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Abstract

In Mediterranean climate regions, intermittent rivers (IRs) harbor highly dynamic communities with species and trait
composition changing over time and space. Simultaneously considering multiple biodiversity facets and a spatiotemporal
perspective is, therefore, key to developing effective conservation strategies for these ecosystems. We studied the spatiotem-
poral dynamics of aquatic macroinvertebrates in rivers of the western Mediterranean Basin by analysing (1) the taxonomic
and functional richness and the local contribution to beta diversity (LCBD; measured considering taxonomic and functional
facets) of perennial rivers and IRs over five sampling times, and (2) their relation with flow intermittence, local environmental
uniqueness, and the number of anthropogenic impacts. Both analyses were also conducted for the subset of data including
only IRs to compare values between their flowing and disconnected pool phases. According to our results, taxonomic and
functional richness tended to be higher in perennial rivers than in IRs, while taxonomic and functional LCBD tended to be
higher in IRs than in perennial rivers. When comparing IR sites over time, higher values of taxonomic and functional LCBD
corresponded mostly to their disconnected pool phase. Flow intermittence, the number of anthropogenic impacts and the
environmental uniqueness were significant predictors of taxonomic and functional richness, but only flow intermittence
was an important predictor of taxonomic LCBD. For the IR-only data subset, disconnected pool permanence was the main
predictor explaining spatiotemporal patterns. Our results highlight the importance of IRs to biodiversity conservation of
Mediterranean climate rivers, especially during the disconnected pool phase, suggesting that these ecosystems cannot be
ignored in conservation planning strategies.

Keywords L.CBD - Functional traits - Non-perennial rivers - Macroinvertebrates - Temporal beta-diversity - Temporary
rivers

Introduction B-diversity can be measured as the compositional dissimi-
larity in species assemblages, either across space (Baselga

Incorporating spatiotemporal alpha (a), beta (f) and gamma  2010; Anderson et al. 2011) or time (Legendre and Gauthier

(v) diversity information into community composition
analysis is crucial to developing effective biodiversity and
ecosystem conservation strategies (Pereira et al. 2013; Hill
et al. 2016). Commonly, conservation efforts have focused
on protecting the number of species within a site (taxonomic
a-diversity) or region (taxonomic y-diversity or regional
diversity), while efforts to characterize and incorporate the
variation in species composition (taxonomic -diversity) are
relatively more recent (Koleff et al. 2003; Anderson et al.
2011; Socolar et al. 2016; Bush et al. 2016). Taxonomic

Extended author information available on the last page of the article

2014; Legendre 2019; Shimadzu et al. 2015). Spatial taxo-
nomic f-diversity aims to understand the processes govern-
ing spatial variation in community composition, while tem-
poral taxonomic B-diversity provides information on how
species composition changes over time (Anderson et al.
2011; Legendre and Gauthier 2014; Legendre and Condit
2019). The combination of spatial and temporal p-diversity
has therefore the potential to better represent how and why
community composition changes over time, particularly in
response to environmental changes (Legendre and Condit
2019; Vander Vorste et al. 2021; Faustino de Queiroz et al.
2022). As a result, this integrated approach can help to better
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identify areas that may be more resilient to change and those
that may be more vulnerable, allowing for targeted conserva-
tion efforts (McGill et al. 2015).

Functional diversity can provide complementary insights
into the impacts of disturbance on ecosystem functioning
(Flynn et al. 2011; Gross et al. 2017). For instance, the use
of functional diversity allows us to clarify the role of each
species in ecosystem processes and their resistance and/or
resilience capacity to environmental changes, either natural
or anthropogenic (Tobias and Monika 2011; Villéger et al.
2013, 2017; Soria et al. 2020). Functional p-diversity can be
defined as the dissimilarity in trait composition across space
(Villéger et al. 2013; Aspin et al. 2019) or time (Baselga
et al. 2015; Magurran et al. 2019). As the increase in multi-
ple anthropogenic impacts is threatening the stability of eco-
systems, understanding how both taxonomic and functional
diversity influence ecosystem functioning can contribute to
better predicting the ecological consequences of biodiver-
sity loss (Hooper et al. 2005; Flynn et al. 2011; Gutiérrez-
Canovas et al. 2015).

Intermittent rivers (IRs) are non-perennial watercourses
that typically shift among flowing, disconnected pool and
dry phases, and are therefore highly dynamic ecosystems
(Gallart et al. 2012, 2017). Flow intermittence exerts a pri-
mary control on IR ecosystem structure and function over
time and, consequently, biodiversity patterns typically follow
these changes (Datry et al. 2014; Arroita et al. 2018; Arias-
Real et al. 2020). In the case of aquatic macroinvertebrates,
surface flow cessation and the subsequent formation of dis-
connected pools imply the disappearance of riffle-dwelling
species and the appearance of pool-dwelling species (Bon-
ada et al. 2006; Bogan et al. 2017; Tonkin et al. 2017). With
the complete drying of the riverbed, some taxa may emerge,
move to other wet habitats or to the hyporheic zone, or enter
a desiccation-resistant life stage (Lytle and Poff 2004; Bogan
et al. 2017; Stubbington et al. 2019). Shifts from dry to flow-
ing phases following rewetting favour recolonization, con-
tributing to the recovery of local communities in IRs (Leigh
et al. 2016; Bogan et al. 2017). IR communities are highly
variable in time, with species and trait composition chang-
ing from one period to another (Datry et al. 2014; Bogan
et al. 2017). Nevertheless, climate change and increasing
human water demand are altering biodiversity patterns and
functional processes of IRs (Datry et al. 2014; Leigh et al.
2019), and thus a better understanding of their contribution
to biodiversity is timely.

In comparison to IRs from other climatic regions, those
in Mediterranean climate areas are characterized by being
highly predictable in terms of seasonality, resulting in well-
known community shifts between flowing and non-flowing
phases (Hershkovitz and Gasith 2013; Tonkin et al. 2017).
In addition, Mediterranean-climate IRs are global biodi-
versity hotspots, possessing high levels of endemism, but
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also being particularly vulnerable to anthropogenic impacts
(Bonada and Resh 2013; Cid et al. 2017; Newbold et al.
2020). Considering their high spatiotemporal variability,
identifying key sites and periods of time that contribute the
most to regional diversity could be informative for conserva-
tion management (Ruhi et al. 2017; Sdnchez-Montoya et al.
2020; Rodriguez-Lozano et al. 2023).

Here, we studied the spatial and temporal dynamics of
aquatic macroinvertebrates in 20 rivers of the western Medi-
terranean Basin over different aquatic phases by analysing
the taxonomic and functional richness (hereafter TRic and
FRic) and the local contribution to overall taxonomic and
functional B-diversity (hereafter T-LCBD and

F-LCBD, respectively; Legendre and De Caceres 2013) of
each site over five sampling times. Specifically, we analysed
(1) the values of TRic, FRic, T-LCBD and F-LCBD of per-
ennial rivers and IRs over five sampling times, and (2) their
relationship with three main predictors: flow intermittence,
number of anthropogenic impacts and local environmental
uniqueness. Both analyses were also conducted for the sub-
set of data including only IRs to compare values between
their flowing and disconnected pool phases. Perennial riv-
ers and IRs were sampled along gradients of natural flow
intermittence and anthropogenic impacts to investigate their
influence on LCBD. We used the LCBD because it allows
identifying which sites and times contribute the most to total
B-diversity. We hypothesized that TRic and FRic would be
higher in perennial rivers than in IRs, whereas T-LCBD and
F-LCBD would be higher in IRs than in perennial rivers.
Macroinvertebrate communities in IRs from Mediterranean
climatic regions are exposed to and adapted to higher spa-
tiotemporal variability, and consequently host unique spe-
cies adapted to non-flowing conditions (Bonada et al. 2006,
2020; Bonada and Resh 2013; Leigh et al. 2019). However,
evolutionarily acquired macroinvertebrate resistance traits
in response to drying (e.g. aerial respiration, diapause or
dormancy resistance forms) are less frequent than resilience
traits (e.g. life cycle duration, aerial dispersion) in these eco-
systems (Datry et al. 2014; Leigh et al. 2016; Bogan et al.
2017), which may result in higher dispersal of individuals
during the dry period (i.e. increase in p-diversity or LCBD)
than individuals that remain (i.e. TRic and FRic). Moreover,
we hypothesized that T-LCBD and F-LCBD values would
be even higher during IRs’ periods of disconnected pools
than during their flowing phase because species adapted to
non-flowing conditions with some kind of resilience trait
will move from dry river reaches in search of any site with
water (i.e. disconnected pool). Finally, in addition to TRic,
FRic, T-LCBD and F-LCBD being related to flow intermit-
tence, we also expected them to be positively correlated
with environmental uniqueness (Castro et al. 2019; Heino
et al. 2022), as sites and sampling times with differentiated



Analysing the contribution of intermittent rivers to beta diversity can improve freshwater. ..

Page3of13 66

environmental conditions may have unique species or trait
composition (Ruhi et al. 2017; Bonada et al. 2020).

Methods
Study sites and sampling design

This study was conducted in 20 rivers located in the Medi-
terranean climate region of the Iberian Peninsula (Fig. 1).
Sites were located in three predominantly calcareous catch-
ments, comprising the Ebro, Jacar and Catalan basins. A
100-m site was defined in each river. Ten sites were inter-
mittent and ten were perennial. The study area is character-
ized by a Mediterranean climate, with high seasonal and
inter-annual variability in precipitation and flow regime
(Bonada and Resh 2013; Cid et al. 2017). Sites ranged in
altitude from 6 to 1100 m.a.s.1., and experienced different
hydrological phases over the five sampling times (Table S1),
with discharges ranging from 0 to 0.417 m?/s. See Table S2
and the following section on the Mediterranean Reference
Criteria (MRC index)for further details on the study sites,
such as riparian vegetation (e.g. cover and composition, lat-
eral connectivity), introduced species, pollution (e.g. urban
or industrial effluents), diffuse pollution sources and land
use (e.g. agriculture, intensive grazing, urban use, burned
vegetation), river morphology and habitat conditions (e.g.
substrate diversity, canalization, gravel extraction), and
hydrological alteration and regulation.

Biological dataset

Macroinvertebrates were collected during flowing and dis-
connected pool phases by sampling each site five times dur-
ing a 6-week interval between April and December 2015:
April-May (henceforth t1; spring in the Northern Hemi-
sphere), June (t2; spring), July—August (t3; summer), Sep-
tember (t4; summer) and December (t5; autumn). Therefore,
sampling included flowing (t1), drying (t2—t4) and rewetting
(t5) periods with their corresponding flowing, disconnected
pools and dry riverbed aquatic phases (see Table S1 for fur-
ther details). Because five sites were dry on one to three
occasions, a total of 91 samples were obtained. Our sampling
procedure followed the official standardized protocol used by
water agencies in Spain (MAGRAMA 2013). Samples were
collected using a 250-pum-mesh D-net across all available
microhabitats (i.e. hard substrates, plant detritus, vegetated
banks, submerged macrophytes, sand and other fine sedi-
ments) and preserved in 4% formaldehyde (see Appendix
S1 for more details). Macroinvertebrates were identified to
the lowest taxonomic resolution possible, usually genus, but
with some Chironomidae and Ceratopogonidae identified to

subfamily or tribe. Overall, 194 macroinvertebrate taxa were
identified (Soria et al. 2020).

As suggested in Soria et al. (2020), categories from seven
specific resistance and resilience traits from Tachet et al.
(2010) related to flow intermittence and anthropogenic
impacts were used to study the functional facet of biodiver-
sity: asexual reproduction, resistance forms (i.e. diapause or
dormancy, cocoons), aerial respiration (i.e. spiracle, hydro-
static vesicle), flier and burrower (i.e. epibenthic) or intersti-
tial (i.e. endobenthic) locomotion and substrate relation, less
than a year life cycle duration, more than one reproduction
cycles per year, aerial active and aquatic passive (i.e. drift)
dissemination (Table S3).

Predictors of spatiotemporal B-diversity

Hydrology, anthropogenic impacts and general water quality
parameters of the studied rivers were included as predictors
of LCBD. The TREHS (Temporary Rivers Ecological and
Hydrological Status) software (http://www.lifet rivers.eu/
products/trehs-software/; Gallart et al. 2017) was used to
classify rivers’ hydrological regime (i.e. perennial and IRs)
and to differentiate river sites affected by natural flow inter-
mittence from those with human-driven flow intermittence.
To infer the IRs’ phases (i.e. flow, disconnected pools, dry
riverbed), two temperature data loggers (UA-002 HOBO)
were installed at each river site, which recorded data during
the 30-week study period (see details in Soria et al. 2020).
Thermal amplitude was then used to calculate the total zero-
flow days (i.e. disconnected pools or dry riverbed) during
the 30-week study period (hereafter ZF}) and the number
of days in the disconnected pool phase since the last sam-
ple was taken (hereafter DP,) (Soria et al. 2020). The ZF
hydrological predictor was 0 for perennial rivers and ranged
from 17 to 209 days of total zero-flow days for IRs. The
DP; predictor ranged from 5 to 90 days in the disconnected
pool phase since the last sample was taken (Table S1) and
was only available for IRs. Thus, the ZF provides informa-
tion on the total cumulative drying period of each site, and
thus informed on the degree of intermittency of an IR. The
DP; provides information on the permanence of the discon-
nected pool phase between sampling times. For example,
one IR may have been disconnected, connected and then
disconnected again between t1 and t2, while another IR may
have been disconnected for the entire time between t1 and
t2. Since there was a moderate positive correlation between
ZFy and DP;, the ZF was used to test the spatiotemporal
patterns of taxonomic and functional richness and LCBD
between perennial rivers and IRs, while the DP; was used
when analysing IRs’ spatiotemporal dataset.
Anthropogenic impacts were measured at each river site
by using the number of impacts according to the Mediter-
ranean Reference Criteria (MRC index) (Sanchez-Montoya
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et al. 2009). The MRC index includes information on inva-
sive species, diffuse pollution sources, land-use intensity,
riparian vegetation, river geomorphology, instream habi-
tat conditions and hydrological alterations (Table S2), and
ranges from 0 (highly impacted) to 20 (non-impacted). The
information for each site was obtained from the list of pres-
sures and impacts of the three different river basin water
authorities included in our study combined with field obser-
vations (e.g. detection of invasive species) and, in the case of
hydrological alterations, from the TREHS software. To facil-
itate interpretation, the inverse of the MRC index values was
used (i.e. from 0 =non-impacted to 20 =highly impacted,
hereafter number of impacts; see Soria et al. 2020). As a
result, the number of impacts ranged from O (non-impacted)
to 13.

For each sampling site and time, the following water qual-
ity parameters were measured in situ and analysed in the
laboratory when required: conductivity (uS/cm), pH, tem-
perature (°C), dissolved oxygen (mg/l), chlorophyll-a (mg/
m?), HCO;, Ca, TOC, Mg and SO, (ug/l). Chlorophyll-a
concentration, however, was not used because there was a
moderate negative correlation with the number of impacts
(Soria et al. 2020). Following Castro et al. (2019), the
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Fig. 1 Boxplots showing taxonomic and functional local richness
(a, b, respectively) and LCBD (c and d, respectively) over the five
sampled times: flowing (tl: spring), drying (t2: spring and t3-t4:
summer) and rewetting (t5: autumn) periods with their correspond-
ing flowing, disconnected pools and dry riverbed aquatic phases. The
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method described by Legendre and De Céaceres (2013) was
used to calculate the local contribution to environmental het-
erogeneity (hereafter environmental uniqueness), a measure
describing the environmental uniqueness of each site, which
in this study was in terms of physicochemical characteristics.
To do so, all physicochemical variables (except pH) were
log-transformed and then a standardized Euclidean distance
matrix was used to calculate the environmental uniqueness
of each site. Samples with high values (closer to one) of the
resultant vector are more unique in terms of environmental
conditions (Castro et al. 2019). The predictor of environ-
mental uniqueness ranged from 0.006 to 0.025, with a mean
value of 0.011.

Statistical analysis

The TRic and FRic of each site and sampling time were calcu-
lated (Table S1). Data were rarefied prior to diversity calcula-
tions. FRic was obtained from Soria et al. (2020) and estimated
as suggested by Villéger et al. (2008). T-LCBD and F-LCBD
were estimated for each sample, i.e. for each site and sampling
time (spatiotemporal approach; Legendre and De Céceres
2013; Legendre and Gauthier 2014). T-LCBD and F-LCBD
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Fig.2 Taxonomic (a) and
functional (b) LCBD plots

of each site through the five
sampled times: flowing (t1:
spring), drying (t2: spring and
t3—t4: summer) and rewetting
(t5: autumn) periods with their
corresponding flowing, discon-
nected pools and dry riverbed
aquatic phases. Circle size is
proportional to the contribution
to overall B-diversity for each
period. Filled circles: observed
perennial rivers; empty circles:
observed intermittent rivers.
Sites with significant values of
LCBD (P <0.05) are indicated
in pink. See Table S2 for further
details

a) Taxonomic LCBD b) Functional LCBD

@ Springer



66 Page6of13

M. Soria et al.

values indicate the degree of ecological uniqueness of each
site at each sampling time in terms of taxa abundance or trait
composition, respectively (Legendre and De Céceres 2013).
The T-LCBD was calculated using the taxa abundance matrix
(Legendre and De Céceres 2013). The F-LCBD was calculated
using a matrix with the relative abundance of each trait cate-
gory (columns) across the samples (rows) (Rodrigues-Capitulo
et al. 2009). Following the procedures described by Legendre
and De Caceres (2013), T-LCBD and F-LCBD were esti-
mated using the Euclidean distance on Hellinger-transformed
data (Legendre and Gallagher 2001) and the significance of
each LCBD value (i.e. each site in each sampling time) was
tested with 999 permutations. For IRs, TRic ranged from 8 to
56 (mean: 24.63), FRic ranged from 0.002 to 0.418 (mean:
0.145), T-LCBD ranged from 0.006 to 0.029 (mean: 0.012)
and F-LCBD ranged from 0.002 to 0.117 (mean: 0.013). For
perennial rivers, TRic ranged from 18 to 61 (mean: 37.88),
FRic ranged from 0.056 to 0.432 (mean: 0.2427), T-LCBD
ranged from 0.005 to 0.016 (mean: 0.009) and F-LCBD
ranged from 0.002 to 0.021 (mean: 0.008). A non-parametric
Mann—Whitney U test with a Bonferroni correction was used
to test significant differences between perennial rivers and IRs
over the sampling times.

Linear mixed-effect models (LME) were used to test the
relationship between TRic, FRic, T-LCBD and F-LCBD,
and our set of environmental predictors. Specifically, the ZF;
predictor was used when considering the whole dataset to
compare the response variables along an intermittency gra-
dient (i.e. including perennial rivers with ZF;=0), while DP,
was used when considering data from IRs only to compare

the response variables between IRs’ periods of disconnected
pools and their flowing phase. The number of impacts and
environmental uniqueness predictors were used in both data-
sets to test whether TRic, FRic, T-LCBD and F-LCBD are
negatively correlated with the number of impacts and posi-
tively correlated with environmental uniqueness. All models
included sampling time (t1-t5) as a random factor to assess
whether the relationship between TRic, FRic, T-LCBD and
F-LCBD and predictors changed among sampling cam-
paigns (i.e. spatial effects were assessed directly while time
effects were assessed indirectly).

All analyses were conducted in R software version 3.6.2
(R Core Team 2015), using the packages “ade4” (Dray
et al. 2007), “adespatial” (Dray et al. 2018), “car” (Fox
and Weisberg 2011), “maptools” (Bivand and Lewin-Koh
2020), “nlme” (Pinheiro et al. 2016), “raster” (Hijmans
2020), “rgdal” (Bivand et al. 2020), “rgeos” (Bivand and
Rundel 2020) and “vegan” (Oksanen et al. 2013). The code
and functions used to run these analyses are available in the
data availability statement.

Results

Our results suggest that both TRic and FRic tended to be
higher in perennial rivers than in IRs over time (Fig. 1a,
b and Table S1), while T-LCBD and F-LCBD showed the
opposite pattern (Fig. 1c, d and Table S4), especially in
summer. Significant differences (P < 0.05) between per-
ennial rivers and IRs were found in t2—-t5 sampling times

Table 1 Partial regression

. Response Predictors variables Value SE df t-value P
coefficients of the explanatory
predictors used in linear mixed-  TRj¢ Intercept 46.3253 25133 83 184324  0.00
effects models ZF, —0.0676 0.0145 83  —4.6705  0.0001
Environmental uniqueness —712.0431 222.9353 83 -3.1939 0.002
Number of impacts —0.9814 0.1923 83 —5.0935 0.0001
FRic Intercept 0.3385 0.0263 83 12.8647 0.00001
ZF, —0.0004 0.0002 83 —2.8748 0.0051
Environmental uniqueness —6.8186 2.3778 83 —2.8676 0.0052
Number of impacts —0.0109 0.0021 83 —5.3094 0.00001
T-LCBD Intercept 0.0086 0.0013 83 6.8149 0.00001
ZF, 0.00002 0.00001 83 2.9259 0.0044
Environmental uniqueness 0.1850 0.0942 83 1.9654 0.0527
Number of impacts —0.0001 0.0001 83 —0.7269 0.4693
F-LCBD Intercept 0.0061 0.0038 83 1.5978 0.1149
ZF; 0.00003 0.00002 83 1.5599 0.1226
Environmental uniqueness 0.1175 0.3434 83 0.3421 0.7331
Number of impacts 0.0004 0.0003 83 1.3407 0.1837

The response variables were the local taxonomic and functional richness (TRic and FRic, respectively) and
the taxonomic and functional local contribution to B-diversity (T-LCBD and F-LCBD, respectively). TRic
and FRic were tested T-LCBD and F-LCBD, ZF;: total zero-flow days

Significant coefficients (P <0.05) are indicated in bold
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Fig.3 Partial relationship between taxonomic and functional rich-
ness (TRic and FRic, respectively), taxonomic and functional LCBD
(T-LCBD and F-LCBD, respectively), and the total zero-flow days
(ZF;) during the 30-week study period, environmental uniqueness,

for TRic (Fig. 1a) and t3 sampling time for T-LCBD and
F-LCBD (Fig. lc, d).

When comparing the contributions of perennial rivers
and IRs with overall taxonomic and functional f-diversity
through the five sampling times, IR sites were the largest
contributors. Specifically, significant site contributions to
T-LCBD were found in five IRs corresponding to their
disconnected pool phase (t3—t5; Fig. 2a and Tables S1 and
S4). These five IRs had unique taxa that were found only
at these sites, such as Hydrellia, Lispe, Diamesa, Anisops,
Batracobdella and Hippeutis, or taxa that were found
in these IRs and one (i.e. Eristalis, Sepedon, Naucoris,
Stictotarsus, Cyphon, Aeschna, Parasigara) or two other
rivers (i.e. Telmatoscopus, Hydroglyphus, Chaoborus,
Helobdella, Sialis, Peltodytes). For F-LCBD, significant
site contributions were observed at one specific sampling

and the number of impacts for all dataset including perennial and
intermittent rivers. Regression lines are only shown in those plots
with statistically significant relationships in the models

time (t2) of a perennial river, three IRs during its flowing
phase (t1 and t3) and four IRs during its disconnected pool
phase (t2, t4—t5; Fig. 2b and Tables S1 and S4).

When considering perennial rivers and IRs, TRic and
FRic showed a significant negative correlation with all three
predictors: ZF, the number of impacts and environmental
uniqueness (Table 1 and Fig. 3a—f). Our results also showed
a significant and positive relationship between T-LCBD and
ZF,, but no significant results were observed for the num-
ber of impacts and environmental uniqueness (Table 1 and
Fig. 3g—i). None of the explanatory variables were correlated
with F-LCBD (Table 1 and Fig. 3j-1).

For the subset of data including only IRs, TRic showed a
significant negative correlation with all three predictors, but
FRic was only significantly and negatively correlated with
the number of impacts (Table 2 and Fig. 4a—f). T-LCBD
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Tab|e2. Partial regression Response Predictors variables Value SE df t-value P
coefficients of the explanatory
predictors used in linear mixed-  TRjc Intercept 39.2470 33143 43 11.8419  0.00001
fgiffo‘:l‘;dels for intermittent DP, —0.1030 00474 43 —2.1744  0.0352
Environmental uniqueness —531.5054 252.4283 43 —2.1058 0.0411
Number of impacts —1.0494 0.2123 43 —4.9423  0.00001
FRic Intercept 0.2921 0.0425 43 6.8757 0.00001
DP; —0.0003 0.0006 43 —-0.5590 0.5791
Environmental uniqueness —4.5424 3.2356 43 —1.4039 0.1675
Number of impacts —0.0133 0.0027 43 —4.8987  0.00001
T-LCBD Intercept 0.0099 0.0019 43 5.2038 0.00001
DP; 0.0001 0.00002 43 3.2005 0.0026
Environmental uniqueness 0.1091 0.1367 43 0.7984 0.4291
Number of impacts —0.00003 0.0001 43 —0.2444 0.8080
F-LCBD Intercept 0.0048 0.0064 43 0.7532 0.4555
DP; 0.0004 0.0001 43 4.1734 0.0001
Environmental uniqueness 0.1494 0.4890 43 0.3054 0.7615
Number of impacts 0.0003 0.0004 43 0.8482 0.4010

The response variables were the taxonomic and functional local contribution to B-diversity (T-LCBD and
F-LCBD, respectively), and the local taxonomic and functional richness (TRic and FRic, respectively).
DP;: the number of days in the disconnected pool phase since the last sample was taken

Significant coefficients (P <0.05) are indicated in bold

and F-LCBD were significantly correlated with DP;, but no
significant patterns were observed for the other predictors
(Table 2 and Fig. 4g-1).

Discussion

Overall, our results showed that IRs had significantly higher
taxonomic LCBD than perennial rivers, despite their lower
local taxonomic and functional diversity. In early summer
and in response to the loss of surface flow, the observed
decline in taxonomic and functional richness in IRs can be
explained by the disappearance of lotic species inhabiting
riffle habitats (Bogan et al. 2017; Tonkin et al. 2017). Yet,
during the disconnected pool phase in summer, the increase
in taxonomic and functional LCBD in IRs can be related
to the colonization of species with specific traits adapted
to cope with such conditions (Bonada et al. 2006, 2020).
A similar pattern, where sites with higher LCBD are those
with lower richness, has been found in other studies of mac-
roinvertebrates (e.g. Heino et al. 2017; da Silva et al. 2018;
Valente-Neto et al. 2020) and other biological groups (e.g.
Legendre and De Caceres 2013; Vilmi et al. 2017; Landeiro
et al. 2018). This negative relationship indicates that sites
with low taxonomic and functional richness tend to hold
unique species and trait compositions, highlighting the com-
plementarity of alpha and beta diversity indices in describ-
ing biodiversity (Heino et al. 2017; da Silva et al. 2018).
Incorporating temporal patterns of LCBD is therefore key

@ Springer

to capturing the full variation in community composition
that exists in these highly dynamic ecosystems (Ruhf et al.
2017; Sanchez-Montoya et al. 2020; Rodriguez-Lozano et al.
2023).

Our study also showed that higher values of taxonomic
and functional LCBD occur mostly during the disconnected
pool phase of IRs. During this phase, taxa inhabiting flowing
conditions tend to be lost, while lentic taxa progressively
colonize the remaining disconnected pools from nearby sites
that are drying up, such as Odonata, Coleoptera and Hemip-
tera (Bogan et al. 2017; Bonada et al. 2020). Indeed, there
are studies showing that lentic-dwelling species have higher
dispersal abilities than lotic species (e.g. Ribera and Vogler
2000; Hjalmarsson et al. 2015). Disconnected pools can act
as refuges for some aquatic taxa such as fish or amphibians
during IRs’ dry season, which are fundamental for recolo-
nizing the river network upon flow resumption (Hermoso
et al. 2013; Gallart et al. 2017). In addition, for some spe-
cies of macroinvertebrates (and for amphibians and fish),
disconnected pools are also used as stepping-stones for their
dispersal or as key sites for laying eggs and, thus, complet-
ing their life cycle (Bonada et al. 2006, 2020; Stubbington
et al. 2017; Moidu et al. 2023). Considering that up to 60%
of the world’s rivers by length are IRs and that they are
expected to increase worldwide (Doll and Schmied 2012;
Messager et al. 2021), it is expected that disconnected pools
will become more abundant and, consequently, management
actions will be needed to conserve them (Gallart et al. 2017,
Bonada et al. 2020).
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Fig.4 Partial relationship between taxonomic and functional rich-
ness (TRic and FRic, respectively), taxonomic and functional LCBD
(T-LCBD and F-LCBD, respectively), and the number of days in the
disconnected pool phase (DP;) since the last sample was taken, envi-

On the other hand, our results suggest that flow intermit-
tence (i.e. indicated by ZF;), the number of impacts and the
environmental uniqueness were significant predictors of tax-
onomic and functional richness, but only flow intermittence
was an important predictor of taxonomic LCBD. Indeed, the
permanence of disconnected pools (i.e. indicated by DP;)
was the main predictor explaining the spatiotemporal pat-
terns of IRs. However, there was no significant correlation
with the number of impacts, despite some impacted IRs also
showing higher LCBD values. This could be explained by
the fact that resistance and resilience traits that can cope
with flow intermittence in IRs (e.g. multi-voltinism, aerial
respiration or mechanisms to tolerate low dissolved oxy-
gen concentrations) may also be useful in coping with

ronmental uniqueness and the number of impacts for only intermittent
rivers. Regression lines are only shown in those plots with statisti-
cally significant relationships in the models

anthropogenic impacts (Bonada and Resh 2013; Stubbing-
ton et al. 2017; Soria et al. 2020), a phenomenon known as
co-tolerance (Boulton et al. 2000). In fact, Mediterranean
IRs hold unique species composition adapted to natural flow
intermittence, such as a dominance of pool-dwelling species
during the disconnected pool phase (Bonada et al. 2006,
2020; Cid et al. 2017), which could give them the ability to
resist and to recover from drying periods and, at the same
time, from anthropogenic impacts. However, persistent and
intensifying anthropogenic impacts over time could reduce
the ability of these species to cope with flow intermittence
(Datry et al. 2017).

Considering that IRs have been commonly ignored in
conservation planning (Bogan and Lytle 2007; Leigh et al.
2019), it is timely to provide complementary measures
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to adequately assess their biodiversity. In this sense, the
LCBD approach shows a high potential to be used for
conservation purposes, as the ecological uniqueness of a
site can be compared with other sites sampled in a region
(Legendre and De Céceres 2013; da Silva et al. 2018;
Valente-Neto et al. 2020). In highly dynamic systems
such as IRs, not only spatial but temporal patterns should
also be considered to better identify key sites (Ruhi et al.
2017; Rogosch and Olden 2019; Stubbington et al. 2019;
Sénchez-Montoya et al. 2020). However, analysing only
spatiotemporal species richness and community composi-
tion might not be sufficient to design conservation plans
aimed at protecting the processes that maintain their eco-
system functioning (Leigh et al. 2016, 2019; Villéger et al.
2017; Crabot et al. 2020). Therefore, given the hydrologi-
cal variability of IRs and the increasing anthropogenic
impacts they receive, freshwater conservation planning
should consider monitoring the temporal variability of
both taxonomic and functional biodiversity in these eco-
systems. This might be even more relevant in Mediterra-
nean climate regions worldwide where IRs constitute one
of their predominant freshwater ecosystems (Bonada and
Resh 2013; Cid et al. 2017). Special attention should also
be given to the disconnected pool phase, as this is key to
maintaining local and regional aquatic biodiversity (Gal-
lart et al. 2017; Bonada et al. 2020). In this regard, several
management-related tools have recently been developed
to better predict the flow patterns of IRs, such as wet-dry
mapping, remote sensing (e.g. satellite images, fixed cam-
eras), field sensors (e.g. conductivity, temperature, water
level and/or presence/absence of water), hydrological met-
rics (e.g. zero-flow days) or models (e.g. IHACRES [Iden-
tification of unit Hydrographs And Component flows from
Rainfall, Evaporation and Streamflow data] or SWAT [Soil
& Water Assessment Tool]) (Datry et al. 2017). Indeed, as
the distribution of disconnected pools in IR networks can
vary spatially and temporally from one year to another,
tools have been developed even to account for their tempo-
ral and spatial occurrence (e.g. TRESH software; Gallart
etal. 2017), as well as to assess their priority as biodiver-
sity refuges and incorporate them into conservation plan-
ning (Hermoso et al. 2013; Yu et al. 2022). Citizen science
can also result in a powerful tool to fully understand the
hydrological characteristics of these ecosystems (e.g. Riu-
Net app, DRYRIvVERS app). The integration of these tools
in the conservation management of IRs, together with the
use of community metrics able to capture their spatiotem-
poral biodiversity patterns, are key to improving fresh-
water conservation in the Mediterranean climate region.
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