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RESUM DE LA TESIS EN CATALÀ 
 

Optimització del tractament de radioteràpia estereotàctica fraccionada extracraneal 
en nòduls pulmonars malignes que presenten opacitats en vidre esmerilat 

 

INTRODUCCIÓ 

El càncer de pulmó és el més comú i letal a nivell mundial. Els pacients amb càncer de pulmó de 

cèl·lula no petita en estadis inicials i no operables es tracten amb radioteràpia d'alta precisió, 

coneguda com radioteràpia estereotàctica ablativa extracraneal (SABR, per les seves sigles en 

anglès). Un petit percentatge dels tumors tractats amb SABR presenten opacitats en vidre 

esmerilat (GGO, per les seves sigles en anglès). Aquest tractament té dos problemes principals. 

Primer, els algoritmes de càlcul utilitzats clínicament tendeixen a ser inexactes per a SABR de 

GGO, fet que pot comportar una irradiació excessiva dels teixits sans. Segon, les GGOs es 

tracten englobant tot el volum sospitós (que inclou la part sòlida i la component GGO), tot i que 

tendeixen a ser multifocals i presenten una evolució amb millor pronòstic que les lesions sòlides. 

A més, s'espera un augment del nombre de pacients amb tumors GGO gràcies als programes de 

cribratge, per la qual cosa és important optimitzar el tractament de SABR per a aquests nòduls. 

HIPÒTESIS 

Amb la metodologia actual, els tractaments de SABR de GGO presenten un excel·lent control 

local a expenses d'una irradiació excessiva als teixits sans. Utilitzant un càlcul de dosis correcte i 

adaptant l'administració del tractament als casos amb GGO, podrem reduir la toxicitat del 

tractament, mantenint el control local. 

OBJECTIUS 

En una primera part s’ha avaluat la toxicitat observada amb els objectius de: 

 Analitzar i quantificar els canvis en el parènquima pulmonar després del tractament de 

radioteràpia estereotàctica fraccionada extracraneal. 

 Correlacionar la toxicitat pulmonar de grau 1 amb la dosi administrada al pacient. 

En una segona part, s’ha optimitzat aquest tractament, per a lesions amb component de vidre 

esmerilat amb els sub-objectius de: 
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 Avaluar l'exactitud dels algoritmes de càlcul de dosi clínica en nòduls pulmonars en 

presència d'opacitats en vidre esmerilat. 

 Definir un enfocament per optimitzar els tractaments pulmonars estereotàctics per a 

lesions amb component d'opacitats en vidre esmerilat que mantingui el control local 

esperat mentre es redueix el risc de toxicitat associada. 

 

MÈTODES 

El primer pas ha estat analitzar retrospectivament la toxicitat radiològica observada en els 

pacients tractats a l’Hospital Clinic Barcelona entre 2017 i 2021, amb un total de 102 pacients i 

118 lesions. Hem correlacionat aquesta toxicitat amb la dosi calculada amb els sistemes de 

planificació utilitzats clínicament 8Eclipse, Varian). Per a fer-ho, hem definit uns criteris per 

valorar la toxicitat radiològica a partir de les imatges de tomografia axial computeritzada (CT) de 

seguiment dels pacients, correlacionant aquesta toxicitat amb la dosi rebuda. 

Paral·lelament, hem avaluat les incerteses del càlcul dosimètric en diferents sistemes de 

planificació emprats en la pràctica clínica per a diferents graus de GGO, tant en casos reals de 

pacients com en un maniquí antropomòrfic. Hem correlacionat aquestes diferències amb la 

quantitat de GGO present en la lesió per als diferents casos. Referent als algoritmes de càlcul 

s’ha utilitzat un algoritme tipus B (AAA, Eclipse) i s’ha comparat amb un algoritme tipus C, que 

resol la equació de transport lineal de Boltzman (Accuros, Eclipse). 

Finalment, hem recalculat el pla de tractament utilitzant els dos models de càlcul de dosis 

disponibles, tant per a l'aproximació original, consistent en donar un sol nivell de dosi a tota la 

lesió, com utilitzant dos nivells de dosis diferents segons si la zona tractada correspon a la part 

sòlida de la lesió o a la part amb component GGO. En la selecció d'aquests dos nivells de dosi, 

s'ha escollit com a llindar inferior la dosis biològica efectiva de 100 GyBED10, ja que és el valor 

aconsellat a la literatura per aconseguir un control local acceptable per a aquest tipus de lesions. 

Aquest nivell de dosis s’ha donat a la component GGO de la lesio mentre que la prescripció a la 

part sòlida de la lesió s'ha mantingut igual que en el tractament original. Hem analitzat les 

diferències pel que fa a dosi al pulmó i robustesa de les dues aproximacions al tractament. 
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RESULTATS PRINCIPALS 

Hem trobat una correlació entre el volum de pulmó que rep dosis biològiques efectives superiors 

a 300 GyBED3 amb l'aparició i magnitud de les toxicitats radiològiques observades. També s'ha 

observat que els canvis en el parènquima pulmonar tendeixen a mantenir-se o empitjorar en 

aquells casos on el volum amb D>300 GyBED3 és superior a 20 cm³. 

En la segona part de l'estudi, s'ha trobat una correlació positiva entre la presència de GGO i els 

errors de càlcul de la dosi en el cas dels càlculs sobre maniquí. Aquestes diferències disminueixen 

en pacients, especialment en presència de moviment respiratori. Quan es planteja un tractament 

aplicant una desescalada de dosis a la zona de GGO, s'aconsegueixen reduccions significatives en 

la dosi mitjana al pulmó, V20 i V300GyBED3. Finalment, també s'ha observat que, optimitzant 

utilitzant dosis més baixes a la zona de GGO, s'aconsegueixen patrons de fluència més estables, 

augmentant la robustesa del tractament.  

CONCLUSIONS  

Dels resultats d'aquesta tesi, s’observa una correlació clara entre les dosis biològiques efectives 

superiors a 300 Gy i els canvis radiològics tant a curt com a llarg termini. Si es confirma en una 

cohort independent de pacients, aquestes troballes podrien conduir a les primeres restriccions de 

dosi de radioteràpia per a la toxicitat pulmonar de grau 1. Aquest estudi posa les bases per a la 

desescalada de dosis en el tractament SABR de lesions pulmonars amb GGO, cosa que podria 

conduir a un control local equivalent mentre es redueixen les toxicitats associades. Aquestes 

troballes estableixen els fonaments per a futurs assaigs clínic. 

PARAULES CLAU 
 

Radioteràpia estereotàctica ablativa , càncer de pulmó, opacitats en vidre esmerilat , toxicitat 

pulmonar, desescalada de dosi. 
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INTRODUCTION 
 

1. Principles of radiotherapy 

Radiotherapy is a treatment modality that uses ionizing radiation to achieve a therapeutic 

effect, and it is primarily used in cancer treatment.1 In oncology, radiotherapy is one of the three 

main treatment modalities along with surgery and systemic treatment.2 It can play a role in 

different phases of the disease, such as radical treatment with curative intent (either exclusive or 

concomitant with other treatments), adjuvant or neoadjuvant to surgery (associated or not with 

systemic treatment) or palliative treatment to improve symptom control and quality of life.3-5 It is 

estimated that nowadays, about 50% of cancer patients will benefit from radiotherapy at some 

point during their course of treatment.1,2 

 

1.1 Mechanism of action 
 

The fundamental process of radiotherapy is based on the interactions between particles and 

molecules. These interactions cause ionization and/or excitation of the molecules, resulting in 

damage to the deoxyribonucleic acid (DNA) of cancer cells. This damage can ultimately lead to 

the death of targeted cells or their inability to further multiply.6 

Radiation is the process by energy is deposited in the medium by  electromagnetic waves or 

subatomic particles. When this radiation carries enough energy to ionize the medium it passes 

through it is classified as ionizing radiation. Ionizing radiation can originate from naturally 

radioactive substances, which emit it spontaneously, or from artificial sources such as X-ray 

generators and particle accelerators. The effect of these interaction can be broadly divided into 

(Figure 1):7 

 Direct effect: Ionizing radiation directly interacts with atoms and molecules within cells. 

This interaction can involve several processes, including the photoelectric effect, 

Compton scattering, and pair production. These events result in immediate structural 

damage, such as breaks in the DNA chain or alterations in the nitrogenous bases, 

potentially leading to mutations or cell death. 

 Indirect Action: A significant portion of the damage caused by ionizing radiation is 

mediated through the production of free radicals. These reactive oxygen species can 
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impaired blood supply and hypoxia in the affected tissues. This vascular damage is a key factor 

that influences the subsequent stages of tissue repair.12  

Secondly, the long-term repair phase starts. The repair process often involves fibrosis, where 

excess collagen deposition leads to scarring and can alter the tissue's normal function.12 Over 

time, the balance between collagen deposition and its degradation determines the quality of the 

tissue repair.10 Additionally, angiogenesis, the formation of new blood vessels, is critical for 

restoring blood supply to the repaired tissue and supporting ongoing repair and regeneration 

processes.13 This long-term phase can extend over months or years, depending on the extent of 

damage and the tissue's ability to recover.12 

 
1.2 Absorbed dose 
 

The unit to quantify the amount of radiation delivered to a patient is the absorbed dose (D). It 

is defined as the energy imparted (ε) by the particles in a volume (V) of mass (m) as:  

D=ε/m        (1) 

The unit of absorbed dose is the gray (Gy), which corresponds to one Joule per kilogram.14  

As it comes from its definition, this unit does not consider any characteristics related to the 

biological effects of the energy deposited, neither biological consideration regarding the 

irradiated volume. Although the definition of absorbed dose provides information about the 

degree of interaction between the particles and the target, it lacks any information to evaluate the 

clinical impact of the dose. 

 

1.3 Biological effects 
 

There are several biological factors that play a role in the biological effect of dose.  

1.3.1 Cell cycle 

The cell cycle consists of several phases, each phase has different characteristics in terms of 

cellular activities and sensitivity to radiation(Figure 2):7 

 Gap 1 Phase: Cells grow and prepare for DNA synthesis. Sensitivity to radiation is 

relatively low during this phase. 
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Tumor cells often have defective repair mechanisms due to mutations, making them less 

capable of repairing radiation-induced damage compared to healthy cells. This inefficiency in 

repair contributes to the higher sensibility of tumor cells to radiotherapy.7  

1.3.3 Vascularization and oxigenation 

Vascularization refers to the formation of blood vessels within a tumor. Adequate blood 

supply is essential for delivering oxygen and nutrients. Well-vascularized tumors have a rich 

blood supply, ensuring high oxygen levels. This oxygen presence makes the tumor cells more 

susceptible to radiation, as oxygen enhances the damaging effects of radiation on DNA. 

Conversely, poorly vascularized tumors suffer from hypoxia (low oxygen levels), which can 

reduce the effectiveness of radiotherapy. Hypoxic cells are more resistant to radiation because 

oxygen acts as a potent radiosensitizer, stabilizing radiation-induced DNA damage and 

preventing effective repair.7 
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      (2) 

This linear-quadratic equation is considered to derive from a cell-survival relationship of the 

form 

      (3) 

Where S is the surviving fraction. When we deliver a certain amount of total dose (D, where 

D=nd) in a determined number of fractions (n) 

      (4) 

Fowler22 suggested the term E/α to be called the Biological Effective Dose (BED), which is a 

measure of the effect, in dose units, for a given biological tissue. 

With the BED definition in mind, the rationale underlying the fractionation can be stated as 

follows. Normal tissues and tumours respond differently to a change in dose fractionation, and 

they can be described in terms of a single parameter: the α/β ratio.20,21 Late-responding normal 

tissues show greater changes in sensitivity in response to a change in dose per fraction than early 

responding tissues, and this is consistent with a higher α/β ratio (Figure 4). The survival curves 

for target cells and late-responding normal tissues have systematic differences. Fowler22,23 

expressed the view that because the uncertainties in α/β ratios are considerable and because the 

values for some tissues have not been shown to be different from those of others, for the time 

being, it is logical to assume standard values for α/β of 3 and 10 Gy for most early-responding 

and late-responding tissues, respectively. 

 

1.5 Overall treatment time 

A typical radiotherapy course lasting 5–7 weeks allows significant cell growth in both the 

tumor and healthy tissues. Early reactions occur in rapidly proliferating normal tissues, which can 

usually withstand radiation due to their ability to quickly repopulate over several weeks. 

However, if the treatment duration is reduced, there's less time for this repopulation, leading to 

more intense early reactions.7 Late reactions, on the other hand, involve cells that grow slowly, so 

changes in the overall treatment time do not impact them as much as early reactions7.  
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Figure 4. Effect of dose fractionation on cell survival fraction applying the linear quadratic model. Each 

fractionated dose represents a shoulder at the beginning of a single dose. We can see that the survival fraction 

increases for the same total dose because of fractionation, reaching a limit slope, at the value αd, where d is the dose 

per fraction. Adapted from Principles and Practice of Radiation Oncology.24 

Tumor cell repopulation rates can vary greatly. Despite the slow growth of most human 

tumors (with carcinoma volume doubling typically every three months), tumors can grow faster 

within a 5–7-week period. Damage and shrinkage in a tumor often trigger a rapid increase in 

repopulation, with doubling times sometimes less than a week.25 Therefore, the overall treatment 

duration is crucial for tumor response. Delaying treatment by a week could significantly lower 

the chances of controlling the tumor. Conversely, shortening the treatment time, without 

reducing the total dose, might enhance local control chances.19 The existence of a lag period 

before repopulation starts, both in early-responding tissues and tumors, usually around 2–3 

weeks must also be considered. This is particularly relevant for very short treatment courses.26  

Taking into consideration both lag time and repopulation, longer treatment times require higher 

total doses to be effective, with a calculated loss of 0.6 Gy per day due to repopulation (meaning 

a 2 Gy per session should be considered to have a biological effect of 1.4 Gy).27 

1.6 Fractionation schemes 

The most direct reason why fractionation is routinely used in clinical radiotherapy is that it 

was empirically established. The early radiation oncologists began using single-dose treatments, 

but they soon realised that giving daily doses over a period of weeks also resulted in good 
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tumour control with less severe side effects. In retrospect, this must have occurred because the 

normal-tissue reactions that limit radiation therapy have a greater recovery or repair capacity than 

most tumors.19 By the 1980s and 1990s, a consensus emerged that a daily dose of around 2 Gy 

was an optimal balance. This dose was found to be effective in controlling tumor growth while 

allowing healthy tissue to repair and tolerate the treatment. Over the years, the standard of 2 Gy 

per fraction has been defined as the standard in many radiotherapy protocols and it is referred to 

as normofractionation.14 

Some treatments, however, have proven to benefit from the use of a reduced number of 

fractions, or a larger dose per fraction. These schemes are referred to as hypofractionated 

schemes. A clear example of prioritizing larger fraction sizes against higher number of fractions 

is palliative radiotherapy where factors of cost and convenience may predominate over 

radiobiological principles.28-30 However, the use of large fraction sizes is on the increase, 

especially in stereotactive ablative radiotherapy (SABR) regimes. In these cases, a small target is 

treated with a high dose per fraction (larger than 6 Gy), delivering doses that are high enough to 

overcome the repair mechanisms of cancer cells, leading to increased cell death, thus high local 

control (LC) rates. This approach, where the whole treatment is usually delivered in one to eight 

fractions, also prevents or limits tumor repopulation from occurring during treatment. This 

strategy has been found effective in certain types of cancers, like lung cancer, where the treated 

volume is relatively small, and the risk of damage to surrounding tissues can be minimized. 

Numerous clinical studies have demonstrated the efficacy of SABR in various cancers, showing 

high rates of local control, especially in early-stage cancers.31 This work will be focused precisely 

on this context, where high doses per fraction are given over a short overall treatment time.32  

 

1.7 Adverse effects and CTCAE scale 

 

We define the incidence of side effects as the probability of a certain adverse effect occurring. 

Just as the probability of LC increases with absorbed dose, so does the risk of adverse effects 

(Figure 3). Two types of effects are considered in terms of when they appear: early and late. For 

the latter, the follow-up time is also necessarily very long, while for early effects, a few weeks of 

observation, during and after radiotherapy, are enough to fully understand their incidence.33,34 In 
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general, it can be said that the α/β value for the chronic response of healthy tissues is lower than 

for tumors and ranges between 1 and 6.  

Thus, when we face the decision to administer certain dose levels to healthy tissue we define a 

range of accepted probability of harm as our tolerance level, since specific knowledge of a 

concrete adverse event for a specific patient is, for now, inaccessible. We say that tolerance refers 

to the probability of limit complications above which the treatment is not acceptable for a 

patient. For example, it is generally accepted that the tolerance for the maximum dose to the 

spinal cord is 50 Gy (given in a normofractionated scheme)34 Which, in reality, means: if we 

irradiate the spinal cord of  2 Gy per fraction for 5 days a week up to 50 Gy, it is expected that in 

5 out of every 100 of them, severe and irreversible neurological effects will occur in the long 

term; and this 5% seems in general, an acceptable risk compromise. To define these tolerance 

levels, it is necessary, first, to systematically register adverse effects related to the radiotherapy 

treatment. 

The Common Terminology Criteria for Adverse Events (CTCAE)35 is a descriptive 

terminology which can be utilized for Adverse Event (AE) reporting. A grading scale, accounting 

for the severity of the effect, is provided for each AE, defined as any unfavourable and 

unintended sign, symptom, or disease temporally associated with the use of a procedure.  

Grade refers to the severity of the AE. The CTCAE displays grades 1 through 5 with specific 

clinical descriptions of severity for each AE based on this general guideline:  

 Grade 1 (Mild):  asymptomatic or mild symptoms which can be found by clinical or 

diagnostic observations only. For this AE intervention is not indicated. 

  Grade 2 (Moderate): minimal, local or non-invasive intervention is indicated. Limiting 

age-appropriate instrumental activities of daily living (ADL). Where instrumental ADL 

refers to basic day to day activities such as preparing meals, shopping for groceries or 

clothes or using the telephone. 

 Grade 3 (Severe or medically significant but not immediately life-threatening): 

hospitalization or prolongation of hospitalization is indicated. It is disabling and limits 

self-care ADL. Where self-care ADL refers to basic self-care activities such as bathing, 

dressing and undressing, self-feeding, using the toilet or taking medications. 

 Grade 4 (Life-threatening consequences): Urgent intervention is indicated.  

 Grade 5: for cases of death related to the AE. 
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Thus, when designing a radiotherapy treatment, it is not only relevant to seek the best LC 

rates, but also to minimize the risk of AE and their grade. In this thesis we will focus on 

optimizing SABR radiotherapy treatments with a focus on grade 1 toxicities on the lung while 

maintaining BED levels to ensure high LC rates. 

 

2. Radiotherapy process 
 

Radiotherapy treatment is a complex process (Figure 5) that needs to be adapted to the 

characteristics of each patient. This requires dividing the process into different phases from the 

decision to treat to the administration of the treatment. 

After the diagnosis of the disease and its extent (achieved with a wide range of tests including 

biopsies, analyses and several and imaging techniques) the case is assessed, and the therapeutic 

approach is agreed upon, considering all available options. This is usually done by a 

multidisciplinary team including experts in various medical specialities. If treatment with ionizing 

radiation is decided, the radiotherapy process (which includes computed tomography (CT) 

simulation, target definition, dose prescription, treatment planning, treatment delivery and 

follow-up) starts. 

Figure 5. Main steps of the radiotherapy process from the Simulation CT scan to the treatment delivery. Original 

Figure from the doctoral student. 
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2.1 Radiotherapy types 

The different types of radiotherapy are categorized by how radiation is delivered to the target 

area. We divide radiotherapy in two big groups: 

 External radiotherapy. The radiation is produced outside the patient and directed 

towards the tumor. 

 Brachytharpy. The radiation is emitted from inside the patient, in contact with or very 

close to the tumor. The radiation should be minimally penetrating to treat the area near 

the emission and irradiate the surrounding healthy tissues as little as possible. 

 This thesis focuses on external radiotherapy, which is the most widespread treatment 

modality.36  

 

2.2 Simulation process 
 

Once external radiotherapy is decided as the treatment approach, images of the patient are 

acquired for treatment planning (Figure 5). The images must provide information about the 

shape, location, and movement of the tumor and the organs at risk (OAR) surrounding it. This 

image must also allow the characterization of the materials that the radiation will encounter to 

calculate the distribution of absorbed dose.37 Furthermore, images must be acquired in the 

position in which the patient will be treated so that the subsequent planning is as representative 

as possible of the treatment situation. To achieve this a series of immobilization devices are used 

such as wing boards or arm supports, abdominal compression devices or vacuum bags. 

CT images are usually used as they are obtained with ionizing radiation and represent a map 

of its attenuation in the patient, which allows establishing more easily the relationship between 

the grey level and the composition parameters necessary for dose calculations. This grey level is 

determined by the linear coefficient of attenuation of the material contained in that voxel.When 

breathing induced organ movement is present the most common imaging technique is the use of 

a four-dimensional CT (4DCT). A 4DCT is an advanced imaging technique that captures a series 

of CT images over different phases of a patient's breathing cycle. This method integrates the 

element of time (the fourth dimension) with the traditional three spatial dimensions in CT 

imaging, allowing for a dynamic representation of the tumor and surrounding anatomy as they 

move during breathing.38 
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In some cases, supplementary images such as positron emission tomography or magnetic 

resonance can be used to accurately define the tumor or the surrounding OAR. 

Finally, it is necessary to link the spatial coordinates of the patient with those of the 

accelerator so that the treatment is administered where it should be. The most common way is to 

use external marks or tattoos indicating the coordinate axes, although there are also other 

systems that use infrared marks or the three-dimensional surface of the patient.14  

 

2.3 Target delineation  
 

Once the images are acquired, the radiation oncologist delineates the treatment volumes and 

OAR. This can be done manually by contouring slice by slice or with the help of automatic 

segmentation tools.38  

Regarding target volumes, the consensus of the International Commission on Radiation Units 

(ICRU) establishes three main types of volume to contour.39 The first is the gross tumor volume 

(GTV), which corresponds to the macroscopic tumor. The second is the clinical target volume 

(CTV), corresponding to the volume where subclinical disease may be present. If there is 

macroscopic tumor present, the CTV encompasses the GTV to consider the possible spread of 

tumor cells. Therefore, the clinical goal is to irradiate the CTV with the prescribed dose in all 

treatment sessions. To guarantee this, all geometrical uncertainties of the process must be 

considered: variability of volumes depending on who delineates them, variations in patient 

positioning between planning and different treatment sessions, etc. In this context, the third 

volume, the planning target volume (PTV), is defined, encompassing these uncertainties in an 

additional margin applied to the CTV. In this way, if planning is done on the PTV, it ensures that 

the CTV will receive the prescribed treatment (Figure 6).  
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Figure 6. Volume definition according to ICRU guidelines. GTV represents the visible tumor (when present). 

From there, several margins are accounted for depending on the characteristics of the tumor and the proximity to 

organs at risk. The arrow represents the influence or the OAR on the delineation of the PTV. Adapted from 

ICRU Report 83.39 

In cases where motion of the target volume is expected to happen during treatment, the use 

of an internal target volume (ITV) is recommended. This volume can be defined in several ways. 

One example is adquiring the simulation CT scan in two extreme situations (i.e. full bladder and 

empty bladder) and considering that the motion expected during the treatment will fall within the 

limits established between the two extreme cases. 

The generation of the ITV using a 4DCT is a critical process in radiotherapy planning, 

especially for tumors that are affected by respiratory motion. With the use of the 4DCT 

information the GTV/CTV position can be defined in all phases of the breathing cycle, and they 

can be accumulated to generate the corresponding ITV. This ITV is frequently generated in the 

average reconstruction of the 4DCT (Figure 7), which is then used for dose calculation. In this 

reconstruction, the multiple phases of the 4DCT scan, are averaged to create a single, composite 

image. This averaged image is a more representative depiction of the tumor and surrounding 

anatomy over the entire respiratory cycle. The rationale behind using the average reconstruction 

for dose calculation lies in its ability to provide a more stable and consistent representation of the 

target volume and adjacent normal tissues.  
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Figure 7. Different approaches for the generation of the ITV volume, to account for breathing morion during the 

treatment's delivery. (a) ITV encompassing all the phases of a 4DCT scan. (b) Maximum intensity projection 

approach (c) Gating on the most stable phases of the breathing cycle (d) Average reconstruction of the 4DCT. 

Adapted from Shuxu.40 

There are several strategies to compensate for breathing tumor motion: 

 ITV approach: accounts for tumor motion due to breathing by expanding the target area 

to encompass the entire range of tumor movement. Instead of delivering radiation to a 

fixed position, ITV considers both the tumor's average position and its potential 

displacement during respiration. 

 Gating: This method involves synchronizing the radiation beam with the patient's 

breathing cycle, delivering radiation only during specific phases of respiration (for 

example, the exhalation phase). By monitoring the respiratory signals through external 

markers or internal fiducials, the radiation can be precisely timed to target the tumor when 

it is in a predefined position. 

 Tracking: Tracking involves the real-time monitoring of tumor movement and adjusting 

the radiation beam accordingly during treatment. Unlike gating, which delivers radiation at 

specific times, tracking continuously follows the tumor motion, allowing for dynamic 

adaptation of the beam. 

 Active breath control strategies (such as deep inspiration breath hold): is a pool of 

techniques where patients are instructed to voluntarily control their breathing, for 

example, taking a deep breath and holding it during radiation delivery. This approach 

needs the capacity of the patient to actively collaborate and usually focuses in using the 

breath hold either to push nearby OAR away or to achieve a very stable respiratory phase. 

Although gating or tracking approaches permit smaller target volumes, they come at the cost 

of an increased treatment time and complexity. Active breath control strategies are only possible 
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for very fit or previously trained patients, capable of holding their breathing for prolonged 

periods of time. These factors make the ITV approach the most widespread breathing motion 

compensation technique, specially in the lung and for upper lobe tumors, as the movement for 

these cases tends to be smaller. In this work the analyzed patients have been treated using this 

approach but, nevertheless, as gating and tracking techniques are becoming more frequent, they 

have also been considered in this work. 

2.4 Treatment planning 
 

Once the PTV and the OAR are defined and the dose is prescribed, dosimetry technicians 

and medical physicists design the treatment plan using a treatment planning system (TPS). The 

TPS is a computer program that has access to the simulation CT images and the delineated 

volumes. The TPS also contains the necessary data to characterize the accelerator that will 

perform the treatment and incorporates dose calculation algorithms where the radiation beams 

to be used have been modelled.41 The program allows the creation of a radiotherapy plan which 

contains the configuration of the beams as needed to deliver an optimal treatment and an 

estimate of the absorbed dose distribution in the patient.  

Different particles, techniques and optimization strategies can be used to deliver a 

radiotherapy treatment. In this thesis we will mainly focus on the delivery of radiotherapy using 

high energy photons with volumetric modulated arc therapy (VMAT) technique and inverse 

optimization process, all described in the following points. 

 

2.4.1 Particles and energy used 
 

The types of radiation used in radiotherapy are diverse. The most widespread ones are 

photons, electrons, and protons. Each of these particles has specific characteristics regarding 

how the dose is distributed in space as they penetrate the patient (Figure 8), and this 

characteristic shape allows them to be used in different scenarios.39,42 In general, changing the 

energy alters the penetration depth of the beam but does not modify the characteristic shape of 

the dose distribution in the other directions. 

 Electrons concentrate the dose near the entry point, and they have a specific maximum 

range, which depends on their energy. They are mainly used in superficial treatments 

close to the skin.43  
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 Low energy photons (kV) distribute the dose along their entire path, with the maximum 

in the entrance point and then decreasing smoothly. Photons of lower energies are 

mainly used to treat superficial lesions.42  

 High energy photons (MV) also distribute the dose along their entire path, but the dose 

reaches its maximum a few centimetres after entering the patient and then decreases 

smoothly as the beam loses energy. Increasing the energy increases the distance to the 

maximum dose and slows the subsequent dose drop. This dose distribution allows 

treating tumors at a wide range of depths while sparing the skin.39  

 Protons concentrate the dose deposition at a specific depth that depends on their energy 

and the material of the medium. Below this depth the dose deposition drops suddenly 

and can be considered negligible. The dose is lower and smoothly increases before 

reaching this point. By modulating the energy of the beam, the treatment of deep 

tumours reducing entrance and exit doses is achieved, but this dose distribution is less 

robust against anatomical or density changes.44 Their use is more limited because the 

treatment units and dedicated centres are considerably more costly, although the number 

of facilities and indications is expanding. 

 

Figure 8. Depth dose distribution in water for high (MV) and low (kV) energy photons, electrons and protons. 

All the depth dose profiles are normalized at their dose maximum. Original figure from the doctoral student. 

Other particles, such as carbon ions, are also being used; however, their use remains limited to 

a small number of facilities worldwide and is primarily restricted to clinical trials. 
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2.4.2 Delivery technique 
 

Treatment techniques are conditioned by the characteristics of the dose distribution. For MV 

photons, the dose is distributed from the entry to the exit of the patient as shown in the previous 

section (Figure 8), with higher values near the entry that gradually decrease until the exit. 

Consequently, doses can be significant before reaching the tumor, at the tumor itself, and in the 

tissues behind it.45 The solution to improve the conformation of the dose to the target volume 

and reduce it in the rest of the tissues involves adding beams with other incidences that avoid 

overlaps and/or the most sensitive organs. In this way, all the beams contribute to accumulating 

damage to the tumor while distributing the dose to the healthy tissues and reducing the risk of 

side effects. 

The number of beams and their configuration can be made following different considerations, 

giving rise to different treatment techniques (Figure 9).  

 Three-Dimensional Conformal Radiotherapy (3DCRT): beams with static incidences are 

used. The intensity of the beam is not modulated using secondary collimator mechanisms 

and is usually flat or has a wedge shape.42  

 Intensity-Modulated Radiotherapy (IMRT) is refinement of 3DCRT in which different 

levels of radiation intensity can be defined in different parts of the beam. This can be 

achieved using the terciary collimator system either with discrete steps (step & shoot) or 

continuously (sliding window). This modulation of intensity allows for better 

conformation of the dose to the target volume.39 

 Volumetric Modulated Arc Therapy in which the number of beams and incidences 

increases to have a continuous arc of irradiation around the patient. Several arcs can be 

used in the same plans, providing more degrees of freedom. VMAT further conforms to 

the target volume while usually achieving a reduction in treatment time compared to 

IMRT.46 A simpler approach to VMAT is called dynamic conformal arc (DCA) where 

the radiation is also delivered using arcs, but there is no active modulation from the 

terciary collimation system and its only function is to follow the outline of the PTV for 

each projection. 



 
 

34 
 

The selection of a radiotherapy delivery technique is dependent upon several of factors 

including the prescribed dose, the complexity of the case, equipment availability, and specific 

patient needs. 

 

Figure 9. Dose distribution of the same plan using 3DCRT (a), IMRT(b), DCA(c) and VMAT(d) 

techniques. As can be seen conformity of the 50% isodose line (dark blue) improves with the complexity of the 

delivery technique. The Blue contour represents the volume 2cm away from the edge of the PTV (in red). The 

orange volume is the Chest Wall contour. Original figure from the doctoral student. 

 

2.4.3 Treatment plan optimization 
 

The purpose of the optimization process is to obtain the best possible treatment plan. The 

focus is on achieving the best dose distribution to treat the PTV while maintaining doses to 

OAR as low as possible. It is usually an iterative trial-and-error process where the variables are 

adjusted until the optimal solution is found and the objectives and restrictions are met. 

The various parameters that need to be fine-tuned include the quantity and incident angles of 

the beams, their energies, shapes, varying intensity levels at specific points, relative contributions 

of each field (weights), dose rates, and, if relevant, the speeds of rotation. Diverse combinations 

of these factors are possible, and these approaches are generally categorized into two main 

groups: direct planning and inverse planning.47   

Direct planning is a manual process where the person performing the planning configures the 

plan, calculates it, and evaluates the degree of compliance with the objectives and restrictions. If 

the result is not acceptable or they believe there is room for improvement, they modify some 
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aspects of the plan, calculate it, check if the result improves or worsens, and repeat the process 

until the final plan is reached.  

As the number of degrees of freedom increases the direct approach is no longer feasible. In 

this context, inverse planning is introduced, which automates the entire process and inverts it, as 

it starts from the objectives and restrictions for the system to return the optimized plan. To do 

so, the program iteratively minimizes its internal cost function to provide a plan as close as 

possible to the objectives and restrictions provided.  

One of the problems associated with optimization (both direct and inverse) is the 

impossibility to know for sure whether there is a better plan than the one obtained. This is an 

inherent fact of the process since, mathematically, it is a non-convex problem where the total 

number of solutions, and their relationship cannot be determined a priori to discern if the 

minimum of the cost function is global or local.48  

2.4.4 Fluence 

Dose fluence in IMRT and VMAT is a critical concept that refers to the distribution and 

intensity of radiation delivered to a target area. It represents the amount of radiation energy 

delivered per unit area and is a key factor in achieving high precision in the treatment. The 

optimization process tunes the fluence to achieve an optimal dose distribution, once calculated in 

the anatomy of the patient. 

However, the intricate modulation of dose fluence also introduces certain challenges, 

especially in terms of treatment robustness. Robustness in radiotherapy refers to the ability of 

the treatment plan to remain effective and safe under different scenarios, such as patient setup 

errors, breathing motion or anatomical changes. The highly tailored nature of IMRT and VMAT 

can sometimes lead to less robust plans. For instance, small misalignments or changes in patient 

anatomy can lead to significant deviations from the intended dose distribution. 

A specific example of this challenge is the need to remove the first millimetres of skin from 

the PTV when doing inverse optimization. If the skin is not removed the system will increases 

fluence to ensure coverage of the PTV near the skin compensating for the loss of electronic 

equilibrium. However, this increase in fluence would lead to unacceptable hotspots in case of 

slight misalignments. Another example is observed in the treatment of thoracic tumors, where 

the lungs' presence introduces heterogeneity.49 The lungs, being less dense than surrounding 

tissues, can disrupt the lateral equilibrium of the radiation beams, leading to fluence peaks in the 
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area between the CTV and PTV. These peaks are areas where the radiation dose is 

unintentionally higher due to the beams' altered path through the different densities. This 

phenomenon requires careful planning and modulation to ensure the intended dose is delivered 

to the tumour while protecting the lung tissue.50,51 

The use of robust optimization, which considers different patient setup errors in the 

optimisation process and fluence generation, can solve these problems, but it is not yet available 

in most commercial TPS.51  

2.4.5 Dose calculation 

As mentioned in previous chapters, the information contained in the simulation CT scan, and 

the model of the treatment machine and beam characteristics are used by the TPS determine the 

dose absorbed in the patient. The uncertainties associated with the determination of the dose 

administered to the patient must be as low as possible to ensure that patients are treated with the 

intended dose.  

Based on this, the ICRU39 determines that the total uncertainty in the dose, including planning 

and administration of the treatment, should not exceed 5%, and that uncertainties associated 

with the dose calculation algorithm should be within 2-3% of the prescribed dose. This value is 

consistent with the recommendations of other organizations, such as the 2-3% requirement for 

TPSs in the International Atomic Energy Agency's (IAEA) TRS-430 document,52 or the 1-2% 

goal for dose calculations in heterogeneities of the Task Group 65 of the American Association 

of Physicists in Medicine (AAPM).53 

The uncertainty associated with the dose calculation algorithm will depend on the used 

algorithm and its limitations to account for the variables present in dose transport and 

deposition. 

2.4.5.1 Dose calculation algorithms 

The calculation algorithms estimate the dose distribution in the patient for a given treatment 

plan. To do this, they must characterize the beams used, the tissues and materials that the 

radiation will encounter, and combine it all to predict both the radiation transport (attenuation 

and scattering) and the energy deposition within the patient.  

Photons emitted by the accelerator interact through different mechanisms with the matter 

they encounter, whether it is the patient, the accelerator head itself, or other elements like the 
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table, immobilizers, etc. The algorithm must consider all these processes and components and, at 

the same time, must be efficient at calculating the dose in several minutes, so treatment planning 

is possible.  Calculation algorithms have constantly evolved over time, becoming increasingly 

complex while maintaining clinically acceptable calculation times. They are divided into Type A, 

B or C, in increasing order of complexity.42,54 

 Type A: these are the simplest dose calculation algorithms, often referred to as 

correction-based algorithms. They include techniques like the Clarkson method or the 

Batho power law correction as well as the Equivalent Tissue-Air Ratio (ETAR) method. 

Type A algorithms assume a homogeneous medium and apply correction factors for 

heterogeneities. They generally use empirical or semi-empirical methods and are based on 

measurements in water phantoms. These type of algorithms don’t take into consideration 

electron transport in the medium. The primary limitation of Type A algorithms is their 

oversimplification of tissue heterogeneity. They are not accurate in areas where there are 

significant changes in tissue density, such as at air-tissue or bone-tissue interfaces. This 

can lead to inaccurate dose calculations in thoracic, head and neck, or pelvic regions. It is 

no longer recommended to use these algorithms in external beam radiotherapy as they 

could lead to uncertainties over 3% in most clinical scenarios. 

 Type B: These algorithms, also known as “model-based” algorithms, are more advanced 

than Type A. Examples include the Pencil Beam Convolution (PBC) method or the 

Collapsed Cone Convolution (CCC) algorithms. Type B algorithms incorporate more 

sophisticated models of radiation transport and scatter. They consider heterogeneities to 

a greater extent than Type A algorithms but still use some simplifications in the 

calculation process. While more accurate than Type A, Type B algorithms can still 

struggle with complex geometries and very heterogeneous areas. They might not be 

entirely accurate in scenarios like small fields or areas with rapidly changing densities but 

fall into the acceptable uncertainty range for most external radiotherapy applications. The 

Anisotropic Analytical Algorithm (AAA) is a commercial solution that falls within this 

category. 

 Type C: These are the most advanced and computationally intensive algorithms that 

model the interations of individual particles, such as Monte Carlo simulations or 

algorithms that deterministically solve the linear Boltzman transport equation (LBTE) by 

modelling photon transport. Type C algorithms use few (if any), simplifications. Monte 

Carlo simulations, for instance, simulate the physical interactions of individual photons 
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and electrons with matter, providing a very detailed dose calculation. The main limitation 

of Type C algorithms is their computational intensity although advances in computing 

have partially mitigated this issue, and they have started to be routinely implemented in 

the clinical practice.  

The use of different calculation algorithms leads to differences in the determination of the 

expected dose distribution (Figure 10) and they can lead to different clinical decisions. This fact 

is even more relevant when different densities or compositions of the medium (heterogeneities) 

are present. These heterogeneities affect the interactions that photons will have and the 

generation of charged particles, altering their transport, energy transfer, and ultimately modifying 

the dose distribution (Figure 10). In the context of lung lesions, for example, the use of type B 

algorithms may lead to an overestimate of dose in the less dense area surrounding the lesion due 

to the lack of lateral electronic equilibrium compared to a type A algorithm. 

 The information about the medium is usually obtained from the planning CT image, relating 

the Gray level of different points with the characteristics required by the algorithm in question. 

These characteristics can also be manually specified in the TPS for the volume desired and are 

recorded in the digital imaging and communications in medicine (DICOM) structure object. 
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Figure 10. Dose calculation differences between algorithms such as AAA and AXB. In the top figure we can see 

a simplified example with the depth dose profile in a heterogeneous tissue composed of water, bone and air. Bottom 

figures show the differences observed in a clinical case. Differences are more prominent in the region surrounding the 

lesion in the lung which translate in a higher calculated dose for the PTV in the case calculated with AAA (line 

with triangles). Dose volume histogram (DVH) of the plans recalculated with fixed Monitor Units and dose 

values for the PTV(red), Chest Wall(orange) and Right Lung(brown) are provided for each calculation algorithm. 

Original figure from the doctoral student. 

 

In this thesis we will focus in two dose calculation algorithms. First AAA is a simpler 

convolution/superposition type algorithm that used a point type kernel implemented in the 

Eclipse TPS by Varian Medical Systems (Palo Alto, CA, USA) that scales the kernel in depth and 

in 16 lateral directions at different depths to consider heterogeneities.55 The distributions 

obtained with these algorithms meet accuracy requirements in water-like tissues but may not do 

so if there are heterogeneities. Secondly, we will be using Acuros XB (AXB), which is a type C, 

LBTE-algorithm.   

2.4.5.2 Dose normalization and reporting 

Dose normalization in radiotherapy is a critical process that involves rescaling the calculated 

dose distribution to ensure the PTV receives a dose according to the prescribed dose. In most of 

the cases the aim is to achieve a homogeneous dose distribution within the PTV. 

The ICRU39 recommends that at least 95% of the PTV should receive a dose equal to or 

greater than 95% of the prescribed dose. This ensures adequate coverage of the target while 

allowing for some unavoidable variations. The maximum dose within the PTV should generally 

not exceed 107% of the prescribed dose. This limit helps to control the extent of hot spots 
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within the target area. While some level of dose inhomogeneity can be acceptable, the ICRU 

guidelines suggest that these areas should not exceed 110% of the prescribed dose, particularly in 

areas adjacent to OARs. 

SABR involves delivering high-dose radiation in fewer fractions, targeting very precise 

locations, often near critical structures. The relationship between prescription and normalization 

in SABR can be more complex. 

In SABR, the prescription dose might be defined to a specific isodose56 line that encompasses 

the PTV. For example, the prescription could be to deliver a dose such that 95% of the PTV 

receives 100% of the prescribed dose. Furthermore, to achieve steep dose gradients higher 

maximum doses are allowed within the PTV, reaching values as high as 140% of the prescribed 

dose. 

 

2.4.6 Plan evaluation 

The evaluation of the quality of the treatment plan usually focuses on its theoretical dose 

distribution, but other factors that may cause this distribution to differ from the one finally 

delivered to the patient must also be considered. Among these factors are uncertainties in dose 

calculation, the machine's capability to irradiate the plan, and the effect of differences in the 

patient's positioning and anatomy compared to the planning. All these aspects are considered in 

the evaluation of the dose distribution, robustness, and complexity of the plan to have a broad 

view of its quality. 

 

2.4.6.1 DVH 
 

The three-dimensional distribution is visually evaluated slice by slice qualitatively. Quantitative 

evaluation is done using dose-volume histograms (DVH) that collect the number of voxels 

within a certain volume with a certain dose value. Visual inspection of DVHs can lead to 

identification of clinically important characteristics of an absorbed-dose distribution, such as the 

presence (but not the location) of regions of high or low absorbed dose, which are often difficult 

to assess rapidly and consistently from conventional isodose or color-wash presentations. 

Cumulative DVHs are histograms of the volume elements that receive at least a given absorbed 

dose, and they are usually expressed as either the absolute volume or the volume relative to the 
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total structure volume, receiving at least a given absorbed dose, D. Each point on the line of a 

relative cumulative DVH is described by the following: 

    (5) 

Where V is volume of the structure and Dmax the maximum dose in the structure, and the 

differential DVH is defined by dV(D)/dD, which is the increment of volume per absorbed dose. 

Figure 11. Differential (left) and cumulative (right) Dose Volume Histogram of the same radiotherapy plan. Two 

structures can be seen as an example, in orange the PTV for which the ideal scenario would be a step function in 

the cumulative histogram with the step at 100% of the prescribed dose. For the OAR, in this case the lungs, 

represented in blue, the ideal (but impossible) scenario would be to have no dose at any point of the structure. 

Original figure from doctoral student. 

An absolute cumulative DVH can be obtained from a relative cumulative DVH by 

multiplying by the volume of the structure. 

2.4.6.2 OAR dose tolerances 

As mentioned earlier, for the various effects that may occur and to develop appropriate 

treatment plans, it is important to determine tolerance doses.57 Generally, the volume of 

irradiated tissue is crucial for the possibility of adverse effects to ocure, thus tolerance levels are 

specified as points in a DVH.58 These DVH points are defined either with specific values as 

mean dose, maximum or minimum dose or by defining: 

 Maximum doses at a specific volume. The nomenclature to define these points in the 

DVH is Dx(cm3)<y(Gy) where x is the maximum volume to recieve y dose. Units can be 

either absolute or relative. For example, D0.1cm3<50Gy for the spinal cord would translate 

into a maximum of 0.1cm3 of the OAR receiving 50 Gy or more. 
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 Maximum volumes at a specific dose. The nomenclature to define these points in the 

DVH is Vx(Gy)<y(cm3) where x is the maximum dose received by a certain volume, where 

units can be either absolute or relative For example, V20Gy<20% for the lung would 

translate into a maximum of 20% of the healthy lung to receive doses of 20 Gy or higher. 

QUANTEC is an initiative that provides guidelines on the tolerance of normal tissues to 

radiation. It compiles and reviews data from published clinical trials, research studies, and 

radiobiological models to establish dose-volume constraints for various organs. Its goal is to 

prevent or reduce the risk of radiation-induced side effects and complications. It provides 

evidence-based, organ-specific dose limits that are used in treatment planning. This ensures that 

the guidelines reflect the latest understanding of radiation tolerance. 

 

 

2.4.6.3 Complexity and robustness 
 

Plans are usually evaluated under a static univariable scenario, but many minor changes can 

occur during the delivery of the treatment. It is crucial to evaluate the robustness of the 

treatment plan against this expected minor changes, to be sure that the dose to the PTV and 

OAR remain acceptable.59 

On one hand, we evaluate robustness by evaluating the impact on the dose distribution of 

different treatment scenarios compared to the nominal planning scenario. In MV photons, 

relevant scenarios are mainly due to geometrical uncertainties and to positioning errors.60 

Although these uncertainties are partially considered in the PTV on which planning is based, 

there can be situations with unacceptable changes in doses to the GTV/CTV. It is advisable, 

therefore, to evaluate the robustness of the plan by simulating the different scenarios that may 

occur and studying their effect on the dose distribution. 

On the other hand, plan complexity provides information on how the plan produces the dose 

distribution. It allows estimating whether the TPS is working under conditions where the 

calculation algorithm is reliable (large and regular openings, low level of conformation, etc.) and 

the degree of difficulty the accelerator will have in irradiating the plan accurately (speeds and 

accelerations of moving elements, demand for synchronizations between parameters, etc.). 

Different parameters and indices defined in the literature allow quantifying these aspects. 
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All these aspects of the plan quality must be considered in the planning process to obtain a 

plan with a good dose distribution, robust in all scenarios, and as simple as possible. In the case 

of inverse planning, this involves incorporating them into the cost function to reach the desired 

balance. Some TPS implement penalties for complexity. Regarding robustness, there is only one 

commercial system that does robust optimization on the GTV/CTV for MV photons (the PTV 

is not necessary in this context), unlike treatments with protons where robust optimization is the 

norm given their higher sensitivity to uncertainties. 

 

3. Lung lesions 
 

3.1. Lung cancer 

Lung cancer is the most common and lethal type of cancer worldwide, accounting for 13% of 

cancer incidence and more than 19% of cancer-related deaths.61 In Spain, although the incidence 

is slightly lower (10%), it still accounts for 20% of all cancer-related deaths—which translates to 

more than 22.000 deaths per year.62 

This type of cancer is a major global health burden, representing the leading cause of cancer-

related mortality worldwide. According to the World Health Organization (WHO),61 lung cancer 

accounted for approximately 2.21 million new cases and 1.8 million deaths globally in 2020. The 

high mortality rate of lung cancer underscores the need to improve treatment strategies and the 

importance of early detection through screening. 

According to the available evidence, about 75% of these lung cancer patients will receive 

radiation therapy (RT) at least once during their illness.63 Of these patients, approximately 

20%—those with early-stage (T1-2N0) inoperable disease—will receive SABR. This number, 

however, will most likely increase in the coming years with the implementation of screening 

programs. While surgery is the standard treatment for medically fit early-stage non-small-cell 

lung cancer (NSCLC) patients, SABR has become a recommended treatment alternative64 for 

those patients who, because of co-morbidities and/or poor pulmonary function, are medically 

inoperable or refuse surgery as a treatment option. 

3.2 Lung metastases 

Lung metastases are common in patients with advanced stages of various primary tumors. It 

is estimated that up to 30-55% of patients with metastatic cancer will develop lung metastases 
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during their disease.65 This wide range is attributable to the variability in metastatic potential 

across different cancer types. Metastatic stage was considered a systemic process and systemic 

therapy remains the treatment of choice. However, for patients with low metastatic burden, 

referred to as oligometastatic (OM) disease, SABR and Radiofrequency ablation have proven 

promising results in terms of efficacy in several randomized trials.66-69  

The term OM first appeared in 1995 and defines a state between localized and widely 

disseminated disease.70 Within OM we distinguish, for example: de novo OM disease where both 

primary and metastatic lesions are detected simultaneously in a patient without prior oncological 

treatment, oligorecurrence where new limited metastases appear after primary tumor has been 

locally controlled or oligoprogression where limited metastases occur during the systemic 

treatment.71  

3.3 Lung screening and lung lesions follow-up 

Screening for lung cancer is primarily targeted at high-risk populations, such as heavy smokers 

and those with a significant history of tobacco use. The primary imaging modality used for lung 

cancer screening is low dose CT, which has been shown to improve lung cancer treatment by 

detecting lesions in an earlier stage.72 Other techniques, such as positron emission tomography 

(PET) combined with CT, offer information about the metabolic activity of lesions and aiding in 

the selection of candidates for treatments like SABR.73  

Implementing lung cancer screening is challenging as it represents a significant increase in 

both human resources and equipment. Nevertheless, it is becoming a more common practice 

within health system services, and it is expected to increase lung cancer diagnosis at early stages 

and, by consequence SABR treatments, in the following years.74,75 

3.3.1. Diagnostic through imaging 

Imaging studies play a pivotal role in the detection and characterization of lung lesions. The 

following imaging modalities are commonly used (Figure 12): 

 Chest Radiography is often the initial imaging test, but it has limited sensitivity for 

detecting small lesions or distinguishing benign from malignant processes. 

 CT scans (usually including the use of contrast agents) provide detailed images of the 

lung, allowing for the detection of smaller lesions, assessment of the lesion's 
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characteristics (e.g., size, shape, borders), and evaluation of lymph node involvement and 

distant metastases.76,77  

 PET scan is often combined with CT (PET/CT), this modality helps in assessing 

metabolic activity of the lesions, aiding in distinguishing between malignant and benign 

processes, and detecting metastatic disease.78  

 

 

 
 

Figure 12. Example of PET-CT and simulation CT scan in a patient with a lung metastasis close to the chest 
wall. (a) Anatomically registered PET/CT. The red and yellow color wash indicates the PET-based captation 
(b) FDG-PET-scan. (c) Axial slice of the contrast enhanced planning CT. (d) Axial slice of the planning CT 

scan of the same anatomical area. Original figure from the doctoral student. 

 

3.3.2. Malignancy signs in imaging 

As stated before, CT scans of the chest provide are essential for the evaluation of pulmonary 

nodules.79 CT can better characterize the size, shape, margins, and internal composition of lung 

lesions, as well as their relationship to surrounding structures. Some characteristics of lung 

nodules are suggestive of malignancy, these signs include (Figure13): 
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 Size and Growth: Larger nodules (generally >8mm in diameter) and those showing 

growth over time are more suspicious for malignancy.80 

 Borders: Irregular, spiculated, or lobulated margins are more commonly associated with 

malignant tumors.79 

 Density: partially solid nodules are more likely to be malignant than purely solid nodules. 

Most persistent Ground Glass Opacities (GGO) are associated with malignancy, 

although GGO can also represent early-stage adenocarcinomas or minimally invasive 

adenocarcinomas.81,82 

 Cavitation: Lesions with thick-walled cavitation are suggestive of squamous cell 

carcinoma.83  

 Calcification: The pattern of calcification gives information about the nodule. Usually it is 

considered a sign of beningnity. Nevertheless, eccentric calcification might indicate 

malignancy, whereas central, laminar, or "popcorn" calcifications are often seen in benign 

lesions.80 
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Figure 13. Display of common malignant signs: (A) pleura traction sign (black arrow); (B) spicule sign (white 
arrow); (C) lobulation sign; (D) bronchial cutoff sign; (E) air bronchogram sign (black arrow); (F) tumor 
vasculature sign; (G) vacuole Sign (black arrow); (H) cavity sign (white arrow). Figure by Duan et al .84 

3.3.3 Natural evolution and GGO cases 

GGO in the lung refer to areas that appear hazy on a CT scan, indicating partial filling of air 

spaces, interstitial thickening, partial collapse of airways, or increased capillary blood volume in 

the lungs.85 Unlike solid nodules, GGOs allow for the visualization of underlying bronchial 

structures and pulmonary vessels due to their semi-transparent appearance. The natural 

evolution of persistent GGO nodules can be variable, ranging from stability over time to 

progression into invasive malignancy, depending on their etiology and underlying pathology. 

GGO nodules can be classified (Figure 14) as pure GGOs, which lack a solid component, and 

part-solid GGOs, which contain both ground-glass and solid components. The management and 

implications of these nodules differ significantly, especially in the context of lung 

adenocarcinoma.86 

 Benign Causes: Many GGO nodules are benign and are transitien, resulting from 

conditions such as inflammation, haemorrhage, or focal fibrosis. In these cases, GGOs 
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may resolve spontaneously. Infectious causes, like pneumonia or viral infections, often 

lead to GGOs that can resolve with medical treatment.79  

 Pre-invasive Lesions: GGO nodules can represent pre-invasive lesions, such as atypical 

adenomatous hyperplasia or adenocarcinoma in situ. These lesions have a potential for 

malignant transformation but can remain stable for years before progressing. The rate of 

growth and progression for pre-invasive lesions is generally slow, allowing for periodic 

reassessment.84  

 Minimally Invasive Adenocarcinoma (MIA): MIAs often present as part-solid GGOs and 

have a very slow growth. They have a high survival rate when resected, but the presence 

of a solid component suggests a higher likelihood of invasion compared to pure GGOs.85 

 Invasive Adenocarcinoma: Some GGO nodules may represent early-stage invasive 

adenocarcinomas. These lesions tend to grow more rapidly than pre-invasive or 

minimally invasive lesions. The solid component's size within a part-solid GGO is a 

critical factor in determining the lesion's behavior, as it is considered the invasive 

component, with larger solid components associated with a higher risk of invasive 

disease and poorer prognosis.79-87  

 

The management of GGO nodules is guided by their appearance, size, and changes over 

time. A conservative approach is mostly recommended to isolated, stable pure GGOs with 

periodic follow-up CT scans to monitor for changes. An increase in size or the development 

of a solid component within a GGO nodule may indicate a need for further diagnostic 

evaluation.79 
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Figure 14. Lung tumors with different degrees of GGO component. (a) Pure GGO nodule. (b) Around half solid 

and half GGO with a Consolidation to Tumor Ratio (CTR) of 0.4 (c) Increasingly solid lesion, corresponding to 

a CTR of 0.7 (d) Almost purely solid lesion, with a CTR of 0.9 (e) Solid lesion (f) Cavitary lung lesion. 

Original figure from the doctoral student. 

3.4 Lung SABR  

The technique of SABR, particularly in the treatment of lung lesions, represents a paradigm 

shift from conventional radiotherapy approaches.85 It delivers highly focused, high-dose radiation 

beams to a small target volume, which enables ablative doses to be delivered in a few sessions 

with a relatively low incidence of toxicities.88 

One of the most critical aspects of SABR is the creation of a steep dose gradient around the 

target lesion. Unlike conventional radiotherapy, which often aims for a homogeneous dose 

distribution within the target and minimal dose to surrounding tissues, SABR prioritizes 

maximizing the dose to the tumor while sharply reducing the dose just outside the target 

boundary.89 While this steep gradient is essential for sparing adjacent healthy tissues and vital 

organs, reducing the risk of radiation-induced toxicity, it leads to higher maximum doses within 

the treated volume. 
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When talking about Lung SABR there are two main approaches which differ primarily in dose 

and fractionation strategies. Both schemes are designed to optimize treatment according to 

tumor characteristics and patient profiles. 

 American Fractionation Scheme: This approach commonly uses hypofractionation 

with higher doses per fraction. Examples include doses of 54 Gy in 3 fractions or 50 Gy 

in 4 fractions. The goal is to maximize tumor control while minimizing treatment 

duration. Studies like RTOG 13.01 SAFRON II explore single and multifaction SABR 

options for pulmonary oligometastases.89 

 Dutch Fractionation Scheme: The Dutch approach often employs risk-adapted 

fractionation based on tumor location and size, delivering more conservative doses over 

a greater number of fractions, such as 60 Gy in 8 fractions or 55 Gy in 5 fractions. This 

scheme aims to minimize toxicity, especially for central lung tumors.90 

Furthermore, fractionation schemes in lung SABR are influenced by tumor location:  

 Peripheral Tumors: SABR for peripheral lung tumors often uses high-dose, 

hypofractionated schedules (e.g., 54 Gy in 3 fractions or 50 Gy in 4 fractions). This 

approach minimizes treatment time while ensuring high local control and low toxicity91. 

The TROG CHISEL trial confirmed the superiority of SABR over conventional 

radiotherapy in this context.92  

 Central Tumors: Central lung tumors require more fractionation to reduce toxicity due 

to their proximity to organs at risk. Common schedules include 60 Gy in 8 fractions. 

Studies such as the RTOG 0813 trial focus on dose escalation for central tumors while 

maintaining safety parameters.93,94 

 Ultracentral Tumors: Are in close proximity to the central airways or other critical 

structures, are treated with highly fractionated and risk-adapted schedules (e.g., 50 Gy in 

10 fractions) to mitigate the risk of fatal toxicities.95 

 

3.5 Lung SABR for GGO lesions 
 

The SABR treatment of GGO faces two primary challenges. The first is the standard clinical 

practice of treating GGO as solid nodules in terms of the prescribed dose. This approach is 

problematic when treating a small solid component within a larger GGO, as the risk of radiation-
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induced lung toxicity correlates with the volume of lung receiving ablative doses. While this 

strategy effectively controls the tumor locally,96 it increases the risk of damaging healthy lung 

tissue. Moreover, the presence of GGO component has been related to better LC rates.97 This 

suggests that a uniform radiation dose for all pulmonary tumors may not be optimal, particularly 

for GGO tumors, which are often multifocal and may require multiple subsequent irradiations. 

 

The second challenge involves the potential for large dose calculation errors by some 

commercial dose calculation algorithms, due to the increased heterogeneity of GGO lesions 

compared to solid nodules.98-100 To our knowledge, no studies have yet evaluated the dose 

calculation errors in GGO lesions treated with SABR or its possible impact on healthy tissue 

toxicity. Furthermore, challenges related to fluence peaks during optimization should be 

considered, as they lead to less robust dose distributions. These fluence peaks are relevant when 

using type C algorithms, like AXB, and need to be addressed, as these can significantly affect 

dose distribution and accuracy in heterogeneous tissues like GGO.101 Several approaches have 

been presented for solid lesions to mitigate this effect and achieve a fluence with a robustness 

level similar to that obtained when optimizing using type B algorithms, such as AAA.102,103 This 

work focusses on optimizing the treatment of lung nodules containing GGO component, 

considering both possible approaches to  reduce OAR toxicities while ensuring an accurate and 

robust dose distribution. 

 

3.6 Lung SABR related toxicities 
 

Like all therapeutic interventions, lung SABR is associated with specific toxicities. The frequency 

and severity of these side effects can vary based on several factors including the location of the 

tumor within the lung, the total radiation dose, the fractionation schedule, and the patient’s 

underlying health status.104 The most common toxicities associated with lung SABR, categorized 

by their CTCAE35 grade are: 

Radiation Pneumonitis  

Is one of the most common complications, occurring in approximately 10-20% of patients 

treated with SABR for lung tumors.31 

 Grade 1 (mild): Asymptomatic or mild symptoms. 
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 Grade 2 (moderate): Symptomatic; medical intervention indicated; limiting instrumental 

Activities of Daily Life (ADL). 

 Grade 3 (severe): Severe symptoms; limiting self-care ADL; oxygen indicated. 

 Grade 4 (life-threatening): Life-threatening respiratory compromise; urgent intervention 

indicated (e.g., ventilatory support). 

Rib Fracture 

The risk of rib fracture following SABR is reported to be around 2-10% when the treatment 

volume is adjacent to the chest wall .105 

 Grade 1: Asymptomatic; clinical or diagnostic observations only. 

 Grade 2: Symptomatic and limiting instrumental ADL. 

 Grade 3: Hospitalization or surgical intervention indicated. 

Chest Wall Pain 

Chest wall pain incidence varies widely, and it is reported up to 30-50% in some series, especially 

for tumors close to the chest wall.31 

 Grade 1-2: Pain can often be managed with over-the-counter pain medications. 

 Grade 3: Severe pain; limiting self-care ADL; narcotic analgesia or other interventions 

may be required. 

Skin Toxicity 

Although it is relatively uncommon with SABR, some mild skin reactions are obsevred in a small 

percentage of patients.105 

 Grade 1: Faint erythema or dry desquamation. 

 Grade 2: Moderate to brisk erythema; patchy moist desquamation, mostly confined to 

skin folds and creases; moderate edema. 

 Grade 3: Moist desquamation in areas other than skin folds and creases; bleeding induced 

by minor trauma or abrasion. 
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Esophagitis 

Occurs in a small percentage of patients, more commonly when treating lesions close to the 

mediastinum.106 

 Grade 1: Asymptomatic or mild symptoms. 

 Grade 2: Symptomatic; altered eating/swallowing; oral supplements indicated. 

 Grade 3: Severely altered eating/swallowing; tube feeding, or hospitalization indicated. 

Fatigue 

Although it is common it is also usually only observed in a mild form, but usually mild (grade 1 

or 2). 

Brachial Plexopathy 

It is a rare toxicity, occurring in less than 1% of patients, typically with tumors located in the 

upper lobes or apices of the lungs.105  

 Grade 1-2: Mild to moderate symptoms; intervention may include physical therapy or 

pain management. 

 Grade 3-4: Severe symptoms; may include sensory loss and motor deficits; often requires 

more intensive management strategies. 

 

3.6.1 Lung toxicities 
 

In this work we will focus on radiation pneumonitis. Radiation pneumonitis is an inflammation 

of the lung tissue that can occur after exposure to radiation. Its development is influenced by 

various factors, including the total radiation dose, the volume of lung irradiated, the dose per 

fraction, and individual patient sensitivity (Figure 15). 
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Figure 15. Radiation pneumonitis (RP) in CT images: (a) to (d) different patients with grade 1 lung parenchyma 
changes, (e) grade 2, and (f) grade 4-5. Original figure from the doctoral student. 

 

3.6.1.1. Grade 2 and higher 

Grade 2 radiation pneumonitis involves symptomatic presentations that may include persistent 

cough, low-grade fever, and dyspnea on exertion.107 Unlike grade 1, which is mostly 

asymptomatic and detected incidentally on imaging, grade 2 pneumonitis actively affects patients 

and requires medical treatment. Its management often involves corticosteroids to reduce 

inflammation, along with supportive care measures.31 

The prevalence of grade 2 and higher radiation pneumonitis in patients undergoing lung SABR 

varies widely in the literature, ranging from as low as 10% to as high as 30%.105 The variation in 

reported incidence rates can be attributed to differences in patient populations, treatment 

protocols, and definitions of pneumonitis across studies. However, the incidence of severe 

(grade 3 or higher) pneumonitis is generally lower, reported to be around 1-5% in most series.108 
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Several factors have been identified that increase the risk of developing grade 2 or higher 

radiation pneumonitis following lung SABR: 

 Dose-Volume parameters: V20Gy is a commonly cited dosimetric parameter associated 

with the risk of pneumonitis for normofractionated regimes, and it is usually onscidered 

for SABR treatments. Higher V20Gy values are linked to an increased risk. Other 

parameters, such as the mean lung dose (MLD) and V5Gy, have also been correlated 

with pneumonitis risk,108 but their relation is less clear. 

 PTV size: Larger PTVs have been associated with a higher risk of pneumonitis, as larger 

volumes of lung tissue are exposed to radiation.107 

 Tumor location: Tumors located centrally or near critical structures such as the main 

bronchus are associated with a higher risk of pneumonitis due to the proximity of larger 

volumes of lung tissue to high-dose radiation areas.105 In lung SABR the proximity to the 

main bronchial tree is the main criteria to choose among different fractionation schemes. 

Lower lobes tumors have also been identified as being more prone to radiation 

pneumonitis. 

 Underlying lung function: Patients with pre-existing lung conditions or compromised 

pulmonary function are at increased risk for developing pneumonitis.31  

 Concurrent chemotherapy on immunotherapy: The use of systemic treatments in 

conjunction with radiation therapy has been shown to increase the risk of pneumonitis, 

although this is less commonly a factor in SABR due to its typical use in a standalone 

setting for early-stage or oligometastatic disease.108  

3.6.1.2. Grade 1 toxicities 
 

The diagnosis of grade 1 radiation pneumonitis is primarily based on imaging findings, given the 

lack of or minimal clinical symptoms.109 In the early stages, radiographic findings may be subtle 

or even absent, making CT scans a more sensitive tool for detection.110 These changes might 

appear only during the acute phase and then resolve or remain as permanent changes in the lung 

parenchyma. 

Imaging Changes in Lung Parenchyma 

On imaging, especially high-resolution CT scans, several changes can be observed in the lung 

parenchyma indicative of radiation pneumonitis (Figure 15): 
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 Ground-Glass Opacities are a common early finding and may represent mild interstitial 

inflammation or edema.111 

 Consolidation refers to a region of homogenous increase in pulmonary parenchymal 

attenuation that obscures the margins of vessels and airway walls. It indicates more 

significant inflammation and may be accompanied by air bronchograms.112  

 Volume loss: There may be evidence of volume loss in the affected lobe, characterized 

by crowding of pulmonary vessels and bronchi, and displacement of interlobar fissures.110 

 Septal thickening and traction bronchiectasis: As the inflammation progresses, there can 

be interstitial thickening and development of traction bronchiectasis, which suggests the 

beginning of lung fibrosis.111 

These imaging findings are typically confined to the radiation field and may show a sharp 

demarcation corresponding to the treatment area, which can help differentiate radiation-induced 

changes from other causes of pneumonitis.109  

Grade 1 radiation pneumonitis management primarily involves observation and monitoring for 

progression to higher-grade pneumonitis.110 Preventive measures, such as minimizing exposure of 

healthy lung tissue to radiation and optimizing radiation delivery techniques, are crucial in 

reducing the risk of pneumonitis.112 

 

4. SABR challenges for the treatment of GGO lesions 
 

The SABR treatment of GGO faces two primary challenges. The first is the standard clinical 

practice of treating GGO as solid nodules. The second involves the possibility of significative 

dose calculation errors in the semisolid area of the lesion. In the following sections we develop 

these points, which are the fundamental areas of research of this work. 

 

4.1. Volume definition 
 

The approach of treating GGO lesions as solid lesions in terms of volume is problematic 

when treating a small solid component within a larger GGO (Figure 16), as the risk of radiation-

induced lung toxicity correlates with the volume of lung receiving a high radiation dose.113 While 

this strategy effectively controls the tumor locally.95, it increases the risk of damaging healthy 
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lung tissue. Moreover, the presence of GGO component has been related to better LC rates.97 

As stated before. this questions the approach of using a uniform radiation dose for all pulmonary 

tumors, specifically for GGO tumors. Thus tailoring SABR treatments for this kind of lesion 

seems reasonable. 

 

Considering these facts, this thesis focuses on analysing the dosimetric impact of a dose de-

escalation regime for SABR for lesions with GGO component, with the goal of informing future 

clinical application. Specifically, it analyses the feasibility of such technique from a technical point 

of view as well as the related expected benefits for patients in terms of associated grade 1 

toxicities in the lung. 

 

 
Figure 16. Volume definition for a lung lesion consisting of a GGO nodule with a solid part at the centre of the lesion. (a) 

In Red we can see the static CTV of the whole lesion and in brown the static CTV of the solid lesion. In (b) we can see 

their corresponding ITV and PTV. Original figure by the doctoral student. 

 

4.2. Lung parenchyma changes  
 

The first question that arises when considering a de-escalation SABR treatment for GGO 

lesions is whether this approach would lead to reduced changes in the lung parenchyma. In the 

last years, concerns around grade 1 toxicities have risen in the context of oligometastatic patients, 

where multiple lesions are treated and the accumulation of patches of affected lung parenchyma 

may lead to clinical toxicities. This is especially true for patients undergoing SABR, who usually 

present previous pathologies restricting their respiratory function.114 Furthermore, with the 

implementation of screening programs, it is expected to diagnose and treat younger patients, 

likely to receive multiple lung treatments.  
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In addition, the use of immunotherapy in combination with SABR115 has also become the 

standard of care for advanced NSCLC and oligometastatic patients.96,116 This combination 

increases the treatment related toxicities, thus making it more relevant to reduce the impact of 

the SABR treatment. 

Radiation-induced lung injury after SABR is a dynamic process that affects the lung 

parenchyma surrounding the target lesion. The radiological pattern evolves during follow-up, and 

it is typically classified in acute (< 6 months) or late phase changes (>6 months).117 

It is not only a concern about toxicity, as consolidation areas surrounding the lesion also 

make it challenging to differentiate between LC and local recurrence (LR) of the tumor.118 In 

case of LR and due to reirradiations, where clinical toxicities are more prevalent,119,120 a fine 

delineation of the tumor volume is critical, as the volume of the re-irradiated area in correlated 

with the risk of grade ≥ 2 toxicities.121 

To the best of our knowledge, before this work, there was a lack of literature relating the 

delivered SABR dose with purely radiological toxicity of the lung parenchyma. Some studies 

have analyzed the impact of different SABR regimes in terms of BED and its relation to local 

control122 and clinical toxicity.123-125 Over the last years, lower BED regimes have been prioritized 

to reduce toxicities. These regimes, below the threshold of 130 GyBED10, come at the cost of 

lower LC rates.126 Despite the low incidence of clinical toxicities there is a big prevalence of 

grade 1 toxicities.  

 

4.3. Dose calculation accuracy 
 

As stated before, a second challenge in treating GGO lesions involves the potential for large 

dose calculation errors by commercial dose calculation algorithms, owing to the increased 

heterogeneity of GGO lesions compared to solid nodules.31,127 To our knowledge, no studies 

have yet evaluated the dose calculation errors in GGO lesions treated with SABR or its possible 

impact on healthy tissue toxicity. Furthermore, challenges related to fluence peaks during 

optimization should be considered, as they lead to less robust dose distributions. These fluence 

peaks are relevant when using type C algorithms, like AXB, and need to be addressed, as these 

can significantly affect dose distribution and accuracy in heterogeneous tissues like GGO.127 

Several approaches have been presented for solid lesions to mitigate this effect and achieve a 

fluence with a robustness level like that obtained when optimizing using type B algorithms, such 

as AAA.128 
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In conclusion, this thesis emphasizes in the challenges and optimization strategies for lung 

lesions with GGO component treaded with SABR. Through two published studies, we first 

evaluate the correlation between the BED and the incidence of subclinical radiological toxicities 

in a series of patients that underwent SABR in our institution between 2017 and 2021. In this 

first study we found a statistically significant association between high lung BEDs and the 

appearance of organizing pneumonia patterns and lung affectation over both short and long-

term follow-ups. This study was published under the title “Biological effective dose is associated 

with radiological toxicity after lung stereotactic ablative radiation therapy”. Secondly, in a study 

entitled “Feasibility and potential clinical benefit of dose de-escalation in stereotactic ablative 

radiotherapy for lung cancer lesions with ground glass opacities” we explored the feasibility and 

optimization of dose de-escalation regimes for GGO lesions in SABR, focussing on the balance 

between minimizing dose to the lung while maintaining high doses to the solid region of the 

tumour. At the same time ensuring accurate dose calculation and robust treatment plans.  These 

investigations collectively propose a foundation for refining radiotherapy dose constraints to 

mitigate grade 1 pulmonary toxicity and lay the groundwork for future clinical protocols aimed at 

enhancing local control while minimizing the toxicity profile for lung lesions with GGO 

components. 
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HYPOTHESIS 
 

1. There is an association between the dose delivered to the healthy lung tissue and grade 1 

toxicities observed after SABR treatment. 

2. SABR treatment of lung malignancies containing GGO can be optimized to maintain 

local control while reducing grade 1 lung toxicities. 
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OBJECTIVES 

First part, toxicity evaluation: 

1. Analyze and quantify the lung parenchyma changes after stereotactic radiation therapy. 

2. Correlate grade 1 lung toxicity with the dose delivered to the patient. 

Second part, optimization of stereotactic ablative radiation therapy: 

3. Evaluate the accuracy of clinical dose calculation algorithms in lung nodules in the 

presence of ground glass opacities. 

4. Define an approach to optimize stereotactic lung treatments for lesions containing 

ground glass opacities component that maintains the expected local control while 

reducing the risk of associated toxicity. 
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MATERIAL, METHODS AND RESULTS 
PUBLICATION 1 

Cases C, Benegas M, Sánchez M, Vollmer I, Casas F, Gomà C, Mollà M. Biological equivalent 

dose is associated with radiological toxicity after lung stereotactic ablative radiation therapy. 

Radiother Oncol. 2023 Jun;183:109552.  
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PUBLICATION 2 

Cases C, Mollà M,  Sánchez M, Benegas M, Ballestero M, Serrano-Rueda S, Antelo G, Gomà C. 

Feasibility and potential clinical benefit of dose de-escalation in stereotactic ablative radiotherapy 

for lung cancer lesions with ground glass opacities. Physics and imaging in radiation oncology, 

32, 100681. https://doi.org/10.1016/j.phro.2024.100681 
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DISCUSSION 
The treatment of GGO lesions with SABR presents several challenges, particularly the 

standard approach of treating GGOs as solid nodules. This practice can result in an 

overexposure of healthy lung tissue to radiation, increasing the risk of lung injury. Given that 

GGO lesions are often multifocal and associated with improved LC rates,86,87 they may benefit 

from tailored SABR approaches rather than a standardized treatment strategy. 

A critical first step to investigate the possibility of a tailored treatment is to accurately 

identify and categorize the changes in the lung parenchyma observed after radiotherapy. Once 

categorized, an analysis can be made evaluating potential correlations with the delivered radiation 

dose. While the total delivered dose is a key factor in SABR prescriptions, the BED must be 

considered to effectively compare different fractionation schemes.22,23,113 Furthermore, when 

implementing a dose de-escalation strategy for GGO lesions, it is essential to ensure both precise 

dose calculations and robust dose delivery, particularly in the context of a moving target. These 

considerations, along with the methodological framework for addressing them, were explored in 

the previous sections and will be discussed in what follows. 

1. Lung parenchyma changes evaluation strategies 

CT scans play an important role in both the pre-treatment planning and post-treatment 

follow-up phases.37,40 A CT scan is performed before treatment to delineate the tumor and 

surrounding structures accurately, this CT scan is usually performed using the same parameters, 

as it not only serves to delineate the target structures but also to calculate the dose deposition in 

the patient. However, there are challenges in the consistency of follow-up CT scans, which are 

not always performed under identical conditions between them or with the same scanner. 

Although efforts are made to standardize follow-up CT scans by using similar acquisition 

parameters, such as breathing protocols and acquisition techniques, achieving perfect consistency 

is not always the main priority in clinical practice. Variations in scan settings, including slice 

thickness, tube current, reconstruction algorithms or breathing status of the patient can occur 

due to differences in equipment availability, clinical workflows, and individual patient 

circumstances. 
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regarding severity and typology of grade 1 toxicities. Although CTCAE score describes toxicities 

based on clinically observed parameters,35 it does not consider a subdivision within all the 

radiological changes which do not have a direct clinical impact, as they all fall within grade 1 

toxicities. Through the evaluation of the changes observed in our patients we developed a 

grading system to classify lung parenchyma changes and compare them among different patients 

to make it possible to evaluate different subtypes of grade 1 toxicity and its evolution with time. 

2. Prescription fractionation and BED 

In our cohort of patients, we employed a range of fractionation schemes, specifically 

prescriptions including 3 sessions of 18 Gy, 5 sessions of 11 Gy and 8 sessions of 7.5 Gy 

according to international guidelines.31 These different fractionation schemes result in significant 

variability in BED, a critical factor in evaluating and comparing treatment outcomes. For 

instance, the BED values for these fractionation schemes vary significantly from the 3 sessions 

of 18 Gy scheme, which nominally corresponds to a BED of 227 GyBED3 or 126 GyBED10, 

while the 8-session scheme corresponds to 126 GyBED3 and 100 GyBED10. 

The differences in BED between these fractionation schemes requires an analysis based on 

BED rather than physical dose alone. This approach enabled us to assess and interpret treatment 

efficacy and toxicity for the different fractionation schemes. Additionally, the variation in BED 

provided us with a wider span of doses to analyze, potentially offering insights into dose-

response relationships and the optimization of SABR protocols. 

However, the use of BED also has some limitations. Calculating BED using the linear 

quadratic model, especially for high-dose-per-fraction regimens like those used in SABR, is not 

straightforward. The model assumes a certain biological response to radiation that may not be 

accurate for very high doses delivered in a few fractions.19,20 This complexity requires cautious 

interpretation of the obtained BED values. Despite these challenges, using BED as a metric is 

crucial to understand the impact of fractionation strategies in lung cancer treatment and 

calculating BED following the linear quadratic model remains the most widespread approach 

and allows us to compare with different cohorts. 

Over the years, several SABR regimes have been used to treat lung lesions. Some studies 

have analyzed the impact of different SABR regimes in terms of BED and its relation to local 

control and/or clinical toxicity.23 Over the last years, lower BED regimes have been prioritized 

to reduce toxicity.108 However, it has been reported that lowering the prescribed BED below the 

threshold of 100 GyBED10 comes at the cost of lower LC rates.108 Together with our findings 
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pointing to a similar dose level (300 GyBED3) for healthy tissue complications, this justifies an 

approach to optimize the areas within the lesion receiving doses above 100GyBED10 while 

maintaining the more indolent areas (GGO) as close to that lower threshold as possible (Figure 

17). 

 

This last point lead us to plan a possible de-escalation strategy which ensured a minimum 

dose to maintain LC rates acceptable in the GGO region of the lesion, with a minimum BED of 

100 GyBED10, while increasing the doses to the solid part of the lesion to the originally 

prescribed dose, which depending on the fractionation scheme reached up to a prescription dose 

of 126 GyBED10 (and maximum doses up to 140% of the prescribed dose, thus 220 GyBED10). 

 

 
Figure 18. Schematic representation of the dose de-escalation approach proposed in this work for the three 

fractionation schemes analyzed. From left to right: Nominal dose and number of sessions for each fractionation 

scheme. Equivalent BED prescibed dose to the whole PTV in GyBED10 and its equivalent dose, in GyBED3 

for the healthy tissue. On the right we can see the original prescription dose level, which is maintained in the solid 

region of the PTV, while the rest of the PTV is covered by a dose prescription ensuring at least 100 GyBED10 

and the equivalent dose to the surrounding healthy tissue for the corresponding number of sessions. Original figure 

from the doctoral student. 

3. Comparing TPS doses AAA vs AXB 

Accurately comparing TPS and dose calculation algorithms is a challenging task. One 

primary challenge is that the optimization process within a TPS can introduce variability even 

when using the same dose calculation algorithm.43,54 Factors such as iterative optimization steps, 

convergence criteria, and user-specific settings can lead to differences in the resulting dose 
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distribution. To address this issue and ensure consistency across our analyses, we replanned all 

patients' treatments following a standardized optimization process, specifically analyzed for lung 

SABR, that was presented in the European Society for Radiotherapy and Oncology (ESTRO) 

2023 congress. This optimization protocol ensured a steep dose gradient while focusing on 

robust fluences.  

Moreover, before proceeding with the optimization of the GGO SABR cases, we performed 

a study on the influence of various parameters that might affect TPS configuration as well as on 

the use of density overrides for optimization purposes. Some relevant parameters such as the 

effective spot size or the MLC characterization were evaluated to understand their impact on 

dose calculation algorithms. By isolating these variables, we aimed to differentiate between those 

differences arising from the physical description of the LINAC and those inherent to the dose 

calculation algorithm. Density overrides were not used as the obtained solution without the 

overrides was deemed robust enough and the optimization process was straightforward. 

Additionally, it is important to note the differences in dose reporting between the AAA 

algorithm and AXB algorithm. AAA reports dose in terms of dose to water, whereas AXB 

reports dose in terms of dose to medium (AXBm) or water (AXBw) but always considering the 

medium in the radiation transport calculation process.131 It is important to remark that AAA and 

AXBm are not comparable magnitudes. On the other hand, AXBw is not the recommended dose 

reporting method by international protocols,39,56 as it considers dose deposition in water, which is 

not the tissue where dose is deposited. There is plenty of literature trying to take into 

consideration for these issues, to make it possible to accurately compare dose distributions 

obtained with both calculation engines, but it is not the aim of this work to perform a direct 

comparison between AAA and AXB.55 Nevertheless, some considerations have been made when 

using these algorithms. First, we ensured that all detailed dose comparisons were made using the 

same algorithm—comparing dose to the lung for the de-escalation case to the standard case both 

calculated using AXBm, for example. This approach allowed us to focus on subtle differences 

within the same algorithm without introducing variability from differing dose reporting methods. 

4. Discussion of methodological approaches 

The robustness and generalizability of the conclusions drawn by any study is highly 

dependent on the number of patients included in the study. To analyze the correlation between 

BED and grade 1 toxicities, we analyzed a cohort of over 100 patients, with a follow-up of two 

years after radiotherapy. This large sample size increases the likelihood that findings are 
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representative of the broader population undergoing SABR for lung cancer, increasing the 

study's validity and providing evidence to inform clinical practice. 

In the second study, which examined dose de-escalation in SABR for GGO, the inclusion of 

over 40 cases offered a wide range of GGO sizes and CTR ratios (Figure 19). The inclusion of a 

phantom study allowed us to establish a baseline using a simple model that could simulate a 

continuous spectrum of CTRs. This approach facilitated precise control over variables and 

enabled a detailed analysis of the dose distribution and accuracy. Additionally, patient cases were 

analyzed to ensure a wide distribution of CTRs across different lesion sizes. This distribution 

makes it more probable that the study's findings are representative of the diverse cases found in 

clinical practice. 

 

Figure 19. Relation between PTV size and the volumetric CTR for the patient lesions included in the study. The 

orange line represents the average CTRv value. Original figure from the doctoral student. 

The unicentric nature of the study offers both potential biases and advantages. Conducting 

the research within a single center means that the techniques and methodologies used, such as 

imaging protocols and treatment planning, may be specific to that institution, potentially limiting 

the generalizability of the findings to other settings. Different centers might employ varying 

protocols and equipment, which could lead to different outcomes. Furthermore, as with most 

retrospective analyses, the study is subject to potential biases and confounding factors inherent 

in-patient data not originally collected for this specific research question. 
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However, a unicentric approach also provides significant advantages, particularly in ensuring 

a systematic follow-up and analysis of patient outcomes. This consistency allows for more 

controlled conditions, reducing variability in how data is collected and analyzed. A uniform 

follow-up protocol ensures that changes in radiological outcomes and toxicities are monitored 

and documented consistently, enhancing their reliability.  

The treatment of the patients enrolled in this thesis was delivered using the ITV approach 

for motion management, which is one of the most widely adopted techniques in radiation 

therapy. This choice enhances the generalizability of the study's conclusions, making them more 

applicable to other centers that use the same approach. Nevertheless, the study also considered 

alternative approaches to assess the impact of GGO on dose calculation accuracy, including 

breath-hold and gating techniques. By exploring these options, the research acknowledged the 

potential benefits of active breathing management in further reducing radiation-related toxicities. 

High doses should be carefully managed, and techniques like gating or breath hold can 

potentially minimize exposure to surrounding healthy tissues, decreasing the risk of lung 

toxicities. 

5. Implications for clinical practice 

One key application is the incorporation of constraints on the absolute volume of lung tissue 

receiving high BED during treatment planning. By establishing such constraints, clinicians can 

make more informed decisions when selecting dose fractionations, thereby optimizing the 

balance between treatment efficacy and toxicity.  

A second implementation on clinical practice may be the adoption of a dose de-escalation in 

SABR protocols that have a substantial impact, especially for cases intended to be treated with a 

lower number of sessions. This approach is beneficial for patients with significant GGO 

components. By tailoring the radiation dose to the specific characteristics of the tumor, such as 

the CTR, effective local control could be achieved while reducing the risk of damaging healthy 

lung tissue. These could lead to improved patient outcomes by reducing side effects and 

enhancing the overall quality of life. In the context of oligometastatic patients, where multiple 

lesions are expected to be treated sequentially, minimizing the cumulative radiation dose to 

healthy lung tissue is crucial.  

These findings are becoming more relevant by the progressive implementation of lung 

cancer screening programs. As screening becomes more widespread, more lung lesions are being 
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changes, which were not always confirmed histologically or correlated with symptoms. 

Furthermore, some follow up data is missing or incompleat and may lead to lack of statistical 

correlation with some parameters such as smoking habits. Toxicity was evaluated based on 

imaging findings rather quantitative analysis of the images, and although this is aligned with the 

study’s goals, it leaves out potentially relevant outcomes. A similar approach was taken with the 

segmentation of GGO components, which was done visually. Moreover, while the recalculation 

of treatment plans with more advanced algorithms and the dose de-escalation proposal offer 

promising results in terms of lung sparing, these findings have not yet been confirmed in 

prospective clinical trials. Therefore, although the theoretical benefit appears clear, the 

translation to clinical practice should be done with caution. Lastly, as all data comes from a single 

institution, the external validity of the results may be limited, and replication in different clinical 

settings would be necessary to confirm the generalizability of the conclusions. 

7. Future research directions 

To strengthen the findings related to radiation toxicity, it is critical to validate the results in 

an independent cohort. This step ensures that the observed dose-toxicity relationships are not 

unique to the initial study population and can be generalized to a broader patient base. Validation 

in a different cohort helps to confirm the reliability and robustness of the results, providing a 

stronger foundation for clinical recommendations and potentially influencing treatment 

guidelines for SABR in lung cancer. 

Further exploration of grade 1 toxicities is essential to fully understand the early indicators of 

potential long-term adverse effects. Developing a standardized protocol for evaluating and 

characterizing these changes would enhance the consistency of toxicity assessments across 

studies. By unifying the criteria and methods used to document these subtle changes, researchers 

can ensure more reliable data collection, which is crucial for identifying patterns and correlations 

that inform treatment optimization. 

The application of artificial intelligence (AI) in analyzing dose-toxicity relationships presents 

a significant opportunity to expand the scope of toxicity studies. AI models can process large 

datasets efficiently, enabling researchers to examine these relationships across a more extensive 

cohort than would be feasible manually. By leveraging AI, the study can achieve a more nuanced 

understanding of the factors contributing to radiation toxicity, ultimately supporting the 

validation of results and the refinement of treatment protocols. 
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Once the toxicity results have been validated, a clinical trial could be conducted to evaluate 

the clinical efficacy and toxicity outcomes of a dose de-escalation strategy. This trial would be 

designed to confirm the potential benefits identified in the initial research, testing whether dose 

adjustments can maintain effective tumor control while reducing adverse effects. The findings 

from such a trial could lead to significant advancements in personalized radiation therapy, 

offering a pathway to optimize treatment for patients with lung cancer. 

8. Key findings and concluding remarks 

In the research conducted for this thesis we found a correlation between the lung volume 

receiving BED greater than 300 GyBED3 and the occurrence and severity of observed 

radiological toxicities. It was also observed that changes in the lung parenchyma tend to persist 

or worsen in cases where the volume with D>300 GyBED3 exceeds 20 cm³. 

In the second part of the study, a positive correlation was identified between the presence of 

GGOs and dose calculation errors in phantom-based calculations. These discrepancies were 

reduced in patients, particularly in the presence of respiratory motion. When a treatment 

approach incorporating dose de-escalation in the GGO region was calculated, significant 

reductions in mean lung dose, V20, and V300GyBED3 were achieved. Finally, it was also 

observed that optimizing with lower doses to the GGO area resulted in more stable fluence 

patterns, enhancing the robustness of the treatment. 

The findings presented in this study underscore the critical role of optimizing SABR 

treatment protocols to enhance patient outcomes in lung cancer, particularly in cases involving 

GGO. By focusing on reducing grade 1 toxicities, our research offers a pathway to refine SABR 

strategies, potentially improving the quality of life for patients undergoing this treatment. The 

correlation between high BED levels and increased toxicities emphasizes the need for careful 

dose management and treatment planning. Although there are some challenges in clinical 

practice to quantify accurately lung parenchyma changes after radiotherapy, we provide a 

framework for categorizing and understanding post-SABR outcomes. 

Looking ahead, our research lays the foundation for future clinical trials aimed at 

implementing dose de-escalation strategies that balance treatment efficacy with toxicity 

reduction. Such trials could confirm the potential benefits of tailoring SABR protocols to the 

specific characteristics of each patient's tumor, particularly those with larger GGO components, 

paving the way for a more patient-centered clinical practice.  



 
 

91 
 

CONCLUSIONS 
1. Biological effective doses above 300 GyBED3 to the lung are associated with a greater 

incidence of grade 1 lung toxicities after lung stereotactic radiation therapy. Furthermore, 

volumes greater than 20 cm3 receiving more than 300 GyBED3 tend to present 

permanent parenchyma changes. 

2. The presence of ground glass opacities within the planning target volume region induces 

dose calculation errors when type B algorithms, such as AAA are used. This errors are 

easily observed in phantom-based calculation but the discrepancies between type B and 

type A algorithms decrease in patient cases and especially in the presence of respiratory 

motion. 

3. It is technically feasible to optimize stereotactic radiation therapy treatments for lung 

lesions containing ground glass opacities malignancies maintaining the expected local 

control to the tumor and improving calculation accuracy and robustness against 

breathing motion while reducing high doses to the healthy lung. 
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