant ABCGI upregu-
lation when comparing MedDiet-Nuts and combined MedDiets
to the control group. In concordance, within the frame of the
PREDIMED-Plus trial, both groups experienced an upregulation
of ABCAI and ABCGI comparing baseline to endpoint measure-
ments (p < 0.01). This study addresses gene expression related
to cholesterol transport rather than HDL functionality; therefore,
upregulation of key cholesterol efflux genes may not directly
reflect into net cholesterol balance.

Lifestyle habits play an influential role in the overall regulation
of reverse cholesterol transport, with special interest focused on
cholesterol efflux. Dietary pattern’s composition has been hypoth-
esized to be a crucial factor affecting CEC gene-related expression,
even though controversial results have been encountered [51],
and studies mainly reflect the effects of certain components of the
diet, such as fatty acids. The short-term effects of a high saturated
fatty acid (SFA) diet during a 5-week diet intervention resulted

in a downregulation of ABCAI and ABCGI blood expression,
without an increase of plasma inflammatory markers [52]. On
the other hand, an upregulation of ABCGI blood expression was
found after an 8-week diet intervention replacing a specific quan-
tity of dietary SFA with n-6 polyunsaturated fatty acids (PUFAs),
while maintaining the same monounsaturated fatty acid (MUFA)
[53]. In this regard, our findings indicated a common decrease
in the consumption of SFA in every group of PREDIMED and
PREDIMED-Plus, along with a higher consumption of MUFA in
MedDiet pattern groups (MedDiet-EVOO and MedDiet-Nuts in
PREDIMED; and MedDiet and Er-MedDiet in PREDIMED-Plus),
and a slight PUFA increase (in MedDiet-Nuts), in parallel with
an upregulated gene expression of ABCAI and ABCGI in both
studies.

Regarding the impact of physical activity on CEC, the evidence
points to an enhanced functionality under moderate or high
exercise at midterm [54, 55]. Mid-term effects have also been eval-
uated on blood mononuclear cells, yielding an increase in gene
expression of ABCAI and ABCGI during an 8-week longitudinal
study involving low-intensity exercise [56]. In PREDIMED-Plus,
we observed a larger upregulation in the group engaging in
physical activity, Er-MedDiet, than in the MedDiet traditional
group. However, no statistically significant differences were
found in comparing groups.

The regulation of ABCAI and ABCGI constitutes a critical
point due to the impact in the overall CEC. This process oper-
ates at multiple levels (transcriptional, posttranscriptional, and
posttranslational), with a plethora of interrelated molecules par-
ticipating, forming partnerships, stimulating, and inhibiting each
other. Among the most significant we can highlight NRIH3 also
known as LXRa (liver-X-receptor alpha) and NRIH2, also known
as LXRg (liver-X-receptor beta), homeostasis cholesterol sensors
encoding genes, that regulate and actively participate in reverse
cholesterol transport [57]. Through obligatory heterodimerization
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with retinoid X receptors (RXRs), LXRa and LXRfS form a
multifunctional partnership susceptible to stimulation by ligands
(cholesterol and its metabolites). One of them is the heterodimer
LXRa-RXR working as a major transcriptional regulator of
transporters ABCAI and ABCGI, enhancing cholesterol efflux [20,
50, 58, 59]. With regard to our studies, NRIH3 showed statistically
significant upregulation in MedDiet-Nuts, versus both the base-
line and control group which is a similar pattern of that observed
in ABCGI. Although we expected a similar pattern among ABCGI,
ABCAI and NRIH2, NRIH3, a negative feedback mechanism
after transcriptional stimulation could be present. In addition,
different gene expression behaviors might also be attributed to the
concentration decrease of cholesterol or its derivative compounds
[60]. The lack of correlation between ABCGI, ABCAI and NRIH2,
NRIH3 has already been studied in peripheral blood mononuclear
cells (PBMCs) samples of hypercholesterolemic patients, under
different lipid-lowering treatments and in controls [61]. In vitro
experiments involving human PBMC have led to consider first a
differential regulation mechanism between ABCAI and ABCGI,
and secondly, the short span of time of these transcripts upon
agonist stimulation [58].

As previously described, RXRs work as transcription factor in
various biological processes [24, 58, 62, 63]. Among the natural lig-
ands, different unsaturated fatty acids (docosahexaenoic, linoleic,
oleic, and arachidonic acids) and phenolic compounds contained
in olive oil have demonstrated activity on RXRs [62-65]. Previous
research has provided insight of how VOO enriched with phe-
nolic compounds, enhanced proteomic expression of LXR/RXR
among the top signaling pathways [66]. In concordance, we
observed a mild, but statistically significant upregulation of
RXRA and RXRB in the MedDiet-EVOO participants. Meanwhile,
previous studies have pointed out that PUFA contained in nuts
mediates the expression liver X receptors [67, 68]. In this regard,
our results revealed a significant upregulation of RXRA in both
MedDiet and combined MedDiet participants, which are also
significant in comparison to control.

One of the multiple partners that typically collaborates with RXRs
are PPARs, a family of nuclear receptors involved in multiple
metabolic pathways related to glucose and lipid regulation, even
serving as therapeutic targets (fibrates in PPAR« or thiazolidine-
diones in PPARy). Differently represented in tissues, the PPARs
family is known to intervene in biological processes such as
CEC, clearance of oxidized LDL fraction, and reverse cholesterol
transport [20, 25, 69, 70]. Previous research with edible oils
[73-75] reported upregulation over time of this PPAR family.
In the present study, the overall Mediterranean diet effect in
both trials showed mild PPARD upregulation, with a significant
increase in the MedDiet-Nuts and combined MedDiet group
versus control. Unexpected findings have been reported earlier
in referral to PPARA expression, after long-term of single PUFA
supplementation [74].

PPARG is a well-known insulin-sensitizing agent, with already
proven activity on lipid metabolism [24, 75]. The PPARy-LXRa
partnership has been shown to trigger a signaling cascade
improving cholesterol efflux [76, 77]. It has been reported physical
activity effect would be reflected by an upregulation of PPARG
[78, 79]. Within our study, the Er-MedDiet arm, which provided
physical activity promotion, there was a significant downregu-

lation in PPARG and nonsignificant downregulation in NRIH3.
This finding might be due to alternative mechanisms regulating
PPARG [77] or to the fact that the population is elderly with no
notable increases of physical activity.

4.1 | Strengths and Limitations

The first strength of our study lies in its randomized and
controlled design, conducted among free-living individuals. This
approach enabled us to generate foundational scientific evidence
regarding the effects of the dietary interventions under investi-
gation in the target population. Second, the assembled cohort
constitutes a specific group of participants meeting age and
risk factors criteria, allowing conclusions to be transferred to
analogous population at high-cardiovascular risk. On the other
hand, the same reasoning hinders the possibility to extrapolate to
different populations.

Third, peripheral blood cell analysis has been reported as
prolific tissue to study CVDs, inflammation, and cholesterol
efflux biomarkers. However, it must be taken in account the
fact that simultaneous protein analysis has not been performed
and could contribute to understanding biological mechanisms.
Special attention should be given to the fact that active diet
components were not supplemented or provided individually but
were incorporated into various sources within a whole diet.

5 | Conclusion

Mild upregulation of cholesterol efflux-related genes, involving
retinoid X (RXRA, RXRB), ATP-binding cassette family (ABCGI,
ABCALl), liver X (LXRb/NR1H2), and peroxisome proliferator
activated (PPARD) receptors, occurred as long-term responses to
different Mediterranean diets in elderly adults at high cardiovas-
cular risk.
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