
Exploring platelet metabolomics 
and fatty acid profiles for ALS 
prognosis and diagnosis
Pascual Torres1, Irene Pradas1,5,6, Anna Fernàndez-Bernal1, Mònica Povedano2, 
Raul Dominguez2, Mariona Jové1, Cristina Gonzalez-Mingot3,4, Victòria Ayala1, 
Isidre Ferrer3,4, Reinald Pamplona1 & Manuel Portero-Otin1

Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease with heterogeneous clinical 
progression, reflecting distinct underlying pathological mechanisms. Early and accurate diagnosis and 
prognosis require reliable biomarkers to improve clinical management and therapeutic stratification. 
The present study explores the potential of platelet global metabolomics and fatty acid (FA) profiling 
as potential sources of diagnostic and prognostic biomarkers for ALS. We analysed platelets from 15 
recently diagnosed ALS patients and 21 healthy controls (CTLs) using liquid chromatography-mass 
spectrometry (LC–MS) for metabolomics and gas chromatography-flame ionization detection (GC-
FID) for FA profiling. ALS patients were classified as fast or slow progressors based on the median ALS 
Functional Rating Scale-Revised (ALSFRS-R) slope. While global metabolomic and FA profiles have 
shown limited potential for distinguishing ALS from CTL, preliminary molecular annotation based on 
mass and retention times disclosed specific metabolites with potential diagnostic value. Importantly, 
both global metabolomic and FA analyses demonstrated a marked capacity to differentiate fast 
progressors from slow progressors (receiver operating characteristic (ROC) curves of approximately 1), 
revealing distinct metabolic signatures associated with disease progression. Our findings demonstrate 
that platelet global metabolomics and FA profiling hold promise as prognostic biomarkers in ALS.

Amyotrophic lateral sclerosis (ALS) is the most common adult-onset motor neuron disease and is characterized 
by the progressive degeneration of upper and lower motor neurons. This devastating disorder has a median 
survival of only 2–3  years after diagnosis1. The clinical presentation of ALS is highly heterogeneous, often 
resulting in a diagnostic delay of up to one year from the onset of symptoms1. Additionally, this fact places risk 
on the assessment of novel therapeutic approaches, as different pathogenies might require different approaches. 
Current ALS diagnosis relies on the clinical assessment of progressive motor neuron symptoms, alongside the 
exclusion of other potential causes through electrophysiological and neuroimaging studies2. Depending on 
the degree of clinical evidence, patients are categorized as clinically possible, probable, or definite ALS. This 
prolonged diagnostic process not only impacts clinical management but is also an independent predictor of 
reduced survival3. Therefore, the identification of robust and accessible biomarkers to support and accelerate the 
diagnostic process is a critical unmet need in ALS care.

In addition to being a diagnostic challenge, ALS is also characterized by significant heterogeneity in disease 
progression. The ALS Functional Rating Scale-Revised (ALSFRS-R) is a widely used standard for monitoring 
disability, evaluating a wide range of functions, including speech, swallowing, fine motor skills, mobility, and 
respiratory function4. The ALSFRS-R slope, which represents the rate of decline, is crucial for estimating disease 
progression and assessing treatment efficacy in randomized clinical trials (RCTs)5. Given this heterogeneity 
in clinical and progression, the identification of prognostic biomarkers could not only help predict disease 
trajectory but also aid in stratifying patients for clinical trials and personalized treatment approaches.
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Emerging evidence suggests that differences in ALS progression might reflect distinct underlying disease 
mechanisms, potentially impacting treatment responsiveness. In particular, circulating lipids play key roles in 
disease heterogeneity. Circulating cholesterol and triglycerides have been associated with varying rates of disease 
progression6–10. Cholesterol and lipid metabolism are integral to maintaining cellular membrane fluidity and 
function, processes predominantly regulated by mitochondrial-associated membranes (MAMs). MAMs serve 
as crucial hubs for lipid synthesis and calcium signalling, and their disruption is a recognized feature of ALS 
pathogenesis11. In preclinical ALS models, MAM dysfunction leads to a metabolic shift from glucose metabolism 
to fatty acid metabolism, contributing to mitochondrial dysfunction and neuronal degeneration12. Our previous 
studies have reinforced this connection by demonstrating the interplay between impaired mitochondrial 
function, altered energy metabolism, and lipid biosynthesis in ALS models with TDP-43 loss of function13.

Metabolomics has emerged as a powerful tool for biomarker discovery, offering a comprehensive snapshot 
of metabolic alterations across diverse biochemical pathways, including lipid metabolism. Plasma metabolomics 
has been explored in ALS research since 200514. Several studies have independently validated15,16 and confirmed 
the utility of plasma metabolomics for ALS diagnosis and prognosis17 with platelets presenting an intriguing 
alternative for biomarker research. Unlike plasma, which reflects a complex mixture of systemic metabolites, 
platelets are cellular components with a high mitochondrial content18. Given the role of MAMs in lipid 
metabolism and the reported structural and functional alterations of mitochondria in ALS platelets19,20, we 
hypothesized that platelet metabolomics might better capture disease-specific changes in membrane composition 
and mitochondrial function.

Furthermore, the choice of platelets is supported by findings in primary fibroblast cultures from ALS patients, 
which exhibit metabolic shifts in both energetic and phospholipid pathways20. These alterations, independent 
of central nervous system (CNS) involvement, highlight the potential of peripheral tissues to reflect core ALS 
pathomechanisms. To complement the broad view provided by metabolomics, we integrated fatty acid (FA) 
profiling as a targeted approach to quantify specific lipid species and assess enzymatic activities involved in FA 
metabolism. Since MAMs influence FA synthesis and remodelling, this dual analytical strategy could provide 
deeper insights into the lipid dysregulation associated with ALS.

In this study, we combined non-targeted LC–MS platelet global metabolomics with FA profiling to evaluate 
their potential as diagnostic and prognostic biomarkers for ALS. Our results reveal limited diagnostic utility 
of platelet global metabolomics but underscore its promising role in prognosis, particularly in distinguishing 
fast from slow progressors. These findings support the feasibility of using platelet-based biomarkers for ALS 
management and lay the groundwork for future validation in larger cohorts using targeted analytical methods.

Results
Characteristics of the population
The cohort included 15 individuals who were diagnosed with the disease at a mean age of 60 ± 13 years (Table 
1). Among them, six were male, and nine were female. Based on disease progression, eight individuals were 
classified as fast progressors, whereas seven were classified as slow progressors. With respect to onset type, 12 
individuals presented with spinal onset, two presented with bulbar onset, and one presented with respiratory 
onset. The mean ALSFRS-R slope value was 0.53 ± 0.64.

Metabolomic analysis for ALS diagnosis
To explore the potential of non-targeted LC–MS platelet global platelet metabolomics as a diagnostic tool for 
ALS, we analysed platelet samples from ALS and CTL patients (Table 1). A total of 295 metabolites were detected, 
with only five showing statistically significant differences between the ALS and CTL groups (p < 0.05). The 
temptative identities of these metabolites were determined using the Human Metabolome Database (HMDB)21 
and validated by matching m/z and retention times with internal standards from the lipid family (Table 2).

We employed unsupervised analyses, including principal component analysis (PCA) and hierarchical 
clustering, to visualize potential global metabolomic differences. However, PCA did not achieve a clear separation 
between the ALS and CTL groups (Fig. 1a), and hierarchical clustering of the top 25 differential metabolites 
also failed to differentiate between groups (Fig. 1b). These findings suggest that global metabolomic profiles in 
platelets are not sufficient for ALS diagnosis.

Age at diagnosis (years) 60 ± 13

Gender

Male 6

Female 9

Rate of progression (number of individuals) 0.53 ± 0.64

Fast progressors 8

Slow progressors 7

Onset type (number of individuals)

Bulbar 2

Respiratory 1

Spinal 12

Table 1.  Clinical characteristics of the ALS patients.
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Given the lack of separation in unsupervised analyses, we performed receiver operating characteristic (ROC) 
analyses of individual metabolites. Five metabolites showed a p < 0.05, and two of them had an AUC > 0.7, 
including a potential phosphatidylinositol (PI) (34:0) (Fig. 1c) and lysosphingomyelin (LysoSM) (d18:0) (Fig. 1d), 
along with three unidentified metabolites with an AUC < 0.7 (Table 2). Despite these isolated significant hits, the 
overall global metabolomic profile demonstrated limited diagnostic value.

Fatty acid (FA) profiling for ALS diagnosis
Recent studies suggest a link between ALS pathology and disruptions in MAMs, which play a key role in regulating 
FA composition, with a pivotal role in energy metabolism11,12. Therefore, we conducted complementary FA 

Fig. 1.  Multivariate analyses of platelet metabolome profile for ALS and CTL comparison. (a) PCA and (b) 
hierarchal clustering analyses of the 25 top differential metabolites show a limited effect of global metabolomic 
data for disease status prediction. (c) ROC analysis of a potential PI(34:0) and (d) a potential LysoSM(d18:0) 
shows an AUC > 0.7 and a p value < 0.05 for ALS diagnostic classification.

 

Name AUC t tests Log2 FC (CTL vs. ALS) Potential ID 1 Potential ID 2

860.5362_12.112902 0.70448 0.024873 -5.1879 PI(34:0) PI(36:3)

488.3475_10.470104 0.7591 0.027619 -0.88966 LysoSM(d18:0) Vitamin K1 2,3-epoxide

59.0752_9.731435 0.66947 0.031918 -3.2333 Unknown

229.2438_8.247534 0.61064 0.041906 3.0033 Uknown

540.14_12.866606 0.67507 0.04741 1.8652 Unknown

Table 2.  Metabolites with a significant AUC value in the ROC analysis for discriminating CTL and ALS.
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profiling of platelets to determine whether FA homeostasis could provide additional diagnostic insights 
complementary to the metabolites found in the global metabolomic analysis.

The FA analysis included individual FA species, estimations of desaturase and elongase activities, and the 
peroxidability index22. Similar to global metabolomic results, unsupervised analyses did not reveal significant 
diagnostic potential. PCA of the FA profile did not distinguish ALS from CTL individuals (Fig. 2a), nor did 
hierarchical clustering of the top 25 FA species (Fig. 2b). Moreover, no statistically significant FA biomarkers 
were identified in the ROC analyses for diagnostic purposes (data not shown).

Metabolomic analysis for ALS prognosis
We next focused on evaluating platelet global metabolomics for prognostic purposes. Despite the small size 
of our cohort, heterogeneity in progression still existed (Table 1). ALS patients were categorized into fast 
(F) (≥ median ALSFRS-R slope) and slow (S) (< median ALSFRS-R slope) progression groups. Interestingly, 
15 metabolites were significantly different between these groups, a notable increase compared with the three 
significant metabolites in the diagnostic approach (Table 3).

Unsupervised analyses confirmed the prognostic potential of platelet global metabolomics: although PCA 
did not show a clear separation between patients with fast and slow progressions (Fig. 3a), hierarchical clustering 
of the top 25 differential metabolites demonstrated strong discrimination between these prognostic groups 
(Fig. 3b).

We further analysed the correlations between metabolite levels and the ALSFRS-R slope, a measure of 
functional decline. Three unidentified metabolites were significantly correlated with functional deterioration 
(Fig. 3c). These findings suggest that specific metabolic alterations may reflect ALS progression dynamics.

To further assess the clinical relevance of these metabolites, we performed ROC analyses. Potential biomarkers 
with an AUC > 0.9 and p < 0.05 included diacylglycerol (DG) (28:2) (Fig. 3d), phosphatidylcholine (PC) (38:3) 
(Fig.  3e), phosphatidyl-N-monomethylethanolamine (P-Nme) (42:7) (Fig.  3f), and unidentified metabolites 
(Fig. 3g). Additional significant metabolites are listed in Table 3.

Fatty acid (FA) profiling for ALS prognosis
In parallel, we analysed the potential of FA profiling for predicting ALS prognosis. PCA did not result in a 
clear separation (Fig. 4a), but the top 25 hierarchical clusters (Fig. 4b) of the FA profile demonstrated effective 
separation of patients with fast and slow progression, indicating a stronger prognostic capacity than that of 
diagnostic assessments.

Several FA species and ratios were significantly correlated with the ALSFRS-R slope. Positive correlations 
were observed for the n-6 pathway and the f22:5n6 fatty acid, whereas the f18:2n6 fatty acid was negatively 
correlated (Fig. 4c).

ROC analysis further validated the prognostic potential of FA profiling. Notable biomarkers with an AUC > 0.9 
and p < 0.05 included Δ8 n-6 (Fig. 4d), the n-6 pathway (Fig. 4e), f22:5n6 fatty acid (Fig. 4f), and f20:2n6 fatty 
acid (Fig. 4g). These findings align with the global metabolomic data, reinforcing the complementary value of 
FA analysis in identifying ALS prognostic biomarkers.

To investigate potential sex-related differences, we stratified the metabolomics and fatty acid data by sex 
within both the control and ALS groups. In the controls, hierarchical clustering of the top 25 most variable 
metabolites suggested partial separation by sex, with modest separation also observed in the PCA (Supplementary 

Fig. 2.  Multivariate analyses of fatty acid profile for ALS and CTL comparison. (a) PCA and (b) hierarchal 
clustering analyses of the 25 top differential fatty acid species, indices and enzymatic activity estimations do 
not result in accurate separation.
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Fig. S1a–b). However, no clear grouping was observed in the fatty acid composition data (Supplementary Figs. 
S2a–b). In the ALS group, neither PCA nor clustering analysis revealed strong separation by sex for either 
dataset (Supplementary Figs. S1c–d and S2c–d). Significant metabolites associated with sex differences are listed 
in Supplementary Tables S1–S4.

To further support the PCA and hierarchical clustering analyses, volcano plots were generated for key 
group comparisons (Supplementary Fig. S3). This allowed visualization of both the statistical significance 
and magnitude of change for each feature. In the comparison between the control and ALS samples, several 

Fig. 3.  Multivariate analyses of the platelet metabolome for slow (S) and fast (F) progressors. (a) PCA did 
not result in good group separation. However, (b) hierarchal clustering analyses of the 25 top differential 
analyses show a good separation of both populations. (c) Three metabolites correlated with the ALSFRS-R 
slope according to Pearson correlation analysis. (d) Potential DG(28:2), (e) PC(38:3), (d) P-Nme(42:7), and 
(f) unidentified metabolites with an AUC > 0.9 and a p value > 0.05 for ALS prognosis. *p value < 0.05, **p 
value < 0.01.

 

Name AUC T tests
Log2 
FC ID1 ID2 ID3 ID4 ID5 ID6

810.6316_12.413617 0.98214 0.0011931 0.38363 PC(38:3) PE-NMe(40:3) PC(O-38:5) PE(P-38:4) PA(42:0) SM(d39:1)

303.3026_9.929153 0.91071 0.0051568 9.8295 Unknown

ALSFR 1.0 0.0075902 1.8741

830.6037_12.408426 0.92857 0.013013 0.56287 PE-NMe(42:7) PC(40:7) PA(46:7) PS(38:3)

546.3758_12.428199 0.96429 0.015198 0.58966 DG(28:2) LysoPC(20:2)

613.7879_1.1018047 0.83929 0.018715 -10.037 Unknown

991.777_12.625597 0.83929 0.024906 0.25512 Unknown

571.4512_10.596755 0.82143 0.030637 0.1681 Unknown

449.3689_12.0759535 0.82143 0.038426 0.18973 Vitamin K1 Trihydroxyvitamin D3

622.5333_13.481535 0.83929 0.039553 0.30603 Unknown

727.6075_12.583862 0.82143 0.044049 0.1901 SM(d36:2) Galactosylceramide 
(d36:1) Ubiquinol 8 PC(O-34:1) PC(16:0/P-18:0)

1245.065_15.861232 0.67857 0.044168 -7.7383 Unknown

466.1117_12.509844 0.83929 0.044526 4.943 Sulforaphane-glutathione Epicatechin 
4’-glucuronide

Catechin 
5-glucuronide

Catechin 
4’-glucuronide

918.7538_15.182341 0.80357 0.046855 0.18798 Unknown

891.5647_10.987424 0.78571 0.047808 0.24345 PS(DiMe(13,5)/MonoMe(9,5)) PE-NMe2(44:9)

818.6945_14.304245 0.78571 0.048767 0.20518 PC(20:0/P-18:0) PC(O-18:1(9Z)/20:0)

659.507_10.705596 0.78571 0.049957 0.2267 DG(40:10) PE-NMe2(29:0) PE-NMe(30:0) PE(31:0) PC(28:0) PA(33:1)

Table 3.  Metabolites with a significant AUC value in the ROC analysis discriminating fast and slow 
progressors.
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metabolites and fatty acids were significantly altered (Fig. S3a–b). Additional volcano plots comparing fast and 
slow progressors revealed fewer but distinct metabolic differences (Fig. S3c–d), supporting the findings observed 
in the clustering analyses.

Discussion
In previous studies, we demonstrated the potential of plasma metabolomics for both the diagnosis and 
prognosis of ALS14. Despite these promising findings, the use of platelets as a source of biomarkers in ALS 
research remains largely unexplored. This gap is noteworthy considering that platelets exhibit disturbances in 
membrane distribution and mitochondrial structure, which could be linked to the energetic and FA metabolism 
dysregulations commonly observed in ALS19,18,23.

Our current results suggest a limited diagnostic utility for platelet global metabolomic biomarkers in 
ALS, but due to the small sample size, we cannot exclude this possibility. Among the metabolites analysed, 
certain phospholipids presented the highest area under the curve (AUC) in the ROC analysis. Importantly, the 
identification of five statistically significant metabolites (p < 0.05) among the 295 metabolites tested may include 
findings that occurred by chance. Given the relatively small sample size and the lack of correction for multiple 
testing, the possibility of false positives cannot be excluded. These results should therefore be interpreted as 
exploratory, and validation in independent and larger cohorts will be essential to confirm the potential of 
these metabolites as biomarkers. Phospholipids are integral to platelet activation24, and interestingly, previous 
studies have also identified differentially expressed phospholipids in cerebrospinal fluid (CSF) and the MAM 
fraction of fibroblasts from ALS patients20,25. Our findings align with this evidence, extending the alterations in 
phospholipids to peripheral samples and reinforcing their potential as ALS biomarkers14. However, when the 
platelet metabolome is considered, the overall metabolic profile of ALS patients is remarkably similar to that 
of controls, suggesting that early diagnostic changes are restricted to specific phospholipid species. Similarly, 
platelet FA profiling does not provide a clear diagnostic advantage, although the use of metabolomics cannot be 
discarded.

In contrast, the prognostic potential of platelet global metabolomic biomarkers appears more promising. 
Hierarchical clustering based on the top 25 metabolites almost perfectly distinguishes patients with fast 
progression from those with slow progression. This distinct global metabolomic fingerprint indicates that these 
subgroups may not only exhibit different disease mechanisms but may also benefit from tailored therapeutic 
approaches. A plausible explanation is the hypermetabolic state observed in fast progression, which is consistent 
with previous plasma and CSF metabolomic analyses14. The identification of robust prognostic biomarkers is 
critical for stratifying patients in clinical trials and improving therapeutic outcomes. For example, the efficacy of 
edaravone has been shown to depend heavily on the rate of disease progression26.

Fig. 4.  Multivariate analyses of the platelet metabolome for slow (S) and fast (F) progressors. (a) Although 
PCA did not yield good separation, (b) hierarchal clustering analyses of the 25 top differential metabolites 
revealed good separation of both populations. (c) The n-6 pathway and f22:5n6 were positively correlated with 
the ALSFRS-R slope according to Pearson correlation analysis, whereas the f18:2n-6 pathway was negatively 
correlated. ROC analysis of the FA analysis revealed an AUC > 0.9 and p value < 0.05 for the following 
measurements: (d) Δ8 n-6, (e) the n-6 pathway, (f) f22:5n6 fatty acid, and (g) f20:2n6 fatty acid. * p value < 0.05, 
** p value < 0.01.

 

Scientific Reports |        (2025) 15:34236 6| https://doi.org/10.1038/s41598-025-16220-0

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


Our study’s unique design—sampling at the diagnostic stage and correlating with longitudinal follow-up—
adds a predictive value to the identified biomarkers. While we classified patients into fast and slow progressors, 
ALS is characterized by a highly variable functional decline. Notably, several metabolites were strongly associated 
with this decline, suggesting their potential inclusion in predictive algorithms for functional trajectory. Moreover, 
platelet FA profiling reinforced these findings, demonstrating a high discriminative capacity between progression 
groups. The complementary nature of these two techniques is particularly valuable, while global metabolomics 
offers a broad metabolic overview, FA profiling enables precise molecular identification and additional insights 
into enzymatic activity and lipid peroxidability indices.

Our data specifically highlight that an increased n-6 pathway is associated with greater functional decay 
(ALSFRS-R slope). This finding underscores the role of peripheral inflammation in ALS progression, echoing 
previous studies showing n-6 polyunsaturated fatty acid (PUFA) dysregulation in human central nervous 
system samples27,28. Notably, modulating these pathways through dietary interventions in preclinical models 
has shown potential to influence disease progression and lifespan28. Among the prognostic biomarkers, FADS2 
Δ8-desaturase activity demonstrated exceptional performance, with an AUC of 1, accurately classifying 100% 
of fast progressors in our cohort. This enzyme is upregulated in the spinal cord of sporadic ALS patients and is 
linked to excitotoxicity in vitro29, further validating the use of peripheral tissues as reporters of disease-specific 
mechanisms, including lipid metabolism dysregulation.

While sex-based differences in metabolism are well documented, our subgroup analysis revealed that in ALS 
patients, sex did not account for major variance in either global metabolomic or fatty acid profiles. In contrast, 
controls exhibited some degree of sex-associated clustering in the metabolomics data but not in fatty acid 
composition. These findings may indicate that disease-driven metabolic alterations in ALS are more dominant 
than sex-specific metabolic signatures.

This study is not without limitations. We analysed whole platelet lysates to capture a broad metabolic profile. 
However, this approach combines both cytosolic and membrane-associated metabolites, which may obscure 
more localized metabolic changes. Future studies could benefit from subcellular fractionation of platelets (e.g., 
via differential centrifugation) to analyse the cytosolic and membrane fractions separately. This strategy could 
enhance detection sensitivity and help identify more compartment-specific biomarkers for ALS. Moreover, the 
use of a nontargeted metabolomics approach restricts our ability to confidently identify specific metabolites, as 
potential identities are inferred based on m/z and retention time properties in the Human Metabolome Database 
(HMDB)21, which provides only moderate confidence. Another technical limitation is found in unsupervised 
analysis: the marked separation of samples into two distinct groups observed in the PCA score plot appears 
to be driven primarily by technical variability. Specifically, the samples were processed and analysed in two 
different analytical batches, which we believe contributed to the large variance captured in PC1. While batch 
effects are a recognized challenge in metabolomics studies, we acknowledge that in our dataset, this may have 
overshadowed more subtle biological differences. Potential confounding factors that may have influenced the 
observed metabolomic profiles cannot be fully excluded in this study. Although all samples were collected 
following a standardized protocol, variability in pre-analytical conditions (e.g., storage time, temperature 
fluctuations, or platelet count), individual dietary habits, or concomitant medications could have impacted the 
metabolome. Future studies will require stricter control of batch processing, inclusion of technical replicates, 
and statistical correction for batch effects to ensure robust interpretation of metabolomic variation. Importantly, 
ALS progression is heterogeneous, and the sampling time point used in this study, although informative, may 
not fully capture the dynamic trajectory of metabolic alterations over time. Future studies will benefit from a 
prospective longitudinal design incorporating at least three or more time points per patient at regular intervals 
(e.g., every 3–4  months). Such an approach would allow for better modelling of disease progression and 
strengthen the identification of reliable prognostic biomarkers in ALS. Additionally, the relatively small sample 
size and regional homogeneity (all patients were from Catalonia) may limit the generalizability of our findings. 
Nevertheless, as a pilot study, our primary objective was to assess whether global platelet metabolomics and FA 
profiling warrant further investigation. Our promising results should be validated through targeted analytical 
methods and larger, prospective and more diverse cohorts.

In conclusion, our findings indicate that while platelet global metabolomic and FA profiling offer limited 
diagnostic value for ALS, they hold significant promise as prognostic biomarkers. Several metabolites and FAs 
identified in this study could contribute to predicting functional decline, offering a potential tool for better 
patient stratification and therapeutic decision making in clinical settings.

Methods
Human samples
The study followed the guidelines of the relevant Spanish legislation (Real Decreto 1716/2011) and was approved 
by the Institutional Ethics Committee of Bellvitge University Hospital. Accordingly, informed consent was 
obtained from all participants. Platelets were obtained from 15 ALS patients at Bellvitge University Hospital 
between 2015 and 2016 and from 21 age-matched non-ALS individuals (CTLs). The ALS patients included 9 
women and 6 men (12 spinal, 2 bulbar and 1 respiratory) and age-matched controls (15 women and 6 men) 
(Table 1). Biological samples were obtained between 10 and 24 months after the beginning of symptoms, and 
ALS was diagnosed according to the El Escorial criteria for ALS. The ALSFR was calculated and validated by 
two independent neurologists (MP and RD). The progression rate was calculated (at baseline or at the last visit) 
as 48 minus the ALS Functional Rating Scale-Revised score, divided by the disease duration from the onset 
of symptoms (Lu et al., 2015). We defined the ALSFR slope of the median value (0.5) as the cut-off point for 
classifying progression rates as fast progression (F) or slow progression (S). Blood was obtained in the morning 
after overnight fasting.
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Platelet isolation
Platelets were isolated from peripheral blood using Histopaque-1077 (10771, Sigma). Briefly, 3 ml of Ficoll was 
added to the bottom of a centrifuge tube. Carefully, 3 ml of blood mixed with 3 ml of PBS was layered onto Ficoll 
without mixing the phases. The tubes were centrifuged at 400×g for 30 min at room temperature with the lowest 
acceleration and brake program. The upper layer and the opaque interphase were collected into a new tube, and 
then this phase was washed with PBS and centrifuged at 300×g. The supernatant contained the platelet fraction 
and the pelleted PBMCs. The platelets were centrifuged at 360×g, and the pellets (containing PBMCs) were 
discarded. The supernatant was collected and centrifuged at 800×g. The resulting pellet was washed with PBS 
and centrifuged at 800×g to obtain the platelets.

Metabolomic analysis
A total of 100 μL of PBS was added to the platelet pellet, and the protein concentration was quantified using the 
Bradford method, following the manufacturer’s instructions (#5000006, Bio-Rad). An equal amount of protein 
(150 μg) was used for metabolite extraction. The samples were diluted to a final volume of 100 μL in PBS, and 
300 μL of ice-cold acetone was added. The samples were vortexed for 10 s and incubated for 30 min at 4 °C. The 
samples were then centrifuged at 4 °C for 10 min at 1000×g. The supernatant was separated into a clean glass 
tube and evaporated in Speed Vac. A total of 250 μL of methanol and 500 μL of chloroform were added together 
with the standard mixture. The samples were vortexed for 10 s, 200 μl of 0.7% KCl was added, the mixture was 
vortexed for 10 s, and the mixture was centrifuged at 4 °C for 10 min at 1000 ×g. The upper and bottom phases 
were separated. The bottom phase contained chloroform-soluble metabolites (lipids), and the upper phase 
contained methanol-soluble metabolites (employed for the metabolomic analysis).

For the metabolomic study, an Agilent 1290 liquid chromatography system coupled to an ESI-Q-TOF MS/
MS 6520 instrument (Agilent Technologies, Santa Clara, CA, US) was used. In all cases, 2 μL of extracted sample 
was applied onto a reversed-phase column (Zorbax SB-Aq 1.8 μm 2.1 × 50 mm; Agilent Technologies) equipped 
with a precolumn (Zorbax-SB-C8 Rapid Resolution Cartridge 2.1 × 30 mm 3.5 μm; Agilent Technologies) with a 
column temperature of 60 °C. The flow rate was 0.6 mL/min. Solvent A was composed of water containing 0.2% 
acetic acid, and solvent B was composed of 0.2% acetic acid. The gradient started at 2% B, increased to 98% B in 
13 min and was held at 98% B for 6 min. Post-time was established in 5 min.

Data were collected in positive electrospray mode in full-scan mode at 100–3000 m/z in an extended dynamic 
range (2 GHz), with N2 used as the nebulizer gas (5 L/min, 350 °C). The capillary voltage was 3500 V with a scan 
rate of 1 scan/s. The ESI source used a separate nebulizer for the continuous, low-level (10 L/min) introduction 
of reference mass compounds: 121.050873, 922.009798 (positive ion mode) and 119.036320, 966.000725 
(negative ion mode), which were used for continuous, online mass calibration. MassHunter Data Analysis 
Software (Agilent Technologies) was used to collect the results, and MassHunter Qualitative Analysis Software 
(Agilent Technologies) was used to obtain the molecular features of the samples, which represent different, co-
migrating ionic species of a given molecular entity using the Molecular Feature Extractor algorithm (Agilent 
Technologies), as described previously (Jove et al., 2015).

Fatty acid analysis
Total lipids from platelets were extracted using a chloroform/methanol mixture (2:1, v/v)30 in the presence of 
0.01% butylated hydroxytoluene to prevent oxidation. The extraction also included 1,2-dinonadecanoyl-sn-
glycero-3-phosphocholine (Avanti Polar Lipids, ref. 850,367) as an internal standard. The chloroform phase 
containing the lipids was collected and evaporated under a nitrogen stream, and the resulting fatty acids were 
converted into their methyl ester derivatives (FAMEs) for analysis via gas chromatography (GC), following 
previously established protocols30. A total of 23 species were analysed (Table S5).

Separation was achieved using a DB-WAX capillary column (30  m × 0.25  mm × 0.20  μm) on a 7890A 
GC system equipped with a 7683B Series automatic injector and a flame ionization detector (FID) (Agilent 
Technologies, Barcelona, Spain). Fatty acid methyl esters were identified by comparing their retention times 
with those of authenticated standards from Larodan Fine Chemicals (Malmö, Sweden). The results are reported 
as mol%.

Additionally, the following fatty acyl indices were calculated: saturated fatty acids (SFAs); 
unsaturated fatty acids (UFAs); monounsaturated fatty acids (MUFAs); polyunsaturated fatty acids 
(PUFAs) from the n-3 and n-6 series (PUFAn-3 and PUFAn-6, respectively); and average chain length, 
ACL = [(Σ%Total14 × 14) + (Σ% Total16 × 16) + (Σ%Total18 × 18) + (Σ%Total20 × 20) + (Σ% Total22 × 22) + (Σ% 
Total24 × 24)]/100. The density of the double bonds in the membrane was calculated with the double 
bond index, DBI = [(1 × Σmol% monoenoic) + (2 × Σmol% dienoic) + (3 × Σmol% trienoic) + (4 × Σmol% 
tetraenoic) + (5 × Σmol% pentaenoic) + (6 × Σmol% hexaenoic)]. Membrane susceptibility to peroxidation 
was calculated with the peroxidisability index, PI = [(0.025 × Σmol% monoenoic) + (1 × Σmol% 
dienoic) + (2 × Σmol% trienoic) + (4 × Σmol% tetraenoic) + (6 × Σmol% pentaenoic) + (8 × Σmol% hexaenoic)]31, 
and PI = [(0.015 × Σmol% monoenoic) + (1 × Σmol% dienoic) + (2 × Σmol% trienoic) + (3 × Σmol% 
tetraenoic) + (4 × Σmol% pentaenoic) + (5 × Σmol% hexaenoic)]31,32.

Elongase and desaturase activity was estimated from specific product/substrate ratios33: Δ9(n-
7) = 16:1n-9/16:0; Δ9(n-9) = 18:1n-9/18:0; Δ5(n-6) = 20:4n-6/20:3n-6; Δ6(n-3) = 18:4n-3/18:3n-3; Δ6(n-
3) = 24:6n-3/24:5n-3; Elovl3(n-9) = 20:1n-9/18:1n-9; Elovl6 = 18:0/16:0; Elovl1-3-7a = 20:0/18:0; Elovl1-3-
7b = 22:0/20:0; Elovl1-7c = 24:0/22:0; Elovl5(n-6) = 20:2n-6/18:2n-6; Elovl2-5 (n-6) = 22:4n-6/20:4n-6; Elovl 
2–5(n-3) = 22:5n-3/20:5n-3, and Elovl 2(n-3) = 24:5n-3/22:5n-3. Finally, the n-3 and n-6 pathways were estimated 
according to ratios of 22:6n-3/18:3n-3 and 22:5n-6/18:2n-6, respectively.
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Data analysis
All investigations were performed in a double-blinded manner. After the data were decoded, molecular 
changes were extracted using MassHunter Qualitative Analysis (Agilent Technologies, Barcelona, Spain), 
and the molecular profiles were obtained using the MassHunter Profiler Professional (Agilent Technologies, 
Barcelona, Spain), as previously described34. Molecules within a 0.1% ± 0.25 min retention time window and 
30  ppm ± 2 mDA mass window were considered the same. Only common features (those found in at least 
50% of the samples of the same condition) were considered to minimize individual bias. The peak intensities 
were relativised by internal standard peak intensity. TTESTs (normalized by the autoscale option), Spearman 
correlations, multivariate analyses (principal component analysis (PCA) and hierarchical clustering) and ROC 
analyses were performed in Metaboanalyst.ca.

Molecules showing statistically significant expression (with a p value < 0.05 in differential analyses) were 
annotated by comparing their exact mass and retention time and isotopic distribution with a specific database 
(hmdb.ca) to obtain potential identities.

The data were analysed using the MetaboAnalyst platform. A t test was employed for comparison. ROC 
analysis was employed for biomarker potential assessment. Pearson correlation was used to quantify association 
levels. Principal component analysis (PCA) was performed using Euclidean distance as the distance measure. The 
separation between groups observed in the PCA was statistically assessed using PERMANOVA (Permutational 
Multivariate Analysis of Variance), as implemented within MetaboAnalyst.

Hierarchical clustering was performed using Ward’s linkage method and Euclidean distance. Heatmaps were 
generated using the 25 most variable metabolites across samples (top 25 features), which were automatically 
selected based on their variance. This approach enhances visualisation and improves separation in exploratory 
clustering. Prior to clustering, features were filtered using univariate statistical tests (t test or ANOVA, depending 
on the comparison) provided by the software. Volcano plots were generated using the MetaboAnalyst 6.0 
platform. Differential metabolites were identified based on a fold change threshold greater than 1 (FC > 1) and a 
p value < 0.05; p < 0.05 was used as the cut-off for significance. Unless specified, the annotation of metabolite is: 
calculated exact mass (in mass units)_retention time (min).

Data availability
The datasets generated and/or analyzed during the current study are available from the corresponding author, 
Dr. Manuel Portero-Otín ( [manuel.portero@udl.cat](mailto: manuel.portero@udl.cat) ) or Dr Pascual Torres ( 
[pascual.torres@udl.cat](mailto: pascual.torres@udl.cat) ) , on reasonable request.
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