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ABSTRACT

Context. Stellar flares are powerful bursts of electromagnetic radiation that are triggered by magnetic reconnection in the chromosphere
of stars. They occur frequently and intensely on active M dwarfs. While missions such as TESS and Kepler have studied regular and
superflares, their detection of flares with energies below 1030 erg remains incomplete. An extension of flare studies to include these
low-energy events could enhance flare formation models and provide insight into their impact on exoplanetary atmospheres.
Aims. This study investigates the capacity of CHEOPS to detect low-energy flares in M dwarf light curves. Using the high photometric
precision and observing cadence of CHEOPS, along with a tailored wavelet-based denoising algorithm, we improved the detection
completeness and refined flare statistics for low-energy events.
Methods. We conducted a flare injection and recovery process to optimise the denoising parameters, applied it to the CHEOPS light
curves to maximise flare detection rates, and used a flare-breakdown algorithm to analyse complex structures.
Results. Our analysis recovered 291 flares with energies ranging from 3.7 × 1026 to 8.9 × 1030 erg for 62 M dwarfs, about ∼42%
of which exhibited complex, multi-peaked structures. The denoising algorithm improved the flare recovery by ∼35%, although it
marginally extended the lower boundary of detectable energies. For the full sample, the power-law index α was 1.99 ± 0.10, but a
log-normal distribution fitted better. This suggests multiple possible flare-formation scenarios.
Conclusions. While the observing mode of CHEOPS is not ideal for large-scale surveys, it captures weaker flares than TESS and
Kepler, and thus extends the observed energy range. Wavelet-based denoising enhances the recovery of low-energy events, which
enables us to explore the micro-flaring regime. The expansion of low-energy flare observations could refine flare-generation models
and improve our understanding of their role in star-planet interactions.

Key words. magnetic reconnection – instrumentation: detectors – methods: data analysis – stars: activity – stars: flare –
stars: low-mass

1. Introduction

Stellar flares are stochastic and intense bursts of electromagnetic
radiation and charged particles that are triggered by magnetic
reconnection in the chromosphere of stars. This phenomenon
occurs when the magnetic field lines in the chromosphere
realign, which releases energy across the electromagnetic spec-
trum. This can generate flares of varying intensity and duration
and can significantly increase the stellar luminosity (Benz &
Güdel 2010). The stellar magnetic activity significantly influ-
ences the frequency and energy of stellar flares. M dwarfs are
known for their high levels of magnetic activity and for flar-
ing more frequently than earlier-type stars because their dynamo
processes are more vigorous and yield a higher incidence of
magnetic reconnection events (Kowalski 2024). These stars can
experience more frequent and energetic flares that sometimes
reach energy levels that are several orders of magnitude more
intense than solar flares (Bruevich et al. 2001; Howard et al.
2018). The effects of stellar flares on planetary habitability are
various. On the one hand, stellar flares can damage planetary
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atmospheres: X-ray and ultraviolet radiation, along with charged
particles that are emitted during flares, can deplete atmospheric
layers, especially on planets with weak magnetic fields or located
near their host star. This atmospheric erosion can compromise
the potential for habitability by reducing the protection against
harmful radiation and altering the planetary climate (Ribas et al.
2016; Airapetian et al. 2017). On the other hand, the energy that
is radiated during stellar flares may play a role in triggering
prebiotic chemical processes: The increased ultraviolet radiation
during flares can trigger chemical reactions that are crucial for
the emergence of life. This suggests that flares may be necessary
for prebiotic chemistry to happen on planets orbiting M dwarfs
(Scalo et al. 2007; Rimmer et al. 2018).

It is essential to understand the formation mechanisms,
frequency, and energy distribution of stellar flares for several
reasons. It provides insights into stellar magnetic activity and
its variation with spectral type, especially in comparison to our
Sun. By investigating the flare activity of various stellar types, it
is additionally possible to refine models of stellar and planetary
evolution (Güdel 2007; Lammer et al. 2012). TESS (Transiting
Exoplanet Survey Satellite) and Kepler have provided valuable
data on flare occurrences with cadences of minutes to a dozen
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seconds. The 20-second cadence of TESS revealed that complex
flare structures are frequent, including multi-peak profiles and
quasi-periodic pulsations (QPPs). These complex structures sug-
gest that these non-classical flare shapes may result from emis-
sion cascades within a single active region or from sympathetic
flares from neighbouring regions (Davenport 2016; Howard &
MacGregor 2022). In this context, the study of smaller-scale flare
events becomes increasingly important for a better characterisa-
tion of stellar variability and the formation mechanisms of flares.
Extending photometric precision and observing cadence down to
a few seconds could greatly improve our understanding of these
phenomena and might reveal even finer flare structures. This
increased sensitivity may enable us to detect micro- and nano-
flares, which are small-scale flaring events with energies ranging
from 1022 to 1027 erg that are thought to play a crucial role in
coronal heating (Parker 1988). No concluding evidence supports
micro- and nano-flares against other possible explanations, how-
ever, mainly because it is hard to gather precise statistics about
these flares because they are hidden in the instrumental noise. It
is therefore still unclear whether micro- and nano-flares follow
the same trends as more powerful flaring events. Furthermore,
flare formation scenarios that diverge from self-organised criti-
cality propose that flares might consist of an avalanche of several
combined micro- and nano-flares. This would have implications
for the current understanding of the impact of flares on exo-
planetary atmospheres (Audard et al. 2000; Sheikh et al. 2016;
Aschwanden 2019).

The space telescope CHaracterising ExOPlanet Satellite
(CHEOPS) is primarily designed to measure exoplanet transits.
It offers exceptional photometric precision. With a precision of
approximately 20 ppm over a 6-hour integration period for a
V ∼ 9 star and down to 150 ppm for shorter timescales, CHEOPS
surpasses other photometric instruments in the visible spectrum,
such as TESS and current ground-based telescopes (Benz et al.
2021; Oddo et al. 2023). The exposure time of CHEOPS can also
reach 0.001 seconds for very bright stars (V ∼ 6), which is sev-
eral orders of magnitude faster than those of TESS and Kepler
(Borucki et al. 2010; Ricker et al. 2015). Although CHEOPS is
limited to on-target observations, it provides high photometric
precision and a fast accessible observing cadence. These are cru-
cial for capturing the short and stochastic nature of low-energy
flares.

To enhance the detection of flares in the CHEOPS light
curves, denoising techniques based on the wavelet transform
can filter out noise from the signal. The wavelet transform
decomposes time-series data into different frequency compo-
nents, which facilitates the isolation and reduction of noise.
Unlike the Fourier transform, which only provides frequency
characteristics of the signal, the wavelet transform recovers both
temporal and frequency information, making it more efficient
in analysing transient signals such as stellar flares. The discrete
wavelet transform (DWT) is commonly used as a base for time-
series denoising algorithms, and it has many applications outside
of astronomy (Pasti et al. 1999; Polat & Özerdem 2018; Jang et al.
2021). The main downside of the DWT is that it introduces a
downsampling of the input signal by definition, which can lead
to a loss of details due to its non-redundant nature (Donoho &
Johnstone 1994). In contrast, the stationary wavelet transform
(SWT) avoids this by upsampling the wavelet coefficients at each
decomposition level. Although this involves a higher compu-
tational cost, the SWT provides the advantage of maintaining
the original length of the signal at each decomposition level
and providing a redundant, shift-invariant representation of the
data (Rhif et al. 2019; Kumar et al. 2021). In the context of

astronomy, techniques based on the SWT have been developed
for noise filtering and demonstrated significant improvements in
the signal-to-noise ratios (S/N) and the ability to recover faint
astrophysical signals (Starck & Murtagh 2006). These methods
emphasise the importance of adapting the current wavelet-based
denoising techniques to the specific characteristics of astronom-
ical time-series and show that these denoising algorithms could
enhance the detection of faint transient phenomena such as
low-energy flares.

An efficient wavelet-based denoising algorithm is crucial
for optimising the extraction of meaningful flare statistics in
our analysis pipeline using CHEOPS data. We explore the per-
formance of the combination of the photometric precision of
CHEOPS and an SWT-based denoising algorithm in enhanc-
ing the flare detection in M dwarf light curves. In Section 2
we describe the target selection, the data reduction, the SWT
parameter exploration, the flare detection, and flare-breakdown
algorithms. In Section 3, we quantify the improvement in flare
recovery that is achieved by denoising, we analyse the obtained
flare catalogues, and we compare our results to the literature. In
Section 4, we discuss the limitations of this study and suggest
several avenues for improvement. We conclude in Section 5.

2. Methods

2.1. Target selection and data reduction

Among the data gathered by CHEOPS since the start of its opera-
tions, several observational programmes have targeted late-type
stars. CH_PR100018 (PI I. Pagano) is a prominent programme
that has been actively investigating the variability of late-K and
M dwarf stars since the beginning of scientific observations in
April 2020. This programme is particularly focused on char-
acterising the photometric variability of these stars, including
flares and star spots. CH_PR100010 (PI G. Szabó) operated
from July 2020 to December 2023. While its primary aim was
to study the debris disks around various spectral types, this
programme included observations of several late-type stars to
explore the interaction between stellar activity and circumstel-
lar dust. CH_PR130057 (PI G. Szabó) was another significant
programme, running from August 2022 to September 2023, and
specifically targeted the young M dwarf star AU Mic. Known for
its strong stellar activity and prominent debris disk, AU Mic is an
ideal subject for examining the correlation between stellar flares
and its surrounding environment.

The nominal observation mode of CHEOPS produces sub-
arrays (200-pixel diameter) every few tens of seconds by
co-adding multiple short sub-exposures onboard. In parallel,
smaller cutouts called imagettes (60-pixel diameter) are down-
linked at a higher cadence and can be used to construct light
curves with finer temporal resolution. While individual sub-
exposures can be as short as 0.001 seconds, the fastest cadence
for downlinked subarrays is 22.65 seconds, set by telemetry
and onboard processing constraints. In contrast, imagettes can
be downlinked with cadences as short as 2.8 seconds. All pro-
grammes mentioned above adopted a 3-second cadence for
imagettes to balance S/N, avoid saturation, and maximise duty
cycle (Boldog et al. 2023; Bruno et al. 2024). This cadence
remains well-suited for detecting and analysing rapid, transient
events like stellar flares and offers higher time resolution than
the 20-second cadence of TESS. To take advantage of the high
precision and fast observing cadence provided by CHEOPS, we
retrieved all publicly available imagettes data on main sequence
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M dwarfs from the CHEOPS archive1. Due to the proprietary
period associated with CHEOPS programmes, imagettes data are
not yet available for all observations. We therefore completed
our sample with the raw light curves provided in Bruno et al.
(2024). In total, we obtained 66.65 days of on-target time from
the three programmes, comprising observations of 110 different
M dwarfs. For each target, we retrieved the Gaia G-band magni-
tude (Gmag) and effective temperature (Teff) from the CHEOPS
file metadata. We searched for Hα equivalent width values from
Schöfer et al. (2019), as well as log R′HK values from
Astudillo-Defru et al. (2017) and Boro Saikia et al. (2018), but
found Hα EW values for only 64 of the 110 stars and log R′HK
values for 71 stars. This limited availability prevented us from
providing a comprehensive activity indicator distribution for the
entire sample. Instead, we used the mean rotational velocity
(V sin i) values from Table A.1 of Bruno et al. (2024) as an alter-
native indicator of stellar activity. We calculated the distance to
each target using its parallax from Gaia DR3, or Gaia DR2 if
not available. We obtained the radius of each star from the TESS
Input Catalogue. The parameter distributions in our sample are
shown in Figure 1, and the full list is available in Table A.1. As
expected from the focus of the three observing programmes, our
sample is heavily biased towards AU Mic, with more than 340
visits observed, while all other stars have been observed during
less than 70 visits each.

The CHEOPS Data Reduction Pipeline (DRP) does not auto-
matically process imagettes datasets (Hoyer et al. 2020). We
hence relied on PIPE2, a photometric extraction package devel-
oped by the CHEOPS consortium to complement the official
DRP, to reduce imagettes and extract Point Spread Function
(PSF) photometry (Brandeker et al. 2024). We optimised the
PSF parameters for each target by allowing the software to freely
explore the impact of the radius of the fitting region, the number
of components for the fit, a simultaneous fit for the background,
dark current correction, and static image removal through a
gradient-like search algorithm. In the case of the light curves
recovered by Bruno et al. (2024), this imagettes reduction was
already performed using an ad hoc tool, the Data Reduction
Tool (DRT), described in Morgado et al. (2022) and Fortier et al.
(2024). We consistently found marginal differences of less than
50 ppm when comparing raw light curves extracted through both
PIPE and the DRT.

2.2. Detrending

Variability in fast-cadence light curves can arise from multiple
sources (Sulis et al. 2020; Kálmán et al. 2025). In the case of
CHEOPS, white noise primarily results from photon counting,
while time-correlated variations originate from both instrumen-
tal and astrophysical effects. To mitigate instrumental system-
atics, we used the package PyCHEOPS3 (Maxted et al. 2022,
2023), a tool developed by the CHEOPS consortium to remove
correlations between flux and various instrumental parameters.
Specifically, we removed linear, quadratic, and cubic flux cor-
relations with time, centroid position, sine and cosine of the
roll angle, background flux, contamination, and smear. Among
astrophysical contributors, granulation in M dwarfs is expected
to be negligible at CHEOPS precision (Sulis et al. 2023). The
dominant source of residual variability can thus be attributed to

1 https://cheops-archive.astro.unige.ch/archive_
browser/
2 https://github.com/alphapsa/PIPE
3 https://github.com/pmaxted/pycheops
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Fig. 1. Parameters of our stellar sample. From top to bottom: Histograms
for the Gaia magnitude, Teff , log(v sin i), radius, and distance.

surface inhomogeneities associated with magnetic active regions
(such as spots, faculae, pores, etc) that induce rotational modu-
lation. To account for this, we applied a Savitzky-Golay (Savgol)
filter with a 20-minute window, corresponding to the duration of
the longest flare detected in Bruno et al. (2024). This approach
effectively removes trends on timescales longer than 20 min-
utes while preserving shorter-term variations caused by flares.
Since long-duration flares are typically prominent and unlikely
to have been missed in Bruno et al. (2024), this method ensures
minimal loss of flare signal. A surface variability on timescales
shorter than 20 minutes may remain in the light curves, how-
ever, and contribute to false positives. To optimise the detrending
process, we followed Bruno et al. (2024) and tested polynomial
degrees ranging from 2 to 10 in the Savgol filter. For each light
curve, we selected the polynomial degree that minimised the
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Table 1. Distribution of stars, visits, and on-target time within our
sample according to spectral subtype.

Spectral type # stars # visits On-target time (d)

M0V 33 669 17.37
M1V 27 976 27.23
M2V 17 287 6.72
M3V 13 292 7.52
M4V 15 169 4.46
M5V 4 70 1.93
M6V 1 33 1.42

Akaike Information Criterion (AIC) in the residuals, ensuring
that more active stars, potentially exhibiting stronger modulation
from surface activity, were detrended using higher-degree poly-
nomials. Finally, we sigma-clipped outliers at each iteration at a
5σ threshold of the flux level in order to minimise the impact of
large flares on the detrending process. We also explored other
detrending methods, including non-windowed polynomial fit-
ting, Gaussian processes with a Matérn kernel, and M-estimators
using Tukey’s biweight function (Hippke et al. 2019). How-
ever, we found these approaches to be less effective at removing
time-correlated variations. In particular, Gaussian processes per-
formed the worst, likely due to the short duration of CHEOPS
light curves preventing the model from converging. Ultimately,
while allowing polynomial orders to vary slightly improved
residual scatter, the most significant improvement came from
using a windowed detrending approach. After visual inspection,
we removed light curves exhibiting excessively high RMS values
(>10 000 ppm), likely resulting from a failed photometric extrac-
tion and/or detrending, which accounted for ∼6% of the sample.
Among the remaining light curves, 84% were observed at a
cadence of 3 seconds, 14% at 5–7 seconds, and the remaining 2%
at cadences longer than 12 seconds. Since the next steps of the
analysis involve a denoising process, we refer to the detrended
and normalised CHEOPS light curves as ‘original’ throughout
the rest of the paper (as opposed to ‘denoised’).

2.3. Flare detection

CHEOPS orbits the Earth with a stable period of 99 minutes, but
the available science time per orbit is reduced due to Earth occul-
tations, the South Atlantic Anomaly, and other observational
constraints. The uninterrupted science time of an observation
is referred to as a visit, and the duration of a visit depends on
the target’s position in the sky. Targets located near the ecliptic
plane can benefit from longer uninterrupted observations, some-
times extending across multiple CHEOPS orbits, while targets
near the ecliptic poles usually have shorter visits with frequent
interruptions (Benz et al. 2021). To provide an overview of the
actual on-target time composing our sample, Table 1 presents the
number of stars per spectral subtype, the corresponding number
of visits, and the total science time. A flare candidate cannot
be considered as a candidate when it spans two separate vis-
its because data points belonging to the flare profile would be
missing from the resulting light curve. Recovering only part of a
flare would lead to underestimating the flare energy and biasing
the derived flare statistics. Our flare detection algorithm there-
fore only considered flares whose start and stop times occurred
within the same visit. Figure 2 shows the distribution of the dura-
tion of the visits constituting our sample. Although most of the
visits are as expected shorter than 99 minutes, we found a few

Fig. 2. Distribution of the visit duration within our sample.

Table 2. Number of flares detected using AltaiPony and PEAKUTILS,
with and without wavelet-based denoising.

Original Denoised Increase (%)

AltaiPony 215 291 +35.3%
PEAKUTILS 229 299 +30.6%

visits with longer durations of up to 4.5 hours corresponding to
targets easily observable by CHEOPS. Since M dwarf flares can
have durations of up to ∼10 hours (Davenport 2016; Pietras et al.
2022), conducting flare detection with CHEOPS implies that the
population of long-duration flares will not be recovered in this
study.

The photometric signature of flares is typically charac-
terised by a sharp rise (usually associated with bremsstrahlung
radiation) followed by an exponential decay (corresponding to
radiative cooling) (Kowalski et al. 2013; Davenport et al. 2014).
An effective way to detect flares is by monitoring the increase
in flux they produce in the stellar light curve. For this purpose,
we employed AltaiPony4, a flare detection tool developed for
Kepler, K2 and TESS observations (Davenport 2016; Ilin 2021).
It implements a sigma-clipping algorithm based on the flare
detection criteria of Chang et al. (2015): N1, the minimum posi-
tive flux deviation from the median normalised by local scatter;
N2, a corresponding minimum deviation accounting for pho-
tometric errors; and N3, the minimum number of consecutive
data points meeting these conditions. For CHEOPS, we adopted
N1 = 3, N2 = 2, and N3 = 5, requiring a minimum of 5 consec-
utive points above the 3σ threshold. This setting reduces false
positives but excludes flares shorter than 15 seconds.

Since the detection threshold of a sigma-clipping method
for flare detection depends on the light curve noise properties,
we intend to use a wavelet-based algorithm to denoise our data.
This method is expected to lower the effective noise floor while
preserving the amplitude and shape of flares, thereby increas-
ing the S/N of low-energy flares and improving their recovery
rate. To validate the advantages of this approach, we performed
a comparative analysis with the PEAKUTILS5-based detection
method used in Bruno et al. (2024), which combined a peak
detection algorithm with a flare profile fitting. In our compar-
ison, we applied both AltaiPony and PEAKUTILS, with and
without wavelet-based denoising, using a consistent 3σ detection
threshold. A summary of the results is presented in Table 2.

While PEAKUTILS detected a slightly higher number of
flares overall, it also exhibited a higher false positive rate, espe-
cially in the denoised data. Flare injection-recovery tests showed
that PEAKUTILS detects weak flares more readily, but also
retrieved more spurious detections below ∼1027 erg. In contrast,

4 https://altaipony.readthedocs.io/en/latest/
5 https://peakutils.readthedocs.io/en/latest/
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(i) Flux extraction and light curve 
detrending
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(iii) Denoising of CHEOPS light 
curves

(iv) Flare detection and statistics

● Flux extraction with PIPE
● Light curve detrending with PyCheops
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for spectral subtypes from M0V to M5V

● Flare injection using empirical model
● Denoising using different combinations of 
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original vs denoised light curves
● FFD extraction

Fig. 3. Flow diagram of the procedure we followed.

AltaiPony offers a more conservative detection by integrat-
ing a photometric uncertainty criterion. Its lower false positive
rate and sharper detection threshold yield a more homogeneous
flare sample. The application of wavelet denoising consistently
improved detection rates for both algorithms. However, integrat-
ing it within AltaiPony provides a more robust sample for
accurately assessing the impact of wavelet-based denoising on
flare recovery rates.

Consequently, our specific workflow was to:
1. determine the noise profile of a ‘prototypical’ M dwarf light

curve observed by CHEOPS.
2. generate a corresponding synthetic light curve in which to

inject flares of different energies, durations, and amplitudes.
3. determine the denoising parameters that optimise the recov-

ery of the injected flares.
4. apply the wavelet-based denoising algorithm with the opti-

mal parameters on the original CHEOPS light curves.
5. conduct flare detection on the original and denoised

CHEOPS light curves using AltaiPony.
A flow diagram of the entire procedure we followed is presented
in Figure 3.

2.4. Estimating noise profiles

To determine the typical noise profile of a CHEOPS light curve,
we computed the average noise profile for each spectral sub-
type by averaging the photometric fluctuations from the median
value of each light curve in our sample, following the method
of Jess et al. (2019); Dillon et al. (2020) and Grant et al. (2023).
These profiles therefore quantify the averaged white noise and
time-correlated scatter at timescales shorter than 20 minutes for
each spectral subtype. We discarded the M6V subtype since only
one star was included in this group (see Table 1). We therefore
included targets of spectral type ranging from M0V to M5V. Fig-
ure 4 displays the averaged fluctuations for each spectral subtype
and compare them against a normal distribution. The resulting
noise distributions for each spectral subtype appear thinner and
taller than a normal distribution, with more pronounced tails,
indicating a leptokurtic nature. In statistics, the kurtosis is a mea-
sure of the shape of a probability distribution, specifically how
the tails and peak compare to a normal distribution. A leptokurtic

Table 3. Mean, standard deviation, skewness, and Fisher kurtosis values
of the noise profile of an average CHEOPS light curve corresponding to
each spectral subtype.

Spectral type Mean St. dev Skewness Kurtosis

M0V 0.000 0.002 0.001 1.090
M1V 0.000 0.001 0.009 1.294
M2V 0.000 0.002 0.063 2.528
M3V 0.000 0.001 0.021 0.959
M4V 0.000 0.002 0.029 1.233
M5V 0.000 0.002 0.010 0.038

distribution (one with positive kurtosis) has a sharper peak and
heavier tails than a normal distribution, indicating more extreme
deviations from the mean. This is confirmed by the quantile–
quantile (Q–Q) plots for each spectral subtype in the second row
of Figure 4, which compare the observed data distribution to a
theoretical normal distribution. If the data followed a normal
distribution, the points would align along the diagonal. How-
ever, the deviation in the tails indicates an excess of outliers
(see Figure 3 of Jess et al. 2019 for a collection of different
distribution types). A leptokurtic noise distribution has several
implications for the light curves and the flare detection. First, the
presence of heavier tails means that extreme fluctuations occur
more frequently than expected under a normal distribution. This
could mimic or obscure low-amplitude flare events, complicat-
ing their detection. The shapes of the noise distributions indicate
that the photometric noise in the light curves is not purely Gaus-
sian and that the remaining time-correlated scatter contributes
to a higher frequency of outliers. Consequently, the denoising
process must accurately account for these leptokurtic features to
efficiently distinguish between data points caused by flares and
those arising from noise artefacts. Table 3 compiles the mean
value, standard deviation, skewness, and Fisher kurtosis of the
averaged noise distribution for spectral subtype. Understanding
these specific noise characteristics allows us to refine the denois-
ing and flare detection algorithms, reducing false positives and
improving flare detection reliability.

A242, page 5 of 29



Poyatos, J., et al.: A&A, 699, A242 (2025)

Fig. 4. Averaged noise representation for each spectral type. In the top row, the dashed red curves correspond to a normal distribution, and the
black histograms correspond to the noise distribution histograms in the CHEOPS light curves. In the bottom row, the dashed red lines correspond
to the quantiles of a normal distribution, and the black curves correspond to the quantiles of the noise distribution in the CHEOPS light curves.
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Fig. 5. Injected flare energy matrix as a function of the injected flare amplitude, FWHM, and spectral subtype.

Table 4. Average effective temperature, radius, and luminosity for each
spectral type.

Spectral type Teff (K) Radius (R⊙) Luminosity (L⊙)

M0V 3850 0.588 0.068
M1V 3680 0.501 0.041
M2V 3550 0.446 0.028
M3V 3400 0.361 0.016
M4V 3200 0.274 0.007
M5V 3050 0.196 0.003

2.5. Injecting synthetic flares

To create synthetic light curves for each spectral subtype, we
first injected into empty light curves the noise distribution corre-
sponding to each spectral subtype using the parameters compiled
in Table 3. We then injected flares of known energies, ampli-
tudes, and durations in the light curves corresponding to each
spectral subtype. For this, we started by determining the stellar
parameters of a ‘prototypical star’ from M0V to M5V. The effec-
tive temperatures were determined by calculating the average
temperature of the stars in our sample within each spectral sub-
type. The radius values for each spectral subtype were sourced
from Pecaut & Mamajek (2013). The quiescent luminosities were
calculated using the Stefan-Boltzmann law with the obtained
effective temperatures and radii. We compile the average effec-
tive temperature, radius, and luminosity for each spectral subtype
in Table 4.

Flares were simulated using the package Llamaradas
Estelares6 (Tovar Mendoza et al. 2022). This package sim-
ulates the morphology of white-light flares with a template

6 https://github.com/lupitatovar/Llamaradas-Estelares

derived from a set of flares observed in GJ 1243 based on two
parameters: relative amplitude and FWHM (Full Width at Half
Maximum, serving as a proxy for flare duration). We could
simulate flares with different energies by using a known range
of parameters for the amplitude and the FWHM. Following
Davenport (2016), flare energies were calculated by multiplying
the Equivalent Duration (ED) by the stellar quiescent luminosity.
Bruno et al. (2024) found that the sensitivity of CHEOPS could
detect flares with energies down to ∼1027 erg. We determined
that relative flare amplitudes ranging between [10−4–10−2]
and FWHM between [0–60] seconds could simulate flares of
energies within [1024–1030] erg, depending on the quiescent
luminosity of the star. Simulating flares within this energy
range would enable us to test the impact of denoising on the
recovery rate around this detection threshold. Figure 5 displays
the injected flare energy as a function of the flare amplitude,
FWHM, and spectral subtype of the star.

2.6. Determining the optimal denoising parameters

The Discrete Wavelet Transform (DWT) is commonly used to
decompose and denoise time-series data. This is done by scaling
and translating a mother wavelet across the data, resulting in a
decomposition into different frequency bands through low-pass
and high-pass filtering, followed by a downsampling. Stochastic
noise, typically in high-frequency components, is thresholded
and removed before reconstructing the data by using the inverse
transform. Unlike other denoising methods based on the Fourier
Transform, the DWT retains both temporal and frequency infor-
mation, which is beneficial for recovering non-stationary signals
(Mallat 2009). However, the Stationary Wavelet Transform
(SWT) is often preferred for denoising as it avoids downsam-
pling, maintaining the signal length at each decomposition level
through an à trous algorithm. This approach offers a redundant,
shift-invariant representation that enhances noise reduction
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Fig. 6. Step-by-step representation of the flare injection, noise injection, wavelet denoising, and flare recovery process. Only 20 flares are shown
to better visualise the flux variations in the light curve. In this example, the wavelet-based denoising was conducted with the Haar wavelet and
a decomposition level of 2. Only 16 out of 19 flares are recovered in this portion of the light curve. The recovered and lost flare candidates are
highlighted with a green and red background, respectively.

accuracy and effectively preserves signal features, resulting
in more consistent and reliable denoising results (Percival &
Walden 2000; Fors 2006).

The threshold value in wavelet-based denoising is key to
distinguish between noise and signal by determining which
wavelet coefficients to suppress or retain. A well-chosen thresh-
old effectively reduces noise while preserving essential signal
features. However, an overly high threshold can erase important
details, while a low threshold may fail to remove enough noise.
Determining the threshold value typically involves statistical
methods, such as the universal threshold proposed by Donoho
& Johnstone (1994). Its logarithmic scaling with data length
ensures effective noise filtering for larger time-series while
preserving signal features (Abramovich & Benjamini 1995;
Percival & Walden 2000). We adapted this universal threshold
by replacing its dependence on the standard deviation of
the signal by the median absolute deviation, which is more
robust to outliers. This adjustment effectively balances noise
reduction and signal preservation, especially in the presence of
non-Gaussian noise (del Ser et al. 2018).

The decomposition level determines the number of times
the data is iteratively decomposed into wavelet components,
with higher levels providing finer resolution of the signal and
stronger denoising. Each decomposition level corresponds to dif-
ferent frequency scales in the data, enabling multi-resolution
analysis that typically separates noise from significant signal
features. The decomposition level is therefore generally cho-
sen based on the number of data points in the input data. An
appropriate decomposition level allows us to effectively separate
noise from the signal while preserving key signal characteris-
tics. A level that is too low may fail to remove enough noise,
while a level that is too high may suppress important signal
details and introduce artefacts from the mother wavelet function

(Yang et al. 2016). Since each decomposition level halves the
data frequency, consequently capturing more detail at lower
frequencies, wavelet decomposition follows a binary scaling
(Mallat 1989). The maximum number of useful decomposition
levels J therefore scales logarithmically with the number of data
points N, such that 2J ≤ N. This ensures effective noise iso-
lation while preserving the signal integrity (Daubechies 1992).
CHEOPS visits vary in the number of data points based on visit
duration and observing cadence. The decomposition level is tai-
lored to the number of data points in each visit, ensuring shorter
visits are decomposed at a lower level than longer ones. This
optimisation improves the denoising process and ensures effec-
tive use of the SWT across the different visit durations in our
sample.

The choice of the mother wavelet is crucial in wavelet-based
denoising, as it affects the accuracy of noise separation from the
signal. Wavelets with short support, such as the Haar wavelet,
are efficient at detecting sharp discontinuities but may introduce
high-frequency noise, whereas wavelets with longer supports,
like the Daubechies and Symlets, are better at capturing smooth
variations but may blur sharp features (Haar 1910; Mallat 1989;
Daubechies 1992). Vanishing moments refer to the ability of a
wavelet to represent polynomials up to a certain degree. Wavelets
with higher vanishing moments are more effective at filtering
noise but are computationally demanding and may lead to over-
fitting (Donoho & Johnstone 1994). For the SWT, discrete and
biorthogonal wavelets are used to ensure accurate data recon-
struction, non-redundancy, and minimal introduction of artefacts
(Chui 1992). To identify the optimal parameters for denois-
ing CHEOPS light curves, we followed a systematic approach,
illustrated in Figure 6:
1. We created synthetic light curves for each spectral subtype

and injected flares with energies from 1024 to 1030 erg,
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Fig. 7. Flare recovery rate as a function of the injected flare amplitude, FWHM, and spectral subtype after denoising with the Haar mother wavelet
and a decomposition level of 2. The top row corresponds to the recovery rates before denoising, and the bottom row shows the recovery rates after
denoising.
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Fig. 8. Flare recovery rate, averaged across all spectral subtypes, as a function of the selected mother wavelet and decomposition level.

simulating various flare profiles. For each energy bin, span-
ning 1025 erg, we simulated 1000 flares using the amplitude-
FWHM parameters described in Figure 5. We separated flare
peaks by 45 minutes to ensure that the flux had returned to a
quiescent level before the beginning of the next flare.

2. We injected a noise profile corresponding to each spectral
subtype according to the distribution parameters compiled
in Table 3.

3. We conducted a SWT-based denoising using the previ-
ously mentioned threshold for each discrete and biorthog-
onal mother wavelet included in the package PyWavelets
(Lee et al. 2019). This included wavelets from the Haar
(haar), Daubechies (db), Symlets (sym), Coiflets (coif),
and Biorthogonal (bior) families, with decomposition lev-
els from 1 to 8. Detailed properties of all the considered
wavelets are compiled in Table B.1.

4. We detected flares in the resulting light curves using the flare
detection algorithm described in Section 2.3.

As an example of the output of this process, Figure 7 presents the
improvement in flare recovery rate across all spectral subtypes
after denoising with the Haar wavelet at a decomposition level
of 2. The primary limitation for flare recovery is the amplitude,
with a sharp decline in recovery rates for very low ampli-
tude flares. This behaviour is expected, as even after denoising,
low amplitude flares are unlikely to exceed the 3σ detection
threshold above the noise floor and fulfil the N1 criterion. In
addition, recovery rates also drop for very low FWHM, likely
due to the flares not satisfying the N3 criterion due to insuffi-
cient consecutive data points above the detection threshold. This
suggests that even though flares of different impulses can have

the same energy (see Figure 5), high-impulse flares generally
have a higher recovery rate compared to low-impulse ones, pro-
vided they have durations longer than N3 data points. Overall,
the denoising process improves recovery rates across all spec-
tral subtypes, enabling the detection of flares with amplitudes
smaller by approximately half an order of magnitude than those
identified in the original light curves.

To compare the gain in recovery rate obtained after denoising
with different sets of parameters, we averaged the recovery rate
across spectral type for each wavelet and decomposition level.
Figure 8 displays the average flare recovery rate obtained for all
flares between 1024 and 1030 erg after denoising with different
wavelets and decomposition levels. Recovery rates correspond-
ing to each spectral subtype can be found in Figure C.1. Although
a single wavelet did not produce a significant improvement
in recovery rate compared to others, Coiflets and Daubechies
wavelets consistently provided the highest recovery rate across
several vanishing moments. Given their frequent use in analysing
astrophysical datasets, we selected Daubechies wavelets for
denoising the CHEOPS light curves (Ojeda González et al. 2014;
Souza-Feliciano et al. 2018; Bolzan et al. 2020). Specifically, we
selected the db18, which provides a balance between a high and
low number of vanishing moments.

An important parameter of the SWT is the coefficient thresh-
olding method. Hard thresholding sets coefficients below the
threshold to zero, preserving signal features but potentially intro-
ducing discontinuities and artefacts in the reconstructed signal.
Soft thresholding, on the other hand, not only sets coefficients
below the threshold to zero but also shrinks the remaining coef-
ficients towards zero, resulting in smoother data with fewer
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Fig. 9. Evolution of confusion matrix metrics as a function of the
injected flare energy. The TPR is shown in blue, the FPR in orange,
the TNR in green, and the FNR in red. Metrics for the original light
curves are represented by dashed lines, while those for the denoised
light curves are shown as solid lines. The vertical black dotted lines
indicate the four detection thresholds.

artefacts. However, it can slightly attenuate preserved features.
Generally, hard thresholding is better for retaining sharp fea-
tures, while soft thresholding improves signal smoothness and
continuity. We compared the impact of both thresholding meth-
ods on the recovery rate and found only a marginal difference
of less than 1% within each energy bin. We therefore chose to
use a hard thresholding to denoise the CHEOPS light curves
for several reasons. The signal of low-amplitude flares could be
affected by the shrinkage introduced by soft thresholding, which
would lead to the non-detection of the flares reaching just above
the detection threshold. Additionally, the shrinkage could poten-
tially lead to inaccurate energy estimations of the detected flares.
Finally, hard thresholding is less computationally intensive than
soft thresholding because it requires one operation less on each
coefficient value. This makes it a more efficient method when it
is applied to large datasets.

Our flare detection algorithm essentially functions as a
binary classifier, distinguishing between ‘flaring’ and ‘non-
flaring’ states. To evaluate its performance, we generated 1000
flare-free light curves for each 1025 erg energy bin and applied
the detection algorithm to measure its classification efficiency.
Specifically, we constructed confusion matrices for each injected
flare energy bin, defining four possible outcomes: true positive
(TP), where a flare was injected and correctly retrieved; false
positive (FP), where no flare was injected but one was erro-
neously retrieved; false negative (FN), where a flare was injected
but not retrieved; and true negative (TN), where no flare was
injected and none was retrieved. We then calculated the true
positive rate (TPR), false positive rate (FPR), false negative rate
(FNR), and true negative rate (TNR) in function of the injected
flare energy.

In Figure 9, we present the evolution of these rates, averaged
across all spectral types, for both the original and denoised light
curves. We observed that the false positive rate (FPR) remained
independent of the injected flare energy but instead depended on
the noise level in the light curves. Notably, the FPR remained
consistently low across the entire energy range: below 0.025 for
non-denoised light curves and below 0.010 for denoised light
curves.

The denoising process significantly enhanced the true pos-
itive rate (TPR), effectively shifting the detection threshold
towards lower injected flare energies by nearly half an order of
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Fig. 10. Confusion matrices obtained from the flare injection and recov-
ery process for the original (left) and denoised (right) light curves. The
matrices are shown at the four detection thresholds, corresponding to
TPR rises above 10% (t1 and t2) and reaching 90% (t3 and t4), as defined
in the text.

magnitude. To quantify these improvements, we identified four
key thresholds:

– t1: where the TPR for denoised light curves exceeds 10%
(1.0 × 1027 erg),

– t2: where the TPR for original light curves exceeds 10%
(3.5 × 1027 erg),

– t3: where the TPR for denoised light curves reaches 90%
(1.1 × 1028 erg),

– t4: where the TPR for original light curves reaches 90%
(4.2 × 1028 erg).

Figure 10 illustrates the confusion matrices at these thresholds.
Consistent with the trend shown in Figure 9, the denoising pro-
cess significantly improves the TPR between t1 and t4, enabling
a more complete detection of flares at lower energies compared
to the original light curves.

2.7. Flare detection in denoised light curves

We then denoised all CHEOPS light curves (further referred to
as ‘denoised’), separated by visit and performed the flare detec-
tion described in Section 2.3. Following the method of Raetz
et al. (2020); Bruno et al. (2024) and Fortier et al. (2024), we
determined the quiescent luminosity of each star in the sample
by adopting the CHEOPS zero-point and effective wavelengths
available on the filter profile service of the Spanish Virtual
Observatory (Rodrigo et al. 2012) as follows:

L0 = 4πd2 × Qcheops(Fvega × 10−0.4×G) (1)

where d is the distance of the star, Qcheops is the quantum effi-
ciency of the CHEOPS sensor integrated over the 330–1100 nm

A242, page 9 of 29



Poyatos, J., et al.: A&A, 699, A242 (2025)

wavelength range, Fvega is the CHEOPS flux of Vega (CHEOPS
zero-point), and G is the Gaia G-band magnitude of the star. We
also derived several flare parameters, such as the flare duration
and FWHM, flare impulse (amplitude/FWHM), and flare peak
luminosity (amplitude × quiescent luminosity).

2.8. Complex flare breakdown

To break down complex flares displaying several visible peaks,
we consider that such events can be described as a superposition
of several simple flares, which can be modelled by the empirical
flare template of Llamaradas Estelares. For a given complex
flare event, the objective is therefore to automatically determine
the number of flares and their parameters (namely tpeak, ampli-
tude, and FWHM) that best describe it. For this, we developed
an algorithm to iteratively fit up to 5 flares for every flaring event
detected using AltaiPony. The flare region to fit for each event
included 15 seconds before the start time and 45 seconds after
the stop time of the flare to ensure the flux fully returned to the
quiescent level within the fitting window. Following the proce-
dure of Davenport et al. (2014), we imposed a first guess and
boundaries for the fitted flare parameters. We seeded the param-
eters of the fitting by using the peak flux amplitude and time and
15% of the flare full duration for the FWHM. The relative ampli-
tude of each component was required to be larger than 10−4,
being the flare amplitude after which the recovery rate dropped to
0% across all spectral types (see Figure 7). We also required tpeak
to occur within the boundaries of the flare window, and FWHM
to be larger than the observing cadence of the light curve and
smaller than 50% of the flare total duration. No priors on the rela-
tions between flare amplitude, FWHM, and tpeak were included.
Following Bruno et al. (2024), we used the AIC to determine the
best fit, which took the form

AICn = M × ln
(
χ2

M

)
+ 2kn (2)

where M is the number of data points that fell within the flare
window, and kn is the number of degrees of freedom of the n-
th model. This statistic determines the improvement of the fit
(decreased χ2) while penalising the increasing number of free
parameters used in the model. We chose to use the AIC instead
of the BIC like Davenport et al. (2014) because the AIC penalises
less the number of components. The AIC therefore tends to
favour more complex models with a higher number of param-
eters, which would enable further breakdown. Finally, the best
solution fit was selected as the n-th model with the smallest AIC
to have decreased by at least 6 units from the previous (n − 1)th
model. The choice of a 6-unit improvement threshold was deter-
mined in Bruno et al. (2024) by visual inspection of complex
flare events to ensure the algorithm did not overfit them.

3. Results

We began our analysis by applying the flare detection algorithm
to the detrended CHEOPS light curves, initially identifying 215
flares with energies ranging from 4.2× 1026 erg to 8.9× 1030 erg.
To optimise the detection process, we employed a SWT-based
denoising algorithm using the db18 wavelet base, as detailed
in Section 2.6, to reduce noise within each CHEOPS visit. We
then reran the flare detection algorithm on the denoised light
curves and detected a total of 291 flares with energies rang-
ing between 3.7 × 1026 erg and 8.9 × 1030 erg. After running
the flare-breakdown algorithm, 101 individual components were

recovered from 48 complex events in the original light curves,
with energies ranging from 5.8 × 1026 erg to 4.1 × 1030 erg.
271 individual flare components were recovered in the denoised
light curves from 123 complex events, with energies ranging
from 1.9 × 1026 erg to 4.1 × 1030 erg. The denoising process
resulted in a significant increase in the overall flare recovery
of ∼35% and improved the recovery of individual flare compo-
nents by ∼64%. For complex flares, the number of recovered
components increased by ∼168%. Eight events (less than 2%
of the denoised flare sample) had recovered energies lower than
1027 erg, therefore belonging to the upper end of the micro-flare
energy range.

In Figure 11, we present examples of the improved flare
recovery enabled by wavelet-based denoising. As shown in panel
b, the denoising allowed the recovery of a low-amplitude flare
from EV Lac by smoothing out the local scatter caused by the
light curve noise, which had previously prevented the flare from
meeting the N3 criterion. Flares slightly below the detection limit
therefore become detectable as they fulfil the N1,2,3 criteria. As
shown in panel d, the denoising also allowed for the identifica-
tion of an additional flare component in a complex flare from
AD Leo, which had been merged into a single one due to the
light curve noise. This increased sensitivity might allow us to
recover a larger population of complex flares, with much lower
amplitudes and durations than those detected before applying the
denoising.

We also observed several events with well-known flare mor-
phologies. Panel a of Figure 11 shows a pre-flare dip from AU
Mic, with an amplitude comparable to the one of the subsequent
flare, while panel c presents a QPP candidate with a sub-minute
period from V1054 Oph. Such pre-flare dips and QPPs in flar-
ing light curves have been extensively discussed in Bruno et al.
(2024). We present more pre-flare dip detections and QPP candi-
dates from GJ 317, GJ 3323, AU Mic, and AD Leo in Figure D.1.
Furthermore, we detected many flare candidates with the typical
‘peak-bump’ morphology, which were broken down by our algo-
rithm into two distinct components. While some of these events
are explicable as a random superposition of two sympathetic
flares, Tovmassian et al. (2003) claims that most peak-bump
events are caused by a single flare described by a two-phase
underlying emission mechanism, as energy is re-radiated by the
stellar photosphere after the peak phase. The complete profile
should only be observable when the emission site is close to the
centre of the visible stellar disk, however. We also found a few
occurrences where the ‘bump’ occurs before the ‘peak’, however,
which seems to contradict this hypothesis. Finally, a few cases of
‘flat-top’ structures were also found, although this could be due
to a typical ‘peak-bump’ shape with a lower contrast between the
‘peak’ and the ‘bump’ phases. Examples of such flare morpholo-
gies from Gl 841 A, V1054 Oph, and Ross 733 are provided in
Figure D.2.

Figure 12 displays the number of peaks observed per flar-
ing event. We find that ∼42% of flares have complex structures
composed of multiple peaks, in agreement with previous studies
on M stars (Davenport et al. 2014; Howard & MacGregor 2022;
Bruno et al. 2024). In Figure 13, we show the number of compo-
nents detected in flares that were observed both before and after
denoising. In most cases, denoising allows us to identify addi-
tional components and enables us to break down complex flare
structures in more detail. We compare the percentage of peaks
per flaring event with those obtained by Bruno et al. (2024),
who conducted a similar analysis on CHEOPS light curves from
the same programmes. We find that our method retrieved less 3-
to 5-peak flares than Bruno et al. (2024), which we attribute to
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curves, respectively. We compare our obtained percentages to the ones
of Bruno et al. (2024), displayed as dashed blue bars.

1 2 3 4 5
Original flare components

1
2
3
4
5

De
no

ise
d

fla
re

 c
om

po
ne

nt
s

Fig. 13. Comparison of the number of peaks detected in each flare
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Fig. 14. Amplitude vs duration of newly detected flares identified only
after denoising. Each point represents a flare, with colours indicating
the number of components retrieved from the flare breakdown.

two factors. First, a minor difference in determining the ‘best-
fit’ within the breakdown algorithm: we required each (n − 1)th
model to improve the AIC by at least 6 units before exploring
the n-th model, similar to the approach used by Davenport et al.
(2014) to prevent overfitting. Second, as shown in Figure 14,
denoising facilitates the detection of new flares that were not
identified in the original sample. These newly detected flares
are generally of low amplitude and short duration, making them
more challenging to decompose into multiple components, and
contributing to a higher proportion of single- and two-peak flares
in the denoised sample.

In Figure 15, we present a corner plot of the parameters of
the recovered flares before and after denoising. In both cases,
the energy of recovered flares spans from ∼1026 erg to ∼1031

erg. Most flares exhibit relative amplitudes between 10−3 and
10−1. Flare durations range between 10 seconds and 20 minutes.
Most flares display impulses between 10−5 and 10−3 s−1. The
distributions of flare energy, duration, amplitude, and impulse
are notably similar between flares detected in the original and
denoised CHEOPS light curves, suggesting that the population
of recovered flares remains consistent across both datasets. We
note a small secondary peak in the flare peak luminosity distri-
bution after denoising, however, that resembles a bimodal pattern
that was absent before denoising. We attribute this to the small
sample size.

The denoising process led to a higher recovery rate across
the entire energy range, with the most significant improvements
observed for flares weaker than 1029 erg. This is consistent with
the results of the injection-recovery test, which suggested that the
flare recovery rate started to drop at this energy (see Figure 9).
As can be seen from the amplitude and duration histograms, the
denoising allows us to recover an increased proportion of low
amplitude and short duration flares, while those with relative
amplitudes higher than 10−2 and durations longer than ∼4 min-
utes are recovered equally well. This confirms that observing
cadence and photometric precision is the main bottleneck for
low-energy flare detection. By optimising the S/N of weak flares,
the denoising improves one of these factors and facilitates the
recovery of a greater proportion of low-amplitude flares. Addi-
tionally, denoising appears to increase the flare recovery across
most of the impulse range. Contrarily to Hawley et al. (2014), we
did not find that individual components of complex flares have
longer durations than simple flares.

We provide a tentative linear fit to evaluate correlations
between components. A power-law relation is visible between
the flare duration and recovered energy, with longer flares gen-
erally releasing more energy. Similarly, the recovered energy
logically scales with amplitude. On the other hand, the recovered
energy does not seem to be correlated to the flare impulse, imply-
ing that the flare detection and breakdown algorithm efficiently
recovers flares of various impulsiveness. A slight trend is visible
between the flare amplitude and duration, where the flare dura-
tion appears to scale inversely with the amplitude. This might be
due to a detection bias and implies that within this energy range,
the detection of flares of low amplitude and short durations (i.e.
the flares at the lower end of the energy range) is incomplete.
This is expected considering the results of the injection-recovery
process (see again Figure 9). Finally, as expected, flare peak
luminosities scale with flare amplitudes, and FWHMs scale with
durations, as these properties act as proxies for each other.

Considering the denoised light curves, flares were detected
on 62 out of the 110 stars in our sample. In Figure 16, we com-
pare the stellar parameters of the flaring stars to the ones of the
entire stellar sample. No clear trends are evident in Gmag, Teff ,
radius, v sin i, distance or spectral type. Previous studies have
attributed a higher proportion of flaring stars to fast-rotating
stars, which are generally younger and possess more active mag-
netic dynamos than their slower-rotating counterparts (Howard
et al. 2020). This trend has been observed to decline significantly
in ultra-fast rotators (Prot < 0.2 days), however, which might be
due to the high rotation speed that constrains the magnetic field
lines in the stellar chromosphere, thereby inhibiting magnetic
reconnection (Günther et al. 2020; Doyle et al. 2022; Ramsay
et al. 2022). Previous large-scale studies have also attributed a
higher rate of flaring stars on late Ms compared to their earlier
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Fig. 15. Corner plot of the different flare properties, namely relative amplitude, duration, measured energy, FWHM, impulse, and peak luminosity.
The black data points represent metrics of individual flare components detected before denoising, while red data points correspond to those detected
after denoising. A linear fit is provided for reference in each distribution. The discrete bins for flare duration and FWHM are due to the observational
cadence equal to 3 seconds.

counterparts (Günther et al. 2020; Pietras et al. 2022). Our
results do not provide sufficient evidence to support any of these
hypotheses, likely due to the limited sample size.

Figure 17 shows statistics on the flares separated by spectral
subtype. The majority of flares were detected on M1V stars,
likely due to the substantial observing time dedicated to AU
Mic in our sample. M5V stars produced the fewest flares, likely
due to the small number of stars in this group. The mean flare
energy appears consistent across spectral subtypes but slightly
decreases towards late-type stars. This effect is expected as the
average quiescent luminosity decreases with spectral type (a
similar trend is visible in Figure 5). These mean flare energies
remain lower by more than an order of magnitude than the mean
flare energy recovered by Bruno et al. (2024) using combined
TESS and CHEOPS data, however, and they are lower by several
orders of magnitude than the flare samples observed by TESS

(Günther et al. 2020; Pietras et al. 2022), Kepler (Davenport
2016; Yang et al. 2017), and Evryscope (Howard et al. 2019).
When comparing the mean equivalent duration, we find that it
tends to increase with later spectral subtypes, suggesting that
late M dwarfs produce flares that are more energetic relative
to their quiescent luminosities. This trend could be attributed
to enhanced magnetic activity in fully convective stars. Flare
rates appear to be consistent across spectral subtypes, except
for M3V stars, which exhibit a mean of 30 events per day.
Most distributions are heavily skewed by a few frequently and
intensely flaring stars, however, as indicated by mean values
exceeding the third quartile. This also highlights the limited
statistical confidence due to the small sample size.

To better compare the energy range of our flare sample with
that of Bruno et al. (2024), we display in Figure 18 the histogram
of the energy distribution of our original and denoised flares,
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Fig. 16. Comparison of Gmag, Te f f , radius, log vsini, distance and spec-
tral type for flaring stars (red bars) against the entire stellar sample
(white bars).

separated into simple flares and individual components of com-
plex flares. First, we find that denoising preserves the number of
simple flares while significantly increasing the number of com-
plex flares, suggesting that it helps to break down initially simple
flares into several components. Likewise, the number of high-
energy complex flares remains similar, indicating that denoising
helps to further resolve them into finer components. When com-
paring the probability density of the flare energies with those in
Figure 13 of Bruno et al. (2024), the mean flare energy we recov-
ered is lower by more than an order of magnitude for simple and
complex flares, which is likely due to the contribution of flares
detected by TESS composing the majority of their sample.

Fig. 17. Flare statistics by spectral subtype for the stars in our sample.
The top panel shows the mean number of flares per star, the middle
panel displays the mean flare energy, and the bottom panel presents the
mean flare equivalent duration. Vertical bars represent the interquartile
range (1st to 3rd quartiles), while horizontal bars indicate the median
values. In the M5V bin of the bottom panel, only one star is included,
resulting in equal values for the 1st quartile, median, and 3rd quartile.
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Fig. 18. Histograms of the number of flares observed per energy bin.
The grey shaded histogram represents simple flares in denoised light
curves, and the red shaded histogram represents individual components
of complex flares. The dashed black and red histograms correspond to
the same in the original light curves.

To explore potential relations between flare parameters and
the host star properties, we analysed correlations between flare
parameters and those of the corresponding star. We show some
of these correlations in Figure 19. A slight exponential trend is
observed between the targets’ G-band magnitude and the relative
amplitude of the recovered flares. This trend may be attributed
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Fig. 19. Correlations between flare parameters and stellar parameters.
The blue and orange data points correspond to simple flares and indi-
vidual components of complex flares, respectively. Each panel includes
a linear fit for reference.

to low-amplitude flares being more easily detectable on brighter
stars and suggests that a portion of such flares remain unde-
tected in the noise floor of the light curves of dimmer stars.
Jackman et al. (2021) and Pietras et al. (2022) found a corre-
lation between the flare amplitude and the effective temperature
of the star, with flares detected on cool stars having, on aver-
age, higher amplitudes because of the greater contrast between
the flaring and quiescent emission. We find a similar trend,
although less pronounced, for our simple and complex flares.
Moreover, a power-law trend is visible between the flare dura-
tion and the stellar rotational velocity, indicating that longer flare
durations are usually associated with faster-rotating stars. This
may be related to fast-rotating stars often having stronger mag-
netic fields generated by the dynamo effect, which can lead to
more intense reconnection events. Finally, an exponential trend
is observed between the flare energy and the distance of the star.
This is likely due to a detection bias, where low-energy flares
become increasingly difficult to detect as the distance to the star
increases. We present all remaining correlations, classified as
simple versus complex flares, in Figure E.1, and provide the same
correlations categorised as flares detected in the original versus
denoised light curves in Figure E.2.

The relation between the flare energy and occurrence fre-
quency is generally assumed to be characterised by a power-law

described as dN/dE ∼ E−α, where α is the power-law index
governing the frequency dN/dE of flaring events with energy
E. To compare the impact of denoising on our recovered flare
samples, we constructed Flare Frequency Distributions (FFDs)
for our flare catalogues recovered in original and denoised light
curves. The FFDs represent the cumulative rate of flares per day,
indicating the frequency of detecting a flare of a given energy
or higher. This approach excludes inactive stars from the anal-
ysis. In Figure 20, we compare the FFDs of flares recovered in
original and denoised light curves. For the denoised sample, we
also compare FFDs of simple flares and individual components
of complex flares. Following Yang et al. (2023), we also sepa-
rate flares from fully and partially convective stars by setting the
separation threshold at M3V. We observe that simple flares are
more frequent before denoising, as are individual components of
complex flares with energies above 1029 erg. We attribute this
to the denoising facilitating the identification of additional com-
plex flare components, as shown in Figure 13 and in the increased
percentages in Figures 12 and 18. Thus, some simple flares are
broken down into multiple components, and high-energy compo-
nents are split into smaller ones after denoising, explaining the
increase in observed frequency. When comparing the full sam-
ple of original versus denoised flares, we see that the frequency
of recovered flares is higher after denoising across the entire
energy range. Even so, the denoising process only marginally
extends the lower limit of the detected energy range. Similarly,
when comparing flares from fully and partially convective stars,
the denoising process generally allows us to recover an increased
frequency of flares across the entire energy range. This is not the
case for flares from fully convective stars above 1029 erg, which
could be caused by the smaller sample size compared to partially
convective stars (see the comparison of the number of flares per
spectral subtype in the first panel of Figure 17). Finally, in the
denoised light curves, individual components of complex flares
appear more frequently at the same energy compared to simple
flares. This suggests that highly energetic flares are more likely
the result of multiple weaker, sympathetic flares originating from
neighbouring active regions, rather than single, powerful events.
Consequently, within this energy range, flares appear to occur
more frequently in groups rather than as isolated occurrences.

For each obtained FFD, we determined the corresponding
power-law index α by using an MCMC fit based on the Bayesian
flare frequency predictor outlined in Wheatland (2004) and
Ilin et al. (2021). The fit range began at 4.4 × 1028 erg for the
original light curves and 1.1 × 1028 erg for the denoised light
curves, corresponding to the energy from which 90% of flares
are expected to be recovered (see t3 and t4 from Figure 9). We
performed a Kolmogorov-Smirnov test on each fit to assess
whether the power-law assumption should be rejected, using a
significance level of 0.05 (Weidner et al. 2009). In all cases, the
power-law assumption was accepted with p-values below 0.05.
We compile the obtained α values in Table 5. The obtained val-
ues correspond to the higher end of the general α range reported
in the literature (Günther et al. 2020; Pietras et al. 2022; Yang
et al. 2023). Specifically, we find α = 1.99 ± 0.10 for the entire
flare population recovered in the denoised light curves. This
value is close to the crucial threshold of αH > 2, above which
smaller flares are thought to play a dominant role in coronal
heating (Hudson 1991). Caution is advised when interpreting
the obtained α indexes, however, because the portion of the
energy range used for the fit is limited and only represents a
small subset of events. For the flares detected in the original
light curves, only about 34% had energies above t4 and could be
included in the power-law fit. Similarly, for the denoised light

A242, page 15 of 29



Poyatos, J., et al.: A&A, 699, A242 (2025)

1027 1028 1029 1030

10 1

100

101

Simple flares

Original
Denoised

1027 1028 1029 1030

< M3V

Original
Denoised

1027 1028 1029 1030

All flares

Original
Denoised

1027 1028 1029 1030

10 1

100

101

Complex flares

Original
Denoised

1027 1028 1029 1030

Flare Energy [erg]

> M3V

Original
Denoised

1027 1028 1029 1030

Denoised flares

Simple
Complex

Cu
m

ul
at

iv
e 

# 
of

 fl
ar

es
 [d

ay
1 ]

Fig. 20. Flare frequency distributions for the flares recovered in our original (black) and denoised (red) samples. We separate FFDs into simple
flares (top left), individual components of complex flares (bottom left), flares recovered on partially convective stars (top middle), flares recovered
on fully convective stars (bottom middle), and the entire flare samples (top right). We also provide a comparison between the simple flares (blue)
and individual components of complex flares (orange) recovered in the denoised light curves (bottom right). Solid lines indicate linear fits to the
double-logarithmic FFD, extrapolating into regimes not directly observed.

Table 5. Power-law indexes α obtained in Figure 20.

Category α

Simple flares (original) 2.31 ± 0.12
Simple flares (denoised) 1.94 ± 0.14
Complex flares (original) 1.78 ± 0.26
Complex flares (denoised) 2.05 ± 0.14

<M3V (original) 1.84 ± 0.24
<M3V (denoised) 1.96 ± 0.10
>M3V (original) 2.29 ± 0.50
>M3V (denoised) 2.22 ± 0.19

All flares (original) 1.94 ± 0.23
All flares (denoised) 1.99 ± 0.10

curves, just 33% of flares had energies above t3 and were used in
the fit. This highlights that extending the detection limit would
allow to improve the detection completeness and obtain a more
accurate extension of the FFDs towards lower energies.

A power-law distribution is generally assumed when fitting
FFDs in order to determine an α index. A power-law implies
that flares are governed by a scale-free process, where flares
arise from self-organised criticality. This is the current under-
standing of magnetic reconnection events, where magnetic loops
can accumulate energy and release it in a scale-invariant man-
ner, with a size distribution following a power-law. Verbeeck
et al. (2019) and Sakurai (2022) suggested, however, that a pre-
liminary step should be to verify that the FFD indeed follows
a power-law and could not be better described by an alterna-
tive distribution. A log-normal distribution would indicate that
high-energy flares result from several smaller independent events

combining multiplicatively, rather than from a critical build-up
and sudden release of energy. This could happen if flares resulted
from many independent magnetic reconnection sites or gradual
energy accumulation processes. If flares followed a log-normal
distribution, it would suggest that the processes driving flare
energy release operate within a characteristic energy range, with
fewer instances of extreme events, which could explain the ’trun-
cated power-law’ distribution observed by Howard et al. (2019)
at high flare energies.

To test this, we followed the procedure of Verbeeck et al.
(2019) and Bruno et al. (2024) and compared our obtained FFDs
to both a power-law and a log-normal distribution. Figure 21
displays the Complementary Cumulative Distribution Functions
(CCDFs) of the flare energies recovered in our denoised light
curves, and compares the fitted power-law obtained in Figure 20
to a log-normal distribution. Again, the fitting range started at the
energy of 90% recovery (t3 = 1.1 × 1028 erg). For each denoised
category, we identified the best-fitting distribution by calculating
the log-likelihood ratio R between the power-law and log-normal
fits. A positive R indicates a preference for the power-law, while
a negative R favours the log-normal. Our results show that a log-
normal distribution better fits the data in all cases, although the
p-value of complex flares and flares from fully convective stars
is found above 0.05, showing a lack of statistical significance
for these subsets. This further emphasises that extending flare
observations to lower energies could help clarify the best-fitting
distribution for FFDs, which may have important implications
for understanding the mechanisms driving stellar flares.

4. Discussion

The use of CHEOPS allowed us to study an unexplored region
of the white-light flare energy range in main sequence M dwarf
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Fig. 21. Complementary cumulative distribution functions for recovered
flare energies in denoised light curves. We separate flares into simple
events (blue) and individual components of complex flares (orange),
as well as flares from partially (green) and fully convective stars (pur-
ple). The full flare sample is displayed in black. Observed distributions,
power-law fits, and log-normal fits are displayed with solid lines, dashed
lines, and dotted lines, respectively. The grey dashed vertical lines indi-
cate the energy of 90% recovery (t3) and the beginning of the energy
range used for fitting. In each panel, the legend indicates the log-
likelihood ratio R between the power-law and log-normal fits and its
associated p-value.

stars. Moreover, we employed a tailored denoising algorithm
based on the SWT to optimise the detection rate of low-energy
flares. Several potential improvements could extend this work,
however.

The primary limitation encountered in the flare observation
stems from the constraints of the detection algorithm employed.
The algorithm we used was initially developed for standard

flare detection and optimised for TESS and Kepler light curves.
Since low-energy flares are generally detected just above the
3σ threshold, many flares with variations below this level are
missed. Lowering the N1 criterion could help capture more low-
energy flares, but would significantly increase the false positive
rate, thereby affecting the overall flare statistics. We therefore
highlight the limitations of a classical sigma-clipping detection
method when applied to low-energy flares. Emerging detection
algorithms, such as those based on hidden Markov models, use
non-stationary time-series and have shown improved efficiency
in detecting low-energy flares and accurately measuring their
energy (Esquivel et al. 2025; Zimmerman et al. 2024). Flare
detection algorithms employing deep neural networks and ran-
dom forest classifiers have also demonstrated improved recovery
rates and increased sensitivity to low-energy events in Kepler and
TESS data, outperforming classical detection techniques (Vida
et al. 2021; Lin et al. 2024). Integrating such algorithms could
improve the sensitivity to low-energy flares and increase the
confidence in the derived flare statistics.

Another limitation of the flare detection algorithm is the
required number of consecutive data points for identifying a
flare candidate. To minimise false positives, we set the minimum
consecutive data points for detection to N3 = 5. Given that the
observing cadence for most light curves we studied is 3 sec-
onds (see Figure 2), this results in a minimum detectable flare
duration of 15 seconds. Several studies using observing cadence
of 1 second or faster have shown, however, that flares can have
durations as brief as a few seconds (Schmitt et al. 2016; Aizawa
et al. 2022). As illustrated in Figure 15, flare energy typically
scales with duration, which is supported by extensive statisti-
cal analyses conducted by TESS and Kepler (Davenport 2016;
Howard et al. 2019; Pietras et al. 2022). Enhancing the observ-
ing cadence while conserving the same photometric precision
could enable the detection of these shorter-duration, less ener-
getic flares and potentially extend the flare detection toward the
lower end of the energy range. CHEOPS can reach an expo-
sure time as fast as 0.001 seconds for very bright stars (V<6)
(Broeg et al. 2013; Benz et al. 2021). Conducting a dedicated
observing programme targeting such bright stars could provide
high-cadence light curves of active stars, thus decreasing the
minimum detectable flare duration.

An increased cadence would capture more data points, allow-
ing for more precise energy estimates (Clarke et al. 2024).
Denoising low-cadence time-series can cause flare peaks to be
treated as outliers and pulled toward the quiescent level, partic-
ularly for very short flares with limited data points. This effect
leads to a higher proportion of lost energy and increased rela-
tive error in energy calculations, as the flare equivalent duration
is determined from the area under the curve. Accelerating the
observing cadence could help alleviate this issue by providing
more data points and minimising the impact of denoising on flare
peak values.

Moreover, the flare profile used for the injection and recovery
process in Section 2.5 is based on GJ 1243 flare data observed
by Kepler (Davenport et al. 2014; Tovar Mendoza et al. 2022).
Seli et al. (2025) identified a correlation between the average
flare shape and spectral type, however, which this profile does
not account for. Additionally, Pietras et al. (2022) demonstrated
that this model overestimates the decay phase of short-duration
flares, while Dillon et al. (2020) and Grant et al. (2023) found
that low-energy flares tend to exhibit more symmetric profiles
with balanced rise and decay times. This suggests that the profile
used here may not be ideal for modelling low-energy flares,
potentially leading to the selection of suboptimal denoising
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parameters. As a result, the choice of mother wavelet might
be biased toward identifying longer, higher-energy flares while
being less effective for shorter, low-energy ones. A more repre-
sentative flare profile in the injection and recovery process could
improve the determination of optimal denoising parameters,
requiring a detailed analysis of how flare morphology varies
with energy.

Furthermore, the injection and recovery process in Sec-
tion 2.5 were limited to simple flares. At high cadence, however,
flares often appear as stacked events, adding complexity to their
light curve profiles (Davenport et al. 2014; Bruno et al. 2024).
Even low-energy flares can exhibit diverse morphologies, show-
ing the need of separating individual events through improved
photometric sensitivity and cadence. A more refined injection-
recovery process incorporating both simple and complex flares
would ensure that the chosen denoising parameters effectively
capture both types. Extending the empirical flare model of Tovar
Mendoza et al. (2022) to include well-known morphologies
(e.g., ‘peak-bump,’ ‘flat-top’) could also help misclassification
of complex flare events.

Additionally, recent advancements in wavelet transform
applications for time-series denoising offer promising avenues
for improvement. Polyharmonic wavelets, which use functions
able to represent multiple harmonics, provide better frequency
localisation and improved signal decomposition across multiple
scales, reducing artefacts in the reconstructed signal (Kounchev
et al. 2010). Although not in an astronomy context, Ji et al. (2016)
and Alvarado et al. (2023) have also explored hybrid approaches
that combine different wavelets or transformation methods to
optimise denoising for varying signal complexities. Investigating
how these methods impact flare recovery rates compared to stan-
dard SWT denoising could provide valuable insights and help
refine denoising parameters for optimal performance.

Most importantly, the main limitation of this study is the rel-
atively small sample size, with only 62 flaring stars identified
and less than a thousand flaring events catalogued. This con-
straint arises from the limited data gathered by CHEOPS due
to its on-target observing mode. While precise for focused tar-
gets, this mode is less effective at quickly monitoring a large
number of targets than survey-operating missions like TESS
and Kepler. As a result, flare statistics derived from CHEOPS
data carry more uncertainty than those from TESS and Kepler,
which observed thousands of stars (Davenport 2016; Pietras
et al. 2022). FFDs are generally constructed using hundreds or
thousands of flaring events. In our study, however, the average
number of flares per star was around 10 for each spectral sub-
type. This small sample size likely impacts the reliability of the
derived FFDs, leading to substantial uncertainties in the calcu-
lated α values and possibly explaining the better performance
of log-normal fits over power-law fits. This limitation empha-
sises that, while CHEOPS provides the photometric precision
and observing cadence needed for low-energy flare observa-
tions, its on-target mode makes it less suited for large-scale flare
studies. Future missions combining high photometric precision,
fast cadence, and survey-mode capabilities will be crucial for
advancing our understanding of low-energy flare statistics.

PLATO (PLAnetary Transits and Oscillations of stars),
scheduled for launch at the end of 2026, stands out as the
most promising candidate for this matter. Although its primary
objective is to observe transits of Earth-like exoplanets around
Sun-like stars, it will also collect photometric data on active late-
type stars as part of its stellar variability programme. PLATO
is anticipated to achieve a photometric precision comparable to
CHEOPS, with a fast observing cadence of up to 2 seconds in

its high-cadence mode. It will monitor two 49◦ × 49◦ regions of
the sky for two continuous years each (Rauer et al. 2024). The
combination of observational capabilities and a survey-mode
strategy can significantly increase the detection of low-energy
flares and improve the precision of their statistics for late-type
stars. Additionally, for the brightest targets, PLATO will provide
simultaneous photometry in two bandpasses (red and blue),
allowing for direct colour measurements of flares. This will
enable more accurate blackbody temperature estimates and
extend energy modelling towards low-energy flares, reducing
uncertainties in flare energetics. Moreover, the long-term
uninterrupted observations from PLATO could help track flare
activity cycles and investigate correlations with stellar rotation
and magnetic activity over multi-year timescales.

Furthermore, the recently announced TESS Extended Mis-
sion 3 presents great capabilities for low-energy flare studies.
TESS has been of prime importance in gathering flare statis-
tics in recent years and is set to extend its observing cadence
to 2 seconds from 2025 to 2028. While its photometric precision
remains lower than those of CHEOPS and PLATO, the enhanced
cadence will improve the detection of lower-energy flares com-
pared to previous TESS surveys. This would help bridge the
gap between large-scale studies of regular flares and studies of
low-energy flares, which remain limited by small sample sizes
(Günther et al. 2020; Pietras et al. 2022; Feinstein et al. 2024).

Finally, the type of denoising algorithm we presented might
improve the recovery of low-energy flares in JWST exoplanet
spectra and facilitate the understanding of the impact of flares
on exoplanetary atmospheric retrievals (Howard et al. 2023).
During occultations, certain atmospheric elements (e.g. CO2)
can produce spectral profiles similar to flare activity, poten-
tially biasing the measurements of emission features of planetary
atmospheres (Lustig-Yaeger et al. 2019). Likewise, flares them-
selves can mimic the appearance of emission lines from various
atmospheric elements, complicating the accurate identification
of chemical signatures (Lim et al. 2023). Flares are known to pro-
duce strong chromospheric emission in key spectral lines such
as Hα, CaII H&K, and HeI 10 830 Å, which are also used as
tracers for planetary atmospheres (Jensen et al. 2012; Yan et al.
2019; Sanz-Forcada et al. 2025). This can lead to false detec-
tions of atmospheric species in transmission spectra if the flare
signal is not properly accounted for (Konings et al. 2022). Sim-
ilarly, in emission spectra, flares can alter the measured stellar
flux during a planetary occultation, introducing variability in
the observed planetary signal. Additionally, the intense UV and
X-ray radiation from flares can heat the upper layers of plan-
etary atmosphere, enhancing atmospheric escape and affecting
long-term emission measurements. This effect is particularly
important for planets orbiting M dwarfs due to their enhanced
activity. Since both transmission and emission spectra can be
contaminated by flare-induced spectral features, it is essential
to develop techniques to separate true planetary atmospheric
signals from stellar activity (Thompson et al. 2024). Applying
a similar denoising algorithm could help differentiate between
genuine atmospheric features and transient flare signals, thereby
reducing the reduce the risk of misidentifications.

5. Conclusion

We used CHEOPS to study white-light flares in an unexplored
region of the energy range. We employed a denoising algorithm
based on the SWT to enhance the detection of low-energy flares
in the light curves of a sample of M dwarfs. We optimised the
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denoising parameters by performing a flare injection and recov-
ery in synthetic light curves that replicated the noise profile of
the CHEOPS instrument. The CHEOPS light curves were then
denoised using a db18 wavelet and a decomposition level tai-
lored to the number of data points in each visit. Each flare was
analysed by a breakdown algorithm to identify substructures. We
finally compared the flare populations detected in the original
and denoised light curves.

After denoising, our sample was composed of 291 flar-
ing events, with energies ranging between 3.7 × 1026 erg and
8.9 × 1030 erg. We identified a portion of ∼42% of flares that
had complex structures. 123 complex flares were divided into
individual components by using the flare-breakdown algorithm.
The denoising process significantly improved the flare detection.
It increased the overall recovery rate by ∼35% and the identifica-
tion of individual flare components by ∼64%. An improvement
in recovery was observed across the entire energy range, but the
highest gain was obtained for flares with energies lower than
1029 erg. We identified several trends between flare parameters
that are likely due to a detection bias, which suggests that the
flare population we studied is still not entirely recovered at low
energies.

The limited sample size prevented us from establishing any
clear relation between the flaring frequency and the spectral type,
or between the proportion of flaring stars and the spectral type.
We observed a trend, however, in which the mean flare energy
decreased from early- to late-M stars, while the mean equivalent
duration increased. We constructed FFDs and applied power-law
fits within the full recovery regime to determine the α indexes.
For the complete flare sample, we obtained α = 1.99 ± 0.10,
which is at the higher end of the values typically reported in
the literature. We found no statistically significant differences
in the α indexes between the distributions of simple and com-
plex flares or between flares from partially and fully convective
stars.

We also explored an alternative scenario to describe the
observed flare distribution by fitting a log-normal distribu-
tion and comparing it to the traditional power-law. The log-
likelihood-ratio tests consistently favoured the log-normal fit
over the power-law, although statistical confidence was not
achieved for all subsets. If flares were indeed better represented
by a log-normal distribution, it might indicate that high-energy
flares arise from the superposition of multiple weaker sympa-
thetic flares that erupt from nearby active regions. This shift
could have strong implications for understanding the flare-
formation mechanisms, for the impact of flares on exoplanetary
atmospheres, and for assessing long-term stellar activity.

Finally, we reviewed the main limitations of this study. First,
the small sample size introduces considerable uncertainty in the
derived flare statistics, which leads to a low confidence in the
α indexes extracted from the FFDs. Second, the flare-detection
algorithm and the model we used to inject flares were both
designed for regular flare studies and may bias the denoising
parameter selection. This might favour the recovery of regular
over low-energy flares. Third, although CHEOPS outperforms
most other instruments in photometric precision and observing
cadence, which allows it to detect flares with energies corre-
sponding to the upper end of micro-flares, it still cannot capture
all low-energy flares. This creates a detection bias in the flare
catalogue because the detections are incomplete. We proposed
several methods for mitigating these limitations and commented
that upcoming missions, such as PLATO and the third mission
extension of TESS, could significantly enhance low-energy flare
statistics.
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Appendix A: Target list.

Table A.1: List of targets and associated parameters.

Name Spectral type Gmag Teff [K] Vsini [km.s−1] Distance [pc] Radius [R⊙] Obs. time [h]
2MASS J03413724+5513068 M2V 10.55 4050.00 4.5 35.85 0.663 0.83
2MASS J06144242+4727346 M0V 10.81 3739.48 7.3 37.35 0.619 3.70
2MASS J06192947+1357031 M0V 10.01 3739.48 1.0 25.08 0.610 3.51
2MASS J09304457+0019214 M3V 10.49 3275.05 1.6 9.90 0.323 3.18
2MASS J11421839+2301365 M0V 10.83 3739.48 1.0 30.71 0.546 1.62
2MASS J11474440+0048164 M3V 9.59 3122.25 3.7 3.37 0.210 4.29
2MASS J13314666+2916368 M4V 10.61 3122.25 55.8 18.29 0.539 7.10
2MASS J20103444+0632140 M4V 10.92 3122.25 1.0 16.03 0.421 6.92
2MASS J21462206+3813047 M5V 10.82 2971.27 1.4 7.04 0.214 1.61
2MASS J22232904+3227334 M0V 10.37 3350.00 8.5 15.23 0.593 12.65
2MASS J23415498+4410407 M5V 10.37 2971.27 2.5 3.16 0.178 2.43
AD Leo M3V 8.21 4363.00 3.5 4.97 0.422 13.18
AU Mic M1V 7.84 3642.00 8.5 9.72 0.698 215.80
BD+33 1505 M0V 9.35 3619.00 3.7 18.22 0.598 5.30
BD-02 2198 M1V 9.12 3866.00 3.2 14.07 0.577 5.72
BX Cet M2V 10.32 3275.05 3.0 7.22 0.279 0.94
CE Boo M0V 9.13 3780.00 4.3 9.93 0.477 3.14
EE Leo M4V 10.28 3122.25 2.6 6.97 0.293 5.65
EG Cam M0V 9.41 3739.48 2.3 13.49 0.513 1.48
EQ Peg M4V 9.04 3630.00 16.0 6.26 0.513 3.43
EV Lac M4V 9.00 3122.25 5.1 5.05 0.337 7.95
G 168-31 M3V 10.98 3429.20 1.1 36.91 0.655 6.49
G 214-14 M0V 10.38 3739.48 1.7 23.71 0.513 5.18
G 234-57 M1V 10.46 3429.20 2.0 21.05 0.400 3.26
G 32-5 M4V 11.40 3122.25 5.5 12.21 0.269 3.12
G 99-49 M3V 9.90 3275.05 5.7 5.21 0.261 21.53
GJ 1 M2V 7.68 3429.20 2.8 4.35 0.396 8.54
GJ 1074 M0V 10.15 3584.18 4.0 21.11 0.537 6.64
GJ 1105 M4V 10.67 3275.05 1.9 8.84 0.294 2.63
GJ 15 A M2V 7.22 3605.50 3.7 3.56 0.406 15.87
GJ 176 M2V 9.00 3679.00 12.6 9.47 0.487 7.76
GJ 180 M2V 9.93 3275.05 1.7 11.94 0.413 14.15
GJ 184 M0V 9.21 3739.48 3.5 13.86 0.530 4.15
GJ 2 M2V 9.08 3875.00 1.8 11.50 0.515 3.29
GJ 205 M1V 7.10 3731.20 3.3 5.70 0.561 22.31
GJ 2066 M0V 9.12 3429.20 1.9 8.94 0.443 3.73
GJ 229 M1V 7.31 3814.00 3.1 5.76 0.549 56.05
GJ 26 M1V 10.05 3429.20 2.2 12.67 0.430 2.49
GJ 273 M4V 8.59 3275.05 2.2 3.79 0.316 23.02
GJ 317 M4V 10.75 3275.05 2.8 15.20 0.427 6.63
GJ 328 M0V 9.29 3739.48 3.4 20.54 0.651 8.12
GJ 3323 M4V 10.65 3122.25 2.3 5.38 0.186 13.11
GJ 358 M0V 9.63 3275.05 1.6 9.60 0.423 3.60
GJ 3649 M1V 9.88 3584.18 1.9 16.68 0.529 1.03
GJ 382 M0V 8.33 3429.20 2.2 7.70 0.510 35.50
GJ 3822 M1V 9.83 3584.18 3.5 20.34 0.581 2.90
GJ 399 M1V 10.26 3429.20 1.7 15.58 0.466 9.97
GJ 3997 M1V 9.64 3739.48 2.7 13.63 0.480 15.21
GJ 408 M2V 8.97 3122.25 2.1 6.75 0.390 5.90
GJ 4092 M0V 10.12 3739.48 2.7 28.23 0.630 16.53
GJ 422 M4V 10.48 3275.05 1.2 12.67 0.370 4.04
GJ 433 M0V 8.89 3616.00 1.3 9.07 0.469 15.03
GJ 436 M1V 9.57 3416.00 1.7 9.76 0.425 1.62
GJ 450 M1V 8.85 3584.18 5.8 8.76 0.460 20.58
GJ 47 M2V 9.84 4104.00 2.0 10.52 0.390 1.55
GJ 49 M2V 8.66 4055.50 2.9 9.86 0.540 9.60
GJ 494 M0V 8.91 3899.50 9.1 11.51 0.563 16.71
GJ 514 M1V 8.21 3727.00 1.9 7.62 0.503 22.00
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Table A.1: continued.

Name Spectral type Gmag Teff [K] Vsini [km.s−1] Distance [pc] Radius [R⊙] Obs. time [h]
GJ 521 M2V 9.40 3584.18 2.9 13.37 0.498 0.98
GJ 526 M2V 7.61 3634.00 2.4 5.44 0.482 16.27
GJ 536 M0V 8.86 4067.00 1.7 10.41 0.508 9.49
GJ 552 M1V 9.72 3429.20 2.6 14.25 0.503 3.46
GJ 581 M1V 9.41 3442.00 1.8 6.30 0.330 10.13
GJ 588 M3V 8.27 3429.20 1.8 5.92 0.460 11.72
GJ 606 M0V 9.59 3584.18 2.0 13.29 0.487 11.34
GJ 628 M3V 8.79 3570.00 1.5 4.31 0.322 20.84
GJ 649 M2V 8.82 3696.33 2.1 10.38 0.517 12.58
GJ 65 M6V 10.51 2971.27 26.4 2.72 0.165 2.00
GJ 674 M3V 8.33 3275.05 1.8 4.55 0.365 13.71
GJ 676 A M0V 8.87 3739.48 2.6 16.03 0.649 7.19
GJ 686 M1V 8.74 3584.18 2.9 8.16 0.442 24.90
GJ 699 M1V 8.20 3244.67 2.5 1.83 0.194 52.41
GJ 70 M1V 9.90 3429.20 2.0 11.32 0.408 5.34
GJ 701 M0V 8.52 3630.00 1.9 7.73 0.465 42.92
GJ 731 M0V 9.38 3739.48 2.7 15.21 0.539 17.27
GJ 740 M1V 8.46 3584.18 2.3 11.11 0.588 31.53
GJ 752 A M3V 8.10 3275.05 2.7 5.91 0.473 36.39
GJ 83.1 M5V 10.67 3122.25 2.6 4.47 0.180 8.20
GJ 832 M2V 7.74 3707.00 2.0 4.97 0.442 13.10
GJ 846 M0V 8.40 3580.00 3.1 10.55 0.574 42.89
GJ 849 M0V 9.22 3275.05 1.7 8.80 0.464 33.19
GJ 876 M3V 8.88 3532.00 2.5 4.68 0.352 19.91
GJ 880 M1V 7.79 3750.00 2.4 6.87 0.550 14.08
GJ 908 M1V 8.15 3646.00 2.6 5.90 0.417 17.19
GJ 9122 B M0V 9.92 3739.48 3.6 17.24 0.523 1.52
GJ 9404 M0V 9.87 3739.48 2.6 23.90 0.626 0.80
GJ 9793 M0V 10.04 3739.48 1.0 31.40 0.692 10.89
Gl 799B M4V 9.59 3123.00 10.2 9.83 0.692 2.78
Gl 841 A M2V 9.40 3429.20 4.2 14.86 0.608 10.82
HD 154363B M1V 9.17 3584.18 2.7 10.46 0.463 12.01
HD 233153 M1V 8.91 5125.96 2.7 12.28 0.555 26.30
HD 265866 M1V 8.86 3275.05 1.7 5.58 0.368 15.94
HD 50281B M0V 9.09 4763.86 3.9 8.74 0.442 6.62
HD 79211 M0V 7.05 3870.00 2.9 6.33 0.586 43.96
HD 95735 M2V 6.55 3563.50 7.3 2.55 0.389 12.65
HIP 57050 M4V 10.58 3122.25 1.8 11.02 0.359 2.54
HIP 79431 M1V 10.24 3275.05 1.0 14.54 0.479 6.55
LHS 3432 M0V 9.80 3429.20 4.3 8.82 0.336 8.11
LP 609-71 M1V 9.61 3429.20 2.7 11.54 0.485 6.98
LP 672-42 M3V 10.81 3275.05 1.5 13.44 0.372 1.39
MCC 549 M0V 10.28 3739.48 19.1 38.80 0.815 7.72
Proxima Centauri M4V 8.95 2990.50 2.6 1.30 0.154 5.86
Ross 733 M4V 10.37 3122.25 14.0 18.10 0.519 2.97
TYC 1313-1482-1 M0V 10.27 3739.48 1.0 46.23 0.870 3.34
TYC 4902-210-1 M0V 10.01 3739.48 1.6 30.67 0.706 6.58
V 1054 Oph M3V 7.91 3200.00 2.1 6.20 0.533 15.33
V1352 Ori M3V 10.10 3122.25 4.7 5.79 0.249 2.66
VV Lyn M2V 10.47 3429.20 4.6 11.87 0.518 18.25
Wolf 906 M1V 10.17 3429.20 1.7 14.46 0.461 5.61
YZ Ceti M5V 10.43 3122.25 2.2 3.71 0.168 29.67
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Appendix B: Wavelet list.

Table B.1: Properties of the wavelets used in Section 2.6.

Family name Wavelet name Vanishing moments Filters length Orthogonal Biorthogonal Symmetry
Biorthogonal bior1.1 1 2 False True symmetric

bior1.3 1 6 False True symmetric
bior1.5 1 10 False True symmetric
bior2.2 2 6 False True symmetric
bior2.4 2 10 False True symmetric
bior2.6 2 14 False True symmetric
bior2.8 2 18 False True symmetric
bior3.1 3 4 False True symmetric
bior3.3 3 8 False True symmetric
bior3.5 3 12 False True symmetric
bior3.7 3 16 False True symmetric
bior3.9 3 20 False True symmetric
bior4.4 4 10 False True symmetric
bior5.5 5 12 False True symmetric
bior6.8 6 18 False True symmetric

Coiflets coif1 2 6 True True near symmetric
coif2 4 12 True True near symmetric
coif3 6 18 True True near symmetric
coif4 8 24 True True near symmetric
coif5 10 30 True True near symmetric
coif6 12 36 True True near symmetric
coif7 14 42 True True near symmetric
coif8 16 48 True True near symmetric
coif9 18 54 True True near symmetric
coif10 20 60 True True near symmetric
coif11 22 66 True True near symmetric
coif12 24 72 True True near symmetric
coif13 26 78 True True near symmetric
coif14 28 84 True True near symmetric
coif15 30 90 True True near symmetric
coif16 32 96 True True near symmetric
coif17 34 102 True True near symmetric

Daubechies db1 1 2 True True asymmetric
db2 2 4 True True asymmetric
db3 3 6 True True asymmetric
db4 4 8 True True asymmetric
db5 5 10 True True asymmetric
db6 6 12 True True asymmetric
db7 7 14 True True asymmetric
db8 8 16 True True asymmetric
db9 9 18 True True asymmetric
db10 10 20 True True asymmetric
db11 11 22 True True asymmetric
db12 12 24 True True asymmetric
db13 13 26 True True asymmetric
db14 14 28 True True asymmetric
db15 15 30 True True asymmetric
db16 16 32 True True asymmetric
db17 17 34 True True asymmetric
db18 18 36 True True asymmetric
db19 19 38 True True asymmetric
db20 20 40 True True asymmetric
db21 21 42 True True asymmetric
db22 22 44 True True asymmetric
db23 23 46 True True asymmetric
db24 24 48 True True asymmetric
db25 25 50 True True asymmetric
db26 26 52 True True asymmetric
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Table B.1: continued.

Family name Wavelet name Vanishing moments Filters length Orthogonal Biorthogonal Symmetry
db27 27 54 True True asymmetric
db28 28 56 True True asymmetric
db29 29 58 True True asymmetric
db30 30 60 True True asymmetric
db31 31 62 True True asymmetric
db32 32 64 True True asymmetric
db33 33 66 True True asymmetric
db34 34 68 True True asymmetric
db35 35 70 True True asymmetric
db36 36 72 True True asymmetric
db37 37 74 True True asymmetric
db38 38 76 True True asymmetric

Discrete Meyer dmey 1 62 True True symmetric
Haar haar 1 2 True True asymmetric
Reverse biorthogonal rbio1.1 1 2 False True symmetric

rbio1.3 1 6 False True symmetric
rbio1.5 1 10 False True symmetric
rbio2.2 2 6 False True symmetric
rbio2.4 2 10 False True symmetric
rbio2.6 2 14 False True symmetric
rbio2.8 2 18 False True symmetric
rbio3.1 3 4 False True symmetric
rbio3.3 3 8 False True symmetric
rbio3.5 3 12 False True symmetric
rbio3.7 3 16 False True symmetric
rbio3.9 3 20 False True symmetric
rbio4.4 4 10 False True symmetric
rbio5.5 5 12 False True symmetric
rbio6.8 6 18 False True symmetric

Symlets sym2 2 4 True True near symmetric
sym3 3 6 True True near symmetric
sym4 4 8 True True near symmetric
sym5 5 10 True True near symmetric
sym6 6 12 True True near symmetric
sym7 7 14 True True near symmetric
sym8 8 16 True True near symmetric
sym9 9 18 True True near symmetric
sym10 10 20 True True near symmetric
sym11 11 22 True True near symmetric
sym12 12 24 True True near symmetric
sym13 13 26 True True near symmetric
sym14 14 28 True True near symmetric
sym15 15 30 True True near symmetric
sym16 16 32 True True near symmetric
sym17 17 34 True True near symmetric
sym18 18 36 True True near symmetric
sym19 19 38 True True near symmetric
sym20 20 40 True True near symmetric
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Appendix C: Flare recovery heatmaps.
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Fig. C.1: Flare recovery rate as a function of the selected mother wavelet and decomposition level, separated per spectral subtype.
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Appendix D: Additional flare detections.
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Fig. D.1: Additional flare detections similar to Figure 11. This figure shows two pre-dip flares (panels a and b) and two QPP candidates
(panels c and d).
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Fig. D.2: Additional flare detections similar to Figure 11. Panel a) shows a flare with a ’peak-bump’ profile, panels b) and c) show
flares with a ’bump-peak’ profile, and panel d) shows a flare with a ’flat-top’ profile.
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Appendix E: Flare-star parameters correlations.
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Fig. E.1: Correlations between the denoised flare parameters and the ones of its star, for simple flares (blue) and individual compo-
nents of complex flares (orange). Linear fits are shown for indication.

A242, page 28 of 29



Poyatos, J., et al.: A&A, 699, A242 (2025)

10 3

10 2

Re
l.

am
pl

itu
de

Original flares Denoised flares

100

101

Du
ra

tio
n

[m
in

]

1028

1030

En
er

gy
[e

rg
]

10 1

100

FW
HM

[m
in

]

10 5

10 4

10 3

Im
pu

lse
 

 [s
1 ]

10 20 30
Distance [pc]

1028

1029

1030

Pe
ak

 lu
m

in
os

ity
 

 [e
rg

 s
1 ]

7.5 10.0
Gmag

0.25 0.50
Radius [R ]

4000 5000
Teff [K]

0 1
log Vsin i [km.s 1]

Fig. E.2: Correlations between the flare parameters and the ones of its star, for flares recovered in original (black) and denoised (red)
light curves. Linear fits are shown for indication.
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