
Final degree project

DEGREE IN COMPUTER SCIENCE

Department of Mathematics and
Computer Science

University of Barcelona

Implementation of a full-stack
blog content management system
with a specialized rich text editor

Author: Kamil Natan Malysa

Advisor: Xavier Baró

Conducted at: Faculty of Mathematics
and Computer Science

Barcelona, June 9, 2025

Abstract

Content management systems for publishing blog-like websites are widely used
across the internet, however despite advancements in web development technolo-
gies, the existing solutions are reluctant to take advantage of them.

Established blog content management systems find themselves in environments
with declining developer support, and content editing tools that have fallen behind
standards set by new frameworks.

This project explores the process of implementing a blog-centric content man-
agement system using modern web technologies and a RESTful backend, employing
emerging frameworks to build an alternative that takes advantage of the rich content
editing user experience that these frameworks enable.

The content management system created in this project makes use of Nuxt and
FastAPI to create a robust full-stack blogging solution, with an emphasis on the
user experience of writing blog content through a custom rich text editor built upon
the ProseMirror framework.

Keywords: REST API, Nuxt.js, Vue, web development, FastAPI, content
management systems (CMS), blogging, rich text editing, MVVM (Model-view-
viewmodel), SQL databases, ProseMirror

Resum

Sistemes de gestió de contingut per la publicació de llocs web de tipus blog són en
ampli ús a l’internet, però malgrat avanços en tecnologies de desenvolupament web,
les solucions existents mostren poc interès per aprofitar-les.

Els sistemes establerts de gestió de contingut de blogs es troben en entorns amb
declivi de suport per part de desenvolupadors, i eines d’edició de contingut que no
assoleixen els estàndards establerts per nous frameworks.

Aquest projecte explora el procés d’implementar un gestor de contingut orientat
a blogs, usant tecnologies de web modernes i un backend d’arquitectura REST, usant
frameworks emergents per construir un gestor alternatiu que aprofita les millores
d’experiència d’usuari que aquestes eines permeten quant a l’edició de contingut.

El sistema de gestió de contingut creat en aquest projecte fa ús de Nuxt i FastAPI
per construir una solució robusta per blogging, posant èmfasi en l’experiència
d’usuari d’escriure contingut de blog amb un editor de text ric propi fet amb el
framework de ProseMirror.

Paraules clau: REST API, Nuxt.js, Vue, desenvolupament web, FastAPI,
sistemes de gestió de contingut, blogging, edició de text, MVVM (Model-view-
viewmodel), bases de dades SQL, ProseMirror

i

Resumen

Sistemas de gestión de contenido para la publicación de sitios web de tipo blog tienen
amplio uso en el internet, pero a pesar de avances de tecnoloǵıas de desarrollo web,
las soluciones existentes no las aprovechan.

Los sistemas establecidos de gestión de contenido de blogs se encuentran en
entornos en decadencia en cuanto a soporte de desarrolladores, y con herramientas
de edición de contenido que no alcanzan los estándares establecidos por nuevos
frameworks.

Este proyecto explora el proceso de implementar un gestor de contenido orien-
tado a blogs, usando tecnoloǵıas de web modernas y un backend con arquitectura
REST, usando frameworks emergentes para construir un gestor alternativo que
aprovecha las mejoras de experiencia de usuario que estas herramientas permiten
en cuanto a edición de contenido.

El sistema de gestión de contenido creado en este proyecto usa Nuxt y FastAPI
para construir una solución robusta para blogging, con énfasis en la experiencia de
usuario en cuanto a la escritura de contenido blog mediante un propio editor de
texto rico hecho con el framework de ProseMirror.

Palabras clave: REST API, Nuxt.js, Vue, desarrollo web, FastAPI, sistemas
de gestión de contenido, blogging, edición de contenido rico, MVVM (Model-view-
viewmodel), bases de datos SQL, ProseMirror

ii

Acknowledgements

I would like to express my gratitude to my tutor, Xavier Baró, for his guidance
throughout this final degree project. His knowledge and advice were essential in
the execution of the project, and I sincerely appreciate the time he has taken to
mentor me.
I would also like to give special thanks to Matteo “Ameranth” T. and Davide
“Elric” T. for being the highest inspiration for my software engineering values.
Their meticulous design philosophies and support throughout the years have greatly
shaped my ambitions as a programmer, and have influenced this project as well.

iii

Contents

1 Introduction 1
1.1 Objectives . 2
1.2 Document structure . 3

2 Project planning 3
2.1 Work methodology . 5

3 Requirements gathering 6
3.1 User roles . 6
3.2 Artifacts . 7

3.2.1 User stories . 7
3.2.2 Functional requirements . 9
3.2.3 Non-functional requirements 9

3.3 Use cases . 9
3.4 Database design . 12

4 Technology 14
4.1 Backend . 15
4.2 Frontend . 16
4.3 Database . 18

5 Implementation and development 19
5.1 Backend . 19

5.1.1 Routes . 20
5.1.2 Schemas . 22
5.1.3 CRUD . 22
5.1.4 Article management . 23
5.1.5 Searching . 23
5.1.6 File and configuration management 24
5.1.7 Authentication and security 25
5.1.8 Tests . 26

5.2 Database . 27
5.3 Frontend . 28

5.3.1 Visual design and sitemap 29
5.3.2 Published site . 31

5.3.2.1 Implementation details 33
5.3.3 Control panel . 34

5.3.3.1 Files tab . 35
5.3.3.2 Configuration tab 35

5.3.4 API integration . 36
5.3.5 Component design . 36

5.4 Article editor . 37
5.4.1 Customization and shortcuts 39
5.4.2 Metadata editor . 39

iv

5.4.3 Implementation . 40
5.4.3.1 Model classes . 41
5.4.3.2 Viewmodels . 43
5.4.3.3 View . 44
5.4.3.4 CMS integration 45

5.5 Containerization . 46

6 Deployment 47

7 Evaluation 48
7.1 Usability tests . 48

7.1.1 Methodology . 48
7.1.2 Execution and insights gathered 50

7.2 Auditing and automated testing . 51
7.3 Comparison with other blog systems 52

8 Conclusions 53

9 Future work 54

10 Annex 58

v

1 Introduction

This final degree project explores a full-stack implementation of a blog-oriented
content management system using modern web development frameworks, with an
emphasis on the user experience of writing blog content through a custom rich text
editor with specialized features to cover emerging blogging needs.

Blogs are informational websites hosting text content, often managed by indi-
viduals or small groups, posting periodic articles on specific topics. Ever since their
emergence in the late 1990s, blogs have remained one of the most common types of
websites, with there being over 700 million blogs on the internet as of 2024, making
up for over 40% of internet traffic[12]. Blogs typically employ specialized content
management systems (CMS) to generate their websites, together with tools for the
blog’s owners to facilitate the creation of posts.

In spite of advances in web technologies and development frameworks, the ma-
jority of blogs today are powered by established solutions from the 2000s[2], with
there being few attempts at building new blog content management systems that
take advantage of emerging web frameworks and their potential to deliver better
experiences for both users and developers.

Numerous leading solutions like WordPress1 are built with languages experienc-
ing a decline in usage such as PHP2[3], creating concerns for longevity and extend-
ability. Other solutions like Tumblr3 are centralized, lacking self-hosting options,
and have lagged behind the growing standards of content editing tools.

Newer web frameworks have enabled much more elaborate user experiences for
editing rich content, yet the post editors for many of these blogging solutions fail to
match the expectations for content editing that have been set by web applications
of other sectors.
In a time when content creation is becoming ever more collaborative and users
expect web content to be both informative and attractive, solutions like Tumblr or
Medium4 still support little more than plain text and images, and lack collaborative
features to allow multiple individuals to work on the same blog effectively.

This project aims to fill the need for self-hostable blog options, using modern
frameworks to ease extendability, and a custom rich text editor that addresses
common shortcomings of the post editors of current blogging systems.

The motivation for the project comes from personal interest in how such blogging
systems are implemented, as well as from frustration with the outdated features
and low efficiency of the rich text editors that these systems typically employ for
content creation. I was interested in exploring the development of such blogging
systems from start to finish, together with tackling the challenges of dedicated
content creation tools that users now expect for them.

Blogging was one of my first contacts with computer science, through Jekyll5

and its HTML templating engine, sparking a later interest in web development.

1WordPress: web content management system, first developed for the creation of blog sites.
2PHP: multi-paradigm programming language oriented for web development.
3Tumblr: centralized blogging and social networking site active since 2007.
4Medium: blog publishing platform and social network.
5Jekyll: blog-oriented static site generator written in Ruby.

1

https://wordpress.com/
https://www.php.net/
https://www.tumblr.com/
https://medium.com/
https://jekyllrb.com/

With a renewed interest in blogging and the skills I acquired throughout my
studies, I was fascinated by the variety of challenges that come with implementing
such a CMS and a specialized rich text editor, and wished to experience first-hand
the complexity of their common features that are often taken for granted.

1.1 Objectives

The project intends to develop a full-stack, web-based content-management system
(CMS) for self-hosted blog websites, for which the staff members can publish and
manage text articles through a custom rich text editor specialized for blog content.

The project would allow editing and publishing articles, with collaborative fea-
tures to support managing blogs where content is authored by a group of people, a
use case that is neglected by many of the formerly mentioned solutions.
The functionality would be generic to support multiple blog-like use cases, including
personal homepages and posting announcements for events.

The site staff would be able to manage content intuitively through a web-based
admin control panel and the aforementioned rich text editor for writing articles.
Site visitors would be able to browse and search articles, and interact with the
owners of the site through comment sections and signing up for events.

The end result aims to be a CMS usable out-of-the-box as a generic self-hosted
blog that does not require the user to edit files or source code directly, instead
offering web interfaces to manage the content and write attractive articles with its
integrated editor.

The custom rich text editor would be a key component of the project, aiming
to provide a good blog content creation experience inspired by features and user
experience patterns from other modern text editors.Developing it alongside the rest
of the features of a blog CMS gives it a realistic context of usage, ensuring coherency
in the editor’s functionalities.

The project thus has 3 main objectives:

1. Implement a backend system with a REST API for common blogging
functionality, such as indexing articles, asset management, commenting, etc.

2. Design a modern site for serving and managing the blog’s content,
using modern frameworks to build an admin interface that integrates the API
to manage the blog in a user-friendly manner.

3. Build a custom rich text editor with features specifically oriented towards
blog content, with flexibility to be extended and reusable in other similar
contexts.

The following section will outline the structure of the document and the various
phases of the project’s development.

2

1.2 Document structure

The document will detail the 4 months of the project’s development, divided into
the following major sections:

• Project planning (Section 2), which details the preliminary task of organiz-
ing the workload of the project, as well as techniques to track its development
and stay on schedule.

• Requirements gathering (Section 3), where the functional and non-functional
requirements of the project were analysed, together with artifacts that were
used to guide development and design.

• Technology (Section 4), which details the frameworks and architecture cho-
sen for the project based on its requirements.

• Implementation and development (Section 5), which covers the technical
details and implementation choices of the project. This section is further
divided into subsections for each major component of the project.

• Deployment (Section 6), which details how the application was launched in
a production environment.

• Evaluation (Section 7), where the application was tested using usability
testing and auditing tools to assess its results and issues, comparing it to
existing solutions.

2 Project planning

The project’s workload was organized using a Gantt chart(Fig. 1), defining feature
implementation and documentation tasks, together with the intended time frames
to complete them.

The tasks were based on the functional requirements gathered in Section 3,
and ordered by the importance of the features they were part of, such that major
features of the project were worked on earlier and functionality with less value was
planned for later weeks.

3

Figure 1: Fragment of the Gantt chart spreadsheet used for planning work on the
major features.

The tasks were also grouped into 2-week milestones to give clear short term
goals, with each milestone denoted by additions of key features. They acted as
minimum viable products (MVPs6), helping keep the project on track and giving
every week of work a clear objective. Some of the major milestones were:

1. User account system and management through a control panel site

2. Basic article editor functionality and publishing articles to the site

3. Navigation and search in the published site, comment system, and file man-
agement

4. Advanced article editor functionality and visual improvements

The first week of development was dedicated to implementing generic systems
(mainly user management); these were worked on to ease becoming familiar with
the frameworks chosen before attempting to add the main features, as well as due
to them being a prerequisite for many core features.

The tasks of the Gantt chart spanned until the end of May, so as to allow for
∼2 weeks of deviation in execution. The Gantt chart was only used for scheduling
these major features and milestones to give an overview of the expected timeline

6Minimum viable product: early version of a software with just enough features to be usable
and evaluable.

4

of the project. Daily work was tracked using a kanban board, described in Section
2.1.

After reaching a minimum viable product milestone in late April, the planning
of the two weeks of May was changed to focus on refactoring and visual polishing
of the frontend, dropping various minor features that were originally intended to
be added at that time. This decision was brought forth by an evaluation of the
project up until that point, where the frontend’s code architecture and styling were
deemed to not meet personal standards of quality.
With the frontend experience acquired in the first half of the project, it was consid-
ered worthwhile to thoroughly refactor the article editor component of the frontend
to be able to present a more elegant and maintainable solution.

Despite these few issues in the planning, it has overall served the project well;
time estimates were accurate (with only a few overestimations noted in the chart),
and milestones helped to structure work and deliver stable MVPs with valuable
features. The full Gantt chart and its older version are available in Annex 10.7.

2.1 Work methodology

The project used Git for version control, with the repository being hosted on GitHub
at https://github.com/PinewoodPip/bloggy. A mono-repo approach was used,
with both the backend and frontend in the same repository, as it was the most
efficient choice for a single-person project. A simple branching strategy was used
with only a main branch for stable versions (coinciding with Gantt chart milestones)
and a development branch for daily work, both covered by continuous integration
through automated testing(See annex 10.6).

During development, the features from the Gantt chart were split into smaller,
more granular implementation tasks that were tracked using the GitHub Projects
service, using it as a kanban board(See annex figure 47).
This kanban board was also used to keep track of found bugs, possible improve-
ments, and refactoring work, using labels to organize and filter tasks by their nature
and the part of the project they concerned.

Daily work would focus on the corresponding features from the Gantt chart,
paced using the Pomodoro technique by working on the project ∼5 hours daily
in 30-minute intervals separated by short breaks. After finishing a feature, the
remaining time was used for improvements and bug fixes, pulling work from the
GitHub Projects board. This document would be worked on every weekend, noting
down the results and decisions of the week’s work, which also offered an opportunity
to reflect on them.

The following sections will cover the initial work of the project’s requirements
gathering and the choices of technologies used.

5

https://github.com/PinewoodPip/bloggy

3 Requirements gathering

The project’s development started with an analysis of its requirements - the func-
tionality that the finished product is expected to have. Even in the case of a
single-person project, these are necessary to limit the project’s scope so that its
planning and design can be stable.

The requirements gathering started with identifying the types of users of the
software (the user roles), with their motivations and goals defining the expected
functionality. The following sections cover how these were deduced, together with
the documentation artifacts that served to guide the design and implementation of
the project.

3.1 User roles

Any CMS distinguishes at least two groups of users: the staff that creates and
manages the content of the system and its consumers. In the case of a blogging-
oriented CMS, the consumers would be the site visitors who come to read the
articles, which are written by a team of editors.

These two groups need to be divided further to get a more complete view of the
user roles, as there are functional needs to distinguish between logged-in visitors
and “guests”, as well as distinguishing the staff based on authority over the system.
With this in mind, the project identifies the following user roles:

• Reader: a guest visitor of the site who has read-only access to the content;
they can only read published articles and search them.

• Authenticated reader: a visitor that is logged-in to the site and can perform
actions that need to be tied to an identity, such as commenting or subscribing
to events, in addition to the abilities of the reader role.

• Editor: a logged-in user who is authorized to manage the content on the web-
site (create and edit articles and categories). The content they have authority
over would be limited by a permissions system.

• Admin: a logged-in superuser who can create editor accounts and manage
their permissions, as well as edit site-wide configuration.

• Staff member: alias that refers to an editor or admin role.

The admin and editor roles are both staff roles that manage the site, differing
in the authority they have.

The functional requirements as well as use cases were then derived from the
needs and expected capabilities of those user roles, creating artifacts to guide the
project’s development.

6

3.2 Artifacts

The project’s requirements gathering was done using multiple types of design ar-
tifacts, as none of them are comprehensive when used alone. The process started
with artifacts focused on end-user desires, followed by more technical artifacts that
focus on system behaviour and flow. In order, the artifacts created were:

• User stories to capture the features end-users expect and their motivation.

• Functional requirements to extract more detailed and technical require-
ments from the user stories.

• Use cases to define interaction flows of the various features from start to
finish.

These are briefly covered over the next sections, with complete lists of all the
artifacts being available in Annex 10.10.

3.2.1 User stories

User stories describe the functionality each user role expects in a one-line sentence
using the following structure:
As a {user role} I want to {action} so that {value statement}.

They provide a user-centric overview of expected features, useful for the value
statement - the motivation behind why users want the functionality described[5].
The user stories thus helped justify the features and were a good starting point for
deriving other artifacts.

The project deduced user stories from informally interviewing users and analysing
existing solutions, grouping the stories into 6 “epics” to organize them by overar-
ching theme:

• User management: administrative actions over staff accounts.

• Content management: CMS operations such as creating articles or editing
their metadata.

• Article writing: functionality of the custom article editor.

• Content exploration: usage of the published site (navigation, search, etc.).

• Event creation: user stories related to scheduling events.

• Site management: user stories related to site-wide configuration needs.

Usually, acceptance criteria would be written for each user story to define when
they’re considered completed; in the project’s case, the functional requirements and
use case artifacts were used to fulfill this need instead.

The list of user stories is as follows(Fig. 2), presented in a table format where the
columns correspond to the parts of the user story format (role, action, value state-
ment) to list each story in a compacted manner. The table also denotes which user
stories had their functional requirements implemented by the end of development,
as well as reasons for the ones that were ultimately not worked on due to being
low-value or being dropped due to planning changes.

7

Epic As a... I want to... So that... Implemented Reason for being unimplemented

U
se

r m
an

ag
em

en
t Admin create an editor account another staff member can manage the site

Staff member log in using a username and password I can access the site's control panel

Editor edit my profile's name, avatar and biography it reflects my identity better to readers

Admin set which categories an editor can manage articles in I can ensure they cannot change content they don't work on Was deemed low-value; not included in planning.

Admin delete an editor account I can prune accounts of people no longer working with the site

Staff member change my account's password I can safeguard my account if I suspect my credentials were leaked

Staff member enable 2 factor authentication for my account I can keep my account more secure Dropped due to time constraints to focus on other features.

C
on

te
nt

 m
an

ag
em

en
t

Editor create a category to group articles I can organize articles thematically in a folder-like structure

Editor create an article under a category I can make a new post to the site

Editor set an article be published at a specific time it can be posted to the site at a planned time automatically

Editor add text tags to an article I can label articles by their topics and themes

Editor save an article as a draft I can work on it later without posting it to the site yet

Editor set whether comments can be posted on an article I can allow or disallow readers to discuss it

Editor mark other editors as co-authors they can be credited for helping with the article

Editor set whether the article displays metadata (its authors, post date) I can hide it in articles where it's not relevant

Editor set a summary for an article to be shown in pagination I can make the article's preview more attractive

Editor set a featured image for an article to be shown as a thumbnail I can make it more visually attractive in pagination

Editor set a category to display articles in a chronological list I can present articles in the order they were posted

Editor set a category to display articles in a card grid I can present articles more attractively

Editor to move an article to another category I can reorganize it to a more appropriate category

Editor upload an image or file to the CMS I can link it in articles I write

Editor set an article to span multiple pages based on its headings a long article can be presented in a more digestible manner Was deemed low-value; not included in planning.

Editor to edit the order in which articles appear in a category I can display articles in a custom order

A
rt

ic
le

 w
rit

in
g

Editor edit existing articles I can amend their content

Editor format text within articles as bold, italics or underline I can emphasize certain parts of the text

Editor insert images by uploading them I can show images I had on my device

Editor insert images that were already uploaded to the site I can embed images that I already used before in another article

Editor insert images by hotlinking them I can embed images from external sites

Editor insert code blocks with syntax highlighting in articles I can showcase code snippets attractively

Editor insert section headings in articles I can organize content into sections

Editor set an element's alignment in the article editor I can center or uncenter paragraphs, images and other figures

Editor copy/cut & paste content within an article I can reorder content easily

Editor add links in articles I can reference other articles or sites

Editor add YouTube embeds to articles I can include a related video

Editor add tables with text cells to articles I can show tabular information

Dropped due to time constraints to focus on polishing the other editor features.Editor add MathJax blocks to articles I can display math formulas

Editor insert math symbols from a searchable list into an article I can write math formulas more easily

Editor add a card with my biography at the end of an article readers can learn more about me after reading the article

Editor add footnotes to articles I can add details or clarifications about specific parts

Editor add notes/callouts to articles with different colors I can call attention to warnings or important details

Editor add nestable bullet or numbered lists to articles I can itemize or enumerate content

Editor add quote blocks to articles I can denote text written by someone else

Editor set whether an article is visible on the site I can hide an article temporarily without deleting it

Editor delete an article I can remove it from the site Was deemed low-value; articles may be hidden as a workaround/alternative.

Editor undo an operation in the article editor I can recover from a mistake

Editor redo an operation in the article editor I can recover an undone operation if I change my mind

Editor insert emojis into an article from a searchable list I can express myself easily on devices that don't have emoji keyboards

Editor insert content using Markdown syntax I write articles more efficiently with markup syntax I'm familiar with

Editor customize keyboard shortcuts for article editor operations I can use keybinds that I find comfortable and efficient

Editor customize which editor operations are visible in a toolbar I can hide operations that are not relevant to my kind of articles

Editor reorder editor operations in the toolbar I can customize the toolbar layout to my liking Was deemed low-value; not included in planning.

Editor have unsaved article changes be cached on my device I can restore them if I leave the page without saving

Dropped to focus on polishing the other editor features.Editor create article templates to reuse when creating new articles I can write multiple articles with a common structure more quickly

Editor create macros to insert content to articles repeatably I can insert repeating structures more easily

Editor simultaneously edit an article with other editors I can work on an article together with other team members Was a stretch goal, not included in planning.

Editor add annotations to articles that only other editors can see I can leave notes on comments to ease collaboration

Editor set a description for a category readers can quickly know what its articles are about

C
on

te
nt

 e
xp

lo
ra

tio
n

Reader browse articles of a category I can find articles of a specific topic

Reader search articles by their text content and name I can find specific articles I know keywords of

Reader browse articles by their tags I can find other articles about a specific theme

Reader browse articles by their author I can find other articles written by an author I like

Reader log-in using a third-party platform SSO I don't need to create an account just for the site

Authenticated reader to post a comment on an article I can tell the author my opinion or ask questions

Editor to reply to a comment on an article I can respond to feedback or questions

Editor to delete a comment on an article I can remove inappropriate comments

Authenticated reader to delete my own comment on an article I can retract a comment I no longer want others to see

Reader to subscribe to an RSS feed of the website I can receive notifications when new articles are posted Dropped due to time constraints.

Reader to share articles to common social media platforms I can quickly send an interesting article to my followers

Editor to add text patterns to filter out undesirable comments I don't need to manually moderate every comment Was deemed low-value due to commenting itself also being a minor feature.

Editor to approve filtered-out comments to be shown publicly I can whitelist comments that were wrongly filtered out Was deemed low-value; not included in planning.

Ev
en

t c
re

at
io

n

Editor to create events under a category I can announce it to readers

Dropped due to being low-value; would not have required much additional work,
but the time was thought better spent on polishing the core features.

Editor to set a date, time & duration of an event I can inform readers of when the event occurs

Reader to view upcoming events in a chronological manner I can be informed of upcoming events

Authenticated reader to register interest in an event using my email I can be reminded when it starts

Authenticated reader to unsubscribe from e-mail reminders about events I can stop receiving notifications about events

Editor to set a featured external link for an event readers can clearly know where it takes place

Editor to view who registered interest in an event I can see how much interest there is in it

Si
te

 m
an

ag
em

en
t

Admin to set the logo image of the site I can set the site's branding image

Admin to set the name of the site web crawlers can index the site better

Admin to set the favicon of the site I can add flair to the site

Admin to view a log of editor and reader activity I can stay up to date with staff activity and comments posted Was deemed low-value; not included in planning.

Admin customize the site's navigation bar I can organize navigation to categories and articles

Admin to add external links to the navigation bar readers can easily navigate to other related websites

Editor to rename categories I can set a more fitting name

Admin add a sidebar on the home page I can insert a description of the site or related links

Admin to insert a Twitter/BlueSky feed in the sidebar I can feature social media accounts related to the site Was deemed low-value; not included in planning.

Admin to set the language of the static interfaces and labels of the site the static text on the site is consistent with the language of articles Was deemed low-value; not included in planning.

Admin to set which social media platforms articles can be shared to I can offer a more coherent experience for the site's demographic

Figure 2: Table of user stories grouped by epic, along with which ones were fulfilled
by the end of the project.

3.2.2 Functional requirements

The functional requirements define what the system should do in terms of features
and behaviour in more depth than user stories, specifying technical details to make
it clearer what the implementation requirements are.

These were derived from the user stories and follow the common “{User role}
should be able to...” format. A single user story can correspond to multiple re-
quirements, especially in cases where the user’s objective from the story can be
accomplished in multiple ways that demand separate implementations.

The complete list of functional requirements is available in Annex 10.10.1.

3.2.3 Non-functional requirements

Non-functional requirements define qualities of the system that are desirable but
not strictly tied to its functionality; they concern factors such as performance,
interoperability or technology constraints[1]. They tend to affect implementation
decisions throughout the whole project, and thus are important to keep in mind
during development to work towards a robust product.

The following non-functional requirements were set for the project:

• Article pages should be crawlable and parsable by search engines for SEO
optimization.

• Pages and interfaces should be navigable using the keyboard.

• Article content should be saved in a plain text format for interoperability with
external editing tools.

• The interfaces of the control panel and pre-set text on the site should be
localizable.

• The control panel and APIs should employ proven security measures for access
control.

• The CMS should be designed with extendability in mind, to make it easy to
add additional features in the future.

• The CMS should support automated testing.

Ultimately, not all of these were met; some were deemed very time-consuming
and low-value, and thus were left as future work and not included in the planning,
as will be detailed in Section 9 ≪Future work≫.

3.3 Use cases

Use cases are the third artifact the project employed during planning, listing the
specific actions of users to accomplish goals from the functional requirements.

The relations between user roles, use cases and their flows were visualized with a
use case diagram, providing a high-level overview of the program’s functionality(Fig. 3):

9

Figure 3: The project’s use case diagram.

Intuitively, one might consider making the admin role inherit from editor, to
allow admins to also manage content itself (such as the articles). Although con-
ceptually valid, it was decided not to allow it under the consideration that “super-
admin” roles should not have any physical presence on the site - the readers should
not know which accounts are admins, and their accounts should be used exclusively
for site management to nudge users towards better account practices and separation
of concerns.

Since most actions are stand-alone/independent of each other, there aren’t many
use cases with an “extends” or “includes” relation. The “edit article” use case is
an exception, as the process of writing articles can involve many optional flows
elaborate enough to warrant their own use cases - such as the addition/edition of
the various semantic blocks in the article (images, code blocks, footnotes, etc.).

After the creation of the diagram, formal scenario scripts were written for the
complex use cases, modelling the interaction flows between the users and the system
to guide the implementation and understand the functional requirements in their
context.

These use case scenarios were written using a systematic structure, defining
their actors (user roles), their goal, system preconditions, the trigger/motivation
that begins it and a script of the scenario. Care was taken to minimize mentions of
the user interface so as not to condition its design at this point.

A list of the use case scenarios and additional considerations is available in
Annex 10.10.2.

11

3.4 Database design

The project requires persistence to store the articles, user accounts and site config-
uration, making a database a necessity.

The structure requirements of the database were designed using an entity-
relation (ER) diagram to organize the data into entities with relationships between
them, giving an SQL-oriented overview of the data, which would later be used
as a reference for the implementation of the database in Section 5.2. The enti-
ties and relationships were derived from the requirements, producing the following
diagram(Fig. 4):

Figure 4: Entity-relation diagram of the project’s database. Certain entities were
duplicated and shown in a collapsed manner to improve the readability of remote
relationships.

12

Three types of user accounts exist, with two corresponding to site staff user roles
(Admin & Editor), and the AuthenticatedReader entity corresponding to accounts
of readers that have logged into the site. Accounts are modelled via inheritance to
be able to speak of an account in the general sense, simplifying relationships and
operations that can involve any account type.

It was chosen not to store any personal information for the AuthenticatedReader
entity, so as to avoid dealing with data privacy concerns for the time being. Al-
though admin and authenticated reader accounts have no additional fields, a sep-
arate entity for them was still created to simplify database extensions, should the
need to store new fields specific to them appear in the future.

The user credentials are stored as a separate entity with a 1 — 1 relation as
they are a separate concern from the regular user data, and seldom relevant when
dealing with user-related queries. This entity’s fields accommodate the various
authentication methods: username and password, 2FA, or third-party SSO. An
account may support multiple of these log-in schemes; the fields for the ones not in
use by an account would be null.

Articles are the largest entity in the diagram, though mostly consisting of meta-
data fields derived from the requirements. The article entity would also store the
text content of the article itself or some form of resolving it; the details of this were
decided during implementation instead, as the purpose of the diagram was only to
outline the data needs.

Articles always pertain to categories, which are meant to be used to create
nestable directory-like structures for the site’s article content; as such, a category
may have a parent category that it belongs to. This is modelled using a self-
referential relationship (“Category is within Category”), by giving the entity a for-
eign key referencing another category; a null value would represent a category at
the root of the tree structure. Comments on articles, which may be replies to one
another, are modelled similarly.

Articles may also have tags, which present a many-to-many relationship, as a
tag may be present in multiple articles, each with multiple tags. Authorship of
articles is another many-to-many relationship case, as an article may be written by
multiple editors.

One of the requirements includes the ability for editors to annotate parts of ar-
ticles to leave internal notes for collaboration; this is modelled with the Annotation
entity, which aside from storing the note text and its author would also need to be
able to denote the range of tokens it references within the article text.

Weak entities are denoted by an additional rectangle around their table; these
are entities that shouldn’t conceptually exist independently without other entities
they have relationships to; a Credentials entity for example cannot exist without a
corresponding User.

As stated in the requirements, the app should allow changing some site-wide
settings and metadata in a user-friendly manner - meaning these changes should
be possible through the application and not just by editing the code itself. This
creates a need to store these settings externally; it was decided to centralize all data
in the app within the database rather than relying on external configuration files,
using the WebsiteConfiguration entity, of which there should only ever be one entry

13

in the database.
One of the configurability requirements is being able to customize the navigation

bar of the site. A typical website navigation bar contains links to pages/content
of a site, sometimes grouping them to display multiple related links together in
dropdowns or similar UI elements. At the database level this can be modelled as
another tree, where the nodes correspond to links to categories, external URLs or
specific articles. The diagram uses a hierarchy to differentiate these different nodes,
with a NavigationBarGroupNode entity to represent groups of links.

The File entity is intended to be used for images and files linked from articles,
as well as branding assets (logo, favicon) of the site configuration, thus its entity
has relations with the files involved.

Additional commentary on the database design and the diagram are available
in Annex 10.4.

4 Technology

The project inherently involves web development due to the nature of blogs being
hosted on the internet and accessed through browsers.

Given that the project requires users to be able to create content directly through
the application and persist configuration options, it cannot be merely a static web-
site7; a service architecture was required.

Simple web applications typically employ a multi-tier architecture, an extension
of the client-server model where there is a distinction between the server application
and its data persistence[22], such that there are at least 3 components:

• The presentation layer, which corresponds to the user interface. In web
development, this tier is called the frontend and serves the HTML and assets
to browser clients.

• The logic layer, which handles business logic and manages the application’s
data. Referred to as the backend in web development.

• The data layer, which is responsible for persistence and access to the appli-
cation data. This is typically a database.

This approach simplifies maintenance, and allows flexibility in choosing different
technologies for the layers based on the application’s specific needs. Alternative
architectures, such microservices8, are more intended for large-scale applications
and would’ve been an over-engineered choice for the project.

The following sections will cover the project’s chosen technologies for each layer:
the frontend, backend and database, based on which technologies were thought to
best fit the requirements and objectives of the project.

7Website that serves HTML files directly, with no dynamic responses.
8Web application architecture where the application is divided into multiple services interacting

with each other[24].

14

4.1 Backend

The backend service is the stack that manipulates the data of the application,
abstracting this process from the user and frontend by offering an API as an entry
point to its services.

Given that the vast majority of the requirements can be implemented with one-
off requests and do not need the client to maintain a constant connection to the
backend, a REST9 API was ideal for the project.
REST is one of the most common and reliable patterns for web application APIs
as it is simple to design and implement due to being stateless, consisting of sending
individual HTTP requests to fetch or modify data on the backend[11].
It also allows taking advantage of HTTP caching mechanisms to reduce latency
and server processing time, which is particularly useful in the case of a read-heavy
application such as a blog, where most data rarely changes and thus can be cached.

The following table gives an overview of the technology used for the project’s
backend(Fig. 1), which will be detailed in the coming paragraphs.

Concern Solution chosen Motives
API endpoints FastAPI REST-oriented, concise syntax
Data validation Pydantic Simplifies API error handling
Object-relational mapping SQLAlchemy Well-established, supports complex queries
Authentication JSON Web Tokens Stateless, easy to implement
Article search & indexing Elasticsearch Flexible search queries, prior familiarity

Table 1: Overview of backend technologies chosen.

REST APIs are typically implemented using scriptable web servers (SGIs). The
FastAPI10 Python framework was chosen for the implementation of the API, being
a robust RESTful framework with emphasis on reducing boilerplate code and ver-
bosity. FastAPI is built on top of the highly performant asynchronous Starlette11

HTTP middleware, and integrates numerous libraries to make REST development
convenient, such as schema validation, dependency injection and automatic docu-
mentation generation.

Pytest12 was used as the testing framework for the backend for its simplicity.
Tests with it are quick to write, with minimal boilerplate and suitable for integra-
tion testing. Plugins for it also support measuring test coverage13, a necessity for
verifying reliability of any backend application.

9Representational State Transfer: software architecture pattern for stateless web-based appli-
cations.

10FastAPI: Python framework for building ASGI applications and APIs.
11Starlette: lightweight ASGI server.
12Pytest: functional testing framework for Python.
13Test coverage: metric for the amount of executable code lines that are ran by automated

testing.

15

https://fastapi.tiangolo.com/
https://www.starlette.io/
https://docs.pytest.org/en/stable/

4.2 Frontend

The frontend is the service that generates the HTML view for the user’s browser
and handles interactions with it by making requests to the backend’s API.

One of the project’s main objectives is to leverage advancements in web devel-
opment to improve the user experience of blogging, namely by taking advantage of
the complex rich content editing user experience (UX) that emerging frameworks
made possible, which existing blogging solutions are neglecting to adopt.

Another important requirement is having an admin interface for site staff to
manage the site content, which would also benefit from being a dynamic web page.
Such interfaces are now often implemented as Single-Page Applications (SPAs),
which use these JavaScript frameworks to update the view in response to user
interaction rather than redirecting to new pages[9].

JavaScript-based web frameworks are thus ideal for the project’s needs of im-
plementing an admin interface and a highly-dynamic rich text editor, as they al-
low dynamic pages and “web apps” to be implemented more efficiently than with
template-based web servers or regular JavaScript.

The following table shows an overview of the frontend technologies chosen for
the project(Fig. 2), which will be detailed afterwards.

Concern Framework/library Motives
User interface Vue MVVM-oriented, component-based
Development framework Nuxt Hybrid rendering (both client-side & server-side)
Styling daisyUI Semantic CSS classes, customizable theming
Scripting language TypeScript Strict typing, strong IDE support
Form UIs Nuxt UI Good accessibility out of the box
Rich text editing ProseMirror Barebones framework, highly extendable
Markdown parsing MarkdownIt Plugin system, support for common syntax extensions
API querying & caching tanstack-query Convenient error-handling and response caching

Table 2: Overview of frontend technologies and main reasons for them being chosen.

Vue14 was chosen as the JavaScript framework for the project, as it is oriented
towards a clear MVVM pattern15, organizing UI elements into stateful components
that can be reused and made dynamic with JavaScript. Though it’s a relatively new
framework, Vue already has a mature ecosystem and was among the 3 most-used
web UI frameworks among developers in 2024[18].

Nuxt16 was chosen as the framework for working with Vue. Nuxt is a compre-
hensive Vue framework that offers vast workflow and quality-of-life improvements
to Vue development, handling many repetitive tasks and reducing boilerplate code
automatically during the build process, such as auto-importing used components
and libraries. Aside from a build pipeline, it offers numerous additional libraries of

14Vue: JavaScript user interface framework
15Model-view-viewmodel: architecture for graphical applications that relies on the observer

pattern to decouple UI from business logic.
16Nuxt: Vue framework and build toolchain supporting hybrid rendering.

16

https://vuejs.org/?uwu=true
https://nuxt.com/

its own to speed up UI development, such as robust and flexible Vue implementa-
tions of common form elements (input fields, dropdowns, modals, etc.) with their
Nuxt UI17 library.

The most relevant advantage of Nuxt for the project, however, is its hybrid
rendering option that allows easily mixing client-side and server-side rendering for
the app, combining the benefits of the performance of server-rendered sites and the
interactivity of SPAs18[21].

This is an important benefit, as the different requirements of the project are best
implemented using different web app approaches. The published blog site where
visitors come to read articles would be best implemented using server-side rendering
to have content load as soon as possible and allow it to be indexed by web crawlers
for SEO19, which is unreliable in SPA due to requiring additional requests to load
a page’s content[25].
Usually these SEO shortcomings are not a concern for the typical usage of SPA as
they’re not used for content pages, however, in the case of a blog, it is essential for
the blog content to be parsable by search engines so that it may appear correctly
in search results.

On the other hand, the control panel requires high interactivity, which is best
achieved using the SPA approach(See annex 10.1.8).
Nuxt allows both approaches to be used in a single project instead of needing to
implement these two parts of the project using two separate frameworks, which
greatly simplifies the development of the project’s frontend.

Regarding style and theming, the daisyUI20 library was chosen as it has clean,
material-design styling for many common web elements, saving a lot of develop-
ment time that would otherwise be spent on visual design aspects. It also provides
multiple decent themes and colour palettes along with easy creation of custom ones,
which is helpful for the requirement of the site’s theming being customizable. The
site’s visual design was complemented using icons from Icones21, a repository of
Apache and MIT-licensed icon libraries.

The project also uses TypeScript22, a superset of JavaScript that implements
strict typing to reduce mistakes during development and improve the maintainabil-
ity of the codebase. The major advantage of TypeScript comes from IDE integra-
tions; auto-completion, linting and diagnostics help detect coding mistakes as soon
as they happen rather than once the app is tested, improving development efficiency
substantially, as well as code readability, as there are no ambiguities on the types
of parameters or fields of an object.

17Nuxt UI: Vue form & UI component library
18Single-page application: web app architecture where an entire site is accessed from a single

HTML page, using JavaScript to update it in lieu of traditional navigation.
19Search engine optimization: practices that improve a site’s ranking in search engines.
20daisyUI: Tailwind-based design system
21Icones: repository of freely-usable icons for user interfaces.
22TypeScript: superset of JavaScript with strict typing.

17

https://ui2.nuxt.com/getting-started
https://daisyui.com/
https://icones.js.org/
https://www.typescriptlang.org/

For the implementation of the WYSIWYG23 article editor, the ProseMirror24

library was used, which offers a framework for creating rich text editors.
ProseMirror handles parsing text documents into semantic node trees and offers
APIs and callbacks to implement custom document editing operations and HTML
rendering, making it very flexible. By itself it offers little to no functionality, only
the foundations to build any kind of document editor; it is thus very suitable for
the variety of semantic blocks the project wants to support within articles, and its
ambitions to build a blogging editor with specialized features not present in existing
solutions or generic text editor libraries.

Additional notes on technology decisions are available in Annex 10.3.

4.3 Database

For persistence of the site’s content and configuration, PostgreSQL25 was chosen
as the database as it is a highly reliable and well-established open-source SQL
database.

NoSQL databases were initially considered, however during the database design
phase in Section 3.4 it was quickly noted the data is a lot more referential than was
initially thought, and that the strong integrity checks of SQL databases would be
more desirable.

Given that the entities are few and structured without many variants or foreseen
need to add new attributes often, the advantages of loosely-structured document-
based NoSQL databases were thought not very relevant to the project, and the
second-class relation support they have would’ve hindered development and perfor-
mance.

Considering the project is intended to be self-hosted and not a centralized plat-
form, horizontal scaling26, a major advantage of most NoSQL databases, was also
not a strict necessity.

Additionally, there are no entities in the database that would be modified very
frequently, as write operations are mostly done by the small group of site staff; as
such, it was not necessary to add additional layers of data storage/caching such as a
Redis database to have faster read/write access to specific resources. For this same
reason, an event queue to decouple database writes from the rest of the application
was also deemed unnecessary.

The project does however use Elasticsearch27 to index content of articles and
allow them to be searched by text or metadata like tags.

During development, some of these decisions turned out to have shortcomings,
which are detailed in the project’s conclusions in Section 8.

23“What you see is what you get”: content editing software paradigm where the content being
edited is already displayed in a manner very similar to its appearance when finished/published for
consumption. An example would be Microsoft Word.

24ProseMirror: framework for building web-based rich text editors.
25PostgreSQL: Open-source relational database.
26Instantiating multiple servers and databases to handle mass requests to a single system.
27Elasticsearch: data store solution usable as an external index and document search engine.

18

https://prosemirror.net/
https://www.postgresql.org/
https://www.elastic.co/elasticsearch

5 Implementation and development

Development began on the second week of the semester after the requirements
gathering and selection of frameworks and tools.

For any feature, the order of work to implement it was generally in order of
dependencies:

1. Adding/updating database tables.

2. Implementing backend CRUD functions and API routes.

3. Adding API tests.

4. Implementing the corresponding UI elements in the frontend.

5. Integrating the frontend UI with the API.

Though it would’ve been possible to implement the parts in a different order
by mocking dependencies, that practice is mainly useful in teams where there’s
simultaneous work on frontend and backend; for a 1-person project it was considered
time-inefficient.

The following sections go into detail on the design and implementation of the
project’s services, as well as the patterns and conventions used.

5.1 Backend

The backend was implemented using FastAPI and SQLAlchemy28, handling the
API for the project as well as database management. The goal of the design of the
API was to make an idiomatic REST API - one that doesn’t just follow the func-
tional principles, but is also intuitive and convenient for the clients (the frontend)
to use.

This meant planning and designing the API with the frontend’s usage of it in
mind, so that during the frontend’s development it wouldn’t be necessary to go
back and make adjustments to the API, saving development time.

The backend is split into 2 main systems:

• CRUD29 function libraries, which manipulate database objects.

• The API routes, which define the REST endpoints and handle requests by
invoking the CRUD functions, as well as application-level logic like authenti-
cation.

The folder structure organizes scripts by their purpose and “layer” within the
application. In terms of dependencies, the package diagram looks as following(Fig. 5):

28SQLAlchemy: Python Object-Relational Mapping library.
29“Create, Read, Update, Delete”: functions that manage objects for persistent storage appli-

cations like databases.

19

https://www.sqlalchemy.org/

Figure 5: Backend package diagram, denoting dependencies between the modules.

The project makes extensive use of the built-in Python type annotations to
provide auto-completion and type-checking within IDEs, to speed up development
and catch mistakes when they occur.

Additional information on the project’s structure and general code style is avail-
able in Annex 10.8. The following sections cover the backend’s modules and how
they achieve the API’s goals and separation of concerns between them.

5.1.1 Routes

The routes are the URLs that the server accepts for API requests. The project fol-
lows REST conventions, where the URLs are intuitively named after the database
entities they work with, accepting the common HTTP methods to perform oper-
ations with the entities (creating, reading, updating, deleting). For example, user
accounts can be accessed by making requests to /users/, and a specific article may
be accessed at /articles/{category}/{article filename}.

The following diagram shows an outline of the API’s routes, categorized by their
function(Fig. 6):

20

Figure 6: Diagram of the backend’s API routes, indicating the endpoints and meth-
ods they accept. A lock icon indicates endpoints that require authentication.

The API was carefully designed to consider its usage in the frontend, so as to
minimize oversights that would lead to needing to make adjustments to it later.
These considerations include:

• String identifiers for resources are favoured over numeric ones, as they tend to
be more intuitive and easier to map to URLs on the frontend (such as article
pages).

• Routes that return multiple entities (such as fetching the articles of a category)
support “limit” and “skip” query parameters, a standard REST pattern which

21

allows clients to implement pagination(See annex 10.8.2), optimizing bandwidth
and server CPU time.

• Exceptions while handling requests are turned into appropriate HTTP excep-
tion codes, with descriptive messages.

The project makes use of Swagger30 to offer a web interface to view the docu-
mentation of all endpoints, generated from the pydoc31 strings and type annotations
in the source code, which was useful as a reference while developing the frontend.
This documentation is only present while running the project in a development
environment.

5.1.2 Schemas

Endpoints that receive data from the client (to create or update entities) as well as
responses sent by the API require the data to be in JSON with a specific structure,
defined by schemas.

The project uses the Pydantic32 library to define these schemas as Python
classes, which handle validating JSON into them, ensuring requests and responses
always adhere to the expected format and removing the need to do this explicitly.

This integrates well with FastAPI; requests to create or update entities whose
data does not adhere to input schemas immediately receive the HTTP 422 Validation

error response, which includes an automatically-generated detail message speci-
fying to the client which fields failed validation and why, making it easy to debug
mistakes when using the API.

For every entity usable in the API there are multiple schema classes each cor-
responding to the different operations (create, read, update)(See annex 10.8.8). The
schema classes are pure data structures and do not depend on any classes/types or
functions from the application, allowing them to also be used in the CRUD libraries
described in the following section.

5.1.3 CRUD

The API endpoints work by invoking functions from the CRUD libraries, which
manage the database tables. A separate library exists for each major table/entity
in the database.

The CRUD functions perform only database operations and their parameter
validation only considers database-level coherence checks, such as preventing creat-
ing multiple users with the same username. Any application-level validations such
as permission and authority-based restrictions are applied in the API route logic
instead to keep the CRUD methods flexible.

The CRUD methods make sure to only commit transactions to the database
at the end of all operations. In the case of any exception, the transaction is rolled
back, and the exception is propagated to the original caller (the API)(See annex 10.8.4).

30Swagger: documentation generator for REST APIs.
31Python’s built-in type annotation system.
32Pydantic: Python data validation library.

22

https://swagger.io/
https://docs.pydantic.dev/latest/

CRUD operations always return the database ORM objects for ease of further
operations. The API however needs to convert these objects into the corresponding
Pydantic response schema when “returning” them to the request client. To ease
this process, the CRUD scripts have utility methods to convert ORM entities to
their schema form using reflection-like methods from SQLAlchemy and Pydantic to
map ORM fields to the corresponding schema ones(See annex 10.8.5).

Creation and update request schemas are also used as parameters of the CRUD
create & update methods respectively to reduce the amount of parameters these
functions take. This makes it convenient to expand them with new fields, as function
calls do not need to be refactored to add/remove parameters to the signature, they
only need to be adjusted to use the new fields within.

The following sections will cover the project-specific functionality of the API
that these CRUD libraries and routes cover.

5.1.4 Article management

Articles and categories are managed via 2 endpoints: /categories/
and /articles/, which allow site staff to create and modify them to manage the
content of the site and organize it.

Since both entities store a path that is meant to map them to URLs on the pub-
lished site, the API routes also intuitively identify them by this path using FastAPI
catch-all routes(See annex 10.8.9); for example, an article named “Cake” within a “Cook-
ing recipes” category may be retrieved with
GET /articles/cooking_recipes/cake.

Normally, resolving such paths to their entity would involve traversing the “tree”
relationships using each part of the URL and validating it. To optimize retrieving
articles and categories by these paths, their database entities cache this full path in
a column that uses a hash index to allow resolving them with minimal overhead.

Articles may have multiple text tags to further organize them thematically. Tags
in the API are referred by name but are tracked by a numeric ID in the database,
which allows for renaming tags without needing to remove & reapply them to every
article that uses them.

The /comments/ endpoint allows fetching and posting comments to articles.
This endpoint was made separate from the articles, as comments are not always
relevant to requests relating to articles, and would result in a lot of irrelevant data
being sent if they were present in all article requests. The post dates of comments
are set on the server to prevent spoofing them.

5.1.5 Searching

The /search/ endpoint allows searching articles by their text content and metadata
like tags and authors. This is implemented using Elasticsearch, by indexing the
relevant properties of the articles into it.

The main search endpoint supports 3 kinds of searches via query parameters,
which may be combined:

23

• text: searches content, titles and summaries of articles using Elasticsearch’s
“phrase-prefix” search type to allow partial matches of keywords.

• author: filters results to articles written by a specific editor.

• tag: filters results to articles that contain the tag (as an exact keyword match)

The indexes are configured to tokenize and standardize article content to make
searching more efficient and robust; the text is split into keywords with stop words
removed, and the keywords are also stubbed/stemmed to disregard verbal tenses,
plurality, etc.

The article API routes are responsible for indexing and updating an article’s doc-
ument in Elasticsearch when requests to create/patch articles are received. Since
this is a slow process and the API queries that trigger it don’t need it to be re-
solved to return their response, these updates are implemented using FastAPI’s
“background tasks”, running asynchronously from the request.

In addition, a “latest articles” endpoint exists, which aggregates and sorts all
publicly-visible articles across all categories, intended to be used for the site’s home-
page.

5.1.6 File and configuration management

The backend supports uploading arbitrary files to a /files/ route, primarily in-
tended to be used to embed images in articles or add download links to other files.
Users give files a custom URL to identify them, and the account that uploaded
them is tracked for administrative purposes.

Since the file data must be sent inside a regular JSON request along metadata
like filename, it must be encoded to base 64 first to ensure there are no problematic
characters in the JSON.

For efficiency, fetching files is split into two endpoints: one to retrieve the file
metadata (such as the uploader’s info) with a usual JSON response, and another
that returns the raw file data to avoid the overhead of encoding & decoding its
binary data to & from JSON.

An endpoint to retrieve all files exists, but is limited to site staff to prevent
leaking files that are not meant to be public, such as images/attachments used in
articles that haven’t been published yet.

The /config/ routes are used to manage and retrieve site-wide configuration
settings, such as its branding assets, metadata and navigation bar scheme. Only
admins can modify the configuration.

The site’s logo and favicon assets are retrievable through a special endpoint to
allow them to be cached separately from the rest of the configuration.

Though the enabled social networks are stored in a separate table, the API
simply allows passing a list of network IDs to toggle them for convenience, rather
than having an entity-specific endpoint for them. There is no API support to
register more social networks, as there wouldn’t be any benefit to being able to do
so from the API, since adding proper support for more networks would require the
frontend code to be updated with the art & integration work either way.

24

5.1.7 Authentication and security

The project’s user roles define authority requirements; only the admin and editor
roles are supposed to be able to manage the site’s content, as such, for both func-
tional and security reasons it’s necessary to limit the access of certain endpoints
based on the role of the user making the request.

The endpoints a user has access to is determined by the role of the account
they’re logged into, which is done via a POST request to a login endpoint providing
the username and password. Passwords in the database are hashed using the bcrypt
algorithm[6] for security in case of leaks.

The project uses JSONWeb Tokens for authentication, consisting of an HS25633-
signed JSON document that the client passes in every request to prove their identity.
This is a common authentication scheme which fits into REST & HTTP being state-
less, as it doesn’t require implementing a concept of a session on the backend[20].

The token is generated upon sending a POST /login/ request. JWT tokens are
signed such that to verify the identity of their owner it’s only necessary to decrypt
them and verify the integrity (expiration date and issuer); there is no need to persist
them in the database.

The client stores the token as an expirable cookie and includes it in all subsequent
requests to authenticate themselves. Explicitly logging out (via a logout endpoint)
invalidates previous tokens by setting a timestamp in the user’s database entry,
which is checked to reject tokens issued before that date.

The project uses the payload part of the JWT to store the username of the
account associated with the token as well as its expiration date; this is convenient
for the client/frontend to know which account it is logged into to fetch its data
more conveniently, as well as to proactively know when the token will expire.

At the implementation level, the project uses FastAPI’s dependency injection
features to automatically resolve JWT tokens in requested headers to their database
user, making it easily available in any endpoint. Endpoints that require authority
(such as creating or modifying articles) first check if the token is present and valid;
if it isn’t, a 401 Unauthorized response is sent back to the client immediately.

Some endpoints to fetch data also support optional authentication to have them
include otherwise private data; for example, the GET /categories/ endpoint only
returns published articles by default, but will include hidden ones as well if the
request is made by a staff account.

The implementation and alternatives considered are covered in detail in Annex
10.8.6.

33HS256: common JWT hashing algorithm which uses SHA-2 hashing function and RSA sig-
nature.

25

5.1.8 Tests

The pytest34 framework is used for testing, where tests are written as functions that
call the API methods and assert the responses received.

Tests exist for each API endpoint, checking both regular usage and invalid inputs
and edge cases, asserting the HTTP response status codes and content of the JSONs
received.

Pytest’s fixtures system is used to set up starting scenarios before each test,
which is used to pre-create the test’s dependencies, such as populating the database
with users and articles that the tests need. The tests thus follow the standard
“arrange-act-assert” pattern:

• Arrange: setup test preconditions, creating database entities that are needed.
Mostly handled by fixtures, as the preconditions tend to be similar across the
tests of each endpoint.

• Act: perform requests to the API.

• Assert: validate responses received.

To keep tests self-contained, another fixture exists that runs after any test and
deletes all database entities created during it. This ensures each test starts with a
clean slate and does not cause any side effects that may cause other tests to fail or
complicate their design. For example, asserting the amount of created entities in
a test becomes verbose if you cannot assume the database was previously empty.
The tests are also configured to use a different database, so that running the tests
locally does not override the database used for local development.

Requests in tests are sent using a wrapper class for an HTTP client that also
accepts instances of the schema classes (from Section 5.1.2) and automatically con-
verts/parses them to JSON. This makes the “act” and “arrange” steps more con-
venient to write, as well as easier to maintain, as IDE refactoring operations on the
schema classes will also update their uses in tests. Tests that intentionally send
malformed data are of course an exception to this and use raw JSON instead.

It was chosen not to write tests for the CRUD methods specifically, as the API
methods already cover their execution and correct API responses depend on the
CRUD methods working properly. Since CRUD exceptions and their messages are
propagated by the API, the flows that lead to them can also be tested.

34pytest: functional testing framework for Python.

26

https://docs.pytest.org/en/stable/

5.2 Database

Configuring the PostgreSQL database and creating all the entities was done via
SQLAlchemy’s declarative APIs from within the backend code.

SQLAlchemy models tables as Python classes, using special types to declare
columns and their properties (such as nullability, primary/foreign key status, etc.)
in a database-agnostic manner. Upon initializing the backend, these table classes
are parsed, and SQLAlchemy handles generating the SQL statements to create the
tables based on the database used.

Creating the database this way has the minor advantage of making it easier
to migrate the program to a different SQL database if it were necessary, as there
would be no need to adjust the table declarations to consider differences in their
SQL dialects.

The tables themselves were designed using the ER diagram shown previously in
Section 4 as reference.

Entity inheritance (such as the User hierarchy) was modelled by creating tables
for both the parent and child entities, and creating a one-to-one “parent-child” rela-
tionship between them. This approach removes concerns of duplicating data across
the various “derived” entities and integrates better with ORM libraries, however
it does incur a small overhead of needing JOINs to traverse the hierarchy. These
child-parent relations are configured to automatically delete the “child” entities
when their parent is deleted (via the delete-orphan cascade), simplifying delete
operations and ensuring no orphan entities linger. The responsibility of maintaining
integrity of the tree-like relations (such as avoiding circular relationships) falls to
the backend code.

Multiple relationships in the ER diagram such as “Editor is author of Article”
had N:N cardinality. This required creating a separate table for the relationship it-
self, whose rows are pairs of foreign keys of the two entities to handle the multiplicity
of the relationship.

The Configuration entity, which holds site-wide settings, was implemented using
a singleton table pattern by having the CRUD methods forbid creating additional
rows, as there should only ever be 1 configuration entry.

This configuration table also stores the configuration of the site’s navigation
bar. The navigation bar as a whole is very much a semi-structured entity; it can
be seen as a tree of different kinds of nodes linking articles, categories, arbitrary
URLs, etc. This kind of structure is tedious to model and manage using SQL due
to requiring many joins to reconstruct the whole tree, which is ultimately what the
client (frontend) will want.

For this reason, it was decided to store the navigation bar using the Postgres
JSON column type instead, using nested JSON objects to represent the parent-child
relationships of the link nodes.

Although using a JSON goes against SQL practices, the benefit of being able to
fetch the whole navigation bar structure in a single query was thought to outweigh
the disadvantages. This JSON refers to articles & categories by their numeric IDs;
these never change, thus it’s only necessary to revalidate the document when articles
or categories are deleted, which is an uncommon occurrence.

27

Configuring the social networks that sharing is enabled for is done via a
SocialNetwork table with a simple boolean to toggle the feature for each network
registered by the backend at startup.

For ease of prototyping the rest of the application, it was chosen to store the
article documents and files directly in the database using the BLOB/binary type.
In a serious usage scenario, it would be ideal to store these files externally using a
cloud storage solution such as Amazon S335; these BLOB columns would then be
replaced by the uploaded file’s identifier. Storing the files in the database is still
preferrable over disk storage as it avoids dealing with OS-specific filesystem quirks,
and centralizes the site’s data to simplify backups.

Additional implementation notes are available in Annex 10.5.

5.3 Frontend

The implementation of the frontend intends to leverage Nuxt and the chosen li-
braries to create a good user experience that’s consistent and coherent, while keeping
its code concise and readable. Design-wise, this translates to minimizing boilerplate
code, maintaining a clean MVVM separation of concerns, and reusing UI code as
much as possible to have the site look and behave consistently.

The folder structure of the frontend source code is as follows(Fig. 7). Many of
these root folders are dictated by Nuxt’s framework, as they have special treatment
during the build process.

Figure 7: Package diagram of the frontend, denoting dependencies between the
modules.

35Amazon S3: cloud storage solution, part of Amazon Web Services.

28

https://aws.amazon.com/s3/

The following sections cover the various aspects of the frontend’s design, imple-
mentation and the features that it integrates from the backend API. The article
editor, though part of the frontend, will be covered in a separate section due to its
complexity.

5.3.1 Visual design and sitemap

The layout of pages and important widgets was first designed using wireframe mock-
ups with Balsamiq36 to define their visual hierarchy, covering UI design aspects such
as element order and positioning.

Figure 8: Mock-up of a category page and its article listings. Design decisions are
annotated with “sticky notes”.

These mockups were highly useful to implement the frontend efficiently, as hav-
ing the layout already designed meant there was less trial-and-error needed in regard
to structuring the site HTML.

The finished site only slightly deviates from the mock-ups, in situations where
minor UX issues with the original design were identified after an element’s initial
implementation. A full list of the mock-ups produced is available in Annex 10.1.2.

The frontend site is split into two isolated parts: the user-facing “published
site” where articles may be read, and the staff-only “control panel” where the
site’s content and configuration is managed.

The following sitemap diagram displays the major pages of the site and their
navigation(Fig. 9). The actual sitemap of the published site is determined by the
categories and articles created, and as such it may be structured freely by the site
staff.

36Balsamiq: low-fidelity UI wireframing tool.

29

https://balsamiq.com/

Figure 9: Sitemap diagram of the frontend site.

The following sections will cover the finished pages of the site and their imple-
mentation details, starting with the pages of the “published site”.

It’s worth noting that due to time constraints, it was decided early on to only
target desktop devices - making all interfaces responsive was left as future work.

30

5.3.2 Published site

The “published site” is the part of the frontend that corresponds to the site that vis-
itors (the “reader” role) see, which displays the articles in a blog-like website(Fig. 10).
The screenshots shown use a set of mock data for demonstration purposes(See annex 10.8.1),
showing an example of a cooking-themed blog.

Figure 10: Front page of an example published site, displaying the latest articles
posted.

The homepage displays the latest articles from across all categories in the site;
the user can browse articles from a specific topic through links to categories in a
navigation bar. A sidebar is also present which may be used to add information
about the site, links, or images.

The navigation bar also features a search bar for finding articles, which uses
a “search-as-you-type” UX pattern(See annex 10.1.9): the top search results are pre-
viewed in the page as the user types in the field, featuring the article’s summary
and tags. Complete search results can be accessed in a dedicated page by submitting
the search(See annex figure 39).

A category’s articles can be browsed at the /categories/{category path}

route, offering a paginated view where articles are displayed in a vertical layout
using a “card” design pattern(See annex figure 36). The article cards display details to
entice readers, showing the article’s title, date & author, a summary of the article,
a featured image, as well as its tags and comment count. The user may read the
full article through the link in the title, or navigate to its comments section directly,
useful to quickly read up on new comments of articles they already read in the past.
The article card also displays the article’s tags in a “badge” format, which may be
clicked to search for articles with that same tag - convenient for exploring more

31

articles covering the same topics. Semantic tags are applied to parts of the card to
make them more digestible to assistive technologies; <figure> is used for the cover
image, <summary> for the summary, etc.

Each article has a corresponding page on the published site(Fig. 11), which dis-
plays its content, metadata and comments section. The articles themselves support
various forms of formatting and rich content, which is covered in detail in the article
editor’s implementation in Section 5.4.

Figure 11: Page for a published article.

A card with the author’s biography and buttons to share the article to social
media networks are present at the end of articles; these make use of the vue3-
social37 library to handle opening a pop-up browser window pre-configured to share
the article link to any of the social media networks that are enabled on the site.

37vue3-social: Vue library for invoking user flows to share content to common social media
platforms.

32

https://github.com/hedint/vue3-social-sharing

Articles also support comments(See annex figure 38); site visitors may log in using
their Google account to post comments on articles, using a reduced version of the
project’s text editor with only the relevant features (such as quoting parts of the
article).

Comments may be replies of another, intended to be used by site staff to respond
to questions or feedback, with the replies displaying as a collapsible tree. Comments
of reader accounts are anonymous and display no personal information, and neither
does the system store any user information to avoid dealing with data protection
concerns(See annex 10.1.13).

5.3.2.1 Implementation details

The published site makes use of Nuxt’s hybrid rendering to make content load faster
for visitors while also offering the smooth navigation experience of an SPA. The
main layout components of the site as well as the article themselves are rendered
by the web server, so their HTML can be included in the very first request a visitor
makes to the site. This also ensures that search engine crawlers can index the site’s
content, as it will be included in the HTML from the very start, instead of requiring
JavaScript and extra requests to load.

Rendering an article page requires the frontend server to make an API call to
fetch the article document and metadata from the backend; since articles are not
modified frequently, the frontend caches each article fetched using tanstack-query
to reduce API calls and render subsequent accesses to the pages faster.

Some navigation, such as switching between pages of search results, is instead
done using client-side component updates, having the client call the API to fetch
the next batch of articles. This improves page responsiveness as the user doesn’t
see the whole page reload, and it also reduces requests to the web server.

Since URLs for articles and categories are dynamic, the site’s routing38 must
also be dynamic. Instead of pre-defining mappings of article & category URLs to
the page components that display them, the project uses Nuxt catch-all routes to
do so implicitly. The trailing components of the URL are used as parameters to
have the components fetch the corresponding article(See annex 10.1.11).

Most pages have a similar basic layout (with a logo, navigation bar, sidebar,
footer, etc.), as such these common elements are extracted to a single component to
avoid code repetition, which uses Vue slots[16] to have specific pages only define
the elements that do differ between them.

The components of the published site make use of the semantic sectioning HTML
tags, such as <nav> or <article>. These tags serve to denote the nature of their
content to assistive tools such as screen readers or navigation shortcuts.

The navigation bar is rendered based on the JSON navigation schema fetched
from the API. As mentioned previously, the navigation schema supports different
kinds of “nodes” to link to different kinds of content (categories, specific articles,
external URLs). To support these variants cleanly, the special <component> tag is
used to map node types to their components to avoid lengthy if-else chains in
the navigation bar component.

38Vue routing: mapping of URLs to the root component that displays their page.

33

5.3.3 Control panel

The management of the site is done through an admin interface at the /admin/

route, requiring the user to authenticate first with a login form(See annex figure 25).
The panel allows viewing and editing the site’s articles & categories, files, user
accounts, and configuration(Fig. 12) through different tabs accessed from a sidebar.

Figure 12: Article & category management page within the control panel.

The admin interface is an SPA, using only client-side rendering to make navi-
gation smoother, as it is highly dynamic and initial load time is not a concern for
its use case.

Categories and articles are displayed using a directory-like tree view, and may
be searched to find specific items by name. This tree is rendered recursively using
a flexible, general-purpose component to render such trees(See annex 10.1.12). Search-
ing/filtering is performed client-side for better responsiveness, using only simple
string matching.

Creation and editing operations are done through modal forms with a standard-
ized layout(See annex figure 31). Requests to create or edit resources are handled using
“mutations” from the tanstack-query39 library to create reactives40 for the state of
the request. This allows the forms to easily display feedback like loading spinners
while the requests are being resolved. Creating or editing resources re-fetches rel-
evant data from the API to update the view; the data is otherwise cached when
navigating between the tabs of the control panel.

39tanstack-query: cross-framework asynchronous state management library.
40Vue’s system for observable variables[15].

34

https://tanstack.com/query/latest

5.3.3.1 Files tab

The Files tab allows managing uploaded files(See annex figure 24), displaying them in a
tree view using the project’s general-purpose tree component. These files are used
for numerous purposes throughout the site, such as image embeds in articles, editor
account avatars, or site branding assets.

Hovering over a file previews it in a tooltip and clicking it opens it in a new
browser tab, and it’s also possible to re-upload/replace files.

As mentioned in the backend implementation section, files are stored as blobs
in the database. To make them viewable in the frontend, the project uses the Nuxt
“server routes” functionality to extend its HTTP server; when URLs at /files/

are accessed from the frontend, the web server fetches the corresponding file from
the backend and sends back a plain HTTP response with the file data instead of
rendering any Vue component.

5.3.3.2 Configuration tab

The configuration tab concerns global site settings, such as its branding assets,
colour theme, and which social networks readers can share articles to(Fig. 13).

Figure 13: Site settings tab within the control panel.

The logo and favicon images are set by selecting a file from the site’s file storage,
through modals that resemble traditional file pickers(See annex figure 29). The site’s
sidebar may also be customized using a rich text editor; this re-uses functionality
from the article editor, which will be covered in Section 5.4.

35

The control panel also allows customizing the site’s navigation bar, which is also
modelled as a tree(See annex figure 26). The root nodes of this tree correspond to the
top-most navigation options, which may be links to categories, articles, external
sites or groups with child links that are displayed as dropdowns. A preview of the
resulting navigation bar is displayed for convenience.

The site also supports Google Analytics for tracking traffic across the pages,
though this must be configured via environment variables instead, as it’s necessary
for the analytics ID to be present at build time.

The control panel is only accessible to site staff. If the user accesses any page of
the panel while not logged in or with expired credentials, they are redirected back
to the login page(See annex figure 25).

5.3.4 API integration

The frontend interacts with the backend’s API through classes in the services

folder, which are wrappers around the Axios41 HTTP library.
A separate service class exists for each major endpoint in the API (ArticleService

for /articles/, UserService for /users/, etc.) with methods that correspond to
the API endpoints to encapsulate requests and receive responses asynchronously,
using parameter/return types that mirror the API schemas.

The service classes inherit from a base Service class, which provides protected
methods that wrap Axios’s HTTP methods. To reduce code repetition, these wrap-
pers automatically pass common request headers such as the authentication token,
if its cookies are present.

Since these classes are stateless libraries, only a single instance of each is created,
when they are used for the first time by a component. Components access them
via a Vue composable(See annex 10.1.5) to remove the need to explicitly import them.

The components use the tanstack-query library to automatically perform calls to
the services when they need data from the API. The responses are cached to be re-
used across different components to reduce API calls during a session(See annex 10.1.7).
Shared queries are extracted to composables, which in some specific cases also
transform the API responses into more convenient data structures based on the
needs of the components.

These queries also make it convenient to track whether API requests are still
pending, which components use to show feedback to the user while fetching/posting
data (via spinners or other widgets in place of the content being loaded). Requests
that fail also show user-friendly versions of the HTTP exceptions and error mes-
sages, using toast notifications from the Nuxt UI library.

5.3.5 Component design

As was mentioned in the technology overview, Vue is a component-oriented UI
framework, where pages are created by aggregating components that manage sub-
trees of the page’s DOM42 elements.

41Axios: promise-based HTTP library for JavaScript.
42Document Object Model: in-memory representation of a website’s HTML, intended to be

interacted with by JavaScript[8]

36

https://axios-http.com/docs/intro

The project’s implementation of the Vue components follows certain patterns to
improve their ease of use, reusability, and maintainability.

Business logic is generally present in top-level components rather than scattered
through their children, so as to centralize it and make interaction flows easier to
follow. Components make use of custom events to simplify this parent-child com-
munication, converting input events to contextual ones that are propagated to the
parents, which act as the viewmodels.

The injection pattern is used to provide major viewmodel variables from top-
most components to all their children in a convenient manner, rather than needing
to explicitly pass them along the hierarchy(See annex 10.1.14). This is used mainly by
recursive components such as file trees to avoid the “prop-drilling” anti-pattern,
where all components along a hierarchy need to explicitly define and pass the prop
variables, creating code repetition[14].

Pages with similar layouts, such as the various pages of the published site,
use a single component that renders the shared elements, and uses Vue slots[16]
to allow inserting the elements that do differ between those pages. This avoids
code repetition from needing to insert common elements such as the site logo or
navigation bar.

Modals are used very frequently throughout the control panel to display pop-up
forms for editing and creating resources such as categories or user accounts. For
this reason, their common layout (header, body, and footer with close & confirm
buttons) and behaviour is extracted to a component that provides slots to customize
the content within, and handles common behaviour such as confirming/closing a
modal with keyboard shortcuts.

To make these modals reusable across different pages, their logic is also self-
contained; for example, the modal to edit an article’s metadata manages not just the
form elements, but also the API calls to update the article. The parent component
simply calls an exposed method to open them when needed, and is notified of when
its flow completes (ex. when the article is edited through the form) via an event.
This allows these modals to be re-used in different contexts; for example, the modal
to upload a file to the CMS is present both in the dedicated files tab in the control
panel, and in the article editor when choosing to insert an image by upload.

These considerations have made the frontend’s components significantly more
maintainable and flexible, allowing them to be reused efficiently throughout the user
interfaces during the project’s development. Many of these patterns also applied to
the article editor’s implementation, which is detailed in the next section.

5.4 Article editor

The article editor is a cornerstone page of the application, where the site staff write
content for the site in a WYSIWYG editor. The editor may be accessed by clicking
on an article in the content panel of the control panel, described previously in
Section 5.3.3.

The editor is complex enough to warrant separate sections for its end-user fea-
tures and their underlying implementation; this first section will introduce the fea-
tures of the editor, with the implementation being detailed in Section 5.4.3.

37

The main view of the editor(Fig. 14) consists of a standard menu bar for global
settings, followed by a toolbar and the area where the article content is written.

Figure 14: Article editor page in use, showing various rich content elements that it
supports.

The editor supports the following rich content:

• Formatting text as bold, italics, underline, or headings.

• Links and images, supporting alt text.

• Embedding media from other sites, such as YouTube videos.

• Emojis, inserted from a filterable & searchable widget.

• Code snippets, with configurable syntax highlighting.

• Footnotes to include additional information, displayed in tooltips.

• Coloured notes/admonitions, useful to highlight warnings or important infor-
mation, for example in tutorial-style blog content.

• Annotations that are only visible to other site staff, which allow leaving in-
ternal notes for collaboration or “To-dos”.

38

Undo/redo is supported, as well as copying & pasting content, which works not
just for text but also the rich content blocks(See annex 10.2.5). It is also possible to
select and drag-and-drop content to reorder it quickly.

To achieve flexibility of use, the editor offers multiple ways of inserting content
or executing other editing actions. They may be run with keyboard shortcuts, from
a context menu (with options based on the element at the cursor/selection), or
through buttons on a toolbar that sticks to the top of the viewport. The prop-
erties of some elements, like the URL of an image, may be edited through a con-
text menu or by double-clicking them, which opens contextual modals to edit the
elements(See annex figure 33).

The editor supports multiple ways of inserting images, through different options
accessed from an “Insert image” dropdown in the toolbar:

1. Uploading them to the site’s CMS, which is equivalent to doing so from the
“Files” control panel in Section 5.3.3.1, using the same form but without
needing to exit the editor.

2. Hot linking an image (ie. setting the image URL manually).

3. Selecting an existing image from the site’s CMS, from a file-picker modal with
a tree similar to the one in the files control panel(See annex figure 32).

Pasting an image URL will automatically embed it by doing string pattern matching
on the clipboard content; this is also supported for media embeds, such as pasting
YouTube links.

Long articles may be navigated using a “table of contents” sidebar that displays
the headings in the document as a tree; clicking a heading will jump to that section.
A status bar at the bottom of the viewport displays statistics, such as word count,
estimated reading time and the last time the article was saved to the CMS. Saving
can be done through a button in the top-right, which also supports saving changes
as a “draft”, which will not affect the published article, allowing the user to work
on edits to an already-published article across multiple sessions.

5.4.1 Customization and shortcuts

A settings menu allows customizing the functionality of the editor(See annex figure 34).
The keyboard shortcuts for tools can be rebound, and options the user doesn’t use
can be hidden from the toolbar to reduce visual clutter, as some functionality may
not be relevant to the user based on their blog’s topics.

To accommodate users that are used to writing documents in plain Markdown
or other markup languages, the editor supports “shortcuts” to insert some rich
context by inputting its corresponding Markdown syntax. For example, typing **
(2 asterisks) will toggle italics, typing “>” at the start of a paragraph will insert a
quote, and ctrl + enter will toggle a bullet list(See annex 10.2.2).

5.4.2 Metadata editor

An article’s metadata, such as title, publish time, authors, whether it admits com-
ments, etc. can be modified from a form accessed from the “File” menu(Fig. 15).

39

Figure 15: Form modal for editing an article’s metadata.

Articles may be hidden to temporarily remove them from the site without delet-
ing them, and they may also be scheduled to be posted at a specific time in the fu-
ture. They may also be given “summary” text, which is displayed when previewing
the article in paginated pages on the site. If not set manually, it is auto-generated
from the first paragraphs found in the text.

An article can be credited to multiple authors through a multi-select combo-box.
Since the site might have many authors, this field supports searching by name to
narrow down the selection.

A similar multi-select combo box is used for adding tags. Tags that are already
used by other articles appear as suggestions while typing, to avoid users from acci-
dentally spelling a tag differently across articles (ex. using a “cooking recipe” tag
in one article, but “cooking recipes” in another).

The following subsection will cover the technical details of the editor’s imple-
mentation.

5.4.3 Implementation

The implementation of the article editor consists of a Vue wrapper for the
ProseMirror framework, applying an MVVM architecture and custom models as
facades into what is otherwise a pure JavaScript library.

In rich text editors, the document is not viewed as a stream of characters, but
is instead typically structured into semantic blocks, such as paragraphs or images.
ProseMirror models documents as a tree-like structure of ordered nodes defined by
a custom schema. Nodes represent “block-level” content (document elements that

40

are typically stacked vertically) and may also contain text, marks to format the
text, and metadata attributes.

The project’s schema defines nodes for the various rich elements it supports
(images, code blocks, footnotes, etc.) along with their attributes, nesting rules and
how they’re rendered to HTML. Node attributes are used to store properties such
as the URL of an image node or the alignment of a paragraph node, whereas text
formatting such as bold, italics, and links are implemented using marks.
Simple nodes like text paragraphs are rendered as plain HTML for best performance,
while Vue components are used for complex or interactive nodes like code blocks,
using the prosemirror-adapter43 library.

The ProseMirror structures are immutable; editing the document is done by ap-
plying transactions that specify the operations, such as inserting nodes or modifying
their text and attributes.

The project’s rich text editor aims to create extra layers of abstraction around
ProseMirror to make implementing the required features convenient, with flexibility
to add more in the future.

The implementation of the editor follows an MVVM44 pattern(Fig. 16) to decou-
ple the model/state from the view, a necessity for the codebase to be flexible and
open for extensions. The elements of the implementation are as follows:

• Vue components act as the view, displaying the document elements, toolbars,
and offering various widgets for user interaction, with only presentational
logic.

• Vue composables act as the viewmodels, offering reactive bindings of model
data to the UI as well as callbacks to perform editing actions on the model
document.

• Plain TypeScript model classes handle state mutations on the ProseMirror
document, as well as storing user preferences.

Figure 16: The editor’s MVVM pattern diagram.

5.4.3.1 Model classes

The Editor class is the main model class which wraps the ProseMirror document
state class, responsible for applying transactions to edit the document and storing
user preferences.

43prosemirror-adapter: library for integrating ProseMirror’s node renderers with modern web
frameworks.

44Model-view-viewmodel: architecture for graphical applications relies on the observer pattern
to decouple UI from business logic.

41

https://github.com/prosekit/prosemirror-adapter

Editing operations, such as changing the formatting of text or inserting nodes,
are implemented using an Action interface that acts as a wrapper around Pros-
eMirror’s transaction system. Each operation is a derived class that overloads an
execute method that creates a transaction which performs its effects on the docu-
ment state.

These actions are designed to be flexible and parameterizable; for example, for-
matting text can be done with the ToggleMark action, whose constructor takes a
mark type from the document schema and the resulting Action instance applies/re-
moves that mark to the selected text when it is executed.
This allows the action to be re-used for all the markup the editor supports (bold,
italics, code, etc.). Most action classes are thus general-purpose and can be reused
or extended to handle additional node / mark types. Their implementation is built
on top of a custom library of utility functions to manage the ProseMirror document
model(See annex 10.2.3).

The class diagram for the editor model classes(Fig. 17) is as follows:

Figure 17: Class diagram of the editor’s model. Getters were omitted for readability.

The ToolManager class manages the editor interactions that should be available
to the user, such as the aforementioned editing actions, structuring and ordering
them as well as storing the user’s preferences of their key bindings. Its purpose is
to group interactions of similar nature (via the ToolPalette class), which allows
the UI to then present them in an organized manner (in a toolbar, context menu,

42

menu bar, etc.).
These interactions are defined through the Tool abstract class, which contains

methods that dictate if the tool is contextually valid for the document state (mainly
checking what content is currently selected or underneath the cursor), and provides
metadata such as name and icon intended to be displayed by the UI.

Multiple subclasses of Tool exist for different interaction needs:

• ActionTool: executes an editing action at the current cursor position in the
document. Intended for simple editing operations that do not need any extra
user interaction flows, such as formatting or copy/paste.

• CallbackTool: sends a simple event back to the viewmodel. Intended to
request application-level operations that do not affect the document content,
such as saving the document or starting some secondary interaction flow (ex.
opening the article editor’s modal to upload an image).

• MultiTool: aggregates “variants” of a tool. Intended to group different ways
of achieving a same end result, to present those tools in some compacted
manner in UIs such as a dropdown. An example of this is the “Insert image”
group in the article editor, which contains the various methods of inserting
images (by upload, from URL, or from the site).

For flexibility, these items are not limited to the ones needed for the article
editor; additional derived Action and Tool classes can be registered to the Editor
class to extend the editor’s functionality and solve open-closed concerns when re-
using the editor in a different context, which the project does for the comment
editor and site sidebar customization.

Tools support configurable keyboard shortcuts, as well as choosing which items
should be hidden from the UI, which are persisted using localstorage45 with simple
map and set structures respectively by storing the tool identifiers.

5.4.3.2 Viewmodels

The viewmodel is implemented with Vue composables, which are functions that
encapsulate stateful logic (instancing reactive variables, configuring event listeners,
etc.) for components, intended to allow complex logic to be built by calling multiple
simpler composables[13].

The project’s viewmodel uses composables to extract presentational logic and
data bindings that would normally be in a Vue component into functions with re-
active dependency injections of the model. These are written using the functional-
programming paradigm to allow more complex viewmodels to be created by wrap-
ping simpler ones.

The viewmodel is the authority over issuing editing actions to the model and is
split into multiple composables, each oriented towards developing different parts of
the UI based on the data and callbacks they offer. An overview of them is shown
in the following table(Fig. 18).

45A standard persistence mechanism for web applications[10].

43

Layer Composable Purpose

Application-level
viewmodels

useArticleEditor() Factory composable for instanciating an Editor model configured
with the schema & tools for writing articles for the site

useArticleEditorQueries() Creates reactive API queries for fetching and mutating articles in
the CMS to & from the editor's content

useCommentEditor() Factory composable for instanciating an Editor model configured
with a minimal schema & tools for writing comments on articles

General-purpose
Viewmodels

useEditorContextMenu() Creates bindings for tools that should be shown based on the
cursor position and selection in the document

useEditorToolbarItems() Creates bindings for tools that should be shown in a "main
toolbar", filtered by user preferences

useEditorSettings() Exposes toolbar user preferences, configuration options and
callbacks to set them

useEditorMultiTool() Creates bindings for the sub-tools of a "Multi-tool"-type tool,
filtered by user preferences

Basic model
bindings

useEditorTool() Creates reactive bindings for the state of a specific tool (whether
it's currently applicable, in use, its keybind, etc.)

useEditorTools() Exposes callbacks to run the effects of a tool

useEditorToolCallback() Registers a callback to run when tools are used

Dependency
injections

useEditorProvides() Provides the Editor model class dependency to all child
components

useEditorInjects() Accesses the Editor model dependency injection from
useEditorProvides()

useEditorSchema() Accesses the document schema of the Editor model dependency
injection

Figure 18: Table of viewmodel composables grouped by layer/responsibility.
Composables of higher categories depend on those of lower ones.

For example, the useEditorContextMenu() composable creates reactive bind-
ings for options that should be shown in a context menu, filtering the toolbar items
registered in the model based on which ones are valid for the document content un-
derneath the cursor, and providing methods to execute their actions on the model.

This decouples the logic of a context menu from the UI that would display it,
allowing different views to be implemented for it, or extending it to create more
complex viewmodels without code repetition. This gives the editor high flexibility,
and allows it to be re-used in other contexts (such as the comment editor) or projects
while having full control over its features and look of the UI.

5.4.3.3 View

The project itself implements multiple view components for the different text ed-
itors that appear throughout the site: the article editor, the comment editor on
articles pages, and the editor for the site’s sidebar, each using a subset of the view-
model’s composables based on the features needed.

The article editor, being the most complex feature-wise, is composed of a mul-
titude of components to display article metadata and the interactions with the
document. The following figure is an overview of its component hierarchy(Fig. 19).

44

Figure 19: Diagram of hierarchy of the major Vue components used by the article
editor’s view.

The editor features various widgets and modals for contextual interaction flows,
such as the context menu or the settings modal, invoked through event listeners
when corresponding UI elements or tools are used. These interaction flows even-
tually dispatch requests to the viewmodel to run actions to edit the document
model(See annex 10.2.6).

Additional MVVM implementation notes and design iterations are described in
Annex 10.2.7.

5.4.3.4 CMS integration

Since reusability was one of the concerns for the editor’s implementation, its inner
workings are uncoupled from the blog CMS. Integration with the CMS is handled
by additional viewmodels and components in the view layer.

Articles on the backend are stored into text files with Markdown-like syntax
for portability reasons, to allow the site’s content to be easily migrated, viewed or
edited using other applications if necessary. As such, the ProseMirror document,
which is an in-memory node tree format, must be serializable to text. Similarly, for
an article to be loaded in the editor, it must be parsed from Markdown into the
project’s ProseMirror tree schema first.

The project uses the MarkdownIt46 library for serializing & parsing the nodes
to & from Markdown, using either the CommonMark47 specification or popular non-
standard syntax extensions to ease interoperability with other Markdown editors.
More exotic nodes such as footnotes needed custom serialization & parsing, which
was implemented as MarkdownIt plugins(See annex 10.2.4).

46MarkdownIt: library for parsing Markdown to & from HTML.
47CommonMark: a strongly-defined Markdown syntax specification.

45

https://github.com/markdown-it/markdown-it
https://commonmark.org/

Given that the article editor is a WYSIWYG editor, it is also expected that
the content of the articles within it display the same way as they’d do on the
published site. To achieve this, article pages are rendered using a reduced, read-
only ProseMirror instance that parses the document and renders it using the same
node renderers as the editor itself. This ensures the look of elements is consistent
and avoids needing to implement a separate Markdown-to-HTML renderer. Node
renderers check if the editor is in this read-only mode to hide interactive widgets,
such as the language selector for code blocks.

As a whole, the project’s text editor turned out quite feature-rich and well-
integrated with the CMS, while also leaving room for easy additions thanks to its
well-crafted architecture.

5.5 Containerization

The project uses Docker48 to containerize the frontend and backend services to
make their deployment easily replicable, using separate dockerfiles to simplify their
use in deployment and avoiding environment conflicts between them.

The frontend container uses Nitro49 as the web server, which is Nuxt’s custom
Node.js server, needed for the server-side rendering functionality. The backend con-
tainer runs the API using uvicorn50, an ASGI server with high vertical scalability.

To optimize build times, the --link Dockerfile option is used when copying
the source code into the container; this option allows caching operations done with
the files copied, namely the entire build process of the frontend. This allows the
lengthy build step to be skipped if the files haven’t changed, which greatly speeds
up container start-up when the container needs to be restarted (ex. after server
maintenance).

Docker Compose is used to coordinate launching all services for local devel-
opment and testing. Aside from the frontend and backend services, the compose
file launches a PostgreSQL container, which the backend depends on. The compose
file also includes a PGAdmin51 service, a web-based PostgreSQL administration
interface useful for inspecting the database.

It’s worth noting that the frontend server also communicates with the backend,
as the pages that use server-side rendering require the frontend server to make API
calls itself to pre-render HTML to send to the client. The server is configured to
use the internal Docker network to speed up the API calls, as opposed to the public
API URL the browser clients would use.

A “tests” service also exists, which executes pytest in the backend container.
This service is disabled by default, being used only by continuous integration
GitHub actions to run tests after every push.

The backend and frontend container images were uploaded to Docker Hub, which
was used for deployment as per the section that now follows. Detailed instructions
on running the project are also provided in the readme file.

48Docker: software containerization engine.
49Nitro: web server toolkit from the creators of Nuxt.
50uvicorn: Python-based ASGI web server
51PGAdmin: PostgreSQL database management tool.

46

https://www.docker.com/
https://nitro.build/
https://www.uvicorn.org/
https://www.pgadmin.org/

6 Deployment

A deployment of the project was tested on the Render52 cloud application platform.
The deployment consisted of provisioning a PostgreSQL database and two of

their “web service” instances, on which the backend and frontend were deployed
separately using their container images that were uploaded to Docker Hub, as per
Section 5.5 ≪Containerization≫.

The deployment test used the following architecture(Fig. 20), barring the Elastic-
search instance to save costs(See annex 10.8.3).

Figure 20: Deployment architecture diagram.

Both the backend and frontend were deployed as “serverless” services, a cloud
service type where instances of the service are launched as they are needed rather
than provisioning a dedicated server in advance[4]. This kind of deployment is
effective and highly cost-efficient for services that don’t receive constant traffic,
such as small-scale blogs that the project targets.

The entry point for the service is a load balancer53 that spins up instances of the
frontend & backend as necessary and distributes traffic between them, allowing for
horizontal scaling in case of a spike in traffic. Both of the container images perform
very few tasks on start-up, such that there is little delay in handling responses even
if the service is accessed when there are no instances running.

The only hurdle specific to the project was configuring the environment variables
to have the frontend & backend use the correct URL for the API and database con-
nection respectively within the private virtual cloud (PVC) subnet. The database
was configured to only accept connections within the platform’s private network for
security, preventing external access.

52Render: cloud deployment PaaS (platform-as-a-service) by Render, Inc.
53Auxiliary server that acts as an entry point and distributes traffic across an application’s

servers to avoid computational or network overload.

47

https://www.render.com

SSH was used to connect to the backend to run additional scripts to populate the
database with mock/test data, corresponding to the example cooking blog shown
in prior figures of this document(See annex 10.8.1).

A similar deployment would be possible on Amazon Web Services or Google
Cloud, using their equivalent serverless services (AWS Fargate54 and Google Cloud
Run55 respectively), though aspects like the load balancer, subnetting and HTTPS
would need to be configured manually.

It’s worth noting that the frontend is missing a cookie consent form and a clean
way of including a privacy policy. These would need to be added when hosting a
blog with the project that serves users in countries that require these forms by law.

7 Evaluation

The project’s reliability was evaluated through usability testing and web auditing
tools to determine if the project’s features and UX were adequate and properly
executed, as well as to detect issues and possible improvements.

7.1 Usability tests

Usability testing is an evaluation technique for products focused on user interac-
tions, which involves having user with no prior exposure to the system test it in
a controlled environment [19]. Usability testing applied to software allows gaining
insights on the intuitiveness of its design, and was chosen for the project to validate
its UX and visual design decisions.

Usability testing requires a structured plan, detailing the information that will
be gathered, its purpose, and a systematic plan for the execution of the tests, which
will be covered in the following subsection.

7.1.1 Methodology

Due to the project’s proof-of-concept state, it was decided to design the usabil-
ity tests to focus more on qualitative tests, which is best suited for discovering
UX problems[19], as benchmarking with quantitative metrics is mainly useful for
applications in production.

Following guides on user testing with low resources[23], the following consider-
ations were taken to ensure the efficacy and correctness of the tests:

• Anonymized data was collected using a spreadsheet to organize it per-user
and per-task.

• A within-subjects approach was chosen due to a low participant account; all
participants took on the same test tasks to maximize feedback gathered.

• All participants signed an informed consent form and no personal data was
kept.

54AWS Fargate: serverless cloud computing service, part of Amazon Web Services.
55Google Cloud Run: serverless cloud computing service, part of Google Cloud.

48

https://aws.amazon.com/fargate/
https://cloud.google.com/run

• The tests were done in-person using a device specifically prepared for the
test, running the project locally with the database pre-populated with data
designed for the test’s tasks to avoid unexpected issues.

• The tests were overseen by a moderator that helped record data and obser-
vations during the tests.

• The test was designed to last 40 minutes at most to avoid participant fatigue.

• A “pilot test” was first performed to detect and amend any issues with the
test plan itself.

The participants were informed of the nature of the test prior to attending. The
test itself started with an introduction to the project and the motive of the test
(finding issues with the project), assuring the subject that they themselves were
not being judged. The participants then signed the informed consent form and
proceeded to perform the tasks, which were explained to them one at a time, and
the users were asked to confirm they understood them.

The test consisted of 5 tasks on the site designed to evaluate the major features
and user flows. These tasks had users first assume the role of a reader/site visitor,
followed by tasks where they switched to a staff role to test the content management
tools of the control panel. These five tasks were:

1. Finding an article of a specific topic on the published site, which tested the
various navigation options (search bar, pagination, category pages).

2. Posting a comment on an article, which tested the log-in flow and the comment
editor functionality.

3. Signing in to the control panel to create a new article for the site; this more
free-form task served to test the first impressions and intuitiveness of the
article editor.

4. Editing a specially-prepared draft article and finishing it; the users were told
they had to finish an article that was started by another staff member, who
left annotations on work that was left to do on the article. This tested the
collaborative annotations, as well as specific features of the article editor like
editing bullet lists and adding tags.

5. Changing the site’s configuration, such as logo and the navigation bar, which
tested various features from the control panel.

The tests had a qualitative focus, with its value coming from mainly from noting
down user errors and points of frustration of the users, as well as explicit feedback
gathered from each task. The users were asked whether they found it easy to
perform the tasks, as well as for suggestions on improvements they would’ve liked
to see for the systems.

A few metrics were still tracked such as time taken, task success (completed, par-
tially completed or uncompleted), amount of user errors (mis-clicks, misunderstood

49

UI elements, etc.) and facial expressions (positive and negative). These helped
with identifying parts of the site with subpar usability, even in absence of direct
feedback from participants. The script of the tests is available in Annex 10.9.1.

7.1.2 Execution and insights gathered

The tests were performed with 4 participants with a certain technological back-
ground and experience with similar blog systems. The results of the tests showed
that the features of the project were generally coherent and intuitive, but with par-
ticular aspects dragging the experience down. An example of the data collected for
the 4th task is shown below(Fig. 21).

Figure 21: Observations and metrics from the 4th task of the usability testing.

In particular, the fourth and fifth tasks saw a lower completion rate and a higher
error rate. In the fourth task, users struggled with an objective that required them
to add metadata like tags to the drafted article, failing to find the option in the
menu bar that allowed them to do so. The feedback indicated the issue stemmed
from the view in the article editor not being completely coherent with how the
article is shown on the site, and that the users expected better consistency given
that it’s a WYSIWYG editor.
The fifth task was also found to have been a bit poorly written, in the sense that
some sub-tasks seemed unrelated to each other, which caused some confusion among
participants.

The task that required users to change site settings showed the most usability
issues and direct complaints. Users reported the control panel’s interface as being
too visually dense and thought that the preview functionality for some changes,
such as editing the navigation bar, was not up to expectations(See annex figure 59).
The results indicate that the control panel’s interface is too technical, with multiple
complaints of being overwhelming in terms of elements shown at once.

On the positive side, participants overall found the article editor to be intuitive
and satisfactory; they were quick to find the tools and functionalities required, and
also made correct use of additional features not strictly required by the tests.
In particular, two users praised the Markdown-like shortcuts and drag-and-drop
functionality, which they commented they thought convenient to bridge an efficiency
gap between markup editors and WYSIWYG ones in the context of blogging.

50

The tests related to the published site (tasks 1 & 2) showed no major issues; the
users found the site navigation and commenting intuitive.

The results of the test were taken into account for future work decisions in
Section 9, and some minor improvements were implemented shortly after the tests
in response. The sheets used to collect the results and note down the observations
and feedback are available in Annex 10.9.2.

7.2 Auditing and automated testing

Aside from user testing, the coverage of the backend’s tests was measured, and some
standard audits were performed on the frontend.

The backend tests achieve a coverage of 87% of lines of executable source
code(Fig. 3). The tests focused covering the functional requirements, but there are
two systems that they did not cover: Google SSO and searching. Tests for Google
SSO would’ve required a way to mock OAuth flows, which was deemed too complex
to set up for how little functionality it’s used for. Tests for the search endpoints
were omitted due to requiring an Elasticsearch instance, which would’ve slowed
down test runs and their development significantly.

Source file Lines executed Lines missed Coverage
crud\article.py 175 47 73%
crud\category.py 127 15 88%
crud\comment.py 42 4 90%
crud\file.py 73 27 63%
crud\site.py 102 15 85%
crud\user.py 170 43 75%
crud\utils.py 31 4 87%
routes\article.py 85 21 75%
routes\category.py 35 4 89%
routes\comment.py 41 5 88%
routes\file.py 72 33 54%
routes\search.py 25 9 64%
routes\site.py 55 18 67%
routes\user.py 74 5 93%
schemas\article.py 91 1 99%
schemas\user.py 64 2 97%
TOTAL 1262 253 87%

Table 3: Coverage report of the backend tests.

The frontend achieves an average score of ∼80 across Google’s Lighthouse56 web
auditing tool(See annex 10.1.3). The site scores well in SEO evaluations, but fails some
accessibility checks, leading to some elements like the navigation bar being difficult
to use with screen readers or smaller touch screens.

56Lighthouse: web quality auditing tool that evaluates a site’s performance, accessibility and
SEO factors.

51

https://developer.chrome.com/docs/lighthouse/overview

Some elements also suffer from low text & background colour contrast. The severity
of the contrast issues varies based on the colour theme the site is configured to use;
given that the themes come from a well-established external library, it’s possible its
CSS classes were misused in these circumstances.

Performance-wise, the frontend scores well in regard to cumulative layout shift57

thanks to the server-side rendering, whereas SPA tend to be prone to high CLS due
to lazy-loading of content.
The LCP58 metric could not be evaluated correctly on the published site as the
mock data assets used on the test site were largely unoptimized in regard to file
size, leading to the LCP metric being inflated. Pages with no images, such as
the control panel, score decently for performance (87/100) with recursive elements
like the tree items having the largest impact on rendering time, showing room for
improvement.

7.3 Comparison with other blog systems

Though the project by no means can compete with the leading solutions like Word-
Press, it still has some advantages over other blogging systems.

The project supports having multiple individuals manage a single blog, which
services like Tumblr or Medium don’t support directly, being limited to blogs ran
by individuals.
The project also has some limited asynchronous collaboration features like anno-
tations in the article editor, which other CMS lack or only support through paid
plugins such as Multicollab59 for WordPress.

The Markdown-like keyboard shortcuts are another notable feature of the project
that makes writing content more efficient for users coming from markup languages,
and which the alternatives lack. Codeblocks and footnotes are other desirable fea-
tures for modern-day blogging, which some platforms like Tumblr do not support,
leading to a subpar experience for programming blogs.

A downside of the project is that the visual customization of the site is limited to
just colour theme changes; changing the layout requires modifying the source code,
as there is no drag-and-drop editor like in WordPress or Ghost60. However, the
usage of Vue and a permissive license of the source code makes deeper customization
viable for developers.

57Cumulative Layout Shift: measure of how much elements move in the site layout while it
is loading. A high CLS leads to poor user experience and possible misclicks on the moving
elements[7].

58Largest Contentful Paint, a metric for the highest time spent rendering the content of the site.
59Multicollab: Multicollab: collaborative plugin for WordPress.
60Ghost: Open-source blog CMS with a React frontend.

52

https://www.multicollab.com/
https://ghost.org/

8 Conclusions

The main objective of the project was to design and implement a content manage-
ment system from start to finish, going through planning, to backend & frontend
implementation, deployment and evaluation, while also covering specialized needs
of blog content creation with a custom rich text editor.

Looking back at the 3 major objectives set in Section 1.1, the project was
able to fulfill all three to a satisfactory degree. The project achieves the majority
of the functional requirements planned, offering a fairly feature-complete blogging
system with a convenient admin interface and a robust custom article editor.

In regard to objective #1, the backend and API cover the important features
from the requirements gathering and are validated by tests; articles can be managed
and searched, file management is present, and the API and account system factor
in security concerns.
However, some smaller features, such as scheduling event announcements, RSS feeds
and per-account editing permissions, were dropped to focus on polishing the rest of
the project.

The frontend for objective #2 is highly functional, integrating all of the API’s
features, and making good use of the chosen framework and libraries to serve the
blog’s content efficiently with server-side rendering and good SEO practices, al-
though evaluation showed room for improvements in regard to accessibility and
visual design.

The rich text editor from objective #3 for writing articles was received posi-
tively in user testing, with a decent set of specialized features for efficiently writing
blog-style content, as well as good integration with the rest of the CMS and some
advantages over the built-in editors of other blogging systems.

On the technical side, the implementation of the editor turned out very
satisfactory, with a robust MVVM pattern that would allow further features to be
added easily.
The editor also proved to be very flexible, as it was able to be used not just for
editing articles, but also for other text editing use cases within the project, such as
the comments box and the site’s sidebar.

Its correct implementation however was considerably more time-consuming than
expected due to a lack of prior experience with creating rich text editing software,
requiring numerous attempts and refactorings to achieve a clean and extendable
codebase for it. Some minor features of the CMS had to be cut as a result.

In regard to the work methodology, the project would’ve benefitted from
using more agile methodologies beyond the kanban board, even if they seem more
oriented for teams. The planning was adhered to very rigidly, and it led to some
time being spent on features that were ultimately deemed lower value than what
was thought during the initial planning. Adopting some agile rituals such as sprints
and planning the project in bi-weekly intervals would’ve led to better priorities,
especially in the second half of the project’s development.

53

From an academic point of view, the project was a great opportunity to
put into practice many of the concepts and principles learnt throughout the degree.
The full-stack nature of the project required highly transversal skills, from database
structuring, to API & user interface design, deployment and user-centric evaluation.
The rich text editor was a particularly interesting part, as it required applying those
skills to a highly-specific software problem.
The opportunity to freely choose the technologies used was also a good exercise
in critical thinking for making better framework and architectural decisions in the
future.

Not all of the features identified during requirements gathering could be imple-
mented during the project’s time frame, and a few had to be cut due to priority
changes, as mentioned in Section 2.
The following section details the possible further work on the project, including
changes to the architecture and external libraries to solve maintainability concerns
identified during development.

9 Future work

As mentioned previously, various features from the requirements gathering were ei-
ther not included in the project’s planning or dropped later due to time constraints;
these excluded features were noted in the list of user stories in Figure 2.

Out of these, the most important and interesting one to undertake would be
synchronous collaborative article editing, which would benefit the project in use
cases where the site content is managed by multiple users.
ProseMirror, the framework used for the article editor, was designed with some
concurrency in mind[17], such that real-time collaboration would be possible using
a server that acts as a central authority for rebasing concurrent document changes.
The remaining unimplemented editor “blocks” (tables and math formulas) would
only involve creating additional node types, renderers and serializers for the editor’s
schema, which the project handles well for existing features.

The features from the unimplemented “event creation” epic could all be imple-
mented as extensions of the article system; their only major difference in terms of
functionality is needing to keep track of “subscribed” users and send notifications
to them by e-mail. However, this would imply storing personal data, with all the
privacy regulation concerns that this involves.

On the technical side, certain technical debt61 was identified in both stacks,
which would need to be addressed if development were to continue to keep the
project maintainable.

On the frontend side, several dependencies turned out to be deficient. Nuxt
UI, the library the frontend used for form elements, turned out to be a poor choice
due to the elements being very inflexible in terms of usage and styling, requiring
awkward workarounds to tailor its components to the project. In hindsight, it
would’ve been wiser to spend some time trying multiple component libraries before

61Implied cost (either temporal or monetary) of future work on a software caused by earlier
design choices not being adequately robust for a project.

54

committing to a single one. Both Nuxt UI and daisyUI released new major versions
during the project’s development that solved some of the major issues that plagued
the project’s development, however the migration work was too large to undertake
at the time.

In regards to non-functional requirements, all the strings in the frontend would
have to be extracted to support localization, which would’ve been more efficient
to support right from the start of the project, especially in regard to strings with
formatting.

Additionally, after finalizing the layout of the frontend’s interfaces and making
them responsive, it would be ideal to implement end-to-end testing62 to be able to
detect regressions in any future development.

On the other hand, the backend would’ve benefitted from using a documental
database (such as MongoDB63) for semi-structured entities like articles and the nav-
igation bar configuration, which were cumbersome to implement in SQL and poorly
extendable. A mixed architecture that uses SQL for integrity-critical entities like
user accounts and a documental database for the CMS content would’ve simplified
development and offered a more extendable design.

Additionally, given how seldom resources like articles are changed, it would’ve
been beneficial to implement caching at the backend level as well, using an in-
memory database like Redis64 to cache API responses and reduce workload on the
backend server.

As was mentioned in the database implementation section, for performance and
scalability it would be ideal to rework file storage to use an external CDN such as
Amazon S3.

Finally, by the end of the project’s development, some security issues with the
Nuxt and FastAPI frameworks were published on CVE65. Although none appeared
exploitable through the project’s usage of these frameworks, it would be best prac-
tice to update the dependencies, while ensuring any breaking changes in newer
versions are accounted for.

62Automated testing that verifies functionality from a user’s perspective, involving both the
user interface and backend systems.

63MongoDB: NoSQL documental database.
64Redis: in-memory key-value database.
65CVE: Common Vulnerabilities & Exposures, a database of publicly-disclosed software vulner-

ability issues.

55

https://www.mongodb.com/
https://redis.io/
https://www.cve.org/

References

[1] Scott Ambler. Quality of Service (QoS) Requirements: An Agile Introduction.
url: https://agilemodeling.com/artifacts/technicalRequirement.
htm (visited on 02/21/2025).

[2] BuiltWith. Blog Usage Distribution in the Top 1 Million Sites. url: https:
//trends.builtwith.com/cms/blog (visited on 05/25/2025).

[3] BuiltWith. PHP Usage Statistics. url: https://trends.builtwith.com/
framework/PHP?utm_source=the+new+stack (visited on 03/04/2025).

[4] Cloudflare. What is serverless? url: https : / / www . cloudflare . com /

learning/serverless/what-is-serverless/ (visited on 05/22/2025).

[5] Mike Cohn. User Stories Applied: For Agile Software Development. Addison-
Wesley, 2004. isbn: 0321205685.

[6] Provos N. Maziéres D. “A Future-Adaptable Password Scheme”. In: The
USENIX Association (1999).

[7] MDN Web Docs. Cumulative Layout Shift (CLS). url: https://developer.
mozilla.org/en-US/docs/Glossary/CLS (visited on 06/02/2025).

[8] MDNWeb Docs. Document Object Model (DOM). url: https://developer.
mozilla.org/en-US/docs/Web/API/Document_Object_Model (visited on
06/02/2025).

[9] MDN Web Docs. SPA (Single-page application). url: https://developer.
mozilla.org/en-US/docs/Glossary/SPA (visited on 06/01/2025).

[10] MDN Web Docs. Window: localStorage property. url: https://developer.
mozilla.org/en- US/docs/Web/API/Window/localStorage (visited on
05/24/2025).

[11] Roy Thomas Fielding. Architectural Styles and the Design of Network-based
Software Architectures. 2000. url: http://www.ics.uci.edu/~fielding/
pubs/dissertation/rest_arch_style.htm (visited on 03/02/2025).

[12] Matthew Giannelis. Top Global Blogging Statistics. url: https : / / www .

techbusinessnews.com.au/blog/how-many-blogs-are-there-in-the-

world-blogging-statistics-2023/ (visited on 03/04/2025).

[13] Vue.js User Guide. Composables. url: https://vuejs.org/guide/reusability/
composables (visited on 03/03/2025).

[14] Vue.js User Guide. Provide / Inject. url: https://vuejs.org/guide/
components/provide-inject (visited on 04/10/2025).

[15] Vue.js User Guide. Reactivity Fundamentals. url: https://vuejs.org/
guide/essentials/reactivity-fundamentals.html (visited on 05/28/2025).

[16] Vue.js User Guide. Slots. url: https://vuejs.org/guide/components/
slots.html (visited on 04/10/2025).

56

https://agilemodeling.com/artifacts/technicalRequirement.htm
https://agilemodeling.com/artifacts/technicalRequirement.htm
https://trends.builtwith.com/cms/blog
https://trends.builtwith.com/cms/blog
https://trends.builtwith.com/framework/PHP?utm_source=the+new+stack
https://trends.builtwith.com/framework/PHP?utm_source=the+new+stack
https://www.cloudflare.com/learning/serverless/what-is-serverless/
https://www.cloudflare.com/learning/serverless/what-is-serverless/
https://developer.mozilla.org/en-US/docs/Glossary/CLS
https://developer.mozilla.org/en-US/docs/Glossary/CLS
https://developer.mozilla.org/en-US/docs/Web/API/Document_Object_Model
https://developer.mozilla.org/en-US/docs/Web/API/Document_Object_Model
https://developer.mozilla.org/en-US/docs/Glossary/SPA
https://developer.mozilla.org/en-US/docs/Glossary/SPA
https://developer.mozilla.org/en-US/docs/Web/API/Window/localStorage
https://developer.mozilla.org/en-US/docs/Web/API/Window/localStorage
http://www.ics.uci.edu/~fielding/pubs/dissertation/rest_arch_style.htm
http://www.ics.uci.edu/~fielding/pubs/dissertation/rest_arch_style.htm
https://www.techbusinessnews.com.au/blog/how-many-blogs-are-there-in-the-world-blogging-statistics-2023/
https://www.techbusinessnews.com.au/blog/how-many-blogs-are-there-in-the-world-blogging-statistics-2023/
https://www.techbusinessnews.com.au/blog/how-many-blogs-are-there-in-the-world-blogging-statistics-2023/
https://vuejs.org/guide/reusability/composables
https://vuejs.org/guide/reusability/composables
https://vuejs.org/guide/components/provide-inject
https://vuejs.org/guide/components/provide-inject
https://vuejs.org/guide/essentials/reactivity-fundamentals.html
https://vuejs.org/guide/essentials/reactivity-fundamentals.html
https://vuejs.org/guide/components/slots.html
https://vuejs.org/guide/components/slots.html

[17] Marijn Haverbeke. Collaborative Editing in ProseMirror. July 28, 2015. url:
https://marijnhaverbeke.nl/blog/collaborative-editing.html (vis-
ited on 04/27/2025).

[18] Stack Exchange Inc. 2024 Stack Overflow Developer Survey. 2024. url: https:
//survey.stackoverflow.co/2024/technology (visited on 03/03/2025).

[19] Dennis G. Jerz. Usability Testing: What Is It? July 19, 2000. url: https://
jerz.setonhill.edu/writing/technical-writing/usability-testing/

(visited on 05/22/2025).

[20] Michael B. Jones, John Bradley, and Nat Sakimura. JSON Web Token (JWT).
RFC 7519. May 2015. doi: 10.17487/RFC7519. url: https://www.rfc-
editor.org/info/rfc7519.

[21] Nuxt. Rendering Modes - Nuxt Concepts. url: https://nuxt.com/docs/
guide/concepts/rendering (visited on 03/03/2025).

[22] Ariel Ortiz Ramirez. Three-Tier Architecture. July 1, 2000. url: https://
www.linuxjournal.com/article/3508 (visited on 03/12/2025).

[23] M. Ribera. Planificació d’un test d’usuaris. Cas d’estudi resolt. 1a. ed. Fun-
dació per a la Universitat Oberta de Catalunya (FUOC)., Sept. 2023.

[24] Chris Richardson.Microservice Architecture pattern. url: https://microservices.
io/patterns/microservices.html (visited on 06/03/2025).

[25] Ralf van Veen. Single-Page Applications (SPAs) in SEO. 2024. url: https:
//ralfvanveen.com/en/technical-seo/my-strategy-for-seo-for-

single-page-applications-spas/ (visited on 02/20/2025).

57

https://marijnhaverbeke.nl/blog/collaborative-editing.html
https://survey.stackoverflow.co/2024/technology
https://survey.stackoverflow.co/2024/technology
https://jerz.setonhill.edu/writing/technical-writing/usability-testing/
https://jerz.setonhill.edu/writing/technical-writing/usability-testing/
https://doi.org/10.17487/RFC7519
https://www.rfc-editor.org/info/rfc7519
https://www.rfc-editor.org/info/rfc7519
https://nuxt.com/docs/guide/concepts/rendering
https://nuxt.com/docs/guide/concepts/rendering
https://www.linuxjournal.com/article/3508
https://www.linuxjournal.com/article/3508
https://microservices.io/patterns/microservices.html
https://microservices.io/patterns/microservices.html
https://ralfvanveen.com/en/technical-seo/my-strategy-for-seo-for-single-page-applications-spas/
https://ralfvanveen.com/en/technical-seo/my-strategy-for-seo-for-single-page-applications-spas/
https://ralfvanveen.com/en/technical-seo/my-strategy-for-seo-for-single-page-applications-spas/

10 Annex

10.1 Frontend

10.1.1 Site screenshots

This annex contains screenshots of the pages and user interfaces of the frontend,
for both the published site (from Section 5.3.2) and the control panel (from Section
5.3.3).

Figure 22: Site settings within the control panel.

58

Figure 23: Article & categories management panel.

Figure 24: File management panel.

59

Figure 25: Login page for the control panel.

Figure 26: Configuration page in the control panel for the site’s navigation bar.

60

Figure 27: Modal for creating editor accounts in the control panel.

Figure 28: User management panel in the control panel.

61

Figure 29: Form for selecting logo/avatar images from the site’s CMS using a file-
picker-like layout.

62

Figure 30: Article editor page in the control panel.

63

Figure 31: Form modal for editing an article’s metadata in the article editor. The
figure stitches two screenshots to display the important options.

64

Figure 32: Form within the article editor for inserting an image from the CMS into
an article.

Figure 33: Form within the article editor for editing an image’s properties.

65

Figure 34: Settings menu for configuring article editor key binds.

66

Figure 35: Page for a published article on the site.

67

Figure 36: Page for a category on the published site, showing a paginated index of
its articles.

68

Figure 37: Alternative card-grid layout for category pages, configurable on a per-
category basis.

69

Figure 38: Comments section on a published article’s page.

Figure 39: Search page on the published site.

70

10.1.2 Mockups

This annex contains all mockups of the frontend’s UI.

Figure 40: Mock-up of a category page and its article listings. Design decisions are
annotated with “sticky notes”.

71

Figure 41: Mock-up of an article page on the published site.

Figure 42: Mock-up of the article editor page. Certain UI elements ended up
differing from the mockup.

72

Figure 43: Mock-up of the configuration tab in the control panel.

Figure 44: Mock-up of the content tab in the control panel, where articles are
created and managed.

73

Figure 45: Mock-up of the users tab in the control panel. The final UI ended up
very different due to the mockup being space-inefficient.

Figure 46: Mock-up of the activity tab in the control panel. This mock-up was made
early on before the project planning was finalized; the functionality was ultimately
left as future work.

74

10.1.3 Lighthouse audits

This annex contains the Lighthouse audits of the main pages of the frontend, tested
using the mock data of the cooking blog.

http://localhost:3000/articles/pasta/Carbonara

Values are estimated and may vary. The performance score is calculated
directly from these metrics. See calculator.

0–49 50–89 90–100

Performance

74

Accessibility

89

Best
Practices

100

SEO

91

74

Performance

METRICS Expand view

First Contentful Paint

2.1 s
Largest Contentful Paint

2.6 s

5/25/25, 10:18 AM about:blank

about:blank 1/5

75

Show audits relevant to: All FCP LCP TBT CLS

Total Blocking Time

10 ms
Cumulative Layout Shift

0.031

Speed Index

2.1 s

View Treemap

DIAGNOSTICS

Enable text compression — Potential savings of 1,637 KiB

Largest Contentful Paint element — 2,610 ms

Reduce unused JavaScript — Potential savings of 639 KiB

Properly size images — Potential savings of 137 KiB

Serve images in next-gen formats — Potential savings of 85 KiB

Reduce unused CSS — Potential savings of 191 KiB

Image elements do not have explicit width and height

Serve static assets with an efficient cache policy — 2 resources found

Eliminate render-blocking resources — Potential savings of 0 ms

Efficiently encode images — Potential savings of 28 KiB

Avoid large layout shifts — 2 layout shifts found

Avoid chaining critical requests — 4 chains found

Minimize third-party usage — Third-party code blocked the main thread for 0 ms

Avoid long main-thread tasks — 2 long tasks found

More information about the performance of your application. These numbers don't directly affect the Performance score.

5/25/25, 10:18 AM about:blank

about:blank 2/5

76

These checks highlight opportunities to improve the accessibility of your
web app. Automatic detection can only detect a subset of issues and does
not guarantee the accessibility of your web app, so manual testing is also

encouraged.

PASSED AUDITS (24) Show

Accessibility

89

ARIA

button, link, and menuitem elements do not have accessible names.

[aria-hidden="true"] elements contain focusable descendents

Uses ARIA roles on incompatible elements

These are opportunities to improve the usage of ARIA in your application which may enhance the experience for users of assistive
technology, like a screen reader.

BEST PRACTICES

Touch targets do not have sufficient size or spacing.

These items highlight common accessibility best practices.

ADDITIONAL ITEMS TO MANUALLY CHECK (10) Show

These items address areas which an automated testing tool cannot cover. Learn more in our guide on conducting an accessibility
review.

PASSED AUDITS (24) Show

NOT APPLICABLE (29) Show

100

5/25/25, 10:18 AM about:blank

about:blank 3/5

77

These checks ensure that your page is following basic search engine
optimization advice. There are many additional factors Lighthouse does not
score here that may affect your search ranking, including performance on

Core Web Vitals. Learn more about Google Search Essentials.

Best Practices

TRUST AND SAFETY

Ensure CSP is effective against XSS attacks

Use a strong HSTS policy

Ensure proper origin isolation with COOP

Mitigate clickjacking with XFO or CSP

GENERAL

Detected JavaScript libraries

Missing source maps for large first-party JavaScript

PASSED AUDITS (13) Show

NOT APPLICABLE (2) Show

SEO

91

CONTENT BEST PRACTICES

Document does not have a meta description

Format your HTML in a way that enables crawlers to better understand your app’s content.

ADDITIONAL ITEMS TO MANUALLY CHECK (1) Show

Run these additional validators on your site to check additional SEO best practices.

5/25/25, 10:18 AM about:blank

about:blank 4/5

78

10.1.4 Folder structure

The top-level folders of the frontend source code are the following:

• assets: global CSS files.

• components: Vue components, organized in folders based on the page or
system they are intended for. Generic components used across many pages
are at the root of the folder.

• composables: importable functions that manage mostly stateful logic that
is reused across components.

• middleware: Nuxt route handlers for managing URL redirects.

• pages: top-level components that represent pages. Nuxt automatically reg-
isters vue-router pages for them based on path.

• plugins: vue plugins, boilerplate required by packages that inject “app-level”
functionality.

• public: static website assets, like the favicon.

• server: Nuxt HTTP server scripts, used for mapping URLs on the site to
resources such as images retrieved from the backend.

• services: classes to encapsulate API interactions.

• types: global TypeScript type annotations for linting and IDE auto-completion.

• utils: static utility methods; globally auto-imported by Nuxt.

• src: model classes, mainly for the article editor and its editing operations.

To improve readability of function signatures that use identifiers and other prim-
itives with contextual meaning, TypeScript type aliases are used, especially for
strings with particular meaning. Aliases like actionID for editor action identifiers
exist for string parameters to quickly convey to the reader the semantic of the pa-
rameter. Aliases are also used to cleanly annotate functions that expect integers,
for which JavaScript has no specific type (as all numbers are float internally).

10.1.5 Composables

Composables are a vue system for reusing stateful logic across components; they
are functions that setup event listeners or state managers once per component
instance that uses them. The project uses these mostly together with tanstack-
query(See annex 10.1.7) to reuse cached API data across components.

For example, the useLoggedInUser() composable encapsulates a query to fetch
the profile data of the logged-in user. This profile data is cached and every com-
ponent that uses the composable can access the cached data rather than needing
to make another API query or having to explicitly pass the user data through all

79

components in the DOM tree. The components may also mark the cache as dirty
(for example, after editing the profile) to re-fetch the data from the API, which will
be reflected in all components. The main use case is thus to share global applica-
tion state more conveniently, especially since Nuxt auto-imports composables into
components where they are used.

10.1.6 Theming

To support using different themes for the site’s appearance, the daisyUI semantic
colour classes are used instead of direct colour codes, which apply colours based on
the theme configured for the site. These classes are intended to distinguish elements
based on their position in the visual hierarchy. The project uses these classes as
follows:

• Primary: accent colour for major “call-to-action” elements that the user
should see first before any others, such as confirmation buttons in modal-
s/prompts, or buttons such as “Create article” in the control panel.

• Secondary: colour for interactable elements that are not as important, ex.
toolbar buttons in the editor.

• Base: background colour for panels, with various brightness levels to denote
depth of nested elements.

• Accent: a contrasting call-out colour, used sparringly, for example for text
selections in the article editor.

• Neutral: background colour for floating elements such as context menus
and dropdowns, to distinguish them from the background and maintain high
contrast.

The tailwind library was also used to speed up styling of components; it provides
a library of CSS classes that set specific properties. This leads to a different styling
workflow: instead of defining a CSS class for each element to style, the element
can instead be given a combination of the tailwind utility classes to set the same
properties.

Though this approach to styling may appear highly counter-productive and
unmaintainable at first, it ends up saving a tremendous amount of time that would
normally be spent defining classes and coming up with descriptive names for them,
all while constantly needing to switch between editing the HTML and CSS of the
component being worked on.

The Nuxt UI framework turned out to be a hassle to use in the project, mainly
due to its components being very difficult to re-style. Since it uses its own theme
system, the components’s styling needed to be adjusted through awkward CSS
selectors to apply daisyUI’s colours instead, and some CSS variable conflicts had to
be resolved as well.

What’s more, both Nuxt UI and daisyUI received new major version releases in
the middle of the project’s development. Though both of these releases improved

80

on the aspects I found cumbersome, the migration work required was unfortunately
too large to justify it.

10.1.7 API query management

Querying API data for components using just pure vue is often a tedious endeavour
due to the amount of repeated boilerplate code it requires for each fetch to the API:

• A reactive to store the data

• An asynchronous promise call to the API

• A reactive to store the query state (successful/pending/errored) to display
feedback to the user

• Listeners for page navigation, URL query changes, etc. to invalidate previous
API data and re-fetch it

Together this requires ∼20 lines of code for each component and each API call, all
with the exact same structure and failguards.

The tanstack-query library essentially encapsulates all those parts into a single
composable, with additional features that would be extra-tedious to setup by hand
such as caching responses, re-using them across components that make the same
API calls, automatic retries on failure, among others. Its inclusion has significantly
reduced the effort to integrate the API into the frontend.

10.1.8 Rendering

This annex contains notes on different forms of rendering the frontend HTML.
Traditionally, web servers would serve a static HTML document to visitors with

all elements and content already present in the DOM (already “rendered”). Any
“dynamic” elements in the web page (such as user profile information) were filled
in by the server using templated HTML - this is called server-side rendering.

With the advent of Single-page-applications (SPAs), there was a shift in paradigm
to have the client (web browser) render the DOM itself using frameworks like React
or Vue, by having the web server only serve the JavaScript necessary to do so. The
client would then requesting content or information to display using an API. SPA
has many advantages in the context of web apps, such as smoother navigation and
better responsiveness, as “navigating” between pages can be done by just replacing
elements rather than needing to fetch a new document with each page change; this
makes navigation appear seamless and also reduces the workload for the server.

However, SPAs have trade-offs particularly relevant for this project. On the
user side of things, SPAs can appear to load “slower” as loading the complete page
is split into 3 steps: fetching the JavaScript for the framework used, rendering the
“static” elements of the site/app, and then fetching the content (ex. an article)
again via the site’s API. This initial overhead can lead to a bad user experience
if the content fetching part takes long, as the user will first see an incomplete site
before the content finishes loading.

81

Additionally, SPAs are problematic when it comes to SEO and web crawling.
Search engine web crawlers index pages based on the content of the retrieved HTML;
in the case of a naive web app, this initial HTML would be essentially empty as
they rely on the client to fetch the actual content in posterity via JavaScript[25].
Though the major search engines now have some considerations for javascript-
enriched pages, they have strict time and execution limits and there is no guaranteee
they would follow through with loading a whole SPA app.

Nuxt’s hybrid rendering allows mixing the two approaches, even within the same
page, to leverage the advantages of both and compensate for their tradeoffs. With
hybrid rendering, a part of the page can be rendered on the server to be returned
and shown immediately to the user, with certain components of the page instead
being delegated for client-side rendering like in a traditional SPA app.

Compared to SPA client-side rendering, instead of the users waiting for the
content of the page to load, with hybrid rendering they instead get to see it im-
mediately as static content in the first response from the web server, while sec-
ondary/“unessential” dynamic elements of the page (such as user information, for
example) can load afterwards via client-side rendering.

10.1.9 Search

The “search-as-you-type” search bar is implemented by making API requests with
the user’s query as they type. Doing so naively (after each keystroke) results in an
excessive amount of API calls, thus the component uses a short “debounced” timer
(0.5s) to detect when the user has stopped typing before making the request.

The results of each request are also cached, which prevents extra API request if
the user for example uses backspace to delete a term.

10.1.10 Pagination

The pages that list articles on the published site (such as the home page and cat-
egory pages) implement efficient pagination through the skip & offset parameters
from the backend APIs.

The PaginatedPage component fetches and renders a limited amount of articles
at a time, tracking the page, which can be changed through buttons at the bottom
of the page that also allow skipping multiple pages at a time or going directly to
the last/first page.

Initially, the first page of results is rendered by the backend during server-side
rendering. Afterwards, for a smoother user experience, changing pages is done
with client-side rendering, having the user’s browser perform the API request and
updating the article components with the new results to avoid having to re-render
the whole page.

10.1.11 Routing

Catch-all routes allow defining a single mapping of a base URL to a component,
such that any request starting with the base URL and containing other trailing sub-
directories will redirect to that component and have the trailing string be available

82

as a parameter in scripting. For example, the page component that displays articles
is defined under /articles/[...article_path].vue; this means that accessing a
URL such as /articles/cooking_recipes/pizza will render the article compo-
nent and pass it the /cooking_recipes/pizza part of the URL as a parameter.
The component can then easily fetch the article from the API by the parameter
and render it, allowing URLs of content in the CMS to be intuitively mapped to
URLs on the frontend.

10.1.12 Tree component

The TreeItem component is a complex generic component made for the project
that is used in contexts where a group of items is modelled as a tree, displaying it
as a collapsable directory-like view.

It works by taking an arbitrary object with the data of the root node of the tree,
as well as functors/callbacks that define which fields of this node object correspond
to the text label and children. The component provides slots to allow inserting
additional elements to the items, such as edit/delete buttons on the side.

Child nodes are then rendered recursively using the same component, but pass-
ing the child node instead, rendering its subtree. The component that uses the tree
may use the v-slot pattern to conditionally render the slots based on the item.

The component makes use of generics to allow type-checking of the node classes
in callbacks, define which items are treated as leaves or internal nodes with addi-
tional children.

The callbacks that define the nodes and leafs of the tree are provided to the whole
component subtree using the inject-provide pattern(See annex 10.1.14) to avoid the
“prop-drilling” anti-pattern (passing an unwieldy amount of props deeply through
a component hierarchy).

10.1.13 Commenting and Google SSO

The site supports logging in with a Google account to post article comments. This
was chosen over a traditional username and password system for user convenience,
as it would’ve been tedious to create an account for the mere purpose of a short
comment, as well as to avoid having to store any personal user information.

The integration requires creating a Google Cloud app and including its API
URL in the backend configuration. Site visitors can then use a “Log in with Google”
button in the site, implemented using the vue3-google-login library; this leads to
the typical Google SSO flow and generates a JWT token authenticating them for
that Google Cloud app. This token is then stored in the client and can be passed
to the site’s APIs just like the staff account tokens, identifying the user and giving
access to the comments POST endpoint.

When a Google JWT token is used for the first time, a corresponding Reader
entity is created in the database; this entity stores only the Google account ID (in
its related Credentials entity) and no personal information is stored to avoid data
privacy headaches. This Reader entity exists only to simplify database relations;
since comments can be posted by both reader accounts and editor accounts, it’s

83

https://www.npmjs.com/package/vue3-google-login

convenient for the database to just store an User ID foreign key to identify the
author, rather than distinguishing the two cases (editor account ID or Google ID).

The Google JWT tokens are signed with keys that are changed (“rotated”)
regularly; the backend refetches the keys when necessary to be able to decode the
tokens and validate them.

To quickly distinguish the site’s staff account tokens and the Google JWT tokens,
the backend checks the standard JWT iss (“issuer”) field.

10.1.14 Reactives injection and prop drilling

Certain pages such as the article editor have deep component hierarchies, where
children far down might still need to read state from a viewmodel far up. The
naive way of doing so is to pass the viewmodel variables as props throughout the
entire hierarchy; this requires the prop to be defined and explicitly passed in every
component in that tree, even if some intermediate components might not need it
themselves, leading to an anti-pattern called “prop drilling”, which also exists in
other frameworks like React.

The injection pattern allows a parent component to make its viewmodel refs
available to all its children with provide(refName, ref), which may access it from
an inject(refName) function. These injected refs can also be made read-only to
make sure only the top parent component has authority over mutations.

10.2 Editor

This annex contains implementation details of the article editor.
Embedding content is done through a form where the user can paste compatible

URLs. The editor then extracts the type of service from the URL (ex. YouTube,
BlueSky) as well as the content identifier (video ID, post ID, etc.) and remaps
the URL to the site’s official embed URLs to render them in the article. Pasting
compatible links directly into the document will also auto-embed them by default,
but this behaviour can be disabled by the user.

The sidebar is implemented by traversing all heading nodes within the document
and structuring them into a separate tree based on the heading level and position
in the document, storing the position of the node to be able to jump to it when the
heading is clicked.

Counting words for the status bar UI is simply done by extracting all text
from the document and performing a regex match to count all whitespace-delimited
words. The reading time is calculated by dividing this word count by the average
human word-per-minute reading speed (∼ 238 WPM).

API queries to save/mutate the article are also extracted to composables so that
they may be performed by different components, such as the header (for saving
document content) or the metadata form (for saving document properties).

The schema of the editor is configurable; the comment editor on the site for
example uses a reduced one with fewer node types, as it doesn’t make sense to
allow readers to post much rich content other than a bit of formatting and quotes.
Built-in composables and plugins are aware of this and parts of their functionality
is disabled if the schema is lacking the expected nodes.

84

The configurable key binds of the editor are identified by a simple string con-
catenating the keys involved, ex. “ctrl c” for a Ctrl+C shortcut. Though a bit
rudimentary, it makes it easy to compare key binds for equality.

Most semantic blocks can be nested; for example lists can have multiple levels
of depth and images can be placed within notes. Blocks that are intended to be
only textual, such as code blocks, prevent other content from being inserted into
them. This is done by specifying the types of nodes they accept as children within
the schema.

10.2.1 Annotations

The functionality of adding annotations that are only visible to other site staff
was implemented differently than other rich elements, since it was necessary for
annotations to be able to correspond both to inline text as well as nodes (to annotate
images, for example).

Annotations use the ProseMirror plugin system to add custom decorations,
which allow adding DOM elements to the document without altering the content
tree itself, adding the yellow annotation background to any annotated node/text
and displaying the annotations when the cursor is moved into the annotated content.

The plugin system was used to track annotations, which are created/deleted by
special transaction so that they were in sync with the document state and support
operations like undo. Each annotation stores its author’s username, the annotation
text, and the start & end positions of the content it annotates. The plugin also
listens for other transactions to update these start & end positions bymapping them
through the operations in the transactions, shifting them so they always correspond
to the same content. The code for this is adapted from an official ProseMirror
collaborative editor example.

Since the annotations are bound to an editor account, it was chosen to store
them as an ArticleAnnotation table in the database to add integrity constraints
(ex. deleting them if their corresponding editor account is deleted). The editor
sends the annotations data in the API request to update articles, and loading an
article also “re-plays” the plugin-specific transactions to restore the decorations into
the document state.

The first implementation attempt used a mark for inline annotations and a cus-
tom node to wrap whole annotated other nodes, however this was a poor solution as
it gave the annotations a physical presence in the document and acted as standalone
content. Particularly, the problem with this approach was that it was possible to
select content independently of its annotations, which led to unintuive behaviour
such as being able to lift paragraphs out of an annotation node and insert new
content into it, such that the annotation text would no longer be relevant.

10.2.2 Input shortcuts

The Markdown-style shortcuts to insert rich content are implemented using Pros-
eMirror “input rules”, which take a Regex pattern that is tested against newly-
inserted text. When one of these patterns matches, the text is replaced or wrapped
in a node or mark defined by the input rule.

85

Since the replacement logic is basically the same for all rules (just using differents
nodes/marks), functional programming is applied to reduce code duplication; there
are utility functions which create anonymous functions for the replacement callbacks
in a parametrizable manner.

Some of the rules have shared prefixes; for example, typing ** will toggle italics,
and *** will toggle bold. To prevent the italic rule from applying immediately
after typing the 2 asterisks, the patterns match a trailing non-asterisk character
afterwards to resolve this conflict; in other words, after typing 2 asterisks, they will
only be replaced by italics when the user types another character. If they type a
third asterisk afterwards, it will lead into the bold input rule.

The user can “cancel”/“undo” this replacement by using backspace right after
it applies.

10.2.3 Inserting content

Most tools that insert rich content operate as “toggles” based on whether the content
at the cursor or selection is already of that type; for example, executing “Toggle
Code Block” while the cursor is in a paragraph will transform it into a code block
node, and using it while in a code block will revert it back to a paragraph. Aside
from cursor position, the actions also take into account selection ranges, which may
span multiple different blocks.

Toggling nodes is done by wrapping/unwrapping the selected content in the new
node. For example, to turn selected text into a code block, its paragraph node(s)
are extracted and turned into children of a new code block node that is inserted
where the paragraphs used to be. To toggle the block off, all its children nodes are
moved up the tree to the note’s parent, and the code block node is deleted.

These operations require traversing the tree starting from the cursor selection,
which is done using the ResolvedPos system in ProseMirror.

10.2.4 Parsing/serializing the document

Parsing the stored Markdown document into the ProseMirror schema is done using
a using a separate prosemirror-markdown package together with the MarkdownIt
library, by defining a mapping between parser output from MarkdownIt (AST-like
tokens) into the nodes and marks of the project’s ProseMirror schema.

Though common Markdown syntax (text formatting, images, etc.) is sup-
ported by these libraries out of the box, the project’s specific nodes needed custom
parser/serializer plugins written for them.

For these nodes, the project tries to use popular non-standard Markdown syntax
extensions for better portability, so the stored documents may be re-parsed by other
readers more easily.

For example, node properties such as paragraph alignment are stored using a
popular “extra attributes” syntax, while custom block-level nodes such as alerts use
another popular “container” syntax, wrapping the node content in a fence specifying
the block’s node type.

Encoding the node tree back into a Markdown document is done using the same
stack, but mapping ProseMirror nodes into MarkdownIt tokens instead, which can

86

https://github.com/prosemirror/prosemirror-markdown

then be converted back into a Markdown text document to send to the backend.

10.2.5 Copy/paste

Copy & paste actions have special handling to make them work not just with the
selected text, but also the nodes that contain it, allowing the user to also copy &
paste semantic blocks such as images or tables.

This is done using the standardized browser clipboard APIs and ProseMirror’s
selection callbacks. When selecting content with the cursor, the editor keeps track
of the nodes it spans within the tree, which can then be encoded to JSON and
stored on the clipboard.

Upon pasting, this JSON is parsed back into nodes and re-inserted into the
document at the cursor’s position.

To prevent the user from pasting this JSON outside the editor context, the clip-
board API calls mark it with the web application/json text type, which makes
it be ignored outside of JavaScript access.

It’s worth noting that selections don’t need to span entire nodes, for example if
the user selects only half of a paragraph’s text. Pasting such content by inserting
new nodes naively produces unintuitive behaviour, as it will for example create
new paragraphs rather than inserting the node’s content into the existing one the
cursor is on. This issue is solved by converting these “open” ends of the selection
into sliced nodes, which upon being pasted back will attempt to be merged into the
nodes before & after the cursor by ProseMirror.

10.2.6 Editor widgets

Editing certain nodes (for example, changing the URL of an image) is done through
modals with form-like fields. These are opened either through UI interactions of
events from the viewmodel when a corresponding tool is used. For example, the
modal to edit an image’s URL(See annex figure 33) can be opened either by double-
clicking the image, or with the “Edit image” tool in the context menu, both of
which send events that are consumed by the modal to start its interaction flow.

To make these more maintainable and modular, each is a separate component
that manages its state and issues operations to make to the document. For example,
the “Upload image” action invokes a modal which handles uploading the file to the
CMS, extracting the URL and then issuing the ProseMirror transaction to insert
an image node into the document at the cursor position, making the whole flow
self-contained in a single component.

The many modals the UI uses are aggregated in a renderless WidgetsManager
component, which listens for editor callback events to open the relevant modals and
performs the corresponding operation on the document when the user finishes using
the modal and closes it.

Internally all ways of inserting images correspond executing the same action to
insert the image node of the ProseMirror schema, which is serialized to the standard
Markdown image link syntax. The different ways of inserting images only differ in
the form the user fills out to determine the URL.

87

10.2.7 MVVM pattern

Changes to the editor model are made observable by wrapping the model class
instances in a Vue ref, which makes it deeply reactive. These bindings are created
by the viewmodel composables and cause the components that depend on them
to be re-rendered when there are changes to the model’s fields, such as the user
preferences.

Structures that are immutable, such as the document’s schema, are excluded
from this to avoid the overhead of unnecessary refs.

Some composables take parameters; for example, the useToolbarActionMenu

composable creates a viewmodel for a specific action menu. Since the components
that use this are likely to receive the menu as props, the bindings that the compos-
able creates also need to be reactive. For this, the ref normalization syntax is used
to efficiently create separate reactives for specific prop items rather than passing the
entire props object itself to the composable, which might include additional data it
doesn’t need.

The EditorDocument component is the authority over the ProseMirror state
mutations. The initial implementation of the editor attempted to have only the
root component be the authority over state mutations, with the motivation that it
would make the flow of interactions and model mutations clearer; child components
contained only presentational logic and interactions with them would only propagate
events to this root component, which would then apply the corresponding operations
on the model.

This approach proved to be very poorly scalable and tedious to maintain due to
the amount of event listeners and dispatchers (Vue emits) required.

The entire editor was refactored in the middle of the project’s development
to apply the final MVVM architecture; this change of philosophy in regards to
separation of concerns led to a much cleaner and flexible implementation.

10.3 Technology choices

Other web frameworks such as React would’ve been perfectly viable for the project,
with only minor inconveniences; the decision was skewed towards Vue due to per-
sonal desire to learn it at a deeper level and be able to make better comparisons &
decisions between the frameworks in future projects.

Both Vue and React are based around the idea of rendering the site through
re-usable and self-contained components that combine HTML templates with script-
ing, but the implementation and developer experience of this concept differs greatly
between them.

In React, the HTML of components is defined using a JSX, a syntax expression of
JavaScript; this makes it very easy to implement highly-dynamic HTML rendering
using all conditional and flow structures JavaScript offers, however this often leads
to rendering and model logic being coupled together, difficulting maintainability
as structural (and even stylistic) HTML changes generally also imply having to
modify the logic that generates it. In a way, it can be seen as a programmatic UI
framework. Though very powerful, the project’s UIs weren’t as dynamic so as to
greatly benefit from this.

88

The syntax of components in Vue on the other hand maintains the traditional
web separation of HTML, JS and CSS, making it easy to maintain them as a whole
as the three concerns (document structure, logic and appearance respectively) are
not all scattered throughout a single component’s file, and instead have dedicated
regions to define them within the component file.

React is also purely a view library; other essential aspects of web development
such as state management are delegated to other libraries and do not have first-class
support.

10.4 Database design

This annex contains some additional comments on the database’s design, referencing
the entity-relation diagram(Fig. 3.4).

Admin accounts do not have any biographic information like editors do (such as
the display name field) since they are not intended to have a physical presence on
the published site, unlike editors authoring the articles.

Whether an article is published is a boolean that is a derived attribute; this
means its value can be inferred, as we can consider an article to be published if the
publishingTime field is not null. Derived attributes need not be stored physically
in the database implementation since they’re redundant information, but are useful
in ER diagrams to model more natural/intuitive properties of an entity.

The requirements for site configuration include the ability to toggle which social
media platforms articles can be shared to; this is simply modelled by the Social-
Network entity with a boolean field to enable/disable sharing to that network.

The File entity would be used mainly for images uploaded to be used in articles,
as well as attachments linked. It has a relation to store the Editor who uploaded
the image; though this is not necessary given the app’s requirements, it was decided
to track the uploader for future-proofing in case a need to identify them arises later,
similar to the reason for the existance of an Admin entity.

Typically a configuration file (a JSON, YML or similar) is used for global app
configuration, instead of a database entity the project used. Though it would’ve
been possible for the backend to write/update such file from requests, it would
require storing it separately from the database. This would’ve created a concern of
the app’s persistent data being stored in multiple different manners, making it less
convenient to make backups or to restore from them.

10.5 Database implementation

This annex contains notes on the implementation of the database.
The ER diagram of the project presents entity inheritance, mainly for the User

hierarchy to distinguish roles. Multiple ways of modelling inheritance in SQL exist:

• Creating tables only for the derived entity, and giving them columns corre-
sponding to fields of both the derived and parent entity in the diagram.

• Creating tables for both the parent and child entities, and creating a one-to-
one “parent-child” relationship between them.

89

The first approach has the downside of duplicating attributes across tables,
which makes further modifications to the database inconvenient as all child tables
need to be modified to add/change/delete columns to/from the “parent” entity. In
addition, ORM libraries tend to handle this implementation poorly as the tables
are seen as independent classes, which tends to add verbosity when writing code
that works on only the attributes of the parent entity (switch-cases, casting, etc.).

The second approach solves the duplicity and extendability concerns, at the
performance cost of needing to perform JOINs to traverse the hierarchy and get all
information of an entity including fields from the parent/child. In this particular
case only 1 JOIN is required to query all information of a user, thus the advantages
of this approach were considered to outweigh the minor performance hit. The
Admin and Editor classes have the username attribute as both primary keys and
foreign keys relating them to their corresponding entry in the User table. With this
implementation, Admin and Editor are weak entities - they cannot exist without a
corresponding User entry.

Staff accounts are identified by a username, which was chosen to be the primary
key of the User table as clients accessing the database (the backend, and by exten-
sion, the frontend) prefer to use friendly string identifiers over arbitrary integers in
queries whenever possible. Using an integer as primary key would also slow down
queries by username unless an additional index were created for that field.

The diagram uses the convention that the cardinality N corresponds to “one or
more”; for relationships like “Editor is author of Article”, the cardinality “N - 0:N”
is used as an Editor might have no articles (for example, if it’s a newly-created
account) but an Article must always be credited to at least 1 author.

Storing the CMS’s files, such as the article documents and uploaded images, has
multiple possible approaches:

1. Storing the document as a regular file, and storing its relative path in a text
column in the database.

2. Using the BLOB or FILESTREAM types in SQL to store the document con-
tents directly in the database.

3. Storing the document in a cloud storage solution (ex. Amazon S3), and storing
its identifier in a text column in the database.

The first solution is perhaps the most intuitive but also the most naive - its
main issue is fragmenting the sources of data for the app. For the backend, this
creates the need to handle additional exceptions such as the file having been deleted
from the stored path externally (outside the app) or the file/directory not being
writable due to OS shenanigans - it’s a low-integrity solution that creates many
design problems.

BLOB and FILESTREAM types in SQL allow storing binary data. Text docu-
ments, even long blog articles, tend to be small (below 256KB) and as such storing
them as blobs would work and maintain data integrity, avoiding most of the issues
of dealing with files directly - accessing the data would be slower, but this is not a
large concern.

90

The most robust and scalable option is to rely on a cloud storage solution,
although this couples the app to such a service and makes it more difficult and
inconvenient for a user to even locally try out the app, as they would need to setup
and pay for the service even before committing to deploying it for production.

The navigation bar configuration is also stored in a special way. The navigation
bar, as described in the requirements, can be modelled as a tree where internal
nodes are categories, and leaf nodes are links to articles or external links. Though
it would’ve been possible to model this via tables and relations, it was deemed a
needlessly convoluted implementation.

Ultimately any client will want a complete view of the navigation tree in a
structured format; storing it via tables would mean needing dozens of joins to re-
construct the whole tree whenever it is needed. As such, it was decided to store the
navigation bar configuration as a JSON document that already has the complete
structure, consisting of nodes that reference categories and articles by their iden-
tifiers only. Since the frontend will need to fetch the navigation bar structure for
each visit to the site, storing it in an immediately-usable format lowers server load
for these requests - they are reduced to a single database query.

10.6 Version control and git workflow

The project used Git for version control with a mono-repo approach - there is only
repository that holds the source code for both the backend and frontend. Since
there are only 2 services, using a separate repository for each was deemed to be
unnecessary and inefficient for a one-person project.

The mono-repo pattern has a minor inconvenience as it may not be obvious to
readers which service each commit concerns, yet it’s important for commits to be
organized and clear in that regard. The project follows some personal patterns that
worked well in prior projects.

Commits always only contained changes to 1 service, never mixing changes to
both. This constraint is helpful in situations where a particular change to a service
needs to be cherry-picked to another branch or reverted, as it allows doing so without
picking/reverting changes to the other service which may not be necessary.

Commit messages generally follow a format of “<Service> <Module>: <Commit

message>”, with the fields corresponding to:

• Service: either frontend or backend, for the reader to quickly be able to
identify which part of the project the commit concerns.

• Module: the system or feature the commit concerns. May also be the class/-
file name for commits that edit only 1 file.

• Commit message: describes the commit’s changes, starting with a verb that
indicates the nature of the commit (“add” for new features/systems, “fix” for
bug fixes, etc.)

A consistent commit message schema like this makes the version history easier to
read, but most importantly makes it easy to find commits that alter specific systems

91

by using a regular expression search for the service and module parts (using git log

--grep). This is helpful in finding commits responsible for regressions discovered
later. Together with the restriction of committing backend and frontend changes
separately, this also allows filtering the commit history by service, lessening the
disadvantage that the mono-repo approach has in this regard.

The repository was hosted on GitHub at https://github.com/PinewoodPip/
bloggy, under the name “Bloggy” as it is self-descriptive, and the diminutive com-
municates its relatively small scope. A readme is provided with an overview of the
project’s features as well as instructions to configure and build it, listing environ-
ment variables, launch commands and development environment tips. The project’s
code was licensed under the GPL license, allowing the projects or parts of it, such
as the editor, to be freely reused and modified while ensuring derivative work stays
similarly-licensed.

Given that the project only had one developer, it wasn’t worthwhile to have
a complex branching strategy. The project used only two branches: the main

branch with stable snapshots, and a develop branch for development, which was
periodically merged into main after major milestones.

The project uses GitHub actions for continuous integration, executing the back-
end tests after every push to ensure regressions were never overlooked. These tests
are run using Docker Compose, as was detailed in Section 5.5 ≪Containerization≫.
In addition to this, when implementing major features or refactoring, the tests were
also executed locally proactively to try to keep the branches healthy.

GitHub Projects was used to track daily work(Fig. 47), as described in Section
2.1.

Figure 47: Screenshot of the GitHub Projects board used for tracking daily work.

https://github.com/PinewoodPip/bloggy
https://github.com/PinewoodPip/bloggy

10.7 Gantt chart

This section contains the full Gantt charts; the first one is the final version, while
the second chart is the initial chart used up until April, as mentioned in Section 2.

Color legend:

Frontend Backend Docs Evaluation Display week: 1

Week 2
Feb 17

Week 3
Feb 24

User management

Week 4
Mar 3

Week 5
Mar 10

Article publishing

Week 6
Mar 17

Week 7
Mar 24

Polished editor

Week 8
Mar 31

Week 9
Apr 7 (Parcials)

Navigation & config

Week 10
Apr 14 (Easter)

Week 11
Apr 21 (Post-Easter)

Commenting

Week 12
Apr 28

Week 13
May 5

Visual polishing

Week 14
May 12

Week 15
May 19

Evaluation

Week 16
May 26

Week 17
June 2

Task Completion
notes Start date Days End date

17 18 19 20 21 22 23 24 25 26 27 28 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 1 2 3 4 5 6 7 8

M T W T F S S M T W T F S S M T W T F S S M T W T F S S M T W T F S S M T W T F S S M T W T F S S M T W T F S S M T W T F S S M T W T F S S M T W T F S S M T W T F S S M T W T F S S M T W T F S S M T W T F S S M T W T F S S

Plan user API routes Done 2/17/25 2 2/18/25

Implement user tables & APIs Done 2/17/25 4 2/20/25

Create UI mockups Done 2/19/25 4 2/22/25

Add staff login page Done 2/22/25 2 2/23/25

Add dockerfile Done early 2/22/25 2 2/23/25

Add user control panels Done early 2/24/25 4 2/27/25

Plan article APIs Done 2/27/25 2 2/28/25

Add article tables & APIs Done 3/2/25 4 3/5/25

Add content management
panels Done 3/5/25 3 3/7/25

Add article editor base
functionality Done early 3/6/25 5 3/10/25

Integrate content
management and editor Done 3/10/25 2 3/11/25

Add article and category
pages Done 3/10/25 4 3/13/25

Add article pagination Done 3/13/25 2 3/14/25

Add article metadata forms Done 3/15/25 2 3/16/25

Add semantic article editor
blocks Done 3/17/25 5 3/21/25

Add image handling Done 3/24/25 3 3/26/25

Add article editor image
support Done 3/27/25 3 3/29/25

Add search and filtering APIs Done early 3/31/25 3 4/2/25

Add search Done early 4/3/25 3 4/5/25

Add filtering by tags and
author Done early 4/5/25 2 4/6/25

Add APIs for site-wide
settings Done 4/7/25 2 4/8/25

Add site-wide settings Done 4/9/25 2 4/10/25

Add comment tables and APIs Done 4/14/25 4 4/17/25

Add third-party auth
integration Done 4/18/25 3 4/20/25

Add article comments Done early 4/21/25 3 4/23/25

Add card-style category view Done 4/26/25 2 4/27/25

Refactor editor MVVM Done 4/28/25 5 5/2/25

Add editor annotations Done 5/3/25 2 5/4/25

Add more dummy DB data Done 5/4/25 1 5/4/25

Add technical readme Done 5/5/25 1 5/5/25

Add social media sharing Done early 5/5/25 2 5/6/25

Add extra article editor
functionality Done early 5/5/25 5 5/9/25

Attempt deployment Done 5/7/25 3 5/9/25

Improve published site styling Done 5/10/25 2 5/11/25

Evaluation and defense
preparation

Plan user tests Done early 5/16/25 3 5/18/25

Usability testing Done 5/19/25 7 5/25/25

Thesis revisions Done 5/25/25 10 6/3/25

Post-usability testing polishing Done 5/26/25 5 5/30/25

Prepare presentation slides Done 5/26/25 3 5/28/25

Preliminary presentation,
adjustments and studying Done 5/29/25 5 6/2/25

Add editor mathjax support

Dropped to being low-value
and time constraints.

2

Add 2FA 3

Add RSS feed 2

Add templates and macros 3

Add templates 2

Add event tables & APIs 3

Add event creation forms 2

Add event email reminders 2

Add event reminder
subscriptions 2

Improve coverage 2

Add category index page 2

Add editor e2e tests

Dropped due to time
constraints.

3

Add admin panel e2e tests 2

Move editor to separate
package 3

Add user documentation
(GitHub wiki) Dropped due to time

constraints.

2

Document codebase (GitHub
wiki) 3

Template credits: Project start date Mon, 2/17/2025

"Simple Gantt chart" by
Vertex42.com
https://www.vertex42.
com/ExcelTemplates/simple-
gantt-chart.html

Figure 48: Final Gantt chart of the project.

Legend: Project start: Mon, 2/17/2025

Frontend Backend Documentat
ion Display week: 1

Evaluation
& thesis
preparation

Week 2
Feb 17

Week 3
Feb 24

User management

Week 4
Mar 3

Week 5
Mar 10

Article publishing

Week 6
Mar 17

Week 7
Mar 24

Polished editor

Week 8
Mar 31

Week 9
Apr 7 (Parcials)
Navigation &
customization

Week 10
Apr 14 (Easter)

Week 11
Apr 21 (Post-Easter)

Commenting

Week 12
Apr 28

Week 13
May 5

Visual polishing

Week 14
May 12

Week 15
May 19

Advanced editor features

Week 16
May 26

Week 17
June 2

Events feature

Task Completion
notes Start date Days End date

17 18 19 20 21 22 23 24 25 26 27 28 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 1 2 3 4 5 6 7 8

M T W T F S S M T W T F S S M T W T F S S M T W T F S S M T W T F S S M T W T F S S M T W T F S S M T W T F S S M T W T F S S M T W T F S S M T W T F S S M T W T F S S M T W T F S S M T W T F S S M T W T F S S M T W T F S S

Create UI mockups Done 2/19/25 4 2/22/25

Plan user API routes Done 2/17/25 2 2/18/25

Implement user tables & APIs Done 2/17/25 4 2/20/25

Add staff login page Done 2/22/25 2 2/23/25

Add dockerfile Done early 2/22/25 2 2/23/25

Add user control panels Done early 2/24/25 4 2/27/25

Plan article APIs Done 2/27/25 2 2/28/25

Add article tables & APIs Done 3/2/25 4 3/5/25

Add content management
panels Done 3/5/25 3 3/7/25

Add article editor base
functionality Done early 3/6/25 5 3/10/25

Integrate content
management and editor Done 3/10/25 2 3/11/25

Add article and category
pages Done 3/10/25 4 3/13/25

Add article pagination Done 3/13/25 2 3/14/25

Add article metadata forms Done 3/15/25 2 3/16/25

Add semantic article editor
blocks Done 3/17/25 5 3/21/25

Add image handling Done 3/24/25 3 3/26/25

Add article editor image
support Done 3/27/25 3 3/29/25

Add search and filtering APIs Done early 3/31/25 3 4/2/25

Add search Done early 4/3/25 3 4/5/25

Add filtering by tags and
author Done early 4/5/25 2 4/6/25

Add APIs for site-wide
settings Done 4/7/25 2 4/8/25

Add site-wide settings Done 4/9/25 2 4/10/25

Add comment tables and APIs Done 4/14/25 4 4/17/25

Add third-party auth
integration Done 4/18/25 3 4/20/25

Add article comments Done early 4/21/25 3 4/23/25

Add card-style category view Done 4/26/25 2 4/27/25

Refactor editor model 4/28/25 5 5/2/25

Add category index page 4/29/25 2 4/30/25

Improve published site styling 5/1/25 2 5/2/25

Add editor comments 5/3/25 2 5/4/25

Add editor mathjax support 5/3/25 2 5/4/25

Add more dummy DB data 5/3/25 2 5/4/25

Improve coverage 5/5/25 2 5/6/25

Add technical readme 5/5/25 2 5/6/25

Attempt deployment 5/7/25 3 5/9/25

Add 2FA 4/28/25 3 4/30/25

Add admin panel e2e tests 4/28/25 2 4/29/25

Add RSS feed 5/1/25 2 5/2/25

Add social media sharing Done early 5/5/25 2 5/6/25

Add extra article editor
functionality Done early 5/5/25 5 5/9/25

Add editor e2e tests 5/6/25 4 5/9/25

Add templates and macros 5/12/25 3 5/14/25

Add templates 5/12/25 2 5/13/25

Add event tables & APIs 5/26/25 3 5/28/25

Add event creation forms 5/29/25 2 5/30/25

Add event email reminders 5/5/25 2 5/6/25

Add event reminder
subscriptions 5/8/25 2 5/9/25

Document codebase (GitHub
wiki) 5/5/25 5 5/9/25

Add user documentation
(GitHub wiki) 4/28/25 5 5/2/25

Evaluation and defense
preparation

Plan user tests 5/12/25 5 5/16/25

Usability testing 5/19/25 7 5/25/25

Thesis revisions 5/25/25 14 6/7/25

Post-usability testing polishing 5/26/25 5 5/30/25

Deployment 5/12/25 5 5/16/25

Prepare presentation slides 5/17/25 5 5/21/25

Preliminary presentation,
adjustments and studying 5/25/25 7 5/31/25

Template credits:

"Simple Gantt chart" by
Vertex42.com
https://www.vertex42.
com/ExcelTemplates/simple-
gantt-chart.html

Figure 49: Initial Gantt chart of the project, used until late April.

94

10.8 Backend

The backend service uses the following folder structure:

• core: contains configuration structs, security utility methods (for password
hashing) and lifespan manager (database initialization routines).

• crud: contains CRUD utility functions for all database entities, with separate
files for each major “family” of entities (users, articles, categories, etc.).

• models: ORM table definitions for the database.

• routes: FastAPI endpoint routes; separated into one file per major root route
(ex. /articles/, /users/).

• schemas: Pydantic data validation models for the API, most corresponding
to database entities.

• tests: pytest test files, organized mainly by the API routes they cover.

• main.py: entry point for the application; creates the FastAPI application
and registers all endpoint routes.

All function parameter and return values are explicitly type-annotated to im-
prove IDE support, except in special cases where common IDE integrations can
infer them, such as pytest fixtures.

Files that import model classes or schemas of other entities do so with a prefix
(using the “from X import * as Y” syntax) to avoid confusion between database
model classes and schemas.

10.8.1 Mock data

For demonstration purposes, the repository also contains a folder with mock data
in the backend/mock_data folder, together with a Python script that populates the
database with that data by scripting the corresponding API calls.

This mock data adds users, articles, categories and images to create an example
usage scenario of a cooking-themed blog. Most article text is lorem ipsum with
some formatting to preview the editor’s features, which was generated using https:
//jaspervdj.be/lorem-markdownum/.

10.8.2 API pagination

Output schemas that contain lists of objects, such as a category’s articles, may
result in needlessly large responses to clients that may only need a slice of that data
- for example, if the frontend only needs to display N articles of a category per page,
it would be redundant (and wasteful on CPU time and bandwidth) to send it all
articles at once in a single request, as there may be hundreds of them.

To address this, the relevant API routes accept the “limit” and “skip” param-
eters in requests, which allows limiting the length of the returned object list and

95

https://jaspervdj.be/lorem-markdownum/
https://jaspervdj.be/lorem-markdownum/

offsetting the items from the query respectively. This allows API clients to imple-
ment pagination, by fetching N items at a time, incrementing the skip parameter
with each query to access latter items. The responses always included the total
amount of items that exist to allow clients to deduce the amount of “pages”.

10.8.3 Elasticsearch toggle

The backend supports disabling the Elasticsearch integration by leaving its URL
environment variable unset, which is handy when not working on search features as
the Elasticsearch server is very demanding on resources. If search is disabled, the
corresponding API endpoints return the “503 Service unavailable” response.

10.8.4 Exception handling

The backend uses exceptions at both the API and CRUD level to notify the caller
of any issues with requests/calls. Care is taken to use the appropriate exception
types in each module.

The exceptions at the CRUD level use the basic, generic Python exception types
(mainly ValueError for invalid parameters, RuntimeError for internal failures).
These exceptions are caught by the API route functions and translated into the
appropriate HTTPException type based on the nature of the CRUD exception to
stay coherent with the HTTP protocol and give clear feedback to the client about
request failures.

For example, fetching an article that doesn’t exist would result in a ValueError
at the CRUD level that is translated to the 404 Not Found HTTP response. On
the other hand, trying to create an article with a filename that is already used
would instead result in a ValueError that translates to 400 Bad Request response
instead.

The exceptions at the CRUD level are generally focused on database coherency,
whereas the API may also throw additional exceptions related to the permission
system, for example if an editor account makes a request to an endpoint that only
admins can use.

10.8.5 Mapping ORM models to schemas

When the API wishes to return an object from the database in a request, it must
convert the ORM model instance to a corresponding schema class. Since the names
& types of fields in the schema class can differ wildely from the fields internally
used by the database objects (for example, having fields that refer to other objects
from a relationship), this mapping cannot be done directly.

Normally this would involve instantiating the schema class and explicitly passing
the model-schema mapping of each attribute explicitly in the constructor. To reduce
verbosity and simplify expanding the models and schemas with new fields, utility
methods exist to create these schemas automatically using reflection-like methods
that SQLAlchemy and Pydantic provide. These methods accept an ORM object
as well as the schema to create from it, using generics for type annotations to infer
return types from the parameter types.

96

Similar utility methods exist to update an ORM model with values from an
Update schema, reducing verbosity in the CRUD methods.

These utility methods are in the app/crud/utils.py script.

10.8.6 Authentication

Other solutions for authentication and tracking sessions were considered, but deemed
inappropriate for the project:

• URL encoding: after logging in, a string session identifier is attributed to
the user and they are redirected to a page that contains the session ID as a
URL parameter (ex. www.example.com?sessionID=“someID”). All links on
the pages must contain this ID, which will be sent back to the server with each
request to identify the user as they navigate the site. This is fairly annoying
to implement, and clunky as the user will see the session identifier in their
browser’s address bar, and also insecure as anyone who sees that address can
navigate to it to gain access to that session.

• The IP of the request cannot be used for this purpose as they do not identify
a single device in the case of NAT (Network Access Translation), which is the
case for basically all networks.

The project has utilities to make authentication checks convenient across all
endpoints; endpoints that require auth are defined with a current_user parameter
that defaults to a FastAPI “Depends” functor, which parses the header and returns
the corresponding User entity if a valid token was passed, or throws an HTTPEx-
ception otherwise. These “Depends” functors are called automatically by FastAPI
when invoking an endpoint, making them ideal to avoid code repetition for checks
like the authentication requirement.

Though multiple client-side storage mecanisms exist, cookies were most appro-
priate for security as they can only be read by scripts from the same site.

10.8.7 API methods

The API endpoints accept the following HTTP methods:

• GET: for retrieving the data of an entity.

• POST: for creating new entities.

• PATCH: for partially modifying the data of an entity.

• DELETE: for deleting entities.

The PUT method, which is intended to entirely replace the data of an object,
is not used much by the API as it is made largely redundant by the more-flexible
PATCH method, which may be used to both partially and fully replace an object’s
data, and often results in smaller request sizes. The exception to this is the /

files/ endpoint, where it only makes sense to completely replace all data when
re-uploading a file - it’s not possibly to partially “patch” a file.

97

The endpoint to fetch all files in the CMS is intended to only be used in the
context of an admin panel; it requires auth to avoid it from being abused to leak
files that are not yet intended to be public, for example to prevent being able to
see images/attachment used in articles that have not yet been published.

10.8.8 Schemas organization

The project suffixes the schema class names based on their purpose within the API:

• Input (ex. “UserInput”, “ArticleInput”): schemas for entity creation (POST
requests)

• Output: schemas for result responses (GET requests, as well as to confirm
the result of POST and PATCH requests) that contain a complete view of an
entity’s data.

• Update: schemas for modifying entities (PATCH requests). The PATCH
HTTP method is functionally distinguished from PUT as it allows modifying
parts of an object rather than replacing it entirely. This translates to requests
needing to only provide the fields whose values are to be changed; the Pydantic
schemas thus have all fields annotated as Optional

• Preview: smaller schemas that contain only essential metadata of entities (ex.
their ID, user-friendly name) without all the details that would normally be
in an Output schema. These are used as fields in schemas that reference
other entities as part of their Output, with the intention of reducing sizes
of responses by excluding details that are not essential to the request. For
example, the response schema for a category lists the articles of the category;
since data such as the entirety of the article content is not necessary for
requests that fetch a category, the ArticlePreview schema is used instead,
which provides only the name of the article and ID to be able to fetch its
complete information in another request if necessary.

10.8.9 Catch-all routes

Since both categories and articles are meant to map to URLs on the published site,
the API also identifies them by URL. For example, if an article “Red velvet” is in a
“Cakes” category that is within a “Cooking recipes” parent category, then it may be
retrieved with a GET /articles/cooking_recipes/cakes/red_velvet request.

In FastAPI this is implemented using “catch-all” routes; only a single route
is defined for each entity type (/categories/ and /articles/) but are configured to
accept trailing URL components that the endpoint handler receives as an additional
parameter. As such, a request like GET /categories/cooking_recipes/cakes is
handled by the /categories/ endpoint and receives /cooking_recipes/cakes as
a parameter.

As mentioned in the database implementation, the category entity uses a self-
referential relationship to represent the parent-child dynamic and allow “nesting”
categories. This allows traversing them like a tree.

98

Since the API uses slash-delimited URL paths as inputs, to validate a path it’s
necessary to decompose it into its parts and traverse the categories tree by fetching
the subcategories. This is necessary for category creation to validate the parent
category to place a new category under; since there may be multiple categories with
the same directory name but under different parents, it is necessary to traverse all
categories along the path to validate they exist (and have the correct parent) and
to find the parent category of the new category being created.

This traversal is necessary for validating paths, but is unnecessarily slow for
simply resolving a URL to a category. For this, categories also cache their complete
URL so they may be retrieved using a single SELECT query. This cached URL is
calculated when creating the category, as well as whenever the category’s (or its par-
ents’s) directory name changes. Changing the directory name requires this cached
field to be recalculated for all the subcategories, however this is an infrequent oper-
ation. To make resolving a URL to its category fast, the URL field is indexed using
the “hash” index option in PostgreSQL. This creates a hash-table structure that
allows looking up categories by this field in constant time; with enough categories
in the system this is faster than a regular alphabetical index.

Articles may be moved to a different category via the PATCH /articles/ endpoint
as opposed to the categories one. Although both endpoints make sense conceptually,
the complexity of implementation (and complexity of use for the client) differs
greatly:

• Moving an article using the article endpoints requires the user only to specify
the new category for the article.

• Moving an article by patching a category would require the client to provide
a new list of all articles for both the old category (with the article(s) being
moved out) and new category (with the article(s) moved in). This implies not
only 2 requests to the API, but also that the article(s) being moved would,
at least temporarily, be in an orphaned state where they don’t belong to a
category. This is an awkward object state that would create a lot of hassle to
deal with.

Though this appeared very clean and convenient at first, it poses a small problem
with implementing nested resources, such as routes for comments of an article.
Usually REST APIs use numerical IDs, thus there would not be issues with creating
a route such as GET /articles/<ID>/comments. When using string identifiers for
resources that in themselves are also paths, a possibility for ambiguity is introduced;
it’s unclear whether a request to GET /articles/SomeID/comments refers to the
comments of an article with the path “SomeID”, or if it refers to an article whose
path is “SomeID/comments”.

The project worked around this by using a separate top-level route (/comments
/) rather than nesting resources.

10.8.10 Navigation bar schema

The site configuration database table stores the model of the site’s navigation bar,
as the requirements needed it to be configurable. Though it would’ve been possible

99

to automatically generate the sitemap based on the categories tree, it was thought
to be more desirable to give the user control over it, especially to allow it to link to
external sites.

The navigation bar is stored as a JSON document with a tree schema, where
the root nodes are intended to correspond to the top-level navigation links, while
child elements would correspond to secondary links the frontend would display in
dropdowns. This schema supports different nodes to allow linking different content
and structuring the navigation bar:

• Article: links to a specific article on the site. Intended to create links to
articles that act as special standalone pages, such as the typical “About”
page.

• Category: links to a category’s index.

• External URL: arbitrary links to external sites that may be related to the
blog.

• Group: groups multiple kinds of navigation nodes under a parent node, in-
tended to create dropdowns in the navigation bar.

The JSON identifies articles & categories by their numeric IDs instead of their
paths to make it robust against articles/categories being renamed or moved. The
tree does need to be re-validated when any article/document is deleted, as the lack
of formal relationships makes this impossible to detect, however this was considered
not problematic as deletions aren’t done frequently.

The API parses this document into a response schema that includes the meta-
data of the articles/categories so they may be displayed easily by the client without
needing to make additional requests to fetch them.

The API to update the navigation bar uses the user-friendly path identifiers
as the rest of the API. The schema classes make use the Pydantic Discriminator
feature to be able to properly validate the differents kinds of nodes based on a
“type” field.

As noted previously, using JSON for this is an unusual choice, but one justified
by how cumbersome it would be to model all these nodes using separate tables.
The navigation schema is semi-structured, and thus would’ve been much more con-
venient to implement if the project were using a documental database.

100

10.9 Usability tests

10.9.1 Methodology and planning

The following pages contain the script with the tasks given to the participants after
the introduction and consent form:

Task 1
The first task tests the navigation of the published site by
having the user find an article of a specific theme, which may be
done by navigating to a specific category, or through the search
bar or tag filters.

Script for the participant:

You're looking for curry recipes to cook for lunch, and
stumbled upon a general cooking blog that looks alright.

Browse the site and look for a recipe for some red curry.

The task finishes once you have found instructions on how to
cook some red curry.

Starting page: http://localhost:3000/

Figure 50: Script for task 1 of the usability test.

101

Task 2
The second task tests posting comments on articles, which
involves logging in via SSO.

Script for the participant:

You have tried following a recipe from the site, but the taste
turned out quite bad, and you suspect it's because one of the
instructions in the recipe is wrong. You decide to try to let the
author of the recipe know.

Post a comment on the article to tell the writer that some part
of the recipe is wrong. Include a quote from any text in the
article and an emoji to sound more friendly.

The task ends once you see the comment was posted.

Starting page: http://localhost:3000/articles/oriental/Red_Curry

Figure 51: Script for task 2 of the usability test.

102

Task 3
The third task covers creating an article. The user assumes the
role of a site staff member.

This task involves the article editor and is intentionally a bit
open-ended to observe the user's first impressions and
experience with the editor.

Script for the participant:

After contacting the site author to tell them about the mistake
in that previous recipe, you were hired to work on the site,
and tasked with writing a new pasta recipe.

Your task is to access the site's management panel, create a
new article for a pasta recipe, and write some step-by-step
instructions on how to cook it.
You're free to write the article how you want, but the boss
requires you to add at least 1 image.

The task ends once you have published the article and verified
that it's visible on the site.

Starting page: http://localhost:3000/admin/login

Username: editor123B
Password: asdasd1!

Figure 52: Script for task 3 of the usability test.

103

Task 4
This task has the participant use specific editor tools to
complete an article where another editor user has left "TO-DO"
notes using the annotations feature, which also serves to gauge
the participant's response to collaborative features.

Script for the participant:

Some other member of the site started writing a carbonara
pasta recipe, but they couldn't finish the article and left some
problems for you to fix. He said he left notes on what's left to
do.

Your task is open the editor for the carbonara article, and to
fix every issue that he noted within.

The task ends once you have addressed every issue, published
the article and verified it looks alright in the site.

Starting page: http://localhost:3000/admin/content

Username: editor123B
Password: asdasd1!

Figure 53: Script for task 4 of the usability test.

104

Task 5
The final task has the user become the site's manager and
perform some site-wide configuration changes. It tests the
"Configuration" tab of the admin panel specifically, as well as
the navigation bar editor.

Script for the participant:

After becoming an experienced writer for the site, you got
promoted to the boss and now have full control over it. You
decide to give it a rebranding.

Your task is to change the site's name, upload a new logo, as
well as to add a link to your pasta article to the navigation bar
so it's easier to get to.
(You have a nice new logo saved on the computer already.)

The task ends once you confirm that the logo and navigation
bar was changed on the site.

Starting page: http://localhost:3000/admin/login

Username: pip12345
Password: pip1234$

Figure 54: Script for task 5 of the usability test.

105

10.9.2 Usability test results

This section contains the spreadsheets used to note down the results and observa-
tions of the usability tests(Fig. 7.1).

Figure 55: Results and observations of task 1 of the usability testing.

Figure 56: Results and observations of task 2 of the usability testing.

Figure 57: Results and observations of task 3 of the usability testing.

106

Figure 58: Results and observations of task 4 of the usability testing.

Figure 59: Results and observations of task 5 of the usability testing.

Figure 60: Results of the system usability scale questionnaire.

107

Figure 61: General feedback, comments and suggestions from the participants.

10.10 Design artifacts

The following sections contain complete lists of the design artifacts created during
the requirements gathering phase in Section 3.

10.10.1 Functional requirements

This annex contains the complete list of functional requirements, grouped by their
corresponding user story epic.

10.10.1.1 User management

The user management requirements revolve around administration of the site staff’s
accounts. The site only supports traditional accounts for the staff that manage
the site and its content - regular site visitors (the “reader” role) may “log-in”
using third-party authentication systems instead, described later in the “Content
exploration and interaction” requirements list.

1.1 Admins should be able to create editor accounts with a username & password

1.2 Editors should be able to edit their profile (name, avatar, biography)

1.3 Editors and admins should be able to change their password

1.4 Admins should be able to set which under which categories an editor can
create & edit articles and subcategories

1.5 Editors and admins should be able to log in using username and password

1.6 Admins should be able to delete editor accounts

1.7 Admins and editors should be able to opt into 2-factor authentication for their
accounts

108

10.10.1.2 Article creation and management

The article creation requirements describe the options the editors have for setting
up new content articles for the site. Articles are organized into categories, which
model file directories and would define the sitemap (URL structures).

2.1 Editors should be able to create named categories to organize articles themat-
ically

2.2 Editors should be able to create an article under a category

2.3 Editors should be able to set an article to be published (made visible to
readers) after a set date & time

2.4 Editors should be able to add text tags to articles

2.5 Editors should be able to save unfinished articles as “drafts” which are not
visible to readers

2.6 Editors should be able to set whether comments can be posted on an article

2.7 Editors should be able to mark other editors as co-authors of an article

2.8 Editors should be able to set whether an article displays metadata (creation
date, author) to readers or only the article content itself

2.9 Editors should be able to set a summary/short description of the article to be
displayed in contexts where the article is previewed

2.10 The system should auto-generate summaries/short descriptions of articles that
do not have these set manually

2.11 Editors should be able to set how articles are displayed while browsing a
category; in a vertical paginated layout, or using a grid card-like view

2.12 Editors should be able to set how articles within a category are sorted; chrono-
logically by publishing date or manually-ordered

2.13 Editors should be able to set a featured image for an article, to be displayed
in paginated views

These operations would mainly be accessible from a site control panel accessible
only to site staff.

10.10.1.3 Article editing

The article edition requirements mainly concern the functionality of the rich-text
article editor and the semantic blocks the user can insert into them.

Though not specified explicitly, the “add X” requirements should also allow the
user edit the result in posterity or to remove it from the article.

109

3.1 Editors should be able to format text within articles (bold, italics, underline,
mono-spaced/code)

3.2 Editors should be able to add images to articles by choosing a file to upload
and setting its alt text

3.3 Editors should be able to add images to articles by choosing an image that
was already uploaded to the site previously

3.4 Editors should be able to add images to articles by hotlinking them

3.5 Editors should be able to edit existing articles

3.6 Editors should be able to add code blocks to articles and set their language
for syntax highlighting

3.7 Editors should be able to add section headers to articles

3.8 Editors should be able to reorder sections within an article

3.9 Editors should be able to add tables to articles, consisting of text cells

3.10 Editors should be able to add links to articles, specifying URL and its name/-
text

3.11 Editors should be able to add MathJax blocks to articles

3.12 Editors should be able to add YouTube embeds to articles

3.13 Editors should be able to add admonition blocks to articles, with different
styles for semantics (note/info, warning, danger)

3.14 Editors should be able to add nestable bullet-point or ordered lists to articles

3.15 Editors should be able to add footnotes to articles, referenced from text within
the article

3.16 Editors should be able to add a card with their profile details (name, avatar,
short biography) at the bottom of articles

3.17 Editors should be able to set whether an article is visible to readers

3.18 Editors should be able to delete articles

3.19 Editors should be able to undo operations within the article editor

3.20 Editors should be able to redo operations within the article editor

3.21 Editors should be able to insert emojis to articles from a searchable list

3.22 Editors should be able to customize keyboard shortcuts for operations

3.23 Editors should be able to customize which operations are visible in the toolbar

110

3.24 Editors should be able to reorder operation shortcuts shown in the toolbar

3.25 Editors should be able to add a subtitle / figure description to images

3.26 Editors should be able to insert common mathematical symbols from a search-
able widget

3.27 Editors should be able to restore cached article edits if they exit the article
editor without saving

3.28 Editors should be able to save article templates to reuse in new articles

3.29 Editors should be able to create macros to insert custom article structures or
content

3.30 Editors should be able to add notes within articles that are only visible while
editing the article

3.31 Editors should be able to simultaneously edit an article in real-time

10.10.1.4 Content exploration and interaction

The content exploration set of requirements concerns the ways that visitors (the
“reader” role) will interact with the site’s content articles.

4.1 Readers should be able to browse articles by their category

4.2 Readers should be able to search articles by their text content and name

4.3 Readers should be able to browse articles by their tags

4.4 Readers should be able to browse articles by their author

4.5 Readers should be able authenticate themselves using a third-party platform

4.6 Identified readers should be able to post plain text comments on articles

4.7 Editors should be able to reply to comments on articles

4.8 Editors should be able to delete comments on articles

4.9 Readers should be able to delete their own comments on articles

4.10 Readers should be able to subscribe to an RSS feed of the website

4.11 Readers should be able to share articles to common social media platforms
(ex. Facebook, Twitter, BlueSky, Pinterest) directly

4.12 Editors should be able to add text patterns to filter out undesirable comments

4.13 The system should hide comments that are filtered out by the set text patterns
so they aren’t visible to other visitors of the site

111

4.14 Editors should be able to approve filtered-out comments to be shown publicly

The “categories” would define the sitemap; the published site would have pages
corresponding to them, accessed through a navigation bar, which would display a
paginated list of article previews linking to the articles’s dedicated page where they
may be read in full.

10.10.1.5 Event creation

As described previously, the site should also support being used for posting generic
announcements for events that take place outside the site. Conceptually, such event
announcements can be viewed as a subtype of article with additional functionality:

5.1 Editors should be able to create events under a category

5.2 Editors should be able to set a date, time & duration of an event

5.3 Readers should be able to view upcoming events in a chronological manner

5.4 Readers should be able to register interest in an event using their mail

5.5 The backend should be able to send e-mail reminders to readers who registered
interest in an event

5.6 Readers should be able to unsubscribe from e-mail reminders about events

5.7 Editors should be able to set a featured external link for an event

5.8 Editors should be able to view who registered interest in an event

10.10.1.6 Site management

The site management requirements concern site-wide operations and configuration
options which would allow the site owner(s) to tailor the presentation of the site to
their needs and demographic.

6.1 Admins should be able to set the logo image of the site

6.2 Admins should be able to set the name of the site in the navigation bar

6.3 Admins should be able to set which categories and articles are accessible from
the navigation bar

6.4 Editors should be able to rename categories

6.5 Admins should be able to edit the text shown on a sidebar on the home page

6.6 Admins should be able to set which category’s articles are shown on the home
page

6.7 Admins should be able to choose whether to insert a Twitter/BlueSky feed in
the sidebar

112

6.8 Admins should be able to choose whether to insert a contact form in the site,
with subject, reply e-mail and message fields, usable by readers

6.9 Admins should be able to set the language of the static interfaces and labels
of the site

6.10 Admins should be able to set which social media platforms articles can be
shared to

• Desirable as some supported platforms might not be relevant to the site’s
demographic; for example, an english-speaking blog wouldn’t benefit
from a button to share to vk (a russian-speaking social media network)

6.11 Editors should be able to edit the order in which articles appear in a section

6.12 Editors should be able to move an article to another section

6.13 Admins should be able to add external links to the navigation bar

6.14 Admins and editors should be able to view a log of editor and user activity
(an audit log; would show new comments, article additions/edits)

6.15 Admins should be able to set the favicon of the site

10.10.2 Use cases

The structure the project used for use case scenarios is the following:

• Actor(s): the user roles involved. This may also include technical actors
such as the backend or database, when their behaviour/response is relevant
to specify.

• Goal: what the actors intend to achieve with the use case, from a user per-
spective.

• Preconditions: the state the system must be in for the use case to be able
to happen. Gives context for the use case.

• Trigger: the motivation for the actors to begin the use case. If the actor is
a user, this helps see the value that the use case has for them.

• Scenario: the script of the use case, with the user & system interactions.
Divided into 2 parts:

– Basic flow: the script of the use case in an ideal scenario where all
actors behave as expected (users enter valid data, the system doesn’t
error, there’s no network issues, etc.)

– Alternative flows: deviations in the basic flow that occur when actors
act unexpectedly (users enter invalid data, the system runs into some
issue, network problems, etc.). These are helpful to determine how the
system should behave in case of such errors.

113

• Notes: additional details and technical requirements to watch out for during
implementation, or clarifications.

A single use case may cover multiple functional requirements if they’re strongly
related. Any cases of “extends” or “includes” are indicated by referencing the
relevant UC at the moment they could occur within the basic flow.

Though similar in execution, the use cases for browsing articles by category, tags
or author do not use inheritance in the use case diagram as the triggers for them
are different - they are initiated differently from each other.

Aside from user roles, the use cases also reference a “system” role to denote
important automated tasks to be done by the system - in the project’s case, the
backend server.

The following sections list the use cases for which complete scenario scripts were
written.

10.10.2.1 1. User management

UC 1.1 - Create editor account
Actor(s): admin, backend
Goal: register an account for a content editor on the site
Preconditions: the admin user is logged in
Trigger: the admin navigates to the user control panel and selects the option to
create a new editor user
Basic flow: the admin is redirected to a form requesting the information of the
new account: username (the login identifier), initial password, display name, and
optionally sets their avatar and biography text. Upon confirming, the backend cre-
ates the user entry and reports back the success.

Alternative flows:

• If the username is already in use by another account or the username/password
don’t meet the requirements described in notes, an error message is displayed
and the account is not created. The admin can then retry submission without
data loss.

Notes:

• The username should be at least 8 characters long.

• The password should be at least 8 characters long, with at least 1 digit and
one non-alpha-numeric character to make it less prone to dictionary attacks.

• The UI should inform the user about the aforementioned field requirements.

UC 1.2 - Log-in
Actor(s): editor or admin, backend
Goal: to gain access to the site and content management functions
Preconditions: an editor or admin account exists for the user
Trigger: the user navigates to the “log-in” page

114

Basic flow: the user is redirected to a page where they are prompted to enter their
username and password. Upon confirming, the backend responds with a temporary
authentication token and the user is redirected to the control panel.

Postconditions:

• The user gains access to the functionality of the editor or admin role, based
on the account type.

Alternative flows:

• If the user enters invalid credentials, an error is shown and the user remains
on the page and can resubmit the form without data loss.

Notes:

• The authentication token should expire in a few days.

• The client should persist the authentication token for reuse in later sessions.

• The client should discard the authentication token after its expiration date or
if a request made it with it fails due to the token no longer being valid.

• The log-in page should make it clear that log-in functionality is only intended
for site staff.

• An admin account should exist in the system by default.

UC 1.3 - Edit profile
Actor(s): editor, backend
Goal: to change the displayed information of an article writer
Preconditions: the editor is logged in
Trigger: the editor navigates to the control panel and selects the “edit profile”
option
Basic flow: the editor is redirected to a form where they can set their display
name, short biography, and (re)upload an avatar, with the form fields defaulting to
their current information. The editor can then press “confirm” to have the backend
update their information.

UC 1.4 - Edit permissions
Actor(s): admin, backend
Goal: to change which categories an editor can create & edit articles under to
prevent possible abuse
Preconditions: the admin is logged in and the relevant category exists
Trigger: the admin navigates to the “content management” section of the control
panel and selects a “configure permissions” option under the category they want to
edit permissions for
Basic flow: the admin is presented with a multi-choice widget where they can
select which editors have write access to the category. After selecting the editors,
the admin presses “confirm” to have the backend update the permissions.

Notes:

115

• The editor should be able to crop the avatar image and preview it in the UI
before uploading.

• If any field was changed, the user should be warned if they attempt to exit
the page without confirming the changes.

• Permission to manage a category also extends recursively to all its subcate-
gories. The admin should be warned of this to prevent user error/confusion.

• If a category has no editors with permission to manage it, a warning should
be shown beside it in the control panel to prevent user error/confusion.

10.10.2.2 2. Article creation and management

UC 2.1 - Create category
Actor(s): editor, backend
Goal: creating a category under which articles or further subcategories can be or-
ganized
Preconditions: the editor account has permission to create categories
Trigger: the editor navigates to the “content management” section of the control
panel and selects the “create category” option, either at the root of the content tree
or under an existing category
Basic flow: the editor is prompted to provide the user-friendly name of the cat-
egory as well as its URL identifier and submits it; the backend then registers the
category and the content tree view is refreshed so the editor can see the result.

Alternative flow:

• If the category name or URL path is already used by another category under
the same parent category, the system shows a warning and prevents submis-
sion.

• If while creating a category an admin removes the editor’s permissions to
manage the parent category, the editor is shown an error message and is
prevented from submitting.

Notes:

• The category name should accept unicode.

• The category URL/path should only accept characters that do not need to
be URL-encoded, to ensure category URLs are readable.

• In case of error while submitting, the editor should be able to resubmit the
form without data loss.

UC 2.2 - Create article
Actor(s): editor, backend
Goal: creating a new content article
Preconditions: a category relevant to the article exists (see UC 2.1)

116

Trigger: the editor navigates to the “content management” section of the control
panel, selects the category they wish to create the article under and select the “new
article” option
Basic flow: the editor is redirected to a rich text editor UI where they enter the
article’s content (see UC 3.1) and hit “submit” once done. Prior to sending the
article to the backend, the editor is prompted to configure its metadata (see UC
2.3). Once the editor confirms to post the article, the backend stores the article and
the editor is redirected to the URL corresponding to the article so they can verify
it was posted and looks as intended.

Notes:

• If the editor must leave the page before finishing the article, they can choose
a “save as draft” option to have the system save it without the article being
visible to readers on the site. The editor is then redirected back to the content
management panel where the draft article will be visibly marked as a draft
and available for further editing.

• If an error occurs while submitting the article or saving it as a draft, the
editor stays on the same page, is shown an error message and can retry the
submission without data loss.

• If while saving the article or draft an admin removes the editor’s permissions
to manage the category the article is under, the editor is shown an error
message and is prevented from submitting.

UC 2.3 - Edit article settings
Actor(s): editor, backend
Goal: changing the presentation and metadata of an article
Preconditions: an article is being edited
Trigger: the editor selects an “edit metadata” option in the article editor or the
content management panel.
Basic flow: the editor is shown a prompt that includes settings such as whether
comments are enabled on the article, the date & time the articles should be pub-
lished at (defaulting to current time), whether the article should display this meta-
data to readers. In this prompt the editor may also mark other editors as co-authors
of the article by selecting them from a multi-choice widget, choose whether their
short biographies should be displayed under the article, as well as adding multiple
text tags to denote the themes the article covers.

Postconditions:

• Pages containing the article are updated to reflect the new settings.

Notes

• When editing the tags of an article, the editor should be shown previously-
used tags (from other tags) as suggestions to prevent tag fragmentation (ex.
using a “programming” tag in one article, and “programs” tag in another)

117

10.10.2.3 3. Article editing

UC 3.2 - Insert image into article
Actor(s): editor, system
Goal: add an image to an article being edited
Preconditions: the editor is editing an article
Trigger: the editor selects the “insert image” option from the toolbar
Basic flow: the editor is shown a widget with the different options to insert an
image based on its source (see derived use cases; UC 3.2.1 - UC 3.2.3). The editor
then selects “confirm” and the image is inserted onto the rich text editor at the
previous cursor position.

Notes:

• In all cases the editor is also prompted to enter alt text for the image.

• The alt text of images should be displayed as tooltips when hovering over the
inserted image content, both in the article editor and in the published article.

UC 3.2.1 - Upload image
Actor(s): editor, backend
Goal: upload a new image to add to an article
Preconditions: the editor is adding an image
Trigger: the editor selects the “insert image” option from the toolbar UI and
chooses “upload image”
Basic flow: derives from UC 2.5. The editor is prompted to select a file from their
device, in addition to entering a path to store it under in the backend.

Postconditions:

• The image is previewed onto the rich text editor UI.

• The uploaded image is stored in the backend.

Alternative flows:

• If the user enters a path that is already used by an existing image in the
backend, they are shown a warning that uploading the image will replace the
existing one in all places where it was previously used.

• If the user chooses to upload a file of an unsupported type, a warning is shown
and they are not able to submit it.

UC 3.2.2 - Insert existing image
Actor(s): editor, backend
Goal: add an image already in the site to an article
Preconditions: the editor is adding an image
Trigger: the editor selects the “add image from site” option from the “insert im-
age” widget
Basic flow: derives from UC 2.5. The editor is shown a tree-structured view of

118

the images that were previously uploaded to the site. The editor then selects a file
and clicks “confirm”.

UC 3.2.3 - Insert hotlinked image
Actor(s): editor
Goal: add an image from an external site to an article
Preconditions: the editor is adding an image
Trigger: The editor selects the “add image from URL” option from the “insert
image” widget
Basic flow: derives from UC 2.5. The editor is then prompted to enter the URL
of the image, after which they can click the confirm option.

UC 3.3 - Add code block to article
Actor(s): editor
Goal: inserting formatted code to an article
Preconditions: the editor is editing an article
Trigger: the editor selects the “insert code” option from the toolbar UI
Basic flow: a widget is inserted at the last cursor position within the article.
The editor can then write or paste code into the widget and set the code language
through a dropdown besides the widget. Upon changing the language of the code
block, syntax highlighting corresponding to the language is applied to the text
within the widget.

Notes:

• The selected language should default to a “plain text” option with no syntax
highlighting.

• The language selection dropdown should support search if the list of supported
languages is long.

• The language selection dropdown should only display when editing the article
(and not when viewing it after publishing).

• The widget should display a “copy to clipboard” option when viewed in a
published article.

UC 3.4 - Reorder sections
Actor(s): editor
Goal: reordering semantic sections of content in an article
Preconditions: an article is being edited
Trigger: the editor opens the “table of contents” within the article editor
Basic flow: the rich text editor UI displays a table of contents as a tree of headings
within the article. The editor can select and drag-and-drop sections to move all its
section’s content to be before or after another. After doing so, the text field area of
the article editor is updated to move the content to the new corresponding position
within the article content.

Notes:

119

• The content of a section is considered to start at its heading (included) and
ends before the next heading.

UC 3.5 - Add table to article
Actor(s): editor
Goal: insert a table content block to an article
Preconditions: an article is being edited
Trigger: the editor selects the “insert table” option in the toolbar UI
Basic flow: the editor is prompted to enter the amount of rows and columns of the
table and whether to insert a row of column headers. Upon confirming, a table of
row x columns cells is added to the article editor area at the previous cursor posi-
tion. The editor can then select cells to insert text content within them. The editor
can also choose to add/remove rows and columns to the table after its insertion,
which will add empty cells in the corresponding axis or remove cells.

Notes:

• The row of column headers should be visually distinct to denote its semantic
meaning

UC 3.6 - Add link to article
Actor(s): editor
Goal: inserting a URL link in an article
Preconditions: an article is being edited
Trigger: the editor selects the “insert link” option within the toolbar UI
Basic flow: the editor is shown a widget that prompts them to enter a URL and
the text of the link. Upon confirming, a link is inserted at the previous cursor
position within the article editor. The editor can click on the link within the arti-
cle editor to preview its URL in a popover, and can also edit the destination from it.

Notes

• While the link’s text is selected, typing will edit the link’s text, and deleting
all its text removes the link.

• Within the article editor the link is displayed as an HTML link, but does not
function as such to prevent accidentally leaving the page.

UC 3.7 - Add footnote to article
Actor(s): editor
Goal: inserting a footnote that can be referenced from earlier parts of an article
Preconditions: an article is being edited
Trigger: the editor selects the “insert footnote” option in the toolbar UI
Basic flow: the editor is prompted to reference an existing footnote from an or-
dered list or to create a new one. If a new footnote is created, the editor is prompted
to enter the footnote text. In both cases, a “[i]” marker referencing the footnote
is added to the previous cursor position in the article, with “i” corresponding to
the index of the footnote. The editor may delete references by pressing backspace

120

while the cursor is in front of them. If all references of a footnote are deleted, the
footnote itself is also deleted.

Alternative flows:

• If no footnotes exist in the article yet, the toolbar option immediately inserts
a new footnote without opening the prompt to reference an existing one or
create a new one.

Notes:

• Selecting a footnote with a cursor should preview its footprint in a tooltip
(both while editing and in a published post)

• Deleting a footnote should automatically delete all references to it in the text
and adjust the indices of the remaining footnotes to be sequential.

10.10.2.4 4. Content exploration and interaction

UC 4.1 - Post comment to article
Actor(s): identified reader, backend
Goal: add a comment to an article
Preconditions: the reader is on an article page that has comments enabled
Trigger: the reader scrolls down to the end of the article where a comment section
is shown
Basic flow: the reader is presented with a text field where they can write their
comment in plain text, with a character limit. After writing the comment, the
reader can press “submit” and the backend will save the comment.

Postconditions:

• The page view is updated to show the written comment.

Alternative flows:

• If the comment fails to be posted to the backend, the reader is shown an error
message and can retry submission without data loss.

Notes:

• The text length limit should be visible to the reader. The reader should not
be stopped from writing beyond the limit - only stopped from submitting in
that case.

10.10.2.5 5. Event creation

UC 5.1 - Create event
Actor(s): editor, backend
Goal: add an event announcement to the site
Preconditions: a relevant category to post the event under exists

121

Trigger: the editor selects a “create event” option in the content management
panel under an existing category
Basic flow: the editor is redirected to a page with a form to fill in the details of the
event, date (in the editor’s local time), and optionally time of day and duration (in
minutes, hours and days). The editor must also add information about the event
in the form of an article using the article editor (see UC 2.2, 2.3 and 3.1)

Notes

• The event-specific details may also be edited when editing the corresponding
article (as in UC 2.3) with no restrictions on changing the date (to allow fixing
user errors).

• If the event date is changed to a past date, readers who registered interest
should not receive any notification.

• When viewing the published event, the date and time should be converted to
the reader’s timezone, and the reader should be able to see the timezone to
avoid confusion.

122

	Introduction
	Project planning
	Requirements gathering
	Technology
	Implementation and development
	Deployment
	Evaluation
	Conclusions
	Future work
	Annex

