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Abstract

Cancer remains a leading cause of mortality worldwide, with breast cancer being the
most frequently diagnosed. Early and accurate detection is critical to improving patient
outcomes, and recent advances in artificial intelligence (Al) have demonstrated significant
potential in supporting this goal. Machine learning (ML) and deep learning (DL) techniques
have been widely applied to medical imaging tasks enhancing diagnostic accuracy across
modalities such as mammography, ultrasound, and magnetic resonance imaging (MRI).
However, most models require task-specific training and large annotated datasets, limiting
their scalability and generalizability.

In response to these limitations, foundation models (FMs) have emerged as a
promising shift in Al research. These large scale models are pre-trained on diverse data and
can be adapted to a wide range of downstream tasks, including multimodal medical
applications. Their capacity for zero-shot and few-shot learning presents opportunities for
improving diagnostic support in data constrained settings. This research explores the
application of FMs in breast cancer analysis, specifically assessing their ability to perform
visual question answering (VQA) on the BCDR-F01 and BreakHis breast imaging datasets.

The study involves selecting a suitable vision-language FM and evaluating zero-shot
and fine-tuning strategies to breast imaging data. Results demonstrate that while FMs show
promising zero-shot performance and flexibility, their effectiveness depends heavily on
model scale, fine-tuning approach, and task formulation, especially in complex multimodal
tasks such as VQA. Instruction tuning and multimodal alignment emerged as critical factors
for improving clinical relevance. This research highlights the potential of FMs to serve as
integrative tools for breast cancer analysis, leveraging multimodal data with minimal
retraining. Nonetheless, challenges remain in optimizing performance for clinical
deployment, particularly around interpretability, domain-specific adaptation, and
computational cost.



Resumen

El cancer sigue siendo una de las principales causas de mortalidad en todo el mundo,
siendo el cancer de mama el mas frecuentemente diagnosticado. La deteccidon temprana y
precisa es fundamental para mejorar los resultados de los pacientes, y los recientes avances
en inteligencia artificial (Al) han demostrado un potencial significativo para respaldar este
objetivo. Las técnicas de aprendizaje automatico (ML) y aprendizaje profundo (DL) se han
aplicado ampliamente a las tareas de imagenologia médica, mejorando la precision
diagnodstica en modalidades como la mamografia, la ecografia y la resonancia magnética. Sin
embargo, la mayoria de los modelos requieren entrenamiento especifico para cada tarea y
grandes conjuntos de datos anotados, lo que limita su escalabilidad y generalizacion.

En respuesta a estas limitaciones, los modelos fundacionales (FM) han surgido como
un avance prometedor en la investigacion de la IA. Estos modelos a gran escala se entrenan
previamente con diversos datos y pueden adaptarse a una amplia gama de tareas posteriores,
incluyendo aplicaciones médicas multimodales. Su capacidad para el aprendizaje de disparo
cero y de pocos disparos presenta oportunidades para mejorar el apoyo diagnéstico en
entornos con datos limitados. Esta investigacion explora la aplicacion de los modelos bésicos
en el andlisis del cancer de mama, evaluando especificamente su capacidad para realizar
preguntas y respuestas visuales (VQA) en los conjuntos de datos de imagenes mamarias
BCDR-F01 y BreakHis.

El estudio implico la seleccion de un modelo fundacional de vision-lenguaje adecuado
y la evaluacion de estrategias de disparo cero y ajuste fino para los datos de imégenes
mamarias. Los resultados demuestran que, si bien los FM muestran un rendimiento y una
flexibilidad prometedores en el disparo cero, su eficacia depende en gran medida de la escala
del modelo, el enfoque de ajuste fino y la formulacion de tareas, especialmente en tareas
multimodales complejas como VQA. El ajuste de instrucciones y la alineaciéon multimodal
resultaron ser factores criticos para mejorar la relevancia clinica. Esta investigacion destaca el
potencial de los FM para servir como herramientas integradoras para el analisis del cancer de
mama, aprovechando datos multimodales con un reentrenamiento minimo. No obstante,
persisten desafios para optimizar el rendimiento para la implementacion clinica, en particular
en cuanto a la interpretabilidad, la adaptacion especifica del dominio y el coste
computacional.



Resum

El cancer €s una de les principals causes de mortalitat a nivell mundial, sent el cancer
de mama un dels més diagnosticats. La deteccio precog i precisa és fonamental per millorar
els resultats dels pacients, i els avengos recents en intel-ligéncia artificial (IA) han constatat
un potencial significatiu per donar suport a aquest objectiu. Les técniques d'aprenentatge
automatic (ML) 1 aprenentatge profund (DL) s'han aplicat ampliament a tasques d'imatge
medica, millorant la precisio diagnostica en modalitats com la mamografia, I'ecografia i la
ressonancia magneética. Tanmateix, la majoria dels models requereixen d’un entrenament
especific per a la tasca i grans conjunts de dades anotades, cosa que limita la seva
escalabilitat 1 generalitzacio.

En resposta a aquestes limitacions, els models fundacionals (FM) han sorgit com un
canvi prometedor en la investigacid sobre IA. Aquests models a gran escala estan
pre-entrenats amb dades diverses i1 es poden adaptar a una amplia gamma de tasques
posteriors, incloses les aplicacions mediques multimodals. La seva capacitat d'aprenentatge
zero-shot 1 few-shot presenta oportunitats per millorar el suport diagnostic en entorns amb
dades restringides. Aquesta investigacio explora l'aplicacio dels FM en I'analisi del cancer de
mama, avaluant especificament la seva capacitat per realitzar respostes visuals a preguntes
(VQA) als conjunts de dades d'imatge de mama BCDR-F01 i BreakHis.

L'estudi inclou la seleccid6 d'un model fundacional de llenguatge-visidé adequat i
l'avaluaci6 d'estratégies d'ajustament precis i de zero shot per a les dades d'imatges de mama.
Els resultats demostren que, si bé els models de fonamentacié mostren un rendiment i una
flexibilitat prometedors de zero shot, la seva eficacia depén en gran mesura de l'escala del
model, I'enfocament d'ajustament precis i1 la formulacié de tasques, especialment en tasques
multimodals complexes com I'analisi de la resposta visuals a preguntes (VQA). L'afinacio de
les instruccions i1 l'alineacié multimodal van sorgir com a factors critics per millorar la
rellevancia clinica. Aquesta investigacio destaca el potencial dels FM per ser utilitzada com a
eines integradores per a l'analisi del cancer de mama, aprofitant les dades multimodals amb
un reentrenament minim. No obstant, encara existeixen certs reptes per optimitzar el
rendiment per al desplegament clinic, especialment pel que fa a la interpretabilitat, 1'adaptacid
especifica del domini i el cost computacional.
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Chapter 1

Introduction

1.1. Context

Cancer is a group of diseases characterized by the uncontrolled growth of abnormal
cells, which can invade nearby tissues and spread to other organs. It is the second leading
cause of death globally, accounting for an estimated 9.6 million deaths in 2018 (World Health
Organization, 2025). Despite significant advancements in treatment, early detection remains
crucial for improving patient outcomes. Ongoing advances in medical technology are
enhancing diagnostic precision, while digital innovations are reshaping clinical approaches to
cancer diagnosis and treatment.

Among these innovations, artificial intelligence (Al) has emerged as a powerful tool
for medical applications. Al is a broad field encompassing various technologies and
advancements, including machine learning (ML) and deep learning (DL). These have been
increasingly used to support medical practitioners with their decision making. In oncology,
Al shows promise in cancer detection and diagnosis (Karger & Kureljusic, 2023). Since
overcoming early technological limitations in the 2000s, Al driven models now analyze
complex algorithms and self-learn, enhancing accuracy and workflow efficiency in clinical
practice (Kaul & Gross, 2020).

1.2. Motivation

Foundation models (FM), such as large language models and vision transformers, are
Al architectures that have shown remarkable capabilities in various domains due to their
ability to leverage vast amounts of data and transfer knowledge across tasks. This project
seeks to explore how these powerful models can be adapted and applied to specific
applications such as breast imaging tasks, potentially revolutionizing detection, diagnosis,
and prognosis in breast cancer care.

FMs are large-scale, pre-trained models that can be fine-tuned for a wide range of
downstream tasks. In the context of medical imaging, these models could potentially capture
complex patterns and relationships in breast images that may not be apparent to human
observers or traditional machine learning approaches.



1.3.  Objectives

This research aims to demonstrate that applying multimodal foundation models in
zero-shot and fine-tuning regimes to diverse breast imaging datasets can achieve performance
comparable to or exceeding that of conventional ML/DL approaches in tasks such as lesion
detection, tumor classification, and cancer subtype prediction. Moreover, it seeks to highlight
the differentiating features of FMs such as their ability to handle complex multimodal and
data constrained scenarios to enable more explainable, contextually grounded, and clinically
relevant outcomes. A set of secondary objectives were defined as part of this goal.

I.  To identify and evaluate suitable FMs that can be adapted for breast imaging tasks,
such as vision transformers or multimodal models that can process both images and
associated clinical data.

II. To develop methodologies for fine-tuning these FMs on breast imaging datasets,
including mammograms, ultrasounds, and magnetic resonance imaging.

III.  To assess the performance of fine-tuned FMs on various breast imaging tasks, such as
lesion detection, classification of benign vs. malignant tumors, and prediction of
cancer subtypes.

IV.  To compare the performance of foundation model-based approaches with traditional
machine learning and DL methods in breast imaging analysis.

V. To investigate the potential of these models for zero-shot or few-shot learning in rare
breast cancer subtypes or uncommon imaging findings.

VI.  To analyze the interpretability and explainability of foundation model decisions in the
context of breast imaging, ensuring that their outputs can be understood and trusted by
clinicians.

VII. To explore the potential of FMs in integrating multimodal data, including imaging,
clinical, and genomic information, for comprehensive breast cancer analysis.

1.4  Planning

The work described here was planned to be performed in four months, following the
time available in the spring semester of the academic year (Figure 1).

The research part is focused on the clinical context of breast cancer and the state of
the art of foundation models. It also covered selecting the data and model that would be
explored. On the other hand, the development stage is focused on preparing the data and
environment for testing zero-shot and fine tuning on visual question answering (VQA).
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Figure 1. Gantt chart of initial planning of the project.




Chapter 2

Breast Cancer

2.1. Epidemiology

Breast cancer is the most commonly diagnosed cancer worldwide, with an estimated
2.3 million new cases in 2020. Women are specially affected, accounting for 685,000 deaths,
a figure projected to reach 1 million by 2040 (Arnold, et. al, 2022). In Spain, it is the most
common type of malignancy in women, representing 30% of total cancer cases. It is also the
country’s female leading cause of death (Contra el Cancer Espaia, 2024).

This disease imposes both social and economic burdens that are unequally distributed.
It is estimated that between 2020 and 2050, cancers will cost the world economy $25.2
trillion, with 7.7% corresponding to breast cancer alone (Chen, et. al, 2023). Noticeably,
transitioned countries have double the incidence rate, while transitioning countries have a
17% increased mortality rate (Figure 2) (Arnold, et. al, 2022).
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ay cpe

2 2 ety et .y e o .
G Saunel e 0 mape (epeduent ppemiamate Sorger mes WGP el Grgadation

Figure 2. Age-standardized breast cancer incidence (blue) and mortality (red) rates per 100,000 females. Breast
cancer cases and deaths by country (Arnold, et. al, 2022).

2.2.  Subtypes

Molecular Classification

Breast cancer is not a single disease; it comprises multiple subtypes that differ in
genetic, molecular, and histopathological features. New understanding of its molecular
biology led to changes in how it is classified. The molecular classification of breast cancer
uses biomarkers to identify each subtype, and guide diagnosis, treatment, and prognosis.
However, the enormous heterogeneity and number of factors involved still make
interpretation a challenging task.



Based on gene expression profiling, breast cancer is classified into four categories
(Figure 3):

I.  Luminal A Carcinomas
II.  Luminal B Carcinomas
III. HER-2 Enriched Carcinomas

IV.  Basal Carcinomas and Triple Negative Carcinomas

Characteristics

Typical intrinsic subtypes Luminal A (HER2)

Frequencyamongbreast 40 -860%

cancers
Grade Lowear
Prognosis Geood

Endocrine
Letrozole, tamaoxifen,

Targeted therapy

exemesiane, anastrozole,

fluvestrant

Chemotherapy Lower response

Ki-67 low expression
GATA-3, XBP1, ESR1&
FOX1 high expression
MAP3K1 & MAPZKA
frequent mutation

Genetic profile

Luminal B (HER2*/ HER2")

Approximately 15% Approximately 10%

Highar
Intermediate

Endacrine

Letrozole, tamioxifen,
exemestane, anastrozole,
fluvestrant

Intermediate respons

ER related genes low
expression
Praliferation genes
increased exprassion
CCHND1 - frequent
amplification

High genomic instability

TMBC (HR- & HERZ')

10-25%

High
General

DNA repair targeting agents
are under investigation like
PARP inhibitors

Platinum based
chemotharapy

Expression of genes
characteristic of normal
breast myoepithelial cells
(cytokeratins 5, 8, and 17)
high expression of DNA
repair proteins
frequent TP53 mutations

Figure 3. Breast cancer tumor’s molecular subtypes (Malik, et al. 2020).

Alternatively, due to time and cost constraints, the standard practice uses the surrogate

classification based on immunohistochemical assessment of biomarkers: estrogen (ER)
receptor, progesterone (PR) receptor, HER2, and Ki-67 (Fernandes, 2022).

2.3.  Medical imaging

There exist several imaging modalities for early breast cancer detection. The most
common imaging techniques in clinical practice are: mammograms (MQG), ultrasound (US),
magnetic resonance imaging (MRI), and histopathology (HP). In fact, 50% of datasets are
MGs, 20% US, 18% MRI and 8% HP. Each of these modalities can be further categorized
into different subtypes (Figure 4).



‘ Breast Cancer Imaging

I
I I I

Mammograms J l Ultrasound MRI Histopathology J
Conventional Mammography (Screen fil Simple Gray Scale US Conventional MRI
_ Mammography) Colored US Contrast Enhanced MR HE Hispathological Images
Digital Breast Tomosynthesis Contrast Enhanced US Ultratast breast MRI W51 Hispathological Images
Full Field Digital Mammography 3D US Diffusion Weighted Imaging I
Contrast Enhanced Digital Mammography Color Doppler MR Elastography
Power Doppler MR Spectroscopy

Tissue Elasticity Imaging
Stress Elastography
Shearwave Elastography
Makagami Colored US

Figure 4. Most common imaging modalities and their subtypes used for breast cancer analysis (Shah, Khan,
Arif, & Sajid, 2022)

2.3.1. Mammograms (MG)

MGs are low intensity X-ray images of human breast where glandular tissue,
cancerous tumors and calcium deposits may appear brighter than surrounding tissue (e.g.,
adipose). As part of the standard protocol, two complementary views are captured for each
breast: a craniocaudal view from above, and a mediolateral oblique view taken at an angle.
These perspectives help provide a more complete assessment of lesions or abnormalities by
reducing tissue overlap and improving localization. (Figure 5).

Figure 5. Standard mammography views: (a) craniocaudal; (b) mediolateral oblique (Morris & Kim, 2022).

MGs have widely been used for breast lesion detection and classification. While also
used to detect breast cancer in early stages, it is not a preferred method due to reduced
sensitivity in dense breast tissue and limited capabilities in capturing micro calcifications.



2.3.2.  Ultrasound (US)

US are imaging techniques that use high frequency sound waves to create real time
pictures of internal body structures. These are performed to detect the location of suspicious
lesions in areas of interest in the breast (Figure 6). They come in 3 broad combinations: (1)
2D grayscale images, color images with (2) Shear Wave Elastography (SWE) added features,
and (3) Nakagami. SWE enhances lesion differentiation by measuring stiffness, while
Nakagami provides additional statistical parameters for localization.

Figure 6. (a) Skin surface, (b) subcutaneous tissue, (¢) mammary (d) retromammary zone (Morris & Kim, 2022).

However, Ultrasound suffers from two key problems that make it unreliable for
general breast cancer screening, especially in asymptomatic women: the images are hard to
interpret due to speckle noise, and the screening results have unacceptably high rates of both
false positives and false negatives.

2.3.3. Magnetic Resonance Imaging (MRI)

MRIs capture multiple breast images at different angles to combine them together as a
detailed view (Figure 7). Compared to previous techniques, they offer greater sensitivity in
dense breasts and provide clearer soft tissue imaging.

Figure 7. MRI scans of an invasive ductal carcinoma (arrow) before chemotherapy (a), after one cycle (b), and
after eight cycles (c) (Morris & Kim, 2022).



Despite being an effective technique, due to its high cost and the possibility of
missing some cancer tissue detectable by MGs, it is typically used as a secondary test to
confirm a pathology or as a tool to follow-up during treatment.

2.3.4.  Histopathology (HP)

Histopathology is the procedure of extracting a tissue sample from a suspicious
human body region for microscopic examination and diagnosis.

Images are produced by fixing the sample glass stained with Haemotoxylin and Eosin,
which create a colored visualization of the tissue (Figure 8). These images are available in 2
forms: (1) Whole Slide Images (WSI) and (2) Image patches extracted from WSI.

Figure 8. Histopathology of invasive carcinoma of no special type (Morris & Kim, 2022).

Patches with different zooming factors are used to diagnose multiple breast cancer
types, which are impossible to diagnose with simple grayscale images. This tissue level
examination has been successfully used for multi-class breast cancer classification (Shah,
Khan, Arif, & Sajid, 2022).



Chapter 3

Artificial Intelligence

3.1. Definition

The field of Al aims to develop systems capable of performing tasks that typically
require human intelligence, such as learning, reasoning, problem solving, and decision
making. Its origins date back to 1950 when Alan Turing published Computing Machinery and
Intelligence. In this paper, Turing raised the question “Can machines think?”” and proposed an
evaluation method for machine intelligence that later became known as the Turing Test. Six
years later, John McCarthy coined the term and described it as “the science and engineering
of making intelligent machines.”

Early Al operated on simple conditional rules. Over time, technological advancements
led to increasingly complex models capable of performing human-like functions (Kavlakoglu
& Stryker, 2024). Various fields emerged to explore these advancements, with ML enabling
computers to learn, evolving with the deeper complexity of DL, and recently leading into the
generative and multimodal capabilities of FMs (Figure 9).

Deep Learning

Foundation
Models

Figure 9. High-level diagram of Al subfields.

3.2. Machine Learning (ML)

ML is a subfield of AI that focuses on the development of algorithms capable of
learning patterns and making predictions from data without explicit programming
(Kavlakoglu & Stryker, 2024).



3.2.1.  Classification

ML can be classified by learning strategy, model type, algorithm, or technique. The
most common categorization distinguishes between supervised, unsupervised, and
reinforcement learning, with some taxonomies further identifying semi-supervised learning
(Figure 10).
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Figure 10. ML classification by learning technique and main applications. Inspired by Li, Lin,& Zeng, 2024.

Supervised Learning

In supervised learning, prediction models learn from labeled datasets. This method
aims at learning the statistical mapping that best describes the relationship between
inputs and outputs. Once trained, the model predicts outputs for new, unseen inputs by
applying this learned mapping.

Unsupervised Learning

Unsupervised learning deals with unlabeled data, aiming to uncover inherent
structures or distributions within the inputs. Without explicit output labels, the model
identifies clusters, associations, or latent representations that reveal the data’s
underlying statistical laws (Li, Lin,& Zeng, 2024).

A subset of unsupervised learning, self-supervised learning leverages the
unlabeled data itself to create its own output labels. It achieves this by defining
pretext tasks where a portion of the data is used to predict another part, thereby
training the model to learn useful representations without external labels. This
approach allows the model to learn meaningful features from the data by solving these
artificially constructed prediction problems (Bergmann, 2023).

10



Reinforcement Learning

Distinct from the previous, reinforcement learning frames learning as an agent’s
interaction with an environment. Actions that yield desirable outcomes receive
rewards, whereas undesirable actions incur penalties. By trial and error, the agent
learns a policy mapping states to actions that maximize cumulative reward over time.

Semi supervised Learning

Semi-supervised learning operates on a mixed dataset of a small labeled subset and a
large unlabeled pool. By leveraging the abundant unlabeled data to inform or
regularize the model, this paradigm seeks to achieve performance similar to fully
supervised methods while significantly reducing labeling cost (Li, Lin,& Zeng, 2024)

3.2.2.  Transfer Learning

Transfer learning is a branch of ML that studies applying knowledge gained from one
task to a different but related one. Formally, the domain of a task consists of the data and the
distribution that generates that data. There are at least two domains: a source domain from
which knowledge is transferred, and a target domain where the learning is focused. The goal
is to use the source domain data to learn a predictive function that minimizes prediction risk
on the target domain (Wang & Chen, 2024). Effective transfer learning requires analyzing
transferability, choosing the appropriate transfer technique, and selecting model parameters
for best performance (Figure 11).
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Figure 11. A complete transfer learning process (Wang & Chen, 2024).

3.2.3. ML techniques for breast cancer

Early breast cancer imaging analysis relied on expert designed image features paired
with simple classifiers. Across all imaging modalities, support vector machines (SVM) and
artificial neural networks (ANN) classifiers are some of the most established and applied.
However, other classifiers including k-nearest neighbors (KNN), decision trees (DT), random
forests (RF) and logistic regression (LR) have demonstrated comparable performance in
certain studies (Figure 12). This highlights that the optimal choice of classifier is not
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absolute, but instead must consider the properties of the data and the nature of the task. SVMs
are emphasized in this review due to their proven effectiveness and adoption.

SVMs have proven highly effective for automated breast cancer diagnosis across
diverse imaging modalities. In MG, SVMs have demonstrated high accuracy in tumor
detection, density assessment, and mass classification. For example, Wajid and Hussain
(2015) and Khalaf and Yassine (2015) applied SVMs to the MIAS, INBreast, and DDSM
datasets, achieving up to 99% accuracy for abnormality assessment and 95.78% accuracy for
cancer classification, respectively. In US, several studies have similarly shown reliable lesion
detection and differentiation using SVMs: Prabusankarlal et al. (2015) reported 95.85%
accuracy for breast mass detection and diagnosis, and Wu et al. (2015) extended these
findings on a larger private cohort, achieving 96.67% accuracy in classification. Likewise,
investigations on private MRI datasets report notably high diagnostic performance. Hassanien
and Kim (2012) achieved 98% accuracy in distinguishing normal from abnormal tissue, while
Soares et al. (2013) reported 94% accuracy for cancer detection. Finally, early SVM
classifiers successfully differentiated cancer subtypes using HP imaging, as demonstrated by
Brook et al. (2008). Taken together, these results underscore the robustness and versatility of
SVM-based methods for accurate breast cancer diagnosis across multiple imaging platforms
(Houssein, Emam, Ali, & Suganthan, 2021).

60
50
40
30
20

10

o ! m B - - | . —
SVM ANN KNN DT RF Fuzzy NB LR

® Mammogram Ultrasound MRI Histplogical —® Thermography

Figure 12. Number of papers using ML techniques per breast imaging modality between 2011 and 2020
based on the systematic review by Houssein, Emam, Ali, & Suganthan (2021).

3.3. Deep Learning (DL)

DL is a subset of ML that uses neural networks built with multiple layers to
automatically learn from complex data. Its models consist of connected neurons across an
input layer, many hidden layers and a final output layer (Figure 13). This arrangement allows
the system to build hierarchical representations by extracting features directly from vast
collections of unstructured or unlabeled data. Traditional ML depends on human selected
traits while DL models learn those features on their own. It incorporates different learning
strategies including semi supervised learning, self supervised learning, reinforcement
learning and transfer learning (Kavlakoglu & Stryker, 2024).

12



AR
NN AT A
Input layper Multiple hidden layers Chetpuat layer

Figure 13. Typical architecture of DL neural networks.

3.3.1. Common Architectures

Different DL architectures are designed to capture underlying semantic information
relevant to specific tasks. Understanding these architectures provides context for their
specialized applications in medical imaging. Some of the basic DL algorithms include:

Convolutional Neural Networks (CNN)

CNNs are used for image processing and analysis. These are made up of
convolutional layers, pooling layers, and fully connected layers that extract and
process image features. Their efficiency in image classification and segmentation
stems from parameter sharing and sparse connectivity.

Generative Adversarial Networks (GAN)

GANSs are used for image generation tasks and are composed of two neural networks,
a generator and a discriminator. The generator creates new data, while the
discriminator evaluates whether the data is real or generated. Through this adversarial
process, the generator improves its ability to produce realistic outputs.

Recurrent Neural Networks (RNN)

RNNs process sequential data by maintaining internal memory states that capture
dependencies over time or space, making them effective for tasks such as 3D
volumetric image analysis, natural language processing, or time series analysis.

Deep Reinforcement Learning (DRL)

DRLs combine DL with reinforcement learning to train agents that maximize rewards.
These are specially useful for improving landmark detection and lesion segmentation
tasks (Jiang et al., 2024).
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3.3.2. DL techniques for breast cancer

DL has transformed breast cancer imaging by enabling the learning of rich feature
representations directly from data. It has recently emerged as a key research focus,
complementing traditional ML methods (Figure 14). Among the various DL architectures,
CNNs have become the predominant approach for breast cancer imaging applications due to
their significant ability to process and analyze medical images across different modalities.
The following review focuses primarily on CNN based methods, as they are the most widely
adopted DL technique in this domain.

CNNs have revolutionized automated breast cancer diagnosis by demonstrating
exceptional performance across all major imaging modalities. In MG, CNNs have achieved
notable accuracy in mass detection and classification. For instance, Chougrad et al. (2018)
achieved 97.4% accuracy on the DDSM database, 95.5% accuracy on the INbreast database,
and 96.60% accuracy on the BCDR database. Building on this, Al-antari and Kim (2020)
proposed a system with DL classifiers to detect and classify lesions achieving F1 scores of
99.2% for DDSM and 98.02% for INbreast datasets.

Similarly, CNNs have demonstrated robust lesion detection and classification in US
imaging. For instance, Han et al. (2017) trained a GoogleNet architecture on 7,408 ultrasound
images, achieving 91.23% accuracy. Separately, Byra et al. (2019) utilized a transfer learning
approach, reaching 88.7% accuracy on benign or malignant breast lesions within a 150 case
test collection.

CNN approaches in MRI applications have shown promising results despite limited
dataset sizes. A method developed by Feng et. al (2020) achieved an 85.0% accuracy on 100
MRI images for distinguishing benign from malignant lesions.

In HP imaging, CNNs have excelled in complex tissue analysis and cancer subtype
classification. Yang et al. (2019) successfully classified breast tissue into four categories
(normal, benign lesions, carcinoma in situ, and invasive carcinoma), achieving 91.75%
accuracy. Similarly, Roy et al. (2019) developed patch-based CNN classifiers that achieved
90.0% accuracy for four class HP classification and 92.51% for binary classification tasks.
(Houssein, Emam, Ali, & Suganthan, 2021)

60
50
40
30

20

Number of publications
o}
3

100 ‘

10 50 ‘

Mammogram Ultrasound MRI Histplogical 00 2019 2018 2017 2016 2005 2014 208 2002 201

SVM mDL = ANN SVM ®ANN =KNN = Deep learning

Figure 14. (left) Common ML and DL techniques for breast cancer imaging and (right) their annual publication
trends for classification tasks based on the review by Houssein, Emam, Ali, & Suganthan (2021).
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3.3.3.  Limitations

Application of DL is challenging in clinical practice. It requires improving
transparency, explainability, availability, accuracy, and performance. There are also ethical
concerns, and regulatory requirements that need to be addressed.

Algorithmic challenges in DL include the lack of annotated data for training,
integration into real world workflows, and transparency. Effective Al needs large annotated
datasets that are labor intensive and costly to create. Integrating it to medical workflow
requires extensive validation to ensure reproducibility and accuracy, and guidelines to be set
for data and method normalization. Besides this, models often suffer from the “black box”
problem, lacking necessary transparency for clinical adoption.

The development of effective models is also hindered by the interconnected
challenges of limited and diverse data, ethical considerations, and medical data privacy and
security. The integration of multimodal data is essential for advancing DL applications.
Despite this, few DL models combine non imaging features with imaging data. Multicenter
and high quality data is needed to maximize repeatability, and generalizability. However, the
difference in acquiring and processing data results in significant heterogeneity. Sharing this
data also raises privacy concerns, which call for collaborative and decentralized training
methods (Jiang et al., 2024).

15



Chapter 4

Foundation Models

4.1. Definition

FMs are first defined by Bommasani et al. (2021) as “any model that is trained on
broad data that can be adapted to a wide range of downstream tasks.” Unlike DL models
which often require large, task-specific, labeled datasets, FMs are pre-trained and available
for fine tuning into various applications (Azad et. al 2023).

4.2.  History

Early machine decision making began with expert systems: collections of hand coded
rules that mapped inputs to outputs based on human expertise. Arthur Samuel (1959) ushered
in the era of data driven learning by proposing that machines could learn without being
explicitly programmed. Initially, such systems relied on expert defined features, but the
advent of DL in the 2010s enabled hierarchical feature discovery directly from raw data,
dramatically reducing the need for manual feature engineering (Figure 15).
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Figure 15. History of ML (Schneider, Meske, & Kuss., 2024).

DL’s modular architecture was flexible across different data types. Yet early neural
networks were bottlenecked by the scarcity of labeled data given that supervised learning
relied on this costly human annotation. Transfer learning partially alleviated this constraint by
reusing representations from a “pre-trained” network on new tasks, fine-tuning only select
layers. However, major progress arrived with self-supervised learning, which allowed models
to learn from vast unlabeled corpora by solving surrogate tasks.
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Self-supervised learning made scale the key factor driving progress. The introduction
of the transformer architecture (Vaswani et al. 2017) facilitated the scaling of self-supervised
training to massive datasets, leading to the emergence of FMs. These models demonstrate
unprecedented expressiveness, multimodality, and the ability of solving new tasks without
explicit retraining. FMs are typically refined via supervised fine-tuning, reinforcement
learning from human feedback, or instruction tuning, enhancing alignment with user intent
and ethical norms. Together, self-supervision, scale, and emergent in-context learning
distinguish foundation models as the next stage in the evolution of ML (Schneider, Meske, &
Kuss., 2024).

4.3. Characteristics

FMs have key features that differentiate them from traditional, specialized Al models.
Foremost among these is prompt sensitivity, how interaction can influence the behaviour of
Al systems. Prompting allows users to direct the system’s output, ensuring it generates
appropriate content. It is not limited to LLM', but also multimodal systems like image
generation. Effective prompt design has shown to enhance performance by studies such as
Kojima et al (2022). It can also help developers with fine tuning and defense against
adversarial prompts.

Another key feature is the emergence of in-context learning, the ability to display new
capabilities not explicitly programmed by developers. Training on large and diverse datasets
enables these models to identify patterns and develop skills autonomously. As models
continue to grow, the need for task specific tuning may diminish. However, there’s an
inherent uncertainty that raises concern about explainability, unpredictability, and the
potential for unexpected behaviours.

Lastly, the importance of scale to model performance led to homogenization, the
“consolidation of methodologies and models across Al applications and research
communities (Schneider, Meske, & Kuss., 2024).” Factors such as the high cost of training
and the monopoly of a few organizations on large proprietary datasets drive the centralization
of a select set of models, which become the foundation for future Al systems. However, this
raises concern on power centralization, dependencies, algorithmic monoculture, and the
propagation of biases and undesirable behaviours across applications. It also impacts the roles
of actors in developing Al, creating an ecosystem of FM providers, integrators, and end users,
with implications for power dynamics and access to models (Schneider, Meske, & Kuss.,
2024).

! Large Language Models (LLMs) are transformer-based FMs trained on large text corpora, enabling
general-purpose language understanding and generation across diverse tasks.
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4.4. Architecture

Most foundation models take advantage of transformer architectures. The transformer
model is a DL architecture known for its ability to grasp complex relationships across
different data modalities (Figure 16). This makes it a powerful tool for tasks that require an
understanding of context and relationships between far-apart tokens.

1. Input sequence: the input for the model, a sequence of tokens.

2. Embedding layer: layer that converts each token in the input sequence into a
fixed-size dense vector. Vectors capture the semantic meaning of tokens, and make
them suitable for further processing.

3. Positional encoding: transformers do not have an inherent understanding of token
order in the input sequence. This layer adds position information to the embedding
vectors so the model can differentiate sequences with the same tokens in different
order.

4. Encoder blocks: consists of a stack of identical blocks which process the entire
sequence, each containing two main sub-layers to refine the representation of the
input sequence:

a. Multi-head Attention: a mechanism that allows the model simultaneous
attention on different parts of the input sequence, capturing relationships
between tokens regardless of their position to each other.

b. Feed-Forward Network: a fully connected network to process the output of the
attention mechanism, adding non-linearity and complexity to the model.

5. Decoder blocks: Similar to the encoder, with an additional attention layer focused on
the encoder’s output. It processes the target sequence during training and inference,
refining its understanding of the sequence through this dual attention on input-output.

a. Masked Multi-Head Attention: masks future tokens, preventing the decoder
from attending them and ensuring predictions only rely on preceding tokens.

b. Encoder-Decoder Attention: allows attention on relevant parts of the encoded
input sequence.

c. Feed-Forward Network: adds nonlinearity and complexity to the decoder's
output.

6. Linear layer: maps the final decoder output to the target dimension.

7. Softmax layer: provides the probability distribution of the next token, derived from
the linear layer's logits (unnormalized probabilities).

8. Output sequence: the stream of generated tokens (Singh, A., & Singh, K., 2025).
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Figure 16. The Transformer - model architecture (Vaswani et al. 2017).

4.5. Training

4.5.1.  Pre-training

In pre-training, a model typically leverages a Transformer architecture with
self-attention layers to analyze a large corpus of unlabeled text. Using objectives such as
masked language modeling, next sentence prediction, and causal language modeling, the
model learns to capture the statistical patterns and linguistic structures inherent in natural
language. This process cultivates a general language understanding and requires substantial
computational resources over extended periods of time.

4.5.2.  Fine-tuning

Following pre-training, fine-tuning adapts the pre-trained language model to specific
downstream tasks by exploiting labeled, domain-specific datasets. Through back-propagation
and gradient descent, the model’s parameters are adjusted to minimize errors and align its
output with task-specific objectives. This method leverages the model’s established language
understanding to adapt to the task using less data and reduced computational resources.
However, thousands of labelled task-specific samples may still be required to achieve
state-of-the-art performance.
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4.5.3.  Few-shot learning

Few-shot learning addresses scenarios where only a minimal number of labeled
examples (typically one to five samples per class) are available. By employing meta-learning
strategies, the model is first trained on a diverse set of classification tasks to develop
transferable generalization capabilities. This meta-training enables rapid adaptation to new
classes, mitigating overfitting in contexts where extensive labeled data is impractical.

4.5.4.  Zero-shot learning

Zero shot learning enables the classification of text instances into categories that were
not present during training. This method leverages semantic descriptions or class attributes,
either by encoding both the text and the class information as embeddings or by using
inference based approaches with large scale language models to assess compatibility through
similarity metrics such as cosine similarity. In this way, the model is able to generalize to
unseen classes by inferring relationships between textual representations and class semantics
(Ferrari & Ginde, 2025).

4.6. Taxonomy

Azad et al (2024) proposed a methodical taxonomy to help researchers navigate the
rapidly evolving field of foundation models in medical imaging. Their classification focuses
on training strategies, but also factors in application areas, imaging modalities, specific
organs of interest, and algorithms involved.

The taxonomy distinguishes between two model categories: Visually Prompted
Models (VPM) and Textually Prompted Models (TPM) (Figure 17). VPMs are designed to
handle visual inputs to guide their learning process. These models excel in tasks where visual
prompts enhance image recognition and segmentation. On the other hand, TPMs leverage
textual inputs to drive their learning and performance in visual recognition tasks. They
combine textual and visual features through a fusion module to understand and process
image-text pairs.
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Figure 17. Textual and Visual Prompted model categories proposed by Azad et. al 2024.
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Based on these categories, the taxonomy further classifies six distinct groups
according to their objectives. TPMs encompass generative, conversational, contrastive, and
hybrid forms, while VPMs are divided into adaptations and generalist forms (Figure 18).
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Figure 18. FM taxonomy in medical imaging. Inspired by Azad et al. (2024).

Models acquire an understanding of the relationship between vision and language
through various pre-training objectives, which Azad et al. (2024) have broadly categorized as
contrastive and generative. Contrastive objectives help models learn distinctive
representations by pulling similar samples closer together in the feature space and pushing
unrelated ones farther apart. Different loss functions are used to optimize different
applications. For example, Image Contrastive Loss focuses on measuring and optimizing
image similarity, while Image-Text Contrastive Loss aims to align image and text
embeddings. On the other hand, generative objectives facilitate the learning of semantic
features by training models to generate image or text data through various generation tasks.
There also exist different loss functions to this objective. For instance, Masked Image
Modelling enables the acquisition of cross-patch correlations by masking and reconstructing
image patches, while Masked Language Modelling enhances language understanding by
masking and predicting text tokens.

Contrastive TPMs excel at bridging the semantic gap between medical images and
text by using contrastive learning. They are particularly useful in scenarios with limited
labeled data, such as rare medical conditions or specialized imaging modalities. Generative
TPMs focus on generating detailed responses and explanations for medical image-related
queries. They aim to support clinical decisions by providing reasoning and interpretability.
Hybrid TPMs combine generative and contrastive methodologies to integrate image-text
tasks. They are adept at visual-questioning tasks and a valuable tool for quick diagnosis.
Conversational TPMs enable interactive dialogues between professionals and Al systems.
Experts can ask questions, seek explanations, and instruct on medical images.

Adaptation VPMs focus on extending medical imaging tasks. They are tailored for
specific clinical applications and demonstrate robust generalization power. Generalist VPMs
seek versatility by handling a wide spectrum of medical imaging tasks and data modalities.
Their flexibility allows them to handle various tasks without the need for extensive retraining.
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4.7. Downstream tasks and applications

Foundation models aim for broad capabilities that use combinations of different data
types: text, image, video, and speech. For this reason, tasks and applications include and
combine those of different and often overlapping areas of Al research. Text and image data
are the most common and therefore NLP and Computer Vision have been the most explored.
Tasks that require a single data type are defined as unimodal, while those integrating multiple
data types are multimodal.

4.7.1.  Natural Language Processing (NLP) tasks

NLP is the field of Al focused on enabling computers to understand, interpret, and
generate human language. The following tasks focus on text data.

Reading comprehension

Evaluates a model's ability to read and comprehend a text passage to answer questions
related to its content. Typically divided into four categories depending on the
expected answer: cloze style (filling the blank), multiple choice, quoting a part of the
text, and free-form answer. Achieving accuracy may require models to have certain
world knowledge, process paraphrases, execute multi-sentence reasoning, and handle
ambiguous or unanswerable queries.

Question answering

Assesses responses without context. In open cases, the model has access to a
collection of knowledge without knowing where the answer appears. In closed cases,
performance relies exclusively on knowledge acquired during the training phase.

Common Sense reasoning

Challenge models to apply real-world, common-sense reasoning rather than rely on
memorized data. They cover scenarios like physical interactions and social situations.
Tasks also cover problems requiring mathematical reasoning and natural-language
inference, ensuring that models must understand and deduce rather than recall.

Natural Language generation

Aims to produce coherent, contextually appropriate text from structured or
unstructured inputs. It includes tasks such as text summarization, code generation,
machine translation, and writing tasks (Audiffren & Ostapuk, 2024).
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4.7.2.  Computer Vision tasks

Computer Vision is a field of Al that aims to enable computers to "see" and interpret
the visual world, similar to how humans do. The following tasks focus on image data.

Image Classification

Assigns one or more semantic labels to an image. Models must cope with significant
intra-class variability (pose, lightning, occlusion) and unknown “none of the above”
cases, requiring large labeled datasets and architectures that generalize beyond
training distributions.

Object Detection

Locates and classifies individual object instances within an image via bounding
boxes. Variants include face detection and pedestrian detection. Detectors must handle
objects at different scales, overlapped, occluded or in cluttered scenes.

4.7.3.  Language and Vision tasks

This area of Al focuses on enabling machines to understand and interact with both
images and text, integrating various Al components to handle them.

Visual Captioning

Generates a natural language description given an image. Requires the model to
accurately detect the object, attributes, and their relations, then composing
contextually appropriate sentences.

Text-to-image generation

Inverse of captioning, given a text prompt generates an image. This task requires the
model to interpret the textual description and then synthesize a visually coherent
image that matches the prompt.

Visual Questioning Answering (VQA) and Reasoning

Involve answering open or closed ended natural language questions about images.
This requires a model to perform multimodal feature fusion, effectively combining
information from both the image and the question. It often relies on attention
mechanisms to focus on relevant parts of the image and question, and modular
reasoning to break down complex queries into manageable steps (Szeliski, 2022).
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4.8. Evaluation of FM

Given the wide range of downstream tasks FM can perform, it is necessary to use
standardized evaluation metrics suited to each task to ensure accurate performance
assessment. For tasks expecting answers that can be considered part of categories such as
classification or VQA, binary and multiclass classification metrics effectively quantify the
model's predictive accuracy. Tasks taking a free form generative approach, such as image
captioning or text summarization, instead rely on alternative metrics like ROUGE, BLEU,
METEOR, and CIDEr to evaluate the quality of generated text.

4.8.1.  Binary classification

When evaluating a binary classifier, the predicted labels are compared against the
actual true labels. This comparison yields four counts that make up the confusion matrix
(Table 1): true positives (TP), where the model correctly predicted the positive class; true
negatives (TN), where it correctly predicted the negative class; false positives (FP), instances
incorrectly classified as positive; and false negatives (FN), instances incorrectly classified as
negative.

Table 1. Confusion matrix.

Predicted = Positive Predicted = Negative
Actual = Positive True Positive (TP) False Negative (FN)
Actual = Negative False Positive (FP) True Negative (TN)

From these counts, several key performance metrics can be derived to evaluate
different aspects of classifier performance. Table 2 summarizes the most commonly used
metrics, their formulas, and their insights.

Table 2. Summary of binary classification metrics. Inspired by (Ferrari & Ginde, 2025).

Metric Formula Key Insights
Precision p = TP Proportion of positive predictions that are correct, critical
TP + FP

when false positives are costly as in medical diagnosis.

Recall R = —2 __ Proportion of actual positives correctly identified, critical
TP+ EN when false negatives are costly as in fraud detection.

F1-score 7 = 2R Describes the balance between precision and recall, often
P+ R used as summary measure for imbalanced datasets

Accuracy A = TP+ TN Simple measure of overall correct classification, limited
TPH+TN+FP+EN in scenarios with imbalanced class distributions
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4.8.2.  Multiclass classification

For multi-class classification problems involving K  distinct classes
(k=1,2,3, .., K), the metrics of Precision, Recall, and Fl-score can be generalized
through various averaging methods across these classes. Two common schemes are macro
(unweighted) and micro (weighted by class size). Macro averaging provides equal weight to
each class, making it valuable when all classes are considered equally important regardless of
their frequency in the dataset. Conversely, micro averaging weights each prediction equally,
giving more influence to classes with larger sample sizes and providing a measure more
aligned with overall classification accuracy. Notably, micro precision, micro recall, and micro
F1 are all measured using the same accuracy metric and thus have identical scores. Table 3
summarizes the macro metrics, their formulas, and their insights.

Table 3. Summary of multiclass metrics. Inspired by (Ferrari & Ginde, 2025).

Metric Formula Key Insights
Macro g 5 Indicates the model's prediction correctness across all
Precision (mP) o = classes, penalizing poor performance on smaller classes.
K
Macro Recall ; 5 Shows if the model finds most true instances for all
(mR) mR = 2= i classes, crucial when missing a class is costly.
K
Macro F1 mF1 = 2 x (—=2£2mf ) Emphasizes uniform performance across all classes
(mF ]) mP ~ *mR

4.8.3.  Text generation

Text generation tasks require different evaluation approaches than classifiers. These
metrics compare generated text against one or more references, as described in Table 4.

Table 4. Summary of generation metrics. Inspired by (Ferrari & Ginde, 2025).
Metric Key Insights
Recall-Oriented Understudy for ~ Evaluates summarization tasks by measuring the overlap between system
Gisting Evaluation (ROUGE) generated and human text. Variants consider n-grams and longest

common subsequences.

Bilingual Evaluation Understudy =~ Appropriate for evaluating machine translation. Calculates precision of

(BLEU) n-grams in the generated text compared to the reference.
Metric for Evaluation of Evaluates generated text by combining precision and recall and
Translation with Explicit incorporating factors like synonym matches and alignment between the
Ordering (METEOR) output and reference.
Consensus-Based Image Evaluates the quality of captions of images. Considers both precision and

Description Evaluation (CIDEr)  recall, while also weighing saliency and rarity to capture relevant details.
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4.9. Challenges

The large scale of FMs comes at a cost. These models face challenges similar to those
previously discussed in DL. However, the pursuit of strong Al has not only intensified these
existing issues but also introduced new ones. These challenges span various areas, including
data diversity, design considerations, tuning complexities, theoretical understanding,
environmental impact, and social implications.

Model performance can be enhanced with support for multimodal and multilingual
data. Multimodal research has often focused on combinations of two modalities, such as text
and image or text and audio. To develop effective multimodal FMs, it is crucial to create new
datasets that integrate multiple modes. Similarly, multilingual models can benefit from tasks
designed specifically for multilingual contexts. However, increasing the vocabulary size
would require more parameters, creating an additional cost challenge.

The computational demands of FMs is a significant barrier to accessibility and
innovation. As models continue to grow in size, additional research into model compression
techniques is needed to reduce costs and facilitate wider participation in development.
Another challenge is improving robustness in NLP to withstand adversarial inputs that
manipulate output predictions. Unlike images, where transformations do not alter content
meaning, even minor word substitutions can impact text semantics.

Achieving consistent model performance across both upstream and downstream tasks
remains a fundamental challenge. Abnar et al. (2021) observed a nonlinear relationship
between these tasks’ performance, noting that increased training data and accuracy in
pretraining does not necessarily imply improved downstream results. Additionally, the excess
of self supervised tasks hinders establishing a clear relationship to downstream tasks. This
creates ambiguity in how pretraining knowledge transfers to specific applications, making it
difficult to determine which of them contribute meaningfully to downstream performance. As
a result, models may learn representations that are overly broad or misaligned with the
requirements of their target tasks.

A stronger theoretical understanding can better guide experimentation. There is
currently a lack of profound theory to support tentative experiments. While some analyses
attempt to understand phenomena like the collapse of pretraining and the generalization
ability, a comprehensive theoretical foundation remains elusive. Moreover, semantic
understanding poses a challenge, as it is unclear whether FMs genuinely grasp the meaning of
language or simply rely on corpus learning. Although excelling in various datasets, they often
struggle with stability and performance on domain-specific or smaller ones, failing to meet
the purpose of human language use (Zhou, et al., 2024).

Lastly, ensuring responsible development and deployment of FMs requires addressing
business, governance, ethical, and ecological challenges. As these models become integral
parts of business processes, responsibilities and liabilities among stakeholders must be
formalized. Organizations must also assess and mitigate their risks, adjusting Al management
structures to consider issues such as privacy and copyright. Existing governance frameworks
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can guide this adaptation. Regulatory bodies such as the EU Al Act (Regulation (EU)
2024/1689) are discussing the creation of ethical Al systems and promoting their responsible
behaviour. Examining the broader economic and social implications, such as workforce
dynamics and market competition will be important. In addition, the ecological footprint of
training and deploying foundation models requires research into their environmental impact,
including energy consumption, carbon emissions, and resource use. Solutions to improve
sustainability may include optimizing model architecture, reducing redundancy in training
data, researching model compression, and implementing structural changes like shared
computing resources and federated learning networks (Schneider., Meske, & Kuss, 2024).
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Chapter 5

Implementation

5.1. Model definition

As seen in the taxonomy, there exist several types of foundation models in medical
imaging. The chosen model needed to address our initial hypothesis, enabling a
comprehensive exploration into fine-tuning, performance, zero-shot learning, multimodality,
and explainability. Potential limitations, such as GPU ? availability, model size and licensing
had to also be taken into consideration.

Generalist VPMs best explore the versatility of foundation models in integrating and
utilizing diverse data types across various medical tasks. From these models, Zhang et al.'s
(2024) BiomedGPT aligned the most with the purpose of the research. First, it is a fully
transparent, open-source language-vision model licensed for academic research. The model
checkpoints, datasets, and scripts used for preprocessing, training, fine tuning, and evaluation
are accessible. Additionally, it achieved state-of-the-art results in 16 out of 25 experiments
assessing its capabilities on both unimodal and multimodal tasks that included image
classification, captioning, VQA, text summarization, and medical natural language inference.
The performance was also evaluated by medical professionals.

Another key advantage of BiomedGPT is its lightweight architecture. It is available in
three distinct sizes, referred to as BiomedGPT-S (tiny), BiomedGPT-M (medium), and
BiomedGPT-B (base), along with instruction-tuned versions. This range of sizes allows for
flexibility in environments with varying GPU accessibility and facilitates testing and tuning
of performance effects. Overall, BiomedGPT is an accessible, well documented, and
powerful foundation model useful for several research purposes.

The foundation for these capabilities is the model's multimodal transformer
architecture (Figure 19), which is designed to handle 2D image and text data. A multimodal
architecture differs from the traditional architecture in three key aspects. First, it is trained on
datasets containing paired image-text examples to correlate visual features with descriptive
text. The embedding space is therefore joint so both visual and textual data coexist and be
processed. Lastly, it uses cross-attention layers to enable focusing on one modality while
generating text (Singh, A., & Singh, K., 2025).

2 A Graphics Processing Unit (GPU) is a specialized processor with a parallel architecture that
accelerates the training of artificial intelligence models by efficiently performing the simultaneous matrix and
vector operations essential for DL algorithms.
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Image projection Representation size Transformer block
Model scale #Parameters
Input size Visual encoder Hidden Intermediate Att. head #Enc. layer  #Dec. layer
BiomedGPT-S 33 million 256 x 256 ResNet-50 256 1024 4 4 4
BiomedGPT-M 93 million 256 x 256 ResNet-101 512 2048 8 4 4
BiomedGPT-B 182 million 256 x 256 ResNet-101 768 3072 12 6 6
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Figure 19. (a) BiomedGPT scale definition and (b) architecture (Zhang et al., 2024).

5.2. Model performance

BiomedGPT's performance is particularly notable when compared to other prominent
large language models in the biomedical domain. It notably outperformed OpenAl's GPT-4
with vision (GPT-4V) in human evaluations specifically for radiology tasks. Furthermore,
BiomedGPT surpassed Google's Med-PaLM M in both breast cancer diagnosis and medical
VQA. This is a significant achievement, considering that Med-PaLM M is a much larger
model, featuring 12 billion parameters.

BiomedGPT's performance across its various model sizes on diverse downstream
tasks highlights its capabilities in different modalities. For binary image classification,
BiomedGPT achieved accuracies of 97.0% and 89.7% on the SZ-CXR and MC-CXR
datasets, surpassing the state of the art LightTBNet by 6.0% and 0.8%. In three class
classification BiomedGPT-B surpassed the F1-Macro score of Med-PaLM M in both mass
classification (scoring 57.2% vs 51.1%) and calcification classification (scoring 72.8% vs
67.9%).

On medical VQA tasks, BiomedGPT demonstrated solid accuracy for closed
questions. It scored 88.0% on PathVQA and 81.3% on VQA-RAD, and set a new
state-of-the-art score of 86.1% on SLAKE. However, the model is less effective with
open-ended questions. Particularly, recording scores of 60.9% on PathVQA and 28.0% on
VQA-RAD. Its performance on these was significantly lower, which can be attributed to its
more limited model capacity and a lack of diverse conversational data during its training.
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This can cause it to provide incomplete or syntactically awkward answers to more complex
medical queries.

For medical image captioning, BiomedGPT achieved exceptional results on the PEIR
GROSS dataset, surpassing the existing state-of-the-art with improvements of 8.1% in
ROUGE-L, 0.5% in METEOR, and a significant 89.8 point increase in CIDEr scores. The
model's performance on the [U X-RAY dataset revealed interesting trade-offs in its
captioning strategy. While BiomedGPT achieved a leading CIDEr score of 40.1 (representing
a 5.0-point improvement over the previous best model), it recorded lower METEOR and
ROUGE-L scores of 12.9% and 28.5% respectively. This performance pattern reflects the
model's training optimization, which prioritized capturing key visual elements over broader
linguistic fluency. On the more challenging MIMIC-CXR dataset, BiomedGPT matched the
leading model's METEOR score of 14.2%, though it fell short of the larger Med-PaLM M
model in ROUGE-L (23.7% vs 26.2%) and CIDEr (14.7 vs 23.4) metrics.

Finally, in medical text summarization and NLP tasks, BiomedGPT demonstrated
strong scaling properties and competitive performance despite its relatively compact size. For
medical natural language inference using the MedNLI dataset, the model showed clear
improvements with increased parameter count, achieving accuracies of 75.8%, 80.8%, and
83.8% across its three model variants. Notably, BiomedGPT-B achieved 83.8% accuracy
while using only a quarter of the parameters of SciFive-Large (which achieved 86.6%),
resulting in just a 2.8% performance gap despite the significant efficiency advantage. For text
summarization tasks, BiomedGPT-B was evaluated across four benchmark datasets including
MedQSum, HealthCareMagic, MIMIC-CXR, and MIMIC-III, demonstrating solid
summarization capabilities across diverse medical text types from doctor-patient dialogues to
radiology reports (Zhang et al., 2024).

5.3.  Explored tasks

BiomedGPT addressed both unimodal applications, including classification, text
summarization, and report generation, and multimodal tasks like VQA and captioning.
BiomedGPT focused on the latter, and will therefore be the subject of these experiments.
Specifically, VQA tasks were chosen due to their multimodal complexity, zero-shot
capacities, and exploring the effect of instruction fine tuning on performance.

5.4. Dataset selection

For VQA tasks, BiomedGPT was fine-tuned with the PathVQA (He et al., 2020), and
SLAKE (Liu et al., 2021) datasets. Additionally, zero-shot performance was evaluated using
the VQA-RAD (Lau et al., 2018) dataset omitted from training. It is important to note that
these datasets contain different open and closed questions for radiology images of various
organs. Answers are generally short, and most questions are straightforward and not complex.

To evaluate zero-shot performance and fine-tuning across imaging modalities, we
selected two datasets: BCDR-FO1 (Moura et al., 2013) for mammography and a subset of
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BreakHis for histopathology. To test the effect of instruction tuning, we will use a newly
generated naive VQA dataset that mimics the instructions of VQA-RAD for BCDR-F0, and
then compare it to a BreakHis VQA dataset provided by Hu et al. (2024) OmniMedVQA.

5.5. Evaluation metrics

BiomedGPT evaluates VQA tasks through weighted Fl-score, accuracy and
alignment accuracy. These same metrics are kept for consistency. In the case of VQA,
accuracy measures the total cases where the answer is an exact match to the ground truth.
Alignment accuracy measures if the answer is aligned to the question. For example, if a
closed question is asked, the model answer is expected to align to yes/no answers.

5.6. Experiment hypotheses

Based on prior breast-imaging results with BiomedGPT and considering model
architectures, sizes, fine-tuning approaches, and dataset complexity, the following
hypotheses are proposed:

Model Size Effect

Increasing the model size will yield higher overall VQA accuracy on biomedical
image-question pairs.

Zero-Shot Question Type Performance

In zero-shot settings, closed-ended questions will achieve higher accuracy than
open-ended questions. Noticeably, performance will be worse on breast images
compared to other regions.

Dataset Alignment and Instruction Tuning

Generating a VQA dataset closely matched in style and content to BiomedGPT's
breast-imaging data, will improve both alignment and accuracy. In contrast, a more
complex VQA dataset on a different modality such as BreakHis, will reduce
alignment and accuracy but highlight the model's capacity and flexibility.

Fine-Tuning Trade- Offs

Fine-tuning non-instruction-tuned model variants on relevant VQA data will boost
accuracy compared to their zero-shot baselines. However, without prior instruction
tuning, answers are prone to be misaligned; achieving parity with instruction-tuned
versions will require substantially more data or training epochs.
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Chapter 6

Results and discussion

6.1. Development Environment

BiomedGPT underwent pre-training on a set of 10 NVIDIA A5000 GPUs, and the
majority of its scripts employ a distributed launch configuration. Therefore, a GPU-enabled
environment is required for optimal performance. However, given current GPU pricing, a
physical setup may not be easily accessible. For this reason, a cloud environment was chosen,
as it offers free (albeit limited) GPU access and the option to scale at a lower cost.

Different platforms were explored, but Google Colab was ultimately chosen. Its
virtual machine offered consistent free tier GPU availability, integration with Drive, and 100
GB of storage, sufficient for most datasets. It also had limitations, most significantly a
cumbersome Miniconda interaction and restricted terminal access.

The installation guide for BiomedGPT was adapted for this environment. The colab
notebook gcloud conda_setup.ipynb is provided as a guide to clone the repository, mount the
Drive and install Miniconda to ensure its persistence. Miniconda was necessary to create an
environment with the required Python and pip versions for the packages. The scripts could
then be executed via the conda run command.

6.2. Data exploration
6.2.1. VQA-RAD

Before jumping into evaluating VQA =zero-shot capacities, a data exploration is
conducted on the dataset BiomedGPT evaluated it with. Lau et al. (2018) developed
VQA-RAD, a dataset comprising 3,515 question-answer pairs linked to 315 radiology images
of various organs. A random sample of the test set images is shown in Figure 20.

synpic44430.jpg synpic59213.jpg synpic23916.jpg synpic40697.jpg synpic16143.jpg

*
v’
o

synpic43433.jpg

Figure 20. Random sample of the VQA-RAD test dataset.
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VQA-RAD has two types of questions: closed (yes/no) and open questions. Figure 21
shows the density distribution in the character length of questions and answers. Notice that
most of the answers are short (below 40 characters), indicating a significant number of closed

questions.
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Figure 21. VQA-RAD test density of question and answer character length.

Considering that instruct tuned versions are used for evaluation, taking a look at the
nature of the questions is important. Figure 22 shows the distribution of the first and second
words across the questions of the test set. Questions beginning with “Is...” are often related to
closed, specific, and unambiguous answers. In contrast, questions starting with other words
(e.g., what, are, can...) are typically correlated with open, more complex, and longer answers.

what

Figure 22. Distribution of the first and second words in the test questions.
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6.2.2. BCDR-FO01

Derived from Breast Cancer Digital Repository (BCDR), the BCDR-FOI dataset
contains 200 biopsy-confirmed film MG lesions, equally split between 100 benign and 100
malignant cases (Figure 23). It comprises a total of 358 feature vectors, with 184 instances
corresponding to the benign lesions and 174 to the malignant ones (Moura et al., 2013). For
each lesion, the dataset provides a set of clinically relevant attributes, including six binary
indicators of radiological findings (i.e., masses, microcalcifications, calcifications, axillary
adenopathies, architectural distortions, and stroma), an ordinal measure of breast tissue
density, and the patient's age at the time of examination. This rich yet concise set of features
allows for targeted analysis of the relationship between observable characteristics and
diagnostic outcomes.

This research could not identify a dedicated VQA dataset on the BCDR-FO01 dataset.
This presented an opportunity to showcase the zero-shot capabilities and flexibility of
foundation models by generating a VQA using the dataset's clinically annotated features.

ID: patient_672/study_731/img_672_731_1_RO 1D: patient_41/study_42/ima_41_ 42 1 RO ID: patient,

202/study_209/img_202_209_2 RCC  ID: patient_347/study_358/img_347_358_1_LCC  ID: patient_195/study_201/img_195_201_1_LCC

745/study_804/img_745 804 1 LCC  ID: patient_396/study_416/img_396_416_1 RO ID: patient_45/study_47/img_45_47_1 RO ID: patient_396/study_416/img_396_416_1 RCC  ID: patient_434/study 461fimg_434_461 1 LCC

Figure 23. Random sample of the BCDR-FO01 dataset.

6.2.3. BreakHis

The BreakHis dataset is a publicly accessible collection of breast cancer
histopathological images introduced by Spanhol et al. (2016). It comprises a substantial
number of microscopic images of breast tumor tissue, captured at various magnification
factors (40x, 100x, 200x, and 400x) (Figure 24). Experiments used a subset including 241
benign and 443 malignant cases from the OmniMedVQA dataset by Hu et al (2024). Notice
the significant difference in question structure and density compared to the one in VQA-RAD
(Figure 25). All questions are open and consistent in format, falling into two categories:
classification (malignant/benign) and modality (histopathology).

BiomedGPT was primarily pre-trained and fine-tuned using radiology imaging data.
Considering the established success of histopathology in accurately classifying rare cancer
subtypes, the aim of utilizing this dataset is to demonstrate the foundation model's inherent
flexibility and its ability to generalize effectively in a zero-shot setting.
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=

Figure 24. Random sample of the BreakHis subset dataset.
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Figure 25. (left) OmniMedVQA BreakHis density of question and answer character length and (right)
distribution of the first and second words in the test questions.

6.3. Data processing

Both the BCDR-FO1 and OmniMedVQA BreakHis datasets are converted into
BiomedGPT-compatible VQA formats by following a consistent, reproducible pipeline: each
dataset is shuffled with a fixed random seed and stratified by answer labels to preserve the
original distribution of question-answer pairs.

In the BCDR-FOI pipeline, closed questions use binary features (e.g., modality, lesion
presence, organ, diagnosis) mapped directly to “yes” or “no,” while open questions draw on
the corresponding class labels. All questions are generated from a predefined set of templates
inspired on Path-VQA, VQA-RAD, and SLAKE. The resulting question-answer pairs are
then split 70% train, 15% validation, and 15% test producing JSON files. These are then
prepared into TSV and PKL files as BiomedGPT does for VQA-RAD to further fine tune.

Similarly, OmniMedVQA BreakHis entries, which already have paired questions and
answers (e.g., malignancy status, subtype), are normalized and reformatted, then divided 70%
train, 30% test.
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6.4. Zero-shot inference
6.4.1. Method

BiomedGPT has the ability to answer biomedical questions in a free form manner at
scale, without requiring retraining. This is a significant difference from earlier biomedical Al
models such as BERT® or ViT* based models incapable of zero-shot prediction, or CLIP®
based models that required a predefined answer (Zhang et al., 2024). As shown in Figure 26,
BiomedGPT can generate answers by simply processing the input data.

Question:
Is the gallbladder
enlarged?

(encoder + decoder)

|

Generated answer:
Yes

[ BiomedGPT J

Figure 26. BiomedGPT-style zero-shot learning (Zhang et al., 2024).

6.4.2.  Zero shot pipeline
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Figure 27. Zero-shot experiment pipeline across local (green) and cloud (blue) environments.

? Bidirectional Encoder Representations from Transformers (BERT) is a pre-trained language model
that learns deep bidirectional representations from unlabeled text using the Transformer architecture, enabling
diverse NLP tasks (Devlin et al., 2019).

* Vision Transformer (ViT) applies the Transformer architecture, originally for NLP, directly to image
classification by treating image patches as sequences (Dosovitskiy et al., 2021).

> Contrastive Language-Image Pre-training (CLIP) is an OpenAl model trained on a vast dataset of

text-image pairs using contrastive learning, enabling cross-modal understanding and zero-shot capabilities
(Radford et al., 2021).
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As Figure 27 illustrates, our zero-shot experiment pipeline involves both local and
cloud environments. For each dataset, a specific local notebook, preprocess_{dataset}.ipynb,
is used to transform the raw data into the structured training, validation, and test .tsv files,
along with a .pkl file. The .tsv files contain the processed input data for BiomedGPT, while
the accompanying .pkl file stores the answer mappings for model evaluation.

Zhang et al (2024) evaluate zero-shot inference using the test set and the script
evaluate vqa rad unconstrained.sh. For these experiments, we use
gcloud _evaluate unconstrained.sh, an adapted version designed for the cloud environment.
This version changes the distributed launch so that it works with the GPU available from
Google. It is also parameterized to facilitate testing different datasets.

The colab notebook gcloud zeroshot vga.ipynb automatically downloads all three
instruct models to run the script. Successful completion generates a log file with the details
and score, and a csv file with the predictions made by the model. We analyze and plot the
results locally using the notebook vqa_zeroshot analysis.ipynb.

6.4.3. Results

VOA-RAD

The unique answer count and scores per model are shown in Figure 28. Figure 29
presents a random image from the VQA-RAD test set, along with its question-answer pairs
and the predictions from each model size. Details on the prediction distribution generated per
model are shown in Appendix 1.

Comparison of unigue answer counts across model sizes for RAD-VQA Weighted F1 Scores for zeroshot RadVQA
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Figure 28. VQA-RAD unique answers (left) and weighted F1 scores (right) for instruct tuned models.
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Question: what organ is affected by pathology in this image?
Ground Truth: brain

Base Model: brain

Medium Model : brain

Tiny Model: flair

Modality : head

Question : what structures are involved?
Ground Truth : caudate, putamen, left parietal
Base Model: basal ganglia

Medium Model : basal ganglia

Tiny Model : hyperintensities

Modality : head

Question : is this image abnormal?
Ground Truth: yes

Base Model: yes

Medium Model: yes

Tiny Model: yes

Modality : head

Image ID: synpic52248

Figure 29. Comparison of BiomedGPT model inference with ground truth on a random VQA-RAD pair.

From these results one can observe that larger models show greater generalizability,
evidenced by a higher count of unique answers. This is accompanied by an improvement in
overall scoring. These results are in line with those reported by Zhang et al (2024). Do
consider that parameters are kept unchanged from the repository, including the seed.

BCDR-FO01

The generated dataset's distribution of open and closed questions, categorized by
modality, lesion detection, organ, and diagnosis, closely mirrors that of VQA-RAD (Figure
30). Using the same zero-shot colab notebook, after the processed test.tsv file is uploaded,
one can run the script parameterizing beam size® and specifying this new dataset.
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6 "beam size" refers to the number of top candidate sequences (answers) that a model keeps track of at
each step of the decoding process. Exploring more potential answers can lead to higher quality results.
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Figure 30. (left) BCDR-FO1 test density of question and answer character length and (right) distribution
of the First and Second words in the test questions.

The zero-shot experiment is repeated with the test set of this generated VQA dataset.
The unique answer count and scores per model are shown in Figure 31. On the other hand,
Figure 32 presents a random image from the generated BCDR-FO1 test set, along with its
question-answer pairs and the predictions from each model size. Additionally, Table 4
compares accuracy per question type and category. Details on the prediction distribution
generated per model are shown in Appendix 2.

Comparison of unique answer counts across model sizes for BCDR-FO1 Weighted F1 Scores for zeroshot BCDR-FO1
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Figure 31. BCDR-FO1 unique answers (left) and weighted F1 scores (right) for instruct tuned models.

Sample BCDR-FO01 Test entry

Question : what are those densities in the breast tissue?
Ground Truth : calcification

Base Model: granulomas

Medium Model: densities

Tiny Model :

Modality : breast

Question : is the liver visible in the image?
Ground Truth: no

Base Model: No

Medium Model: no

Tiny Model: no

Modality : breast

Question : what type of image is this?
Ground Truth : x-ray

Base Model: x-ray

Medium Model:

Tiny Model: breast

Modality : breast

Question : does the patient have malign breast given the image?
Ground Truth : yes

Base Model: yes

Medium Model: yes

Tiny Model: no

Modality : breast

Image ID: patient_120/study_124/img_120_124 1 RCC

Figure 32. Comparison of model inference with ground truth on a random BCDR-F01 pair.
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Table 4. Zero-shot accuracy for BCDR-FOI open and closed questions on a range of tasks.

tiny_closed tiny_open medium_closed | medium_open | base _closed base_open
calcification 0.30 0.00 092 0.00 0.87 0.07
classification 0.35 0.00 0.47 0.00 0.47 0.00
density 0.26 0.00 0.60 0.00 0.40 0.00
microcalcification 0.50 0.00 0.56 0.00 0.58 0.00
modality 0.23 0.06 0.87 0.00 0.47 0.59
organ 0.38 0.20 0.79 0.00 0.30 0.00

Once again we notice greater generalization on larger models. Interestingly, the
medium model performed better in this seed. Both base and medium models had an
impressive accuracy for closed questions, both noticeably higher than the tiny variant.
There’s a significant struggle for all model sizes to accurately answer open questions.
Specially on classes that are rarely present in previous VQA datasets (density,
microcalcification and ‘breast’ organ). However, the top answers on these questions reveal
relevant instruction and alignment accuracy. As seen in Appendix 3, when asked to describe
the density of the breast the medium model includes answers such as ‘“high”, “low”,
“relatively dense” or “relatively uniform”. Similarly, base and medium variants answer with

2% ¢

“carcinoma”, “cancer”, and “invasive ductal carcinoma” on classification.

BreakHis

Finally, we perform zero-shot on the OmniMedVQA BreakHis dataset. This test
utilized a beam size of 10 to enable the evaluation of more comprehensive cancer subtyping
answers. The unique answer count and scores per model are shown in Figure 33. In Figure
34, arandom image per ground truth is depicted, along with its question-answer pairs and the
predictions from each model size.

Comparison of unigue answer counts across model sizes for BreakHis

Weighted F1 Scores for zeroshot BreakHis

Unique Answer Count

—0.02 4

—0.04 {

base.json medium.json tiny.json base.log medium.log tinylog

Figure 33. (Left) OmniMedVQA BreakHis unique answers and scores across instruct tuned models
using BreakHis dataset. (Right) Note that on open-ended VQA, a larger beam size can decrease accuracy, as it
produces more semantically varied answers that fail evaluation against ground truth.
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Question : what imaging modality was used to capture this image?
Ground Truth : histopathology

Base Model: were obtained using light microscopy and

Medium Model: were obtained using 2x magnification.

Tiny Model:

51
R85> A N |
Image ID: benign/SOB_B_A-14-22549AB-40-012

=

Question : what does this histological sample depict?

Ground Truth : benign breast histopathology

Base Model : of the ductal adenocarcinoma

Medium Model: showing a proliferation of lymphocytes and plasma cells
Tiny Model:

Question : what does this image show?

Ground Truth : malignant breast histopathology
Base Model: of adenocarcinoma

Medium Model: of tumor cells

Tiny Model:

Image ID: malignant/SOB_M_DC-14-2773-100-026

Figure 34. Comparison of model inference with the ground truths of OmniMedVQA BreakHis set.
Note that no answers are reported by tiny model, possibly due to low answer confidence.

In this case, generalization across model sizes is more noticeable due to beam size.
Given this parameter and considering all questions were open, the obtained 0 scores were
expected. However, once again top answers reveal interesting instruction and alignment
accuracy (Appendix 4). For modality, base and medium models recognize that images are
obtained with a microscope, mention Haemotoxylin and Eosin, and attempt estimating the
magnification. Similarly, these models mention “tissue”, “cells”, “ducts” and “breast” and
attempt subtyping in some classification cases. While the answers include relevant breast
cancer subtypes, they also contain unrelated subtypes from the lung, gastrointestinal, and
brain domains, indicating the need for further refinement to improve prediction accuracy.
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6.5. Fine-tuning
6.5.1. Method

BiomedGPT has an encoder-decoder cross-attention mechanism. Encoder-decoder
LLMs are designed for sequence-to-sequence tasks. They translate sequences of textual input
to sequences of textual output. In contrast to decoder-only LLMs, the input sequence does not
represent a prompt but a genuine input that needs to be translated to a genuine output of
unknown lengths. As shown in Figure 35, when working with pre-trained encoder-decoder
LLMs, fine-tuning is usually done by fully fine-tuning the pre-trained LLM with a training
dataset that contains input sequences and corresponding target sequences (Ferrari & Ginde,
2025).

Fine-Tuning Labeled Training Data

d

Full fine-
tuning

Pretrained
Encoder-
Decoder LLM

Prediction ‘L

Fine-tuned Output
Input task specific
LLM

Figure 35. Schematic pipeline when using encoder-decoder LLMs (Ferrari & Ginde, 2025).

BiomedGPT adopts sequence to sequence learning for both pre-training and

finetuning. Formally, given a sequence of tokens X, as input, where i = 1,.., I indexes the

b
tokens in a data sample, and b = 1,.., B indexes a sample in the training batch. Let the
model parametrized by 0 autoregressive train by minimizing:

B I B I
LoGey ) == X log Il PCx, 1%,y X ) = = X 11 Logpy(Cx, lx_, ),
b=1 =1 b=1i=1
where x could refer to both linguistic and visual tokens in the context of BiomedGPT.

By minimizing the negative log-likelihood of each token conditioned on prior tokens,
BiomedGPT learns to generate coherent answers from multimodal inputs. During fine-tuning
on BCDR-FO01, each example concatenates image embeddings with question tokens, and the
model must sequentially predict answer tokens. Aligning the fine-tuning objective with
pre-training ensures that learned biomedical language-vision correlations are effectively
transferred to the VQA task, enabling accurate prediction of relevant responses.
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6.5.2.  Fine tuning pipeline
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Figure 36. Fine tuning pipeline across local (green) and cloud (blue) environments.

Figure 36 shows our fine-tuning pipeline. Like zero-shot experiments, this requires
processing the dataset and adapting the train vga rad beam scale.sh script for the cloud
environment. The colab notebook gcloud finetune vqa.ipynb is used to automate and
facilitate loading the data and models to run it. An important difference is that training is
performed on the base models rather than on the instruct variants used in the zero-shot
experiments. Successful completion generates a file with the details and progression through
epochs. It also saves 3 fine tuned models (last, best, and epoch).

For evaluation, the evaluate vqa rad beam_scale.sh script is adapted into the cloud
in gcloud _evaluate beam scale.sh. A colab notebook gcloud finetune evaluate vqa.ipynb
helps load the best tuned model checkpoint and test set to evaluate it with. A log and json file
including the predictions are generated and analyzed similar to the zero-shot experiments
using the local notebook vga_finetune analysis.ipynb.

6.5.3. Results

To study the effect of fine-tuning, we selected the medium and tiny non-instruct
models as they performed the best and worst in the zero-shot experiments. It was also
considered that fine-tuning takes much more time. For this reason, the max epochs were
reduced from 100 to 15. This way, anyone can try these experiments on a free Colab session
(4 hours max). Specifically, fine tuning the tiny variant took around 90 minutes, and the
medium variant 110 minutes.

Figures 37 and 38 display the loss functions and scores per epoch for BiomedGPT
tiny and BiomedGPT medium on the BCDR-FO01 train and validation sets, respectively.
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Figure 37. BiomedGPT tiny loss function and VQA score over 15 epochs on BCRD-F01
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Figure 38. BiomedGPT medium loss functions and VQA score over 15 epochs on BCRD-F01

Comparing both models reveals important differences. Despite falling training loss in
both models, the tiny version's VQA score remained stagnant compared to the medium
version's progress. Both models also show a slight increase in the validation loss after the
initial epochs. Although this signals overfitting, the performance on the VQA task continues
improving. This suggests learning of relevant features, even if its general prediction accuracy
on unseen data is not ideal.

After tuning, we evaluate both models as done in the zero-shot experiments. Table 5
compares accuracy per category question type and category.
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Table 5. Fine tune accuracy for BCDR-FO01 open and closed questions on a range of tasks.

tuned_tiny closed tuned_tiny_open tuned_medium_closed | tuned_medium_open
calcification 0.00 0.00 0.14 0.38
classification 0.00 0.00 0.04 0.00
density 0.00 0.00 0.00 0.00
microcalcification 0.00 0.00 0.05 0.67
modality 0.00 0.81 0.34 0.00
organ 0.00 089 015 0.89

Compared to the zero-shot experiments, the fine-tuned models perform better on
open-ended questions but underperform on closed ones. Additionally, the medium model
demonstrates better generalization than the tiny variant. An analysis of the responses
indicates instances of instruction misalignment, suggesting that instruction tuning plays a

critical role in improving overall accuracy.

A high level overview of the experiments on BCDR-FO1 are presented in Table 6.

Table 6. Summary of results with BCDR-FO1 generated dataset

6.6. Overview
Dataset Experiment
zero shot
BCDR-FO1
generated
VQA

fine tuning

Model

instruct BiomedGPT
base

instruct BiomedGPT
medium

instruct BiomedGPT
tiny

tuned BiomedGPT
medium (15 epoch)

tuned BiomedGPT
tiny(15 epoch)

Weighted
F1 score

0.3210

.0.3533

0.1935

0.2212

0.1244
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Accuracy
Closed Open
0.3436 0.0431
0.7055 0.0000
0.5282 0.1108
0.1166 0.3148
0.0000 0.3000

Instruction
alignment
accuracy

Strong

Strong

Moderate

Weak

None




Chapter 7

Conclusions and Future Work

7.1.

Conclusions

By thoroughly researching FMs and experimenting on BiomedGPT, a prominent

generalist biomedical FM, the primary objective of this research has been addressed.

BiomedGPT has comparable performance on classification and lesion detection tasks to other
FMs and ML/DL tasks. The experiments on a complex multimodal VQA task using both
established and generated datasets show that BiomedGPT can effectively integrate visual and
textual information to produce accurate, interpretable answers even under limited data
conditions. Moreover, most of the secondary objectives were achieved with some limitations
regarding availability, scope, and costs.

II.

I1I.

IV.

VI

VIL

This research has successfully identified and implemented a generalist
vision-language FM capable of processing both imaging and text data for unimodal
and multimodal tasks.

To showcase the model's adaptability to imaging data, zero-shot and fine-tuning was
performed on the BCDR-FO1 and BreakHis datasets, which consist of mammograms
and histopathology images, respectively.

Performance was assessed on VQA tasks that included questions on lesion, tumor,
and cancer subtypes. Zero-shot performance showed promise, but fine tuning revealed
instruction tuning is significant to reach these results.

A concise and focused study was conducted to identify the key characteristics and
performance differentiators of ML, DL, and FM in the context of breast imaging
tasks. However, comparison to the explored task (i.e., VQA) was limited to
BiomedGPT’s recorded performance.

Potential for zero-shot learning on rare breast cancer subtypes was explored using the
BreakHis dataset. However, the generation of answers including unrelated subtypes
from other organs suggests that further refinement is necessary to improve specificity
and clinical relevance.

To analyze the interpretability and explainability of model outputs, BiomedGPT’s
responses to clinically grounded VQA prompts were examined, allowing assessment
of how well the model aligns with diagnostic reasoning and whether its outputs can be
meaningfully interpreted by clinicians.

To investigate the potential for integrating multimodal data, we tackled the
challenging task of VQA. Results show that comprehensive analysis is currently
limited by the non complex nature of VQA datasets and reliance on instruction tuning.
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Additionally, this research aims to advance the democratization of knowledge on
FMs. My sincere gratitude to Zhang et al. (2024) for their fully transparent, detailed, and
highly accessible model, which significantly aided my research, understanding, and
experimentation. To broaden its impact, I have adapted their work to a free and accessible
cloud platform to facilitate exploration to future researchers. The code organization of my
work is shown in Appendix 5.

7.2. Limitations

A key limitation of this study is the nature of the datasets used for testing. Generated
questions for BCDR-FO1 are non complex nor diverse. Additionally, the use of older,
non-digital mammography could impact the generalizability of the findings to modern
imaging techniques. The subset of BreakHis from OmniMedVQA has similar issues on
question quality and category diversity.

There are also practical limitations such as GPU access and costs. Results highlight
the importance of model size, fine tuning strategies, and data volumes to reach state of the art
performance. All of these incur a significant economic and time cost. While models with
higher parameter size are available, open access is restricted to users with relevant academic
credentials or behind a heavy paywall. Concerns on data governance are to be considered.

7.3.  Future work

FMs can be easily adapted to several tasks and data modalities. In fact, BiomedGPT
has already explored and proposed an architecture to handle 3D data. In this research only
VQA was fully explored, but there are many other areas with relevant performance such as
classification, text summarization, report generation, and captioning. Possible extensions of
this work could focus on adapting and exploring these tasks on new (3D image) datasets,
taking notice that an accurate evaluation may require medical validation. BiomedGPT was
chosen due to its generative, generalist, and zero shot performance. However, as discussed in
the taxonomy, there exist other FMs better suited for specific medical tasks. For instance,
contrastive Generative TPMs can better approach rare disease diagnosis and zero-shot
classification. Similarly, Hybrid TPMs combination of contrastive and generative pre training
objectives adapt better to VQA and complex diagnosis tasks.
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Appendix
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Appendix 1. Prediction distribution on zero shot VQA-RAD tests on instruct models. (left) Bar plot comparing
the top 20 answers (right) Pie plot with the top 10 categories, ‘other’ being the grouping of the remaining
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Top 20 Answers in test_predict_base.json
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no (33.6%)
yes (11.4%)
(11.2%)
density (5.8%)
x-ray (5.4%)
carcinoma (5.4%)
biopsy (3.8%)
density classification (2.3%)
carcinomas (2.2%)
Ne (2.2%)
Other (16.7%)
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yes (24.9%)
no (24.0%)
(17.1%)
cancer (11.8%)
densities (2.5%)
high (2.3%)
carcinoma (2.0%)
cancer breast cancer (1.8%)
density (1.7%)
micro densities (0.9%)
Other (11.1%)

Answer Distribution (Top 10) in test predict_tiny.json
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(34.1%)
yes (24.7%)
no (16.0%)
breast (5.5%)
mean (3.5%)
carcinoma (3.2%)
No (3.1%)
tumor (1.2%)
Yes (1.1%)
ultrasound (1.1%)
Other (6.5%)

Appendix 2. Prediction distribution on zero shot BCDR-FO1 tests on instruct models. (left) Bar plot comparing
the top 20 answers (right) Pie plot with the top 10 categories, ‘other’ being the grouping of the remaining.
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Top 5 'open' Answers per Category - base
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Appendix 3. Top 5 answers per category on open questions from the zero shot BCDR-FO01 testset on instruct



Top 20 Answers in test_predict_base.json Answer Distribution (Top 10) in test_predict_base.json
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8 Ml of tissue samples (2.3%)
151 of ducts (2.3%)
10 4 B of tumour cells (1.8%)
of adenocarcinoma (1.8%)
54 W were obtained using a microscope at 200x magnification. (1.4%)
Other (51.6%)

&
PO)
&
¥
,bb
& &
@c‘ '
A
Q\E

-x\z@
Top 20 Answers in test_predict_medium.json Answer Distribution (Top 10) in test_predict_medium.json
35 Answers
(16.7%)
304 - B were captured using a light micrescope. (15.4%)
of tissue (10.9%)
237 m of tumor cells (7.7%)
E 204 show malignant cells (3.6%)
] mmm of tissue samples (3.2%)
15 ' were taken using light microscopy techniques. (2.3%)
/ = of cells (1.8%)
104 / of breast tissue stained with hematoxylin and eosin. (1.8%)
5] B of lesion (1.4%)

Other (35.3%)

A Y
I S S g

@ &
a""&o‘c ‘y)\,'”\ é"bgbq'o &% (3‘;04}‘\
T H TS E
SO R F S S
FL L O &
& S @A
S
S8 o
NI
& >
&
&
&
e
Top 20 Answers in test_predict_tiny.json Answer Distribution (Top 10) in test_predict_tiny.json
1754
Answers
150 4 (83.7%)
= showing excellent cribriform pattern (4.5%)
1254 showing neoplastic cells (3.6%)
B with excellent cribriform pattern (0.9%)
£ 100 showing ductopenia (0.9%)
] mmm with well differentiated adenocarcinoma (0.9%)
5] -‘Q"‘;-: in ductopenia (0.9%)
\ = in this image (0.5%)
504 stained with Hemochromatesis (0.5%)
mmm with perineural invasion (0.5%)
25 Other (3.2%)

Appendix 4. Prediction distribution on zero shot OmniMedVQA BreakHis tests on instruct models. (left) Bar
plot comparing the top 20 answers (right) Pie plot with the top 10 categories, ‘other’ being the grouping of the
remaining.
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Cloud {Colal:)
_ tonls to run zero-shot and fine tuning experiments

notebook to generate vga dataset
notehook to preprocess datasets

notebooks to analyeze vga datasets / results

Appendix 5. Code structure for cloud and local environment use.
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