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Abstract 

 

Cancer remains a leading cause of mortality worldwide, with breast cancer being the 
most frequently diagnosed. Early and accurate detection is critical to improving patient 
outcomes, and recent advances in artificial intelligence (AI) have demonstrated significant 
potential in supporting this goal. Machine learning (ML) and deep learning (DL) techniques 
have been widely applied to medical imaging tasks enhancing diagnostic accuracy across 
modalities such as mammography, ultrasound, and magnetic resonance imaging (MRI). 
However, most models require task-specific training and large annotated datasets, limiting 
their scalability and generalizability.​
​ In response to these limitations, foundation models (FMs) have emerged as a 
promising shift in AI research. These large scale models are pre-trained on diverse data and 
can be adapted to a wide range of downstream tasks, including multimodal medical 
applications. Their capacity for zero-shot and few-shot learning presents opportunities for 
improving diagnostic support in data constrained settings. This research explores the 
application of FMs in breast cancer analysis, specifically assessing their ability to perform 
visual question answering (VQA) on the BCDR-F01 and BreakHis breast imaging datasets. 

The study involves selecting a suitable vision-language FM and evaluating zero-shot 
and fine-tuning strategies to breast imaging data. Results demonstrate that while FMs show 
promising zero-shot performance and flexibility, their effectiveness depends heavily on 
model scale, fine-tuning approach, and task formulation, especially in complex multimodal 
tasks such as VQA. Instruction tuning and multimodal alignment emerged as critical factors 
for improving clinical relevance. This research highlights the potential of FMs to serve as 
integrative tools for breast cancer analysis, leveraging multimodal data with minimal 
retraining. Nonetheless, challenges remain in optimizing performance for clinical 
deployment, particularly around interpretability, domain-specific adaptation, and 
computational cost. 

 

 



 

Resumen 
 

El cáncer sigue siendo una de las principales causas de mortalidad en todo el mundo, 
siendo el cáncer de mama el más frecuentemente diagnosticado. La detección temprana y 
precisa es fundamental para mejorar los resultados de los pacientes, y los recientes avances 
en inteligencia artificial (AI) han demostrado un potencial significativo para respaldar este 
objetivo. Las técnicas de aprendizaje automático (ML) y aprendizaje profundo (DL) se han 
aplicado ampliamente a las tareas de imagenología médica, mejorando la precisión 
diagnóstica en modalidades como la mamografía, la ecografía y la resonancia magnética. Sin 
embargo, la mayoría de los modelos requieren entrenamiento específico para cada tarea y 
grandes conjuntos de datos anotados, lo que limita su escalabilidad y generalización. 

En respuesta a estas limitaciones, los modelos fundacionales (FM) han surgido como 
un avance prometedor en la investigación de la IA. Estos modelos a gran escala se entrenan 
previamente con diversos datos y pueden adaptarse a una amplia gama de tareas posteriores, 
incluyendo aplicaciones médicas multimodales. Su capacidad para el aprendizaje de disparo 
cero y de pocos disparos presenta oportunidades para mejorar el apoyo diagnóstico en 
entornos con datos limitados. Esta investigación explora la aplicación de los modelos básicos 
en el análisis del cáncer de mama, evaluando específicamente su capacidad para realizar 
preguntas y respuestas visuales (VQA) en los conjuntos de datos de imágenes mamarias 
BCDR-F01 y BreakHis. 

El estudio implicó la selección de un modelo fundacional de visión-lenguaje adecuado 
y la evaluación de estrategias de disparo cero y ajuste fino para los datos de imágenes 
mamarias. Los resultados demuestran que, si bien los FM muestran un rendimiento y una 
flexibilidad prometedores en el disparo cero, su eficacia depende en gran medida de la escala 
del modelo, el enfoque de ajuste fino y la formulación de tareas, especialmente en tareas 
multimodales complejas como VQA. El ajuste de instrucciones y la alineación multimodal 
resultaron ser factores críticos para mejorar la relevancia clínica. Esta investigación destaca el 
potencial de los FM para servir como herramientas integradoras para el análisis del cáncer de 
mama, aprovechando datos multimodales con un reentrenamiento mínimo. No obstante, 
persisten desafíos para optimizar el rendimiento para la implementación clínica, en particular 
en cuanto a la interpretabilidad, la adaptación específica del dominio y el coste 
computacional. 

​
​

 

 



 

Resum 
 

El càncer és una de les principals causes de mortalitat a nivell mundial, sent el càncer 
de mama un dels més diagnosticats. La detecció precoç i precisa és fonamental per millorar 
els resultats dels pacients, i els avenços recents en intel·ligència artificial (IA) han constatat 
un potencial significatiu per donar suport a aquest objectiu. Les tècniques d'aprenentatge 
automàtic (ML) i aprenentatge profund (DL) s'han aplicat àmpliament a tasques d'imatge 
mèdica, millorant la precisió diagnòstica en modalitats com la mamografia, l'ecografia i la 
ressonància magnètica. Tanmateix, la majoria dels models requereixen d’un entrenament 
específic per a la tasca i grans conjunts de dades anotades, cosa que limita la seva 
escalabilitat i generalització. 

En resposta a aquestes limitacions, els models fundacionals (FM) han sorgit com un 
canvi prometedor en la investigació sobre IA. Aquests models a gran escala estan 
pre-entrenats amb dades diverses i es poden adaptar a una àmplia gamma de tasques 
posteriors, incloses les aplicacions mèdiques multimodals. La seva capacitat d'aprenentatge 
zero-shot i few-shot presenta oportunitats per millorar el suport diagnòstic en entorns amb 
dades restringides. Aquesta investigació explora l'aplicació dels FM en l'anàlisi del càncer de 
mama, avaluant específicament la seva capacitat per realitzar respostes visuals a preguntes 
(VQA) als conjunts de dades d'imatge de mama BCDR-F01 i BreakHis. 

L'estudi inclou la selecció d'un model fundacional de llenguatge-visió adequat i 
l'avaluació d'estratègies d'ajustament precís i de zero shot per a les dades d'imatges de mama. 
Els resultats demostren que, si bé els models de fonamentació mostren un rendiment i una 
flexibilitat prometedors de zero shot, la seva eficàcia depèn en gran mesura de l'escala del 
model, l'enfocament d'ajustament precís i la formulació de tasques, especialment en tasques 
multimodals complexes com l'anàlisi de la resposta visuals a preguntes (VQA). L'afinació de 
les instruccions i l'alineació multimodal van sorgir com a factors crítics per millorar la 
rellevància clínica. Aquesta investigació destaca el potencial dels FM per ser utilitzada com a 
eines integradores per a l'anàlisi del càncer de mama, aprofitant les dades multimodals amb 
un reentrenament mínim. No obstant, encara existeixen certs reptes per optimitzar el 
rendiment per al desplegament clínic, especialment pel que fa a la interpretabilitat, l'adaptació 
específica del domini i el cost computacional. 

 

 



 

Acknowledgments 
​

I dedicate this work to the ones who have faced cancer - those who continue to fight, those 
who have survived, and those we remember with love. Your resilience and bravery will 

forever inspire me.​
​

Special thanks to Dr. Oliver Díaz Montesdeoca for his guidance, trust, and empathy. To all 
my professors, who gave me the skills and knowledge to tackle this endeavor. To the 

friendships that shared hardship and laughter with me.  

 

Gracias 

Pia, por enseñarme a soñar 

Paco, por celebrar mi curiosidad 

Rodrigo, por ser mi mentor 

Paula, Javier, Angelina y Pepe por su amor, alegría, sabiduría, y esfuerzo 

Cesia, por recordarme lo bonito en la vida 

 

 

 



 

Table of Contents​
 

Introduction.............................................................................................................................. 1 
1.1. Context.......................................................................................................................... 1 
1.2. Motivation..................................................................................................................... 1 
1.3. Objectives......................................................................................................................2 
1.4 Planning..........................................................................................................................2 

Breast Cancer........................................................................................................................... 4 
2.1. Epidemiology................................................................................................................ 4 
2.2. Subtypes........................................................................................................................ 4 
2.3. Medical imaging............................................................................................................5 

2.3.1. Mammograms (MG)............................................................................................ 6 
2.3.2. Ultrasound (US)................................................................................................... 7 
2.3.3. Magnetic Resonance Imaging (MRI)...................................................................7 
2.3.4. Histopathology (HP)............................................................................................ 8 

Artificial Intelligence................................................................................................................9 
3.1. Definition...................................................................................................................... 9 
3.2. Machine Learning (ML)................................................................................................9 

3.2.1. Classification......................................................................................................10 
3.2.2. Transfer Learning............................................................................................... 11 
3.2.3. ML techniques for breast cancer........................................................................ 11 

3.3. Deep Learning (DL).................................................................................................... 12 
3.3.1. Common Architectures...................................................................................... 13 
3.3.2. DL techniques for breast cancer.........................................................................14 
3.3.3. Limitations......................................................................................................... 15 

Foundation Models.................................................................................................................16 
4.1. Definition.................................................................................................................... 16 
4.2. History.........................................................................................................................16 
4.3. Characteristics............................................................................................................. 17 
4.4. Architecture.................................................................................................................18 
4.5. Training....................................................................................................................... 19 

4.5.1. Pre-training.........................................................................................................19 
4.5.2. Fine-tuning......................................................................................................... 19 
4.5.3. Few-shot learning...............................................................................................20 
4.5.4. Zero-shot learning.............................................................................................. 20 

4.6. Taxonomy....................................................................................................................20 
4.7. Downstream tasks and applications............................................................................ 22 

4.7.1. Natural Language Processing (NLP) tasks.........................................................22 
4.7.2. Computer Vision tasks....................................................................................... 23 
4.7.3. Language and Vision tasks................................................................................. 23 

4.8. Evaluation of FM........................................................................................................ 24 

 



 

4.8.1. Binary classification...........................................................................................24 
4.8.2. Multiclass classification..................................................................................... 25 
4.8.3. Text generation................................................................................................... 25 

4.9. Challenges................................................................................................................... 26 
Implementation.......................................................................................................................28 

5.1. Model definition..........................................................................................................28 
5.2. Model performance..................................................................................................... 29 
5.3. Explored tasks............................................................................................................. 30 
5.4. Dataset selection..........................................................................................................30 
5.5. Evaluation metrics.......................................................................................................31 
5.6. Experiment hypotheses............................................................................................... 31 

Results and discussion............................................................................................................32 
6.1. Development Environment......................................................................................... 32 
6.2. Data exploration.......................................................................................................... 32 

6.2.1. VQA-RAD......................................................................................................... 32 
6.2.2. BCDR-F01......................................................................................................... 34 
6.2.3. BreakHis.............................................................................................................34 

6.3. Data processing........................................................................................................... 35 
6.4. Zero-shot inference..................................................................................................... 36 

6.4.1. Method............................................................................................................... 36 
6.4.2. Zero shot pipeline...............................................................................................36 
6.4.3. Results................................................................................................................ 37 

6.5. Fine-tuning.................................................................................................................. 42 
6.5.1. Method............................................................................................................... 42 
6.5.2. Fine tuning pipeline............................................................................................43 
6.5.3. Results................................................................................................................ 43 

6.6. Overview..................................................................................................................... 45 
Conclusions and Future Work.............................................................................................. 46 

7.1. Conclusions................................................................................................................. 46 
7.2. Limitations.................................................................................................................. 47 
7.3. Future work................................................................................................................. 47 

Bibliography........................................................................................................................... 48 
Appendix................................................................................................................................. 54 

 

 



 

Chapter 1  
 

Introduction 
 

1.1.​ Context 

Cancer is a group of diseases characterized by the uncontrolled growth of abnormal 
cells, which can invade nearby tissues and spread to other organs. It is the second leading 
cause of death globally, accounting for an estimated 9.6 million deaths in 2018 (World Health 
Organization, 2025). Despite significant advancements in treatment, early detection remains 
crucial for improving patient outcomes. Ongoing advances in medical technology are 
enhancing diagnostic precision, while digital innovations are reshaping clinical approaches to 
cancer diagnosis and treatment. 

Among these innovations, artificial intelligence (AI) has emerged as a powerful tool 
for medical applications. AI is a broad field encompassing various technologies and 
advancements, including machine learning (ML) and deep learning (DL). These have been 
increasingly used to support medical practitioners with their decision making. In oncology, 
AI shows promise in cancer detection and diagnosis (Karger & Kureljusic, 2023). Since 
overcoming early technological limitations in the 2000s, AI driven models now analyze 
complex algorithms and self-learn, enhancing accuracy and workflow efficiency in clinical 
practice (Kaul & Gross, 2020). 

 

1.2.​ Motivation 

Foundation models (FM), such as large language models and vision transformers, are 
AI architectures that have shown remarkable capabilities in various domains due to their 
ability to leverage vast amounts of data and transfer knowledge across tasks. This project 
seeks to explore how these powerful models can be adapted and applied to specific 
applications such as breast imaging tasks, potentially revolutionizing detection, diagnosis, 
and prognosis in breast cancer care. 

FMs are large-scale, pre-trained models that can be fine-tuned for a wide range of 
downstream tasks. In the context of medical imaging, these models could potentially capture 
complex patterns and relationships in breast images that may not be apparent to human 
observers or traditional machine learning approaches. 
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1.3.​ Objectives 

This research aims to demonstrate that applying multimodal foundation models in 
zero-shot and fine-tuning regimes to diverse breast imaging datasets can achieve performance 
comparable to or exceeding that of conventional ML/DL approaches in tasks such as lesion 
detection, tumor classification, and cancer subtype prediction.  Moreover, it seeks to highlight 
the differentiating features of FMs such as their ability to handle complex multimodal and 
data constrained scenarios to enable more explainable, contextually grounded, and clinically 
relevant outcomes. A set of secondary objectives were defined as part of this goal.  

 

I.​ To identify and evaluate suitable FMs that can be adapted for breast imaging tasks, 
such as vision transformers or multimodal models that can process both images and 
associated clinical data. 

II.​ To develop methodologies for fine-tuning these FMs on breast imaging datasets, 
including mammograms, ultrasounds, and magnetic resonance imaging. 

III.​ To assess the performance of fine-tuned FMs on various breast imaging tasks, such as 
lesion detection, classification of benign vs. malignant tumors, and prediction of 
cancer subtypes. 

IV.​ To compare the performance of foundation model-based approaches with traditional 
machine learning and DL methods in breast imaging analysis. 

V.​ To investigate the potential of these models for zero-shot or few-shot learning in rare 
breast cancer subtypes or uncommon imaging findings. 

VI.​ To analyze the interpretability and explainability of foundation model decisions in the 
context of breast imaging, ensuring that their outputs can be understood and trusted by 
clinicians. 

VII.​ To explore the potential of FMs in integrating multimodal data, including imaging, 
clinical, and genomic information, for comprehensive breast cancer analysis. 

 

1.4​ Planning 

The work described here was planned to be performed in four months, following the 
time available in the spring semester of the academic year (Figure 1). ​
​ The research part is focused on the clinical context of breast cancer and the state of 
the art of foundation models. It also covered selecting the data and model that would be 
explored. On the other hand, the development stage is focused on preparing the data and 
environment for testing zero-shot and  fine tuning on visual question answering (VQA).  

2 



 

​ ​

 

Figure 1. Gantt chart of initial planning of the project. 
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Chapter 2 
 

Breast Cancer 
 

2.1.​ Epidemiology  

Breast cancer is the most commonly diagnosed cancer worldwide, with an estimated 
2.3 million new cases in 2020. Women are specially affected, accounting for 685,000 deaths, 
a figure projected to reach 1 million by 2040 (Arnold, et. al, 2022). In Spain, it is the most 
common type of malignancy in women, representing 30% of total cancer cases. It is also the 
country’s female leading cause of death (Contra el Cáncer España, 2024).  

This disease imposes both social and economic burdens that are unequally distributed.  
It is estimated that between 2020 and 2050, cancers will cost the world economy $25.2 
trillion, with 7.7% corresponding to breast cancer alone (Chen, et. al, 2023). Noticeably, 
transitioned countries have double the incidence rate, while transitioning countries have a 
17% increased mortality rate (Figure 2) (Arnold, et. al, 2022).  

 

 

Figure 2. Age-standardized breast cancer incidence (blue) and mortality (red) rates per 100,000 females. Breast 
cancer cases and deaths by country (Arnold, et. al, 2022). 

 

2.2.​ Subtypes 

 

Molecular Classification 

Breast cancer is not a single disease; it comprises multiple subtypes that differ in 
genetic, molecular, and histopathological features. New understanding of its molecular 
biology led to changes in how it is classified. The molecular classification of breast cancer 
uses biomarkers to identify each subtype, and guide diagnosis, treatment, and prognosis. 
However, the enormous heterogeneity and number of factors involved still make 
interpretation a challenging task. ​
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Based on gene expression profiling, breast cancer is classified into four categories 
(Figure 3): 

I.​ Luminal A Carcinomas 
II.​ Luminal B Carcinomas 

III.​ HER-2 Enriched Carcinomas 
IV.​ Basal Carcinomas and Triple Negative Carcinomas​

 

 

Figure 3. Breast cancer tumor’s molecular subtypes (Malik, et al. 2020). 

 

Alternatively, due to time and cost constraints, the standard practice uses the surrogate 
classification based on immunohistochemical assessment of biomarkers: estrogen (ER) 
receptor, progesterone (PR) receptor, HER2, and Ki-67 (Fernandes, 2022). 

 

2.3.​ Medical imaging 

There exist several imaging modalities for early breast cancer detection. The most 
common imaging techniques in clinical practice are: mammograms (MG), ultrasound (US), 
magnetic resonance imaging (MRI), and histopathology (HP). In fact, 50% of datasets are 
MGs, 20% US, 18% MRI and 8% HP. Each of these modalities can be further categorized 
into different subtypes (Figure 4). 
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Figure 4. Most common imaging modalities and their subtypes used for breast cancer  analysis (Shah, Khan, 
Arif, & Sajid, 2022) 

 

2.3.1.​ Mammograms (MG) 

​ MGs are low intensity X-ray images of human breast where glandular tissue, 
cancerous tumors and calcium deposits may appear brighter than surrounding tissue (e.g., 
adipose). As part of the standard protocol, two complementary views are captured for each 
breast: a craniocaudal view from above, and a mediolateral oblique view taken at an angle. 
These perspectives help provide a more complete assessment of lesions or abnormalities by 
reducing tissue overlap and improving localization. (Figure 5).  

  

 

Figure 5. Standard mammography views: (a) craniocaudal; (b) mediolateral oblique (Morris & Kim, 2022). 

 

MGs have widely been used for breast lesion detection and classification. While also 
used to detect breast cancer in early stages, it is not a preferred method due to reduced 
sensitivity in dense breast tissue and limited capabilities in capturing micro calcifications. 

​  
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2.3.2.​ Ultrasound (US) 

US are imaging techniques that use high frequency sound waves to create real time 
pictures of internal body structures. These are performed to detect the location of suspicious 
lesions in areas of interest in the breast (Figure 6). They come in 3 broad combinations: (1) 
2D grayscale images, color images with (2) Shear Wave Elastography (SWE) added features, 
and (3) Nakagami. SWE enhances lesion differentiation by measuring stiffness, while 
Nakagami provides additional statistical parameters for localization.  

 

 

Figure 6. (a) Skin surface, (b) subcutaneous tissue, (c) mammary (d) retromammary zone (Morris & Kim, 2022). 
 

However, Ultrasound suffers from two key problems that make it unreliable for 
general breast cancer screening, especially in asymptomatic women:  the images are hard to 
interpret due to speckle noise, and the screening results have unacceptably high rates of both 
false positives and false negatives. 

 

2.3.3.​ Magnetic Resonance Imaging (MRI) 

MRIs capture multiple breast images at different angles to combine them together as a 
detailed view (Figure 7). Compared to previous techniques, they offer greater sensitivity in 
dense breasts and provide clearer soft tissue imaging. 

 

 

Figure 7. MRI scans of an invasive ductal carcinoma (arrow) before chemotherapy (a), after one cycle (b), and 
after eight cycles (c)  (Morris & Kim, 2022). 
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Despite being an effective technique, due to its high cost and the possibility of 
missing some cancer tissue detectable by MGs, it is typically used as a secondary test to 
confirm a pathology or as a tool to follow-up during treatment. 

 

2.3.4.​ Histopathology (HP) 

Histopathology is the procedure of extracting a tissue sample from a suspicious 
human body region for microscopic examination and diagnosis.  

Images are produced by fixing the sample glass stained with Haemotoxylin and Eosin, 
which create a colored visualization of the tissue (Figure 8). These images are available in 2 
forms: (1) Whole Slide Images (WSI) and (2) Image patches extracted from WSI.  

 

 

Figure 8. Histopathology of invasive carcinoma of no special type (Morris & Kim, 2022). 

 

Patches with different zooming factors are used to diagnose multiple breast cancer 
types, which are impossible to diagnose with simple grayscale images. This tissue level 
examination has been successfully used for multi-class breast cancer classification (Shah, 
Khan, Arif, & Sajid, 2022).  
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Chapter 3 
 

Artificial Intelligence​
 

3.1.​ Definition 

The field of AI aims to develop systems capable of performing tasks that typically 
require human intelligence, such as learning, reasoning, problem solving, and decision 
making. Its origins date back to 1950 when Alan Turing published Computing Machinery and 
Intelligence. In this paper, Turing raised the question “Can machines think?” and proposed an 
evaluation method for machine intelligence that later became known as the Turing Test. Six 
years later, John McCarthy coined the term and described it as “the science and engineering 
of making intelligent machines.” 

Early AI operated on simple conditional rules. Over time, technological advancements 
led to increasingly complex models capable of performing human-like functions (Kavlakoglu 
& Stryker, 2024). Various fields emerged to explore these advancements, with ML enabling 
computers to learn, evolving with  the deeper complexity of DL, and recently leading into the 
generative and multimodal capabilities of FMs (Figure 9). 

 

 

Figure 9. High-level diagram of AI subfields. 

 

3.2.​ Machine Learning (ML)  

ML is a subfield of AI that focuses on the development of algorithms capable of 
learning patterns and making predictions from data without explicit programming 
(Kavlakoglu & Stryker, 2024).  
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3.2.1.​ Classification 

ML can be classified by learning strategy, model type, algorithm, or technique. The 
most common categorization distinguishes between supervised, unsupervised, and 
reinforcement learning, with some taxonomies further identifying semi-supervised learning 
(Figure 10). 

 

 

Figure 10. ML classification by learning technique and main applications. Inspired by Li, Lin,& Zeng, 2024. 

 

Supervised Learning 

In supervised learning, prediction models learn from labeled datasets. This method 
aims at learning the statistical mapping that best describes the relationship between 
inputs and outputs. Once trained, the model predicts outputs for new, unseen inputs by 
applying this learned mapping.  

 

Unsupervised Learning  

Unsupervised learning deals with unlabeled data, aiming to uncover inherent 
structures or distributions within the inputs. Without explicit output labels, the model 
identifies clusters, associations, or latent representations that reveal the data’s 
underlying statistical laws (Li, Lin,& Zeng, 2024). 

A subset of unsupervised learning, self-supervised learning leverages the 
unlabeled data itself to create its own output labels. It achieves this by defining 
pretext tasks where a portion of the data is used to predict another part, thereby 
training the model to learn useful representations without external labels. This 
approach allows the model to learn meaningful features from the data by solving these 
artificially constructed prediction problems (Bergmann, 2023). 
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Reinforcement Learning 

Distinct from the previous, reinforcement learning frames learning as an agent’s 
interaction with an environment. Actions that yield desirable outcomes receive 
rewards, whereas undesirable actions incur penalties. By trial and error, the agent 
learns a policy mapping states to actions that maximize cumulative reward over time. 

 

Semi supervised  Learning 

Semi‑supervised learning operates on a mixed dataset of a small labeled subset and a 
large unlabeled pool. By leveraging the abundant unlabeled data to inform or 
regularize the model, this paradigm seeks to achieve performance similar to fully 
supervised methods while significantly reducing labeling cost (Li, Lin,& Zeng, 2024) 

 

3.2.2.​ Transfer Learning 

Transfer learning is a branch of ML that studies applying knowledge gained from one 
task to a different but related one. Formally, the domain of a task consists of the data and the 
distribution that generates that data. There are at least two domains: a source domain from 
which knowledge is transferred, and a target domain where the learning is focused. The goal 
is to use the source domain data to learn a predictive function that minimizes prediction risk 
on the target domain (Wang & Chen, 2024). Effective transfer learning requires analyzing 
transferability, choosing the appropriate transfer technique, and selecting model parameters 
for best performance (Figure 11). 

 

Figure 11. A complete transfer learning process  (Wang & Chen, 2024). 

 

3.2.3.​ ML techniques for breast cancer 

Early breast cancer imaging analysis relied on expert designed image features paired 
with simple classifiers. Across all imaging modalities, support vector machines (SVM) and 
artificial neural networks (ANN) classifiers are some of the most established and applied. 
However, other classifiers including k-nearest neighbors (KNN), decision trees (DT), random 
forests (RF) and logistic regression (LR) have demonstrated comparable performance in 
certain studies (Figure 12). This highlights that the optimal choice of classifier is not 

11 



 

absolute, but instead must consider the properties of the data and the nature of the task. SVMs 
are emphasized in this review due to their proven effectiveness and adoption. 

SVMs have proven highly effective for automated breast cancer diagnosis across 
diverse imaging modalities. In MG, SVMs have demonstrated high accuracy in tumor 
detection, density assessment, and mass classification. For example, Wajid and Hussain 
(2015) and Khalaf and Yassine (2015) applied SVMs to the MIAS, INBreast, and DDSM 
datasets, achieving up to 99% accuracy for abnormality assessment and 95.78% accuracy for 
cancer classification, respectively. In US, several studies have similarly shown reliable lesion 
detection and differentiation using SVMs: Prabusankarlal et al. (2015) reported 95.85% 
accuracy for breast mass detection and diagnosis, and Wu et al. (2015) extended these 
findings on a larger private cohort, achieving 96.67% accuracy in classification. Likewise, 
investigations on private MRI datasets report notably high diagnostic performance. Hassanien 
and Kim (2012) achieved 98% accuracy in distinguishing normal from abnormal tissue, while 
Soares et al. (2013) reported 94% accuracy for cancer detection. Finally, early SVM 
classifiers successfully differentiated cancer subtypes using HP imaging, as demonstrated by 
Brook et al. (2008). Taken together, these results underscore the robustness and versatility of 
SVM-based methods for accurate breast cancer diagnosis across multiple imaging platforms 
(Houssein, Emam, Ali, & Suganthan, 2021). 

 

 

Figure 12. Number of papers using ML techniques per breast imaging modality between 2011 and 2020 
based on the systematic review by Houssein, Emam, Ali, & Suganthan (2021). 

 

3.3.​ Deep Learning (DL) 

DL is a subset of ML that uses neural networks built with multiple layers to 
automatically learn from complex data. Its models consist of connected neurons across an 
input layer, many hidden layers and a final output layer (Figure 13). This arrangement allows 
the system to build hierarchical representations by extracting features directly from vast 
collections of unstructured or unlabeled data. Traditional ML depends on human selected 
traits while DL models learn those features on their own. It incorporates different learning 
strategies including semi supervised learning, self supervised learning, reinforcement 
learning and transfer learning (Kavlakoglu & Stryker, 2024).​
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Figure 13. Typical architecture of DL neural networks. 

 

3.3.1.​ Common Architectures 

Different DL architectures are designed to capture underlying semantic information 
relevant to specific tasks. Understanding these architectures provides context for their 
specialized applications in medical imaging. Some of the basic DL algorithms include: 

 

Convolutional Neural Networks (CNN)  

CNNs are used for image processing and analysis. These are made up of 
convolutional layers, pooling layers, and fully connected layers that extract and 
process image features. Their efficiency in image classification and segmentation 
stems from parameter sharing and sparse connectivity. 
 
Generative Adversarial Networks (GAN)  

GANs are used for image generation tasks and are composed of two neural networks,  
a generator and a discriminator. The generator creates new data, while the 
discriminator evaluates whether the data is real or generated. Through this adversarial 
process, the generator improves its ability to produce realistic outputs. 
 
Recurrent Neural Networks (RNN)  

RNNs process sequential data by maintaining internal memory states that capture 
dependencies over time or space, making them effective for tasks such as 3D 
volumetric image analysis, natural language processing, or time series analysis.  
 
Deep Reinforcement Learning (DRL)   

DRLs combine DL with reinforcement learning to train agents that maximize rewards. 
These are specially useful for improving landmark detection and lesion segmentation 
tasks (Jiang et al., 2024). 
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3.3.2.​ DL techniques for breast cancer​  

DL has transformed breast cancer imaging by enabling the learning of rich feature 
representations directly from data. It has recently emerged as a key research focus, 
complementing traditional ML methods (Figure 14). Among the various DL architectures, 
CNNs have become the predominant approach for breast cancer imaging applications due to 
their significant ability to process and analyze medical images across different modalities. 
The following review focuses primarily on CNN based methods, as they are the most widely 
adopted DL technique in this domain. 

CNNs have revolutionized automated breast cancer diagnosis by demonstrating 
exceptional performance across all major imaging modalities. In MG, CNNs have achieved 
notable accuracy in mass detection and classification. For instance, Chougrad et al. (2018) 
achieved 97.4% accuracy on the DDSM database, 95.5% accuracy on the INbreast database, 
and 96.60% accuracy on the BCDR database. Building on this, Al-antari and Kim (2020) 
proposed a system with DL classifiers to detect and classify lesions achieving F1 scores of 
99.2% for DDSM and 98.02% for INbreast datasets.  

Similarly, CNNs have demonstrated robust lesion detection and classification in US 
imaging. For instance, Han et al. (2017) trained a GoogleNet architecture on 7,408 ultrasound 
images, achieving 91.23% accuracy. Separately, Byra et al. (2019) utilized a transfer learning 
approach, reaching 88.7% accuracy on benign or malignant breast lesions within a 150 case 
test collection.​
​ CNN approaches in MRI applications have shown promising results despite limited 
dataset sizes. A method developed by Feng et. al (2020) achieved an 85.0% accuracy on 100 
MRI images for distinguishing benign from malignant lesions. 

In HP imaging, CNNs have excelled in complex tissue analysis and cancer subtype 
classification. Yang et al. (2019) successfully classified breast tissue into four categories 
(normal, benign lesions, carcinoma in situ, and invasive carcinoma), achieving 91.75% 
accuracy. Similarly, Roy et al. (2019) developed patch-based CNN classifiers that achieved 
90.0% accuracy for four class HP classification and 92.51% for binary classification tasks. 
(Houssein, Emam, Ali, & Suganthan, 2021) 

 

 

Figure 14. (left) Common ML and DL techniques for breast cancer imaging and (right) their annual publication 
trends for classification tasks based on the review by Houssein, Emam, Ali, & Suganthan (2021). 
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3.3.3.​ Limitations 

Application of DL is challenging in clinical practice. It requires improving 
transparency, explainability, availability, accuracy, and performance. There are also ethical 
concerns, and regulatory requirements that need to be addressed.   

Algorithmic challenges in DL include the lack of annotated data for training, 
integration into real world workflows, and transparency. Effective AI needs large annotated 
datasets that are labor intensive and costly to create. Integrating it to medical workflow 
requires extensive validation to ensure reproducibility and accuracy, and guidelines to be set 
for data and method normalization. Besides this, models often suffer from the “black box” 
problem, lacking necessary transparency for clinical adoption.  

The development of effective models is also hindered by the interconnected 
challenges of limited and diverse data, ethical considerations, and medical data privacy and 
security. The integration of multimodal data is essential for advancing DL applications. 
Despite this, few DL models combine non imaging features with imaging data. Multicenter 
and high quality data is needed to maximize repeatability, and generalizability. However, the 
difference in acquiring and processing data results in significant heterogeneity. Sharing this 
data also raises privacy concerns, which call for collaborative and decentralized training 
methods (Jiang et al., 2024). 
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Chapter 4 
 

Foundation Models ​
 

4.1.​ Definition 

FMs are first defined by Bommasani et al. (2021) as “any model that is trained on 
broad data that can be adapted to a wide range of downstream tasks.” Unlike DL models 
which often require large, task-specific, labeled datasets, FMs are pre-trained and available 
for fine tuning into various applications (Azad et. al 2023).  

 

4.2.​ History 

Early machine decision making began with expert systems: collections of hand coded 
rules that mapped inputs to outputs based on human expertise. Arthur Samuel (1959) ushered 
in the era of data driven learning by proposing that machines could learn without being 
explicitly programmed. Initially, such systems relied on expert defined features, but the 
advent of DL in the 2010s enabled hierarchical feature discovery directly from raw data, 
dramatically reducing the need for manual feature engineering (Figure 15). 

 

 

Figure 15. History of ML (Schneider, Meske, & Kuss., 2024). 

​
​ DL’s modular architecture was flexible across different data types. Yet early neural 
networks were bottlenecked by the scarcity of labeled data given that supervised learning 
relied on this costly human annotation. Transfer learning partially alleviated this constraint by 
reusing representations from a “pre-trained” network on new tasks, fine-tuning only select 
layers. However, major progress arrived with self-supervised learning, which allowed models 
to learn from vast unlabeled corpora by solving surrogate tasks. 
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​ Self-supervised learning made scale the key factor driving progress. The introduction 
of the transformer architecture (Vaswani et al. 2017) facilitated the scaling of self-supervised 
training to massive datasets, leading to the emergence of FMs. These models demonstrate 
unprecedented expressiveness, multimodality, and the ability of solving new tasks without 
explicit retraining. FMs are typically refined via supervised fine-tuning, reinforcement 
learning from human feedback, or instruction tuning, enhancing alignment with user intent 
and ethical norms. Together, self-supervision, scale, and emergent in-context learning 
distinguish foundation models as the next stage in the evolution of ML (Schneider, Meske, & 
Kuss., 2024). 

 

4.3.​ Characteristics 

FMs have key features that differentiate them from traditional, specialized AI models. 
Foremost among these is prompt sensitivity, how interaction can influence the behaviour of 
AI systems. Prompting allows users to direct the system’s output, ensuring it generates 
appropriate content. It is not limited to LLM1, but also multimodal systems like image 
generation. Effective prompt design has shown to enhance performance by studies such as 
Kojima et al (2022). It can also help developers with fine tuning and defense against 
adversarial prompts.  

Another key feature is the emergence of in-context learning, the ability to display new 
capabilities not explicitly programmed by developers. Training on large and diverse datasets 
enables these models to identify patterns and develop skills autonomously. As models 
continue to grow, the need for task specific tuning may diminish. However, there’s an 
inherent uncertainty that raises concern about explainability, unpredictability, and the 
potential for unexpected behaviours.  

Lastly, the importance of scale to model performance led to homogenization, the 
“consolidation of methodologies and models across AI applications and research 
communities  (Schneider, Meske, & Kuss., 2024).” Factors such as the high cost of training 
and the monopoly of a few organizations on large proprietary datasets drive the centralization 
of a select set of models, which become the foundation for future AI systems. However, this 
raises concern on power centralization, dependencies, algorithmic monoculture, and the 
propagation of biases and undesirable behaviours across applications. It also impacts the roles 
of actors in developing AI, creating an ecosystem of FM providers, integrators, and end users, 
with implications for power dynamics and access to models (Schneider, Meske, & Kuss., 
2024).  

 

 

1 Large Language Models (LLMs) are transformer-based FMs trained on large text corpora, enabling 
general-purpose language understanding and generation across diverse tasks. 
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4.4.​ Architecture 

Most foundation models take advantage of transformer architectures. The transformer 
model is a DL architecture known for its ability to grasp complex relationships across 
different data modalities (Figure 16). This makes it a powerful tool for tasks that require an 
understanding of context and relationships between far-apart tokens.  

 

1.​ Input sequence: the input for the model, a sequence of tokens. ​
 

2.​ Embedding layer: layer that converts each token in the input sequence into a 
fixed-size dense vector. Vectors capture the semantic meaning of tokens, and make 
them suitable for further processing. ​
 

3.​ Positional encoding: transformers do not have an inherent understanding of token 
order in the input sequence. This layer adds position information to the embedding 
vectors so the model can differentiate sequences with the same tokens in different 
order.  

 

4.​ Encoder blocks: consists of a stack of identical blocks which process the entire 
sequence, each containing two main sub-layers to refine the representation of the 
input sequence: 

a.​ Multi-head Attention: a mechanism that allows the model simultaneous 
attention on different parts of the input sequence, capturing relationships 
between tokens regardless of their position to each other.  

b.​ Feed-Forward Network: a fully connected network to process the output of the 
attention mechanism, adding non-linearity and complexity to the model. ​
 

5.​ Decoder blocks: Similar to the encoder, with an additional attention layer focused on 
the encoder’s output. It processes the target sequence during training and inference, 
refining its understanding of the sequence through this dual attention on input-output.  

a.​ Masked Multi-Head Attention: masks future tokens, preventing the decoder 
from attending them and ensuring predictions only rely on preceding tokens. 

b.​ Encoder-Decoder Attention: allows attention on relevant parts of the encoded 
input sequence. 

c.​ Feed-Forward Network: adds nonlinearity and complexity to the decoder's 
output. ​
 

6.​ Linear layer: maps the final decoder output to the target dimension. ​
 

7.​ Softmax layer: provides the probability distribution of the next token, derived from 
the linear layer's logits (unnormalized probabilities).​
 

8.​ Output sequence: the stream of generated tokens (Singh, A., & Singh, K., 2025). 
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Figure 16. The Transformer - model architecture (Vaswani et al. 2017). 

 

4.5.​ Training  

 

4.5.1.​ Pre-training 

In pre-training, a model typically leverages a Transformer architecture with 
self-attention layers to analyze a large corpus of unlabeled text. Using objectives such as 
masked language modeling, next sentence prediction, and causal language modeling, the 
model learns to capture the statistical patterns and linguistic structures inherent in natural 
language. This process cultivates a general language understanding and requires substantial 
computational resources over extended periods of time. 

 

4.5.2.​ Fine-tuning 

Following pre-training, fine-tuning adapts the pre-trained language model to specific 
downstream tasks by exploiting labeled, domain-specific datasets. Through back-propagation 
and gradient descent, the model’s parameters are adjusted to minimize errors and align its 
output with task-specific objectives. This method leverages the model’s established language 
understanding to adapt to the task using less data and reduced computational resources. 
However, thousands of labelled task-specific samples may still be required to achieve 
state-of-the-art performance. 
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4.5.3.​ Few-shot learning 

Few-shot learning addresses scenarios where only a minimal number of labeled 
examples (typically one to five samples per class) are available. By employing meta-learning 
strategies, the model is first trained on a diverse set of classification tasks to develop 
transferable generalization capabilities. This meta-training enables rapid adaptation to new 
classes, mitigating overfitting in contexts where extensive labeled data is impractical. 

 

4.5.4.​ Zero-shot learning 

Zero shot learning enables the classification of text instances into categories that were 
not present during training. This method leverages semantic descriptions or class attributes, 
either by encoding both the text and the class information as embeddings or by using 
inference based approaches with large scale language models to assess compatibility through 
similarity metrics such as cosine similarity. In this way, the model is able to generalize to 
unseen classes by inferring relationships between textual representations and class semantics 
(Ferrari & Ginde, 2025). 

 

4.6.​ Taxonomy  

Azad et al  (2024) proposed a methodical taxonomy to help researchers navigate the 
rapidly evolving field of foundation models in medical imaging. Their classification focuses 
on training strategies, but also factors in application areas, imaging modalities, specific 
organs of interest, and algorithms involved.  

The taxonomy distinguishes between two model categories: Visually Prompted 
Models (VPM) and Textually Prompted Models (TPM) (Figure 17). VPMs are designed to 
handle visual inputs to guide their learning process. These models excel in tasks where visual 
prompts enhance image recognition and segmentation. On the other hand, TPMs leverage 
textual inputs to drive their learning and performance in visual recognition tasks. They 
combine textual and visual features through a fusion module to understand and process 
image-text pairs. 

 

Figure 17. Textual and Visual Prompted model categories proposed by Azad et. al 2024. 
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​ Based on these categories, the taxonomy further classifies six distinct groups 
according to their objectives. TPMs encompass generative, conversational, contrastive, and 
hybrid forms, while VPMs are divided into adaptations and generalist forms (Figure 18). 

 

 

Figure 18. FM taxonomy in medical imaging. Inspired by Azad et al. (2024). 

 

Models acquire an understanding of the relationship between vision and language 
through various pre-training objectives, which Azad et al. (2024) have broadly categorized as 
contrastive and generative. Contrastive objectives help models learn distinctive 
representations by pulling similar samples closer together in the feature space and pushing 
unrelated ones farther apart. Different loss functions are used to optimize different 
applications. For example, Image Contrastive Loss focuses on measuring and optimizing 
image similarity, while Image-Text Contrastive Loss aims to align image and text 
embeddings. On the other hand, generative objectives facilitate the learning of semantic 
features by training models to generate image or text data through various generation tasks. 
There also exist different loss functions to this objective. For instance, Masked Image 
Modelling enables the acquisition of cross-patch correlations by masking and reconstructing 
image patches, while Masked Language Modelling enhances language understanding by 
masking and predicting text tokens. 

Contrastive TPMs excel at bridging the semantic gap between medical images and 
text by using contrastive learning. They are particularly useful in scenarios with limited 
labeled data, such as rare medical conditions or specialized imaging modalities. Generative 
TPMs focus on generating detailed responses and explanations for medical image-related 
queries. They aim to support clinical decisions by providing reasoning and interpretability. 
Hybrid TPMs combine generative and contrastive methodologies to integrate image-text 
tasks. They are adept at visual-questioning tasks and a valuable tool for quick diagnosis.  
Conversational TPMs enable interactive dialogues between professionals and AI systems. 
Experts can ask questions, seek explanations, and instruct on medical images.​
​ Adaptation VPMs focus on extending medical imaging tasks. They are tailored for 
specific clinical applications and demonstrate robust generalization power. Generalist VPMs 
seek versatility by handling a wide spectrum of medical imaging tasks and data modalities. 
Their flexibility allows them to handle various tasks without the need for extensive retraining.  
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4.7.​ Downstream tasks and applications 

Foundation models aim for broad capabilities that use combinations of different data 
types: text, image, video, and speech. For this reason, tasks and applications include and 
combine those of different and often overlapping areas of AI research. Text and image data 
are the most common and therefore NLP and Computer Vision have been the most explored. 
Tasks that require a single data type are defined as unimodal, while those integrating multiple 
data types are multimodal.  

 

4.7.1.​ Natural Language Processing (NLP) tasks 

NLP is the field of AI focused on enabling computers to understand, interpret, and 
generate human language. The following tasks focus on text data.  

 

Reading comprehension  

Evaluates a model's ability to read and comprehend a text passage to answer questions 
related to its content. Typically divided into four categories depending on the 
expected answer: cloze style (filling the blank), multiple choice, quoting a part of the 
text, and free-form answer. Achieving accuracy may require models to have certain 
world knowledge, process paraphrases, execute multi-sentence reasoning, and handle 
ambiguous or unanswerable queries. 

 

Question answering 

Assesses responses without context. In open cases, the model has access to a 
collection of knowledge without knowing where the answer appears. In closed cases, 
performance relies exclusively on knowledge acquired during the training phase.  

 

Common Sense reasoning 

Challenge models to apply real-world, common-sense reasoning rather than rely on 
memorized data. They cover scenarios like physical interactions and social situations. 
Tasks also cover problems requiring mathematical reasoning and natural-language 
inference, ensuring that models must understand and deduce rather than recall. 

 

Natural Language generation 

Aims to produce coherent, contextually appropriate text from structured or 
unstructured inputs. It includes tasks such as text summarization, code generation, 
machine translation, and writing tasks (Audiffren & Ostapuk, 2024). 
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4.7.2.​ Computer Vision tasks 

Computer Vision is a field of AI that aims to enable computers to "see" and interpret 
the visual world, similar to how humans do. The following tasks focus on image data. ​
 

Image Classification 

Assigns one or more semantic labels to an image. Models must cope with significant 
intra-class variability (pose, lightning, occlusion) and unknown “none of the above” 
cases, requiring large labeled datasets and architectures that generalize beyond 
training distributions.  

 

Object Detection 

Locates and classifies individual object instances within an image via bounding 
boxes. Variants include face detection and pedestrian detection. Detectors must handle 
objects at different scales, overlapped, occluded or in cluttered scenes. 

 

4.7.3.​ Language and Vision tasks 

This area of AI focuses on enabling machines to understand and interact with both 
images and text, integrating various AI components to handle them. 

 

Visual Captioning 

Generates a natural language description given an image. Requires the model to 
accurately detect the object, attributes, and their relations, then composing 
contextually appropriate sentences.  

​  

Text-to-image generation 

Inverse of captioning, given a text prompt generates an image. This task requires the 
model to interpret the textual description and then synthesize a visually coherent 
image that matches the prompt. 

 

Visual Questioning Answering (VQA) and Reasoning 

Involve answering open or closed ended natural language questions about images. 
This requires a model to perform multimodal feature fusion, effectively combining 
information from both the image and the question. It often relies on attention 
mechanisms to focus on relevant parts of the image and question, and modular 
reasoning to break down complex queries into manageable steps (Szeliski, 2022). 
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4.8.​ Evaluation of FM 

Given the wide range of downstream tasks FM can perform, it is necessary to use 
standardized evaluation metrics suited to each task to ensure accurate performance 
assessment. For tasks expecting answers that can be considered part of categories such as 
classification or VQA, binary and multiclass classification metrics effectively quantify the 
model's predictive accuracy. Tasks taking a free form generative approach, such as image 
captioning or text summarization, instead rely on alternative metrics like ROUGE, BLEU, 
METEOR, and CIDEr  to evaluate the quality of generated text. 

 

4.8.1.​ Binary classification 

When evaluating a binary classifier, ​ the predicted labels are compared against the 
actual true labels. This comparison yields four counts that make up the confusion matrix 
(Table 1): true positives (TP), where the model correctly predicted the positive class; true 
negatives (TN), where it correctly predicted the negative class; false positives (FP), instances 
incorrectly classified as positive; and false negatives (FN), instances incorrectly classified as 
negative. 

​
Table 1. Confusion matrix. 

 Predicted = Positive Predicted = Negative 

Actual = Positive True Positive (TP) False Negative (FN) 

Actual = Negative False Positive (FP) True Negative (TN) 

​
​ From these counts, several key performance metrics can be derived to evaluate 
different aspects of classifier performance. Table 2 summarizes the most commonly used 
metrics, their formulas, and their insights. 

 

Table 2. Summary of binary classification metrics. Inspired by (Ferrari & Ginde, 2025). 

Metric Formula Key Insights 

Precision  𝑃 =  𝑇𝑃
𝑇𝑃 + 𝐹𝑃

Proportion of positive predictions that are correct, critical 
when false positives are costly as in medical diagnosis. 

Recall  𝑅 =  𝑇𝑃
𝑇𝑃 + 𝐹𝑁

Proportion of actual positives correctly identified, critical 
when false negatives are costly as in fraud detection. 

F1-score  𝐹1 =  2 × 𝑃× 𝑅
 𝑃+ 𝑅

Describes the balance between precision and recall, often 
used as summary measure for imbalanced datasets 

Accuracy  𝐴 =  𝑇𝑃 + 𝑇𝑁
 𝑇 𝑃 + 𝑇 𝑁 + 𝐹 𝑃 + 𝐹 𝑁

Simple measure of overall correct classification, limited 
in scenarios with imbalanced class distributions 
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4.8.2.​ Multiclass classification 

For multi-class classification problems involving  distinct classes 𝐾
, the metrics of Precision, Recall, and F1-score can be generalized (𝑘 = 1, 2, 3,  ...,  𝐾)

through various averaging methods across these classes. Two common schemes are macro 
(unweighted) and micro (weighted by class size). Macro averaging provides equal weight to 
each class, making it valuable when all classes are considered equally important regardless of 
their frequency in the dataset. Conversely, micro averaging weights each prediction equally, 
giving more influence to classes with larger sample sizes and providing a measure more 
aligned with overall classification accuracy. Notably, micro precision, micro recall, and micro 
F1 are all measured using the same accuracy metric and thus have identical scores. Table 3 
summarizes the macro metrics, their formulas, and their insights. 

​
Table 3. Summary of multiclass metrics. Inspired by (Ferrari & Ginde, 2025). 

Metric Formula Key Insights 

Macro​
Precision (mP)  𝑚𝑃 =  𝑘=1

𝐾

∑ 𝑃
𝑘

𝐾

Indicates the model's prediction correctness across all 
classes, penalizing poor performance on smaller classes. 

Macro Recall 
(mR)  𝑚𝑅 =  𝑘=1

𝐾

∑ 𝑅
𝑘

𝐾

Shows if the model finds most true instances for all 
classes, crucial when missing a class is costly. 

Macro F1 
(mF1) 

 𝑚𝐹1 = 2 × ( 𝑚𝑃 ∗ 𝑚𝑅

 𝑚𝑃−1 ∗ 𝑚𝑅−1 ) Emphasizes uniform performance across all classes 

 

4.8.3.​ Text generation  

Text generation tasks require different evaluation approaches than classifiers. These 
metrics compare generated text against one or more references, as described in Table 4. 

 

Table 4. Summary of generation metrics. Inspired by (Ferrari & Ginde, 2025). 

Metric Key Insights 

Recall-Oriented Understudy for 
Gisting Evaluation (ROUGE) 

Evaluates summarization tasks by measuring the overlap between system 
generated and human text. Variants consider n-grams and longest 
common subsequences.  

Bilingual Evaluation Understudy 
(BLEU) 

Appropriate for evaluating machine translation. Calculates precision of 
n-grams in the generated text compared to the reference.  

Metric for Evaluation of 
Translation with Explicit 

Ordering (METEOR) 

Evaluates generated text by combining precision and recall and 
incorporating factors like synonym matches and alignment between the 
output and reference. 

Consensus-Based Image 
Description Evaluation (CIDEr) 

Evaluates the quality of captions of images. Considers both precision and 
recall, while also weighing saliency and rarity to capture relevant details. 

25 



 

 

4.9.​ Challenges 

The large scale of FMs comes at a cost. These models face challenges similar to those 
previously discussed in DL. However, the pursuit of strong AI has not only intensified these 
existing issues but also introduced new ones. These challenges span various areas, including 
data diversity, design considerations, tuning complexities, theoretical understanding, 
environmental impact, and social implications.  

Model performance can be enhanced with support for multimodal and multilingual 
data. Multimodal research has often focused on combinations of two modalities, such as text 
and image or text and audio. To develop effective multimodal FMs, it is crucial to create new 
datasets that integrate multiple modes. Similarly, multilingual models can benefit from tasks 
designed specifically for multilingual contexts. However, increasing the vocabulary size 
would require more parameters, creating an additional cost challenge. 

The computational demands of FMs is a significant barrier to accessibility and 
innovation. As models continue to grow in size, additional research into model compression 
techniques is needed to reduce costs and facilitate wider participation in development. 
Another challenge is improving robustness in NLP to withstand adversarial inputs that 
manipulate output predictions. Unlike images, where transformations do not alter content 
meaning, even minor word substitutions can impact text semantics. 

Achieving consistent model performance across both upstream and downstream tasks 
remains a fundamental challenge. Abnar et al. (2021) observed a nonlinear relationship 
between these tasks’ performance, noting that increased training data and accuracy in 
pretraining does not necessarily imply improved downstream results. Additionally, the excess 
of self supervised tasks hinders establishing a clear relationship to downstream tasks. This 
creates ambiguity in how pretraining knowledge transfers to specific applications, making it 
difficult to determine which of them contribute meaningfully to downstream performance. As 
a result, models may learn representations that are overly broad or misaligned with the 
requirements of their target tasks.​
​ A stronger theoretical understanding can better guide experimentation. There is 
currently a lack of profound theory to support tentative experiments. While some analyses 
attempt to understand phenomena like the collapse of pretraining and the generalization 
ability, a comprehensive theoretical foundation remains elusive. Moreover, semantic 
understanding poses a challenge, as it is unclear whether FMs genuinely grasp the meaning of 
language or simply rely on corpus learning. Although excelling in various datasets, they often 
struggle with stability and performance on domain-specific or smaller ones, failing to meet 
the purpose of human language use (Zhou, et al., 2024). 

​ Lastly, ensuring responsible development and deployment of FMs requires addressing 
business, governance, ethical, and ecological challenges. As these models become integral 
parts of business processes, responsibilities and liabilities among stakeholders must be 
formalized. Organizations must also assess and mitigate their risks, adjusting AI management 
structures to consider issues such as privacy and copyright. Existing governance frameworks 
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can guide this adaptation. Regulatory bodies such as the EU AI Act (Regulation (EU) 
2024/1689) are discussing the creation of ethical AI systems and promoting their responsible 
behaviour. Examining the broader economic and social implications, such as workforce 
dynamics and market competition will be important. In addition, the ecological footprint of 
training and deploying foundation models requires research into their environmental impact, 
including energy consumption, carbon emissions, and resource use. Solutions to improve 
sustainability may include optimizing model architecture, reducing redundancy in training 
data, researching model compression, and implementing structural changes like shared 
computing resources and federated learning networks (Schneider., Meske, & Kuss, 2024).  
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Chapter 5 
 

Implementation​
 

5.1.​ Model definition 

As seen in the taxonomy, there exist several types of foundation models in medical 
imaging. The chosen model needed to address our initial hypothesis, enabling a 
comprehensive exploration into fine-tuning, performance, zero-shot learning, multimodality, 
and explainability. Potential limitations, such as GPU 2 availability, model size and licensing 
had to also be taken into consideration.  

Generalist VPMs best explore the versatility of foundation models in integrating and 
utilizing diverse data types across various medical tasks. From these models, Zhang et al.'s 
(2024) BiomedGPT aligned the most with the purpose of the research. First, it is a fully 
transparent, open-source language-vision model licensed for academic research. The model 
checkpoints, datasets, and scripts used for preprocessing, training, fine tuning, and evaluation 
are accessible. Additionally, it achieved state-of-the-art results in 16 out of 25 experiments 
assessing its capabilities on both unimodal and multimodal tasks that included image 
classification, captioning, VQA, text summarization, and medical natural language inference. 
The performance was also evaluated by medical professionals.  

Another key advantage of BiomedGPT is its lightweight architecture. It is available in 
three distinct sizes, referred to as BiomedGPT-S (tiny), BiomedGPT-M (medium), and 
BiomedGPT-B (base), along with instruction-tuned versions. This range of sizes allows for 
flexibility in environments with varying GPU accessibility and facilitates testing and tuning 
of performance effects. Overall, BiomedGPT is an accessible, well documented, and 
powerful foundation model useful for several research purposes. 

The foundation for these capabilities is the model's multimodal transformer 
architecture (Figure 19), which is designed to handle 2D image and text data.  A multimodal 
architecture differs from the traditional architecture in three key aspects. First, it is trained on 
datasets containing paired image-text examples to correlate visual features with descriptive 
text. The embedding space is therefore joint so both visual and textual data coexist and be 
processed. Lastly, it uses cross-attention layers to enable focusing on one modality while 
generating text (Singh, A., & Singh, K., 2025). 

2 A Graphics Processing Unit (GPU) is a specialized processor with a parallel architecture that 
accelerates the training of artificial intelligence models by efficiently performing the simultaneous matrix and 
vector operations essential for DL algorithms. 

28 



 

 

Figure 19. (a) BiomedGPT scale definition and (b) architecture (Zhang et al., 2024). 

 

5.2.​ Model performance 

​ BiomedGPT's performance is particularly notable when compared to other prominent 
large language models in the biomedical domain. It notably outperformed OpenAI's GPT-4 
with vision (GPT-4V) in human evaluations specifically for radiology tasks. Furthermore, 
BiomedGPT surpassed Google's Med-PaLM M in both breast cancer diagnosis and medical 
VQA. This is a significant achievement, considering that Med-PaLM M is a much larger 
model, featuring 12 billion parameters. 

BiomedGPT's performance across its various model sizes on diverse downstream 
tasks highlights its capabilities in different modalities. For binary image classification, 
BiomedGPT achieved accuracies of 97.0% and 89.7% on the SZ-CXR and MC-CXR 
datasets, surpassing the state of the art LightTBNet by 6.0% and 0.8%. In three class 
classification BiomedGPT-B surpassed the F1-Macro score of Med-PaLM M in both mass 
classification (scoring 57.2% vs 51.1%) and calcification classification (scoring 72.8% vs 
67.9%). 

On medical VQA tasks, BiomedGPT demonstrated solid accuracy for closed 
questions. It scored 88.0% on PathVQA and 81.3% on VQA-RAD, and set a new 
state-of-the-art score of 86.1% on SLAKE. However, the model is less effective with 
open-ended questions. Particularly, recording scores of 60.9% on PathVQA and 28.0% on 
VQA-RAD. Its performance on these was significantly lower, which can be attributed to its 
more limited model capacity and a lack of diverse conversational data during its training. 
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This can cause it to provide incomplete or syntactically awkward answers to more complex 
medical queries. 

For medical image captioning, BiomedGPT achieved exceptional results on the PEIR 
GROSS dataset, surpassing the existing state-of-the-art with improvements of 8.1% in 
ROUGE-L, 0.5% in METEOR, and a significant 89.8 point increase in CIDEr scores. The 
model's performance on the IU X-RAY dataset revealed interesting trade-offs in its 
captioning strategy. While BiomedGPT achieved a leading CIDEr score of 40.1 (representing 
a 5.0-point improvement over the previous best model), it recorded lower METEOR and 
ROUGE-L scores of 12.9% and 28.5% respectively. This performance pattern reflects the 
model's training optimization, which prioritized capturing key visual elements over broader 
linguistic fluency. On the more challenging MIMIC-CXR dataset, BiomedGPT matched the 
leading model's METEOR score of 14.2%, though it fell short of the larger Med-PaLM M 
model in ROUGE-L (23.7% vs 26.2%) and CIDEr (14.7 vs 23.4) metrics. 

Finally, in medical text summarization and NLP tasks, BiomedGPT demonstrated 
strong scaling properties and competitive performance despite its relatively compact size. For 
medical natural language inference using the MedNLI dataset, the model showed clear 
improvements with increased parameter count, achieving accuracies of 75.8%, 80.8%, and 
83.8% across its three model variants. Notably, BiomedGPT-B achieved 83.8% accuracy 
while using only a quarter of the parameters of SciFive-Large (which achieved 86.6%), 
resulting in just a 2.8% performance gap despite the significant efficiency advantage. For text 
summarization tasks, BiomedGPT-B was evaluated across four benchmark datasets including 
MedQSum, HealthCareMagic, MIMIC-CXR, and MIMIC-III, demonstrating solid 
summarization capabilities across diverse medical text types from doctor-patient dialogues to 
radiology reports (Zhang et al., 2024). 

 

5.3.​ Explored tasks  

​ BiomedGPT addressed both unimodal applications, including classification, text 
summarization, and report generation, and multimodal tasks like VQA and captioning. 
BiomedGPT focused on the latter, and will therefore be the subject of these experiments. 
Specifically, VQA tasks were chosen due to their multimodal complexity, zero-shot 
capacities, and exploring the effect of instruction fine tuning on performance. 

 

5.4.​ Dataset selection 

For VQA tasks, BiomedGPT was fine-tuned with the PathVQA (He et al., 2020), and 
SLAKE (Liu et al., 2021) datasets. Additionally, zero-shot performance was evaluated using 
the VQA-RAD (Lau et al., 2018) dataset omitted from training. It is important to note that 
these datasets contain different open and closed questions for radiology images of various 
organs. Answers are generally short, and most questions are straightforward and not complex.  

To evaluate zero-shot performance and fine-tuning across imaging modalities, we 
selected two datasets: BCDR-F01 (Moura et al., 2013) for mammography and a subset of 
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BreakHis for histopathology. To test the effect of instruction tuning, we will use a newly 
generated naive VQA dataset that mimics the instructions of VQA-RAD for BCDR-F0, and 
then compare it to a BreakHis VQA dataset provided by Hu et al. (2024) OmniMedVQA. 

 

5.5.​ Evaluation metrics 

BiomedGPT evaluates VQA tasks through weighted F1-score, accuracy and 
alignment accuracy. These same metrics are kept for consistency. In the case of VQA, 
accuracy measures the total cases where the answer is an exact match to the ground truth. 
Alignment accuracy measures if the answer is aligned to the question. For example, if a 
closed question is asked, the model answer is expected to align to yes/no answers. 

 

5.6.​ Experiment hypotheses  

Based on prior breast‐imaging results with BiomedGPT and considering model 
architectures, sizes, fine‐tuning approaches, and dataset complexity, the following 
hypotheses are proposed: 

 

Model Size Effect 

Increasing the model size will yield higher overall VQA accuracy on biomedical 
image‐question pairs. 

 

Zero‐Shot Question Type Performance 

In zero‐shot settings, closed‐ended questions will achieve higher accuracy than 
open‐ended questions. Noticeably, performance will be worse on breast images 
compared to other regions. 

 

Dataset Alignment and Instruction Tuning 

Generating a VQA dataset closely matched in style and content to BiomedGPT's 
breast‐imaging data, will improve both alignment and accuracy. In contrast, a more 
complex VQA dataset on a different modality such as BreakHis, will reduce 
alignment and accuracy but highlight the model's capacity and flexibility. 

 

Fine‐Tuning Trade‐Offs 

Fine‐tuning non‐instruction‐tuned model variants on relevant VQA data will boost 
accuracy compared to their zero‐shot baselines. However, without prior instruction 
tuning, answers are prone to be misaligned; achieving parity with instruction‐tuned 
versions will require substantially more data or training epochs.  
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Chapter 6 
 

Results and discussion​
 

6.1.​ Development Environment 

BiomedGPT underwent pre-training on a set of 10 NVIDIA A5000 GPUs, and the 
majority of its scripts employ a distributed launch configuration. Therefore, a GPU-enabled 
environment is required for optimal performance. However, given current GPU pricing, a 
physical setup may not be easily accessible. For this reason, a cloud environment was chosen, 
as it offers free (albeit limited) GPU access and the option to scale at a lower cost. 

Different platforms were explored, but Google Colab was ultimately chosen. Its 
virtual machine offered consistent free tier GPU availability, integration with Drive, and 100 
GB of storage, sufficient for most datasets. It also had limitations, most significantly a 
cumbersome Miniconda interaction and restricted terminal access.  

The installation guide for BiomedGPT was adapted for this environment. The colab 
notebook gcloud_conda_setup.ipynb is provided as a guide to clone the repository, mount the 
Drive and install Miniconda to ensure its persistence. Miniconda was necessary to create an 
environment with the required Python and pip versions for the packages. The scripts could 
then be executed via the conda run command. 

 

6.2.​ Data exploration 

6.2.1.​ VQA-RAD 

Before jumping into evaluating VQA zero-shot capacities, a data exploration is 
conducted on the dataset BiomedGPT evaluated it with. Lau et al. (2018) developed 
VQA-RAD, a dataset comprising 3,515 question-answer pairs linked to 315 radiology images 
of various organs. A random sample of the test set images is shown in Figure 20. 

 

Figure 20. Random sample of the VQA-RAD test dataset. 
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VQA-RAD has two types of questions: closed (yes/no) and open questions. Figure 21 
shows the density distribution in the character length of questions and answers. Notice that 
most of the answers are short (below 40 characters), indicating a significant number of closed 
questions.  

 

 

Figure 21. VQA-RAD test density of question and answer character length. 

 

​ Considering that instruct tuned versions are used for evaluation, taking a look at the 
nature of the questions is important. Figure 22 shows the distribution of the first and second 
words across the questions of the test set. Questions beginning with “Is…” are often related to 
closed, specific, and unambiguous answers. In contrast, questions starting with other words 
(e.g., what, are, can…) are typically correlated with open, more complex, and longer answers.  

 

Figure 22. Distribution of the first and second words in the test questions. 
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6.2.2.​ BCDR-F01 

Derived from Breast Cancer Digital Repository (BCDR), the BCDR-F01 dataset 
contains 200 biopsy-confirmed film MG lesions, equally split between 100 benign and 100 
malignant cases (Figure 23). It comprises a total of 358 feature vectors, with 184 instances 
corresponding to the benign lesions and 174 to the malignant ones (Moura et al., 2013). For 
each lesion, the dataset provides a set of clinically relevant attributes, including six binary 
indicators of radiological findings (i.e., masses, microcalcifications, calcifications, axillary 
adenopathies, architectural distortions, and stroma), an ordinal measure of breast tissue 
density, and the patient's age at the time of examination. This rich yet concise set of features 
allows for targeted analysis of the relationship between observable characteristics and 
diagnostic outcomes. 

This research could not identify a dedicated VQA dataset on the BCDR-F01 dataset. 
This presented an opportunity to showcase the zero-shot capabilities and flexibility of 
foundation models by generating a VQA using the dataset's clinically annotated features.  

 

 

Figure 23. Random sample of the BCDR-F01 dataset. 

 

6.2.3.​ BreakHis 

The BreakHis dataset is a publicly accessible collection of breast cancer 
histopathological images introduced by Spanhol et al. (2016). It comprises a substantial 
number of microscopic images of breast tumor tissue, captured at various magnification 
factors (40x, 100x, 200x, and 400x) (Figure 24). Experiments used a subset including 241 
benign and 443 malignant cases from the OmniMedVQA dataset by Hu et al (2024). Notice 
the significant difference in question structure and density compared to the one in VQA-RAD  
(Figure 25). All questions are open and consistent in format, falling into two categories: 
classification (malignant/benign) and modality (histopathology). 

BiomedGPT was primarily pre-trained and fine-tuned using radiology imaging data. 
Considering the established success of histopathology in accurately classifying rare cancer 
subtypes, the aim of utilizing this dataset is to demonstrate the foundation model's inherent 
flexibility and its ability to generalize effectively in a zero-shot setting. 
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Figure 24. Random sample of the BreakHis subset dataset. 

 

 

Figure 25. (left) OmniMedVQA BreakHis density of question and answer character length and (right) 
distribution of the first and second words in the test questions. 

 

6.3.​ Data processing 

Both the BCDR-F01 and OmniMedVQA BreakHis datasets are converted into 
BiomedGPT-compatible VQA formats by following a consistent, reproducible pipeline: each 
dataset is shuffled with a fixed random seed and stratified by answer labels to preserve the 
original distribution of question-answer pairs.  

In the BCDR-F01 pipeline, closed questions use binary features (e.g., modality, lesion 
presence, organ, diagnosis) mapped directly to “yes” or “no,” while open questions draw on 
the corresponding class labels. All questions are generated from a predefined set of templates 
inspired on Path-VQA, VQA-RAD, and SLAKE. The resulting question-answer pairs are 
then split 70% train, 15% validation, and 15% test producing JSON files. These are then 
prepared into TSV and PKL files as BiomedGPT does for VQA-RAD to further fine tune.  

Similarly, OmniMedVQA BreakHis entries, which already have paired questions and 
answers (e.g., malignancy status, subtype), are normalized and reformatted, then divided 70% 
train, 30% test.  

35 



 

6.4.​ Zero-shot inference  

6.4.1.​ Method 

BiomedGPT has the ability to answer biomedical questions in a free form manner at 
scale, without requiring retraining. This is a significant difference from earlier biomedical AI 
models such as BERT3  or ViT4 based models incapable of zero-shot prediction, or CLIP5 
based models that required a predefined answer (Zhang et al., 2024). As shown in Figure 26, 
BiomedGPT can generate answers by simply processing the input data. 

 

 

Figure 26. BiomedGPT-style zero-shot learning (Zhang et al., 2024). 
 

6.4.2.​ Zero shot pipeline 

 

 

Figure 27. Zero-shot experiment pipeline across local (green) and cloud (blue) environments. 

5 Contrastive Language-Image Pre-training (CLIP) is an OpenAI model trained on a vast dataset of 
text-image pairs using contrastive learning, enabling cross-modal understanding and zero-shot capabilities 
(Radford et al., 2021). 

4 Vision Transformer (ViT) applies the Transformer architecture, originally for NLP, directly to image 
classification by treating image patches as sequences (Dosovitskiy et al., 2021). 

3 Bidirectional Encoder Representations from Transformers (BERT) is a pre-trained language model 
that learns deep bidirectional representations from unlabeled text using the Transformer architecture, enabling 
diverse NLP tasks (Devlin et al., 2019). 
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As Figure 27 illustrates, our zero-shot experiment pipeline involves both local and 
cloud environments. For each dataset, a specific local notebook, preprocess_{dataset}.ipynb, 
is used to transform the raw data into the structured training, validation, and test .tsv files, 
along with a .pkl file. The .tsv files contain the processed input data for BiomedGPT, while 
the accompanying .pkl file stores the answer mappings for model evaluation.  

Zhang et al (2024) evaluate zero-shot inference using the test set and the script 
evaluate_vqa_rad_unconstrained.sh. For these experiments, we use 
gcloud_evaluate_unconstrained.sh, an adapted version designed for the cloud environment. 
This version changes the distributed launch so that it works with the GPU available from 
Google. It is also parameterized to facilitate testing different datasets.  

The colab notebook gcloud_zeroshot_vqa.ipynb  automatically downloads all three 
instruct models to run the script. Successful completion generates a log file with the details 
and score, and a csv file with the predictions made by the model. We analyze and plot the 
results locally using the notebook vqa_zeroshot_analysis.ipynb.  

 

6.4.3.​ Results 

 

VQA-RAD 

The unique answer count and scores per model are shown in Figure 28. Figure 29 
presents a random image from the VQA-RAD test set, along with its question-answer pairs 
and the predictions from each model size. Details on the prediction distribution generated per 
model are shown in Appendix 1.  

 

 

Figure 28. VQA-RAD unique answers (left) and weighted F1 scores (right) for instruct tuned models.  
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Figure 29. Comparison of BiomedGPT model inference with ground truth on a random VQA-RAD pair. 

 

​ From these results one can observe that larger models show greater generalizability, 
evidenced by a higher count of unique answers. This is accompanied by an improvement in 
overall scoring. These results are in line with those reported by Zhang et al (2024). Do 
consider that parameters are kept unchanged from the repository, including the seed. 

 

BCDR-F01 

The generated dataset's distribution of open and closed questions, categorized by 
modality, lesion detection, organ, and diagnosis, closely mirrors that of VQA-RAD (Figure 
30). Using the same zero-shot colab notebook, after the processed test.tsv file is uploaded, 
one can run the script parameterizing beam size6 and specifying this new dataset.  

 

 

6 "beam size" refers to the number of top candidate sequences (answers) that a model keeps track of at 
each step of the decoding process. Exploring more potential answers can lead to higher quality results.  
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Figure 30. (left) BCDR-F01 test density of question and answer character length and (right) distribution 
of the First and Second words in the test questions. 

​  

​ The zero-shot experiment is repeated with the test set of this generated VQA dataset. 
The unique answer count and scores per model are shown in Figure 31. On the other hand,  
Figure 32 presents a random image from the generated BCDR-F01 test set, along with its 
question-answer pairs and the predictions from each model size. Additionally, Table 4 
compares accuracy per question type and category. Details on the prediction distribution 
generated per model are shown in Appendix 2. 

 

  

Figure 31. BCDR-F01 unique answers (left) and weighted F1 scores (right) for instruct tuned models.  

 

 

Figure 32. Comparison of model inference with ground truth on a random BCDR-F01 pair. 
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Table 4. Zero-shot accuracy for BCDR-F01 open and closed questions on a range of tasks. 

 

 

Once again we notice greater generalization on larger models. Interestingly, the 
medium model performed better in this seed. Both base and medium models had an 
impressive accuracy for closed questions, both noticeably higher than the tiny variant. 
There’s a significant struggle for all model sizes to accurately answer open questions. 
Specially on classes that are rarely present in previous VQA datasets (density, 
microcalcification and ‘breast’ organ). However, the top answers on these questions reveal 
relevant instruction and alignment accuracy. As seen in Appendix 3, when asked to describe 
the density of the breast the medium model includes answers such as “high”, “low”, 
“relatively dense” or “relatively uniform”. Similarly, base and medium variants answer with 
“carcinoma”, “cancer”, and “invasive ductal carcinoma” on classification.  

 

BreakHis 

​ Finally, we perform zero-shot on the OmniMedVQA BreakHis dataset. This test 
utilized a beam size of 10 to enable the evaluation of more comprehensive cancer subtyping 
answers. The unique answer count and scores per model are shown in Figure 33. In Figure 
34,  a random image per ground truth is depicted, along with its question-answer pairs and the 
predictions from each model size.  

 

 

Figure 33. (Left) OmniMedVQA BreakHis unique answers and scores across instruct tuned models 
using BreakHis dataset. (Right) Note that on open-ended VQA, a larger beam size can decrease accuracy, as it 

produces more semantically varied answers that fail evaluation against ground truth. 
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Figure 34. Comparison of model inference with the ground truths of OmniMedVQA BreakHis set. ​
Note that no answers are reported by tiny model, possibly due to low answer confidence. 

 

 In this case, generalization across model sizes is more noticeable due to beam size. 
Given this parameter and considering all questions were open, the obtained 0 scores were 
expected. However, once again top answers reveal interesting instruction and alignment 
accuracy (Appendix 4). For modality, base and medium models recognize that images are 
obtained with a microscope, mention Haemotoxylin and Eosin, and attempt estimating the 
magnification. Similarly, these models mention “tissue”, “cells”, “ducts” and “breast” and 
attempt subtyping in some classification cases. While the answers include relevant breast 
cancer subtypes, they also contain unrelated subtypes from the lung, gastrointestinal, and 
brain domains, indicating the need for further refinement to improve prediction accuracy. 
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6.5.​ Fine-tuning   

6.5.1.​ Method 

BiomedGPT has an encoder-decoder cross-attention mechanism. Encoder-decoder 
LLMs are designed for sequence-to-sequence tasks. They translate sequences of textual input 
to sequences of textual output. In contrast to decoder-only LLMs, the input sequence does not 
represent a prompt but a genuine input that needs to be translated to a genuine output of 
unknown lengths. As shown in Figure 35, when working with pre-trained encoder-decoder 
LLMs, fine-tuning is usually done by fully fine-tuning the pre-trained LLM with a training 
dataset that contains input sequences and corresponding target sequences (Ferrari & Ginde, 
2025). 

 

 

Figure 35. Schematic pipeline when using encoder-decoder LLMs (Ferrari & Ginde, 2025). 

 

BiomedGPT adopts sequence to sequence learning for both pre-training and 
finetuning. Formally, given a sequence of tokens as input, where  indexes the 𝑥
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where  could refer to both linguistic and visual tokens in the context of BiomedGPT. 𝑥

By minimizing the negative log‐likelihood of each token conditioned on prior tokens, 
BiomedGPT learns to generate coherent answers from multimodal inputs. During fine‐tuning 
on BCDR‐F01, each example concatenates image embeddings with question tokens, and the 
model must sequentially predict answer tokens. Aligning the fine‐tuning objective with 
pre-training ensures that learned biomedical language-vision correlations are effectively 
transferred to the VQA task, enabling accurate prediction of relevant responses. 
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6.5.2.​ Fine tuning pipeline 

​

 
Figure 36. Fine tuning pipeline across local (green) and cloud (blue) environments.​

 

Figure 36 shows our fine-tuning pipeline. Like zero-shot experiments, this requires 
processing the dataset and adapting the train_vqa_rad_beam_scale.sh script for the cloud 
environment. The colab notebook gcloud_finetune_vqa.ipynb is used to automate and 
facilitate loading the data and models to run it. An important difference is that training is 
performed on the base models rather than on the instruct variants used in the zero-shot 
experiments. Successful completion generates a file with the details and progression through 
epochs. It also saves 3 fine tuned models (last, best, and epoch).  

For evaluation, the evaluate_vqa_rad_beam_scale.sh script is adapted into the cloud 
in gcloud_evaluate_beam_scale.sh. A colab notebook gcloud_finetune_evaluate_vqa.ipynb 
helps load the best tuned model checkpoint and test set to evaluate it with. A log and json file 
including the predictions are generated and analyzed similar to the zero-shot experiments 
using the local notebook vqa_finetune_analysis.ipynb. 

 

6.5.3.​ Results 

To study the effect of fine-tuning, we selected the medium and tiny non-instruct 
models as they performed the best and worst in the zero-shot experiments. It was also 
considered that fine-tuning takes much more time. For this reason, the  max epochs were 
reduced from 100 to 15. This way, anyone can try these experiments on a free Colab session 
(4 hours max). Specifically, fine tuning the tiny variant took around 90 minutes, and the 
medium variant 110 minutes.  

Figures 37 and 38 display the loss functions and scores per epoch for BiomedGPT 
tiny and BiomedGPT medium on the BCDR-F01 train and validation sets, respectively. 
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Figure 37. BiomedGPT tiny loss function and VQA score over 15 epochs on BCRD-F01  

 

 

Figure 38. BiomedGPT medium loss functions  and VQA score over 15 epochs on BCRD-F01  

 

​ Comparing both models reveals important differences. Despite falling training loss in 
both models, the tiny version's VQA score remained stagnant compared to the medium 
version's progress. Both models also show a slight increase in the validation loss after the 
initial epochs. Although this signals overfitting, the performance on the VQA task continues 
improving. This suggests learning of relevant features, even if its general prediction accuracy 
on unseen data is not ideal.​
​ After tuning, we evaluate both models as done in the zero-shot experiments. Table 5 
compares accuracy per category question type and category. 
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Table 5. Fine tune accuracy for BCDR-F01 open and closed questions on a range of tasks.  

 

​  

Compared to the zero-shot experiments, the fine-tuned models perform better on 
open-ended questions but underperform on closed ones. Additionally, the medium model 
demonstrates better generalization than the tiny variant. An analysis of the responses 
indicates instances of instruction misalignment, suggesting that instruction tuning plays a 
critical role in improving overall accuracy.  

 

6.6.​ Overview  

A high level overview of the experiments on BCDR-F01 are presented in Table 6.  

 

Table 6. Summary of results with BCDR-F01 generated dataset 

Dataset Experiment Model Weighted 
F1 score 

Accuracy Instruction 
alignment 
accuracy Closed Open 

BCDR-F01​
generated 

VQA 

zero shot 

instruct BiomedGPT 
base 

0.3210 0.3436 0.0431 Strong 

instruct BiomedGPT 
medium 

.0.3533 0.7055 0.0000 Strong 

instruct BiomedGPT 
tiny 

0.1935 0.5282 0.1108 Moderate 

fine tuning 

tuned BiomedGPT 
medium (15 epoch) 

0.2212 0.1166 0.3148 Weak 

tuned BiomedGPT 
tiny(15 epoch) 

0.1244 0.0000 0.3000 None 
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Chapter 7 
 

Conclusions and Future Work 
 

7.1.​ Conclusions 

By thoroughly researching FMs and experimenting on BiomedGPT, a prominent 
generalist biomedical FM, the primary objective of this research has been addressed. 
BiomedGPT has comparable performance on classification and lesion detection tasks to other 
FMs and ML/DL tasks. The experiments on a complex multimodal VQA task using both 
established and generated datasets show that BiomedGPT can effectively integrate visual and 
textual information to produce accurate, interpretable answers even under limited data 
conditions. Moreover, most of the secondary objectives were achieved with some limitations 
regarding availability, scope, and costs.  

 

I.​ This research has successfully identified and implemented a generalist 
vision-language FM capable of processing both imaging and text data for unimodal 
and multimodal tasks. 

II.​ To showcase the model's adaptability to imaging data, zero-shot and fine-tuning was 
performed on the BCDR-F01 and BreakHis datasets, which consist of mammograms 
and histopathology images, respectively. 

III.​ Performance was assessed on VQA tasks that included questions on lesion, tumor, 
and cancer subtypes. Zero-shot performance showed promise, but fine tuning revealed 
instruction tuning is significant to reach these results.  

IV.​ A concise and focused study was conducted to identify the key characteristics and 
performance differentiators of ML, DL, and FM in the context of breast imaging 
tasks. However, comparison to the explored task (i.e., VQA) was limited to 
BiomedGPT’s recorded performance.  

V.​ Potential for zero-shot learning on rare breast cancer subtypes was explored using the 
BreakHis dataset. However, the generation of answers including unrelated subtypes 
from other organs suggests that further refinement is necessary to improve specificity 
and clinical relevance. 

VI.​ To analyze the interpretability and explainability of model outputs, BiomedGPT’s 
responses to clinically grounded VQA prompts were examined, allowing assessment 
of how well the model aligns with diagnostic reasoning and whether its outputs can be 
meaningfully interpreted by clinicians. 

VII.​ To investigate the potential for integrating multimodal data, we tackled the 
challenging task of VQA. Results show that comprehensive analysis is currently 
limited by the non complex nature of VQA datasets and reliance on instruction tuning.  

​  

46 



 

Additionally, this research aims to advance the democratization of knowledge on 
FMs. My sincere gratitude to Zhang et al. (2024) for their fully transparent, detailed, and 
highly accessible model, which significantly aided my research, understanding, and 
experimentation. To broaden its impact, I have adapted their work to a free and accessible 
cloud platform to facilitate exploration to future researchers. The code organization of my 
work is shown in Appendix 5.  

 

7.2.​ Limitations 

A key limitation of this study is the nature of  the datasets used for testing. Generated 
questions for BCDR-F01 are non complex nor diverse. Additionally, the use of older, 
non-digital mammography could impact the generalizability of the findings to modern 
imaging techniques. The subset of BreakHis from OmniMedVQA has similar issues on 
question quality and category diversity.  

There are also practical limitations such as GPU access and costs. Results highlight 
the importance of model size, fine tuning strategies, and data volumes to reach state of the art 
performance. All of these incur a significant economic and time cost. While models with 
higher parameter size are available, open access is restricted to users with relevant academic 
credentials or behind a heavy paywall. Concerns on data governance are to be considered.  

 

7.3.​ Future work 

FMs can be easily adapted to several tasks and data modalities. In fact, BiomedGPT 
has already explored and proposed an architecture to handle 3D data. In this research only 
VQA was fully explored, but there are many other areas with relevant performance such as 
classification, text summarization, report generation, and captioning. Possible extensions of 
this work could focus on adapting and exploring these tasks on new (3D image) datasets, 
taking notice that an accurate evaluation may require medical validation. BiomedGPT was 
chosen due to its generative, generalist, and zero shot performance. However, as discussed in 
the taxonomy, there exist other FMs better suited for specific medical tasks. For instance, 
contrastive Generative TPMs can better approach rare disease diagnosis and zero-shot 
classification. Similarly, Hybrid TPMs combination of contrastive and generative pre training 
objectives adapt better to VQA and complex diagnosis tasks.  
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Appendix 

 

 

 

Appendix 1. Prediction distribution on zero shot VQA-RAD tests on instruct models. (left) Bar plot comparing 
the top 20 answers (right) Pie plot with the top 10 categories, ‘other’  being the grouping of the remaining​
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Appendix 2. Prediction distribution on zero shot BCDR-F01 tests on instruct models. (left) Bar plot comparing 
the top 20 answers (right) Pie plot with the top 10 categories, ‘other’ being the grouping of the remaining. 
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Appendix 3. Top 5 answers per category on open questions from the zero shot BCDR-F01 testset on instruct 
models. 
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Appendix 4. Prediction distribution on zero shot OmniMedVQA BreakHis tests on instruct models. (left) Bar 
plot comparing the top 20 answers (right) Pie plot with the top 10 categories, ‘other’ being the grouping of the 

remaining. 
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Appendix 5. Code structure for cloud and local environment use. 
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