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Abstract

Population pharmacokinetic (popPK) models are an essential tool when implementing therapeutic drug monitoring (TDM)
and to overcome dosing challenges in neonates in clinical practice. Since vancomycin, gentamicin, and amikacin are among
the most prescribed antibiotics for the neonatal population, we aimed to characterize the popPK models of these antibiotics
and the covariates that may influence the pharmacokinetic parameters in neonates and infants with no previous pathologies.
We searched the PubMed, Embase, Web of Science, and Scopus databases and the bibliographies of relevant articles from
inception to the beginning of February 2024. The search identified 2064 articles, of which 68 met the inclusion criteria
(34 for vancomycin, 21 for gentamicin, 13 for amikacin). A one-compartment popPK model was more frequently used to
describe the pharmacokinetics of the three antibiotics (91.2% vancomycin, 76.9% gentamicin, 57.1% amikacin). Pharma-
cokinetic parameter (mean + standard deviation) values calculated for a “typical” neonate weighing 3 kg were as follows:
clearance (CL) 0.34 + 0.80 L/h for vancomycin, 0.27 + 0.49 L/h for gentamicin, and 0.19 + 0.07 L/h for amikacin; volume
of distribution (V,): 1.75 + 0.65 L for vancomycin, 1.54 + 0.53 L for gentamicin, and 1.67 + 0.27 L for amikacin for one-
compartment models. Total body weight, postmenstrual age, and serum creatinine were common predictors (covariates)
for describing the variability in CL, whereas only total body weight predominated for V. A single universal popPK model
for each of the antibiotics reviewed cannot be implemented in the neonatal population because of the significant variability
between them. Body weight, renal function, and postmenstrual age are important predictors of CL in the three antibiotics,
and total body weight for V,;,. TDM represents an essential tool in this population, not only to avoid toxicity but to attain the
desired pharmacokinetic/pharmacodynamic index. The characteristics of the neonatal population, coupled with the lack of
prospective studies and external validation of most models, indicate a need to continue investigating the pharmacokinetics
of these antibiotics in neonates.

1 Introduction

Infections remain a leading cause of death in neonates [1].

Systemic infections cause about 2.3 million neonatal deaths The significant variability in pharmacokinetics between
each year globally [1, 2]. The ethical, logistical, regulatory, neonatal populations with vancomycin, gentamicin, and
and technical difficulties associated with conducting studies amikacin makes a universal population pharmacokinetic
on newborns have prevented them from being considered model for each antibiotic unfeasible.

Total body weight, postmenstrual age, and serum
creatinine were the covariates most frequently included
to explain variability in drug clearance. The primary
explanatory factor for variability in the volume of distri-
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a high-priority population for inclusion in clinical trials,
despite their high prevalence of infections [3, 4]. Of 40 anti-
biotics approved for use in adults since 2000, only four have
included dosing information for neonates in their labeling
[1].

Misuse of antibiotics or inadequate dosing can lead to
treatment failure and the emergence of drug-resistant patho-
gens, resulting in longer hospital stays and increased mor-
tality [5]. Neonates exhibit major and rapid physiological
changes in the distribution, metabolism, and excretion of
drugs administered intravenously [6]. The neonatal popu-
lation is characterized by a higher body water percentage,
reduced protein binding, and decreased renal clearance at
birth, which gradually increases as the renal system matures
[7, 8]. Fat and extracellular water proportions vary exten-
sively across ages. Fat percentage increases with age (6%
in premature infants, 13.4% in full-term infants, 18% in
adults, and 30% in elderly people), whereas the water pro-
portion decreases (80% in premature infants, 70% in full-
term infants, 60% in adults, and 54% in elderly people) [9].
Compared with adults, newborns have higher inter- and
intraindividual variability in pharmacokinetics, especially
for antibiotics [6, 10].

The pharmacokinetic differences between newborns
and adults justify specific pharmacokinetic studies in
neonates. After the introduction of the nonlinear mixed-
effects modeling methodology, the population pharma-
cokinetic (popPK) approach became a reference tech-
nique in the neonate population. The population-based
modeling method assesses both intra- and inter-individual
variability. This allows for the determination of optimal
dosing regimens by identifying and quantifying sources
of pharmacokinetic variability, thereby improving our
understanding and optimization of pharmaceutical inter-
ventions [4, 11]. This method has an advantage over clas-
sical pharmacokinetic analysis in that the effects of covari-
ates such as age, weight, disease state, and organ function
on pharmacokinetic parameters can be obtained through
sparse sampling from each subject. This reduces the need
for blood sampling, which facilitates this type of study
because it is unpractical and unethical to take multiple
blood extractions from neonates [5, 12].

Choosing the appropriate popPK model for each anti-
biotic is essential in clinical practice, as it improves
therapeutic drug monitoring (TDM) by providing better
individualized predictions [5]. Model-informed precision
dosing (MIPD) is a clinical strategy that employs math-
ematical and pharmacokinetic/pharmacodynamic models,
along with patient-specific data, to optimize and personal-
ize drug-dosing regimens. This approach leverages prior
knowledge (such as population-based models) and real-
time patient information (such as drug concentrations
and clinical responses) to achieve the best therapeutic

A\ Adis

outcomes while minimizing adverse effects [13]. How-
ever, the performance of most of the published popPK
models remains unknown in other groups of patients than
those used for its development [14, 15]. Other previous
reviews of popPK models have been conducted in pedi-
atrics, including neonates, infants, and children [5, 16,
17]. However, we focused only on the neonatal and infant
population because of its specific characteristics and the
remaining knowledge gaps in this population, which may
account for the high intra-individual variability and may
predict dosing. In addition, it includes common antibiotics
used in clinical practice and candidates for TDM, allowing
us to compare the covariates influencing each of them.

The aim of the present study was to review the popPK
models of the most widely prescribed antibiotics that are
subject to TDM (vancomycin, gentamicin, and amikacin) in
neonates and infants and to determine the applied structural
models in this population. We analyzed the covariates that
significantly influence the pharmacokinetics of each antibi-
otic and compared the standardized pharmacokinetic param-
eters (clearance [CL] and volume of distribution [V 4]) of the
studies included. We also collected the pharmacodynamic
targets of each study included.

2 Search Methodology
2.1 Literature Search Strategy

We searched the MEDLINE (via PubMed), Embase, Web of
Science, and Scopus databases from inception to the begin-
ning of February 2024 using the following combination of
terms for each antibiotic: (vancomycin OR gentamicin OR
amikacin) AND (pharmacokinetic model OR pharmacoki-
netic analysis OR population pharmacokinetics) AND (new-
born OR neonate). The initial search was limited to studies
performed in humans that described popPK models of the
antibiotics chosen. We also inspected the bibliographies of
relevant articles.

2.2 Inclusion and Exclusion Criteria

All articles had to meet the following criteria: (i) observa-
tional studies or clinical trials describing popPK models in
neonates and infants with no previous pathologies, including
those with patent ductus arteriosus, (ii) intravenous adminis-
tration of the antibiotic, (iii) gestational age (GA) < 44 weeks,
and (iv) written in English, Spanish, French, or German.

We excluded the following: (i) articles lacking equations
to explain the effect of covariates on pharmacokinetic param-
eters and mean values of the pharmacokinetic parameters, (ii)
reviews of published popPK models, (iii) validation studies
for published popPK models, (iv) popPK models in neo-
nates undergoing extracorporeal membrane oxygenation or
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controlled hypothermia and pathological conditions such as
cystic fibrosis or hypoxic—ischemic encephalopathy, (v) stud-
ies including neonates and other populations (young infants,
children, or adults) for model development, and (vi) studies for
which the full text was not available upon request to the author.

2.3 Data Extraction

One investigator reviewed the literature by assessing the
titles and abstracts according to the inclusion criteria. Any
discrepancies were settled by consensus with a second inves-
tigator. One investigator extracted the following data from
the studies: years of study duration, study design, country,
statistical modeling software, total number of samples and
patients, population characteristics, structural pharmacoki-
netic model, developed model for calculating the following
pharmacokinetic parameters: clearance (CL), intercompart-
mental clearance (Q), volume of distribution (V,), volume of
distribution of central compartment (V,), volume of distribu-
tion of peripheral compartment (V,), and their variability,
the included covariates in each equation, as well as the mean
CL in L/h/kg and V, in L/kg, as well as the pharmacody-
namic target. CL and V, standardized by the mean or median
weight of the included population were calculated manually
if such data were not provided in the article but could be
calculated from the information provided in the text. In that
case, the weight used is specified under the CL or V, value.

To describe the characteristics of the population included
in each study, the range for GA in weeks, postnatal age
(PNA) in days, postmenstrual age (PMA) or post-concep-
tional age (PCA) in weeks, and total body weight (WT)
expressed as mean + SD or median (range) were recorded.
Some studies included the PCA instead of the PMA, and
we included this information, even though the American
Academy of Pediatrics Committee on the Fetus and New-
born [18] recommend that PCA should no longer be used in
clinical pediatrics.

3 Characteristics of Population
Pharmacokinetic Models

A total of 2064 articles were identified. After removing dupli-
cates, 887 relevant studies were screened according to the title
and abstract. Finally, 178 full texts were assessed for eligibil-
ity, and 68 of these were included in this review (34 for vanco-
mycin, 21 for gentamicin, and 13 for amikacin) (Fig. 1). The
year of publication ranged from 1982 until the end of 2023.

3.1 Vancomycin

Vancomycin had the highest number of popPK models in
the literature, totaling 36 across 34 studies. Although the

study years ranged from 1983 to 2021, most models were
developed after the year 2000. All studies except Cristea
et al. [19] were conducted in only one country and mostly
in a single hospital. The studies included neonates ranging
in age from O to 562.8 days, GA from 22 to 42.1 weeks,
and PMA from 22 to 110 weeks. The WT at the time of
the study ranged from 0.32 to 14.9 kg. Nonlinear mixed-
effects modeling was the most widely used approach for
describing vancomycin popPK models in neonates, with
most (25 of 36 models [69.4%]) using NONMEM® statis-
tical modeling software to estimate the individual phar-
macokinetic parameters. Other studies used a Bayesian
forecasting approach (Abbott Base Pharmacokinetic Sys-
tem, ADAPT II, Pumas or Phoenix™ NLME) to calcu-
late pharmacokinetic parameters. Jarugula et al. [20] used
the largest number of vancomycin samples (n = 2471) to
develop the model and the largest sample of patients (n =
934). Vancomycin popPK were best described by a one-
compartment (1-CMT) approach in 31 models and by a
two-compartment (2-CMT) approach in five models. Seay
et al. [21] developed both a 1-CMT and a 2-CMT model
using the same population. In most cases, studies with
rich sampling found that a 2-CMT model [19, 21-23] bet-
ter described the pharmacokinetic parameters than did a
1-CMT model.

3.2 Gentamicin

A total of 26 models for gentamicin were described in 21
articles. The years of study ranged from before 1988 to 2013.
Most models were developed in the Netherlands (n = 4) and
the USA (n = 3). The studies included neonates ranging
from 0 to 120 days, GA from 22 to 43 weeks, and PMA from
23.3 t0 43.8 weeks. The WT at the time of the study ranged
from 0.44 to 5.51 kg. The most-often used statistical mod-
eling software was NONMEMZ®, which was used in 14 of the
26 models described (53.8%). Fuchs et al. [24] had the larg-
est gentamicin (n = 3039) and patient (n = 1449) samples.
Four authors [25-28] reported more than one model using
different covariates in each one. Most commonly, a I-CMT
model was applied (n = 21) to describe gentamicin popPK
in newborns. Three studies applied a 2-CMT model, and two
studies used a 3-CMT model. Like the vancomycin stud-
ies, those with more samples better fit a 2-CMT or 3-CMT
than a I-CMT model to describe the pharmacokinetics of
gentamicin.

3.3 Amikacin

The fewest popPK models were found for amikacin (n = 14
in 13 studies). The years of study ranged from 1987 to 2021.
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Most models were developed in Belgium (n = 5). The stud-
ies included neonates ranging from O to 86 days, GA from 24
to 43 weeks, and PMA from 24 to 51.4 weeks. The WT at the
time of the study ranged from 0.39 to 5.04 kg. NONMEM®
was again the most used statistical modeling software, in 11
of the 14 models developed (78.6%). The largest amikacin
samples (n = 2186) and neonatal population (n = 874) came
from the study by De Cock et al. [29]. Illamola et al. [30]
reported two popPK models using a different set of covari-
ates. An external validation of published amikacin models
in Indian term neonates found that the model from Illamola
et al. provided the lowest relative median absolute predic-
tion error and relative root mean square error [31]. Smits
et al. [32] prospectively evaluated the model by De Cock
et al. [29] and re-estimated it to develop a new one to opti-
mize dosing in neonates with suboptimal trough levels. Eight
studies used a 1-CMT approach to describe the data, and the
remaining six studies used a 2-CMT approach. The largest
population studies preferred 2-CMT over 1-CMT models to
describe pharmacokinetic parameters.

General information about the articles and the character-
istics of the populations included is presented in Table 1.

4 Population Pharmacokinetic Analysis
4.1 Vancomycin

The median values of the pharmacokinetic parameters of
vancomycin popPK models are summarized in Table 2.

The frequency of covariates included in the popPK
model ranged from one to six for CL. WT (83.3%), serum
creatinine (Cr) (50.0%), PMA (44.4%), estimated cre-
atinine clearance (CICr; 13.8%), PNA (13.8%), and GA
(11.1%) were the most frequently reported significant pre-
dictors of vancomycin CL. In general, vancomycin CL was
positively affected by WT, PMA, GA, and PNA and nega-
tively affected by Cr levels. Some models also included
PCA, dopamine, concomitant therapy with a nonselective
cyclooxygenase inhibitor, artificial ventilation, concomi-
tant therapy with amoxicillin—clavulanic acid, vancomycin
volume of infusion, and urine output as covariates.

The covariates included in vancomycin popPK models
for estimating V, included up to two covariates, although
most models only included one (n = 30). WT was the
most frequently reported significant predictor of V,; among
almost all popPK models (91.7%). The model by Kato
et al. [47] assumed a fixed V, (1.19 L), like the 2-CMT
model of Song et al. [48], with fixed V, (1.27 L) and Vp
(2.422 L). The V, was influenced only by PMA in the
model by Silva et al. [36]. Two models included concomi-
tant treatment with inotropes or spironolactone as covari-
ates [41, 42].
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4.2 Gentamicin

The median values of the pharmacokinetic parameters of
gentamycin popPK models are summarized in Table 3.

The number of covariates included in the popPK mod-
els ranged from one to four for CL. Four studies did not
report the equations for CL and V,. The covariates most
frequently included to estimate gentamicin CL were WT
(72.7%), PNA (40.9%), GA (31.8%), Cr (18.2%), PCA
(14.2%), and PMA (9.5%). Other covariates also included
in some models were Apgar score, sex, birth weight (BW),
and CICr.

The covariates included in gentamicin popPK mod-
els for estimating V, included up to two covariates. WT
was reported to be a significant predictor of V,; among 18
popPK models (81.8%). GA (n = 5) and sepsis (n = 2)
were the other covariates also included in the equations
for estimating gentamicin V.

4.3 Amikacin

The median values of the pharmacokinetic parameters of
amikacin popPK models are summarized in Table 4.

The number of covariates included in the popPK model
ranged from one to six for CL. Three studies did not report
the equations for CL and V. The covariates most frequently
included to estimate gentamicin CL were WT (66.7%), PMA
(41.7%), PNA (25.0%), and Cr (16.7%), which aligns with
the study by Match et al. [31]. Other covariates also included
in some models were sex, concomitant therapy with nonse-
lective cyclooxygenase inhibitors, nonsteroidal anti-inflam-
matory drug or ibuprofen, intrauterine growth retardation,
GA, BW, inotropes, artificial ventilation, shock, sepsis, and
CICr.

Amikacin popPK models for estimating V, included up
to four covariates. WT was reported to be a significant pre-
dictor of V,; among nine popPK models (64.3%). The most
complex equation for CL and V, was in the study by Alle-
gaert et al. [80], which included five and four covariates for
estimating CL and V, respectively.

Allegaert et al. developed three popPK models for amika-
cin [40, 79, 80]. One [40] used the same equation for vanco-
mycin and amikacin CL and a correction factor (FCI
for scaling vancomycin to amikacin CL.

The equations for CL and V, derived from popPK models
of the included studies are summarized in Table 5, and the
model variability is shown in Table S1 in the supplementary
material. The CL and V, calculated for a “typical” neonate of
WT 3kg, PNA 30 days, PMA 40 weeks, GA 30 weeks, BW
2 kg, Cr 0.6 mg/dL (53 umol/L), CICr 30 ml/min/1.73m?,
and no other covariates are summarized in Table S2 in the
supplementary material.

amikacin)
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Fig. 1 Flow chart of the article
selection process. Abbrevia- [ Identification of studies via databases and other sources ]
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(n=9)
—
=)
=
5 Records screened (n = 887)
g
o
n
Records excluded (n = 110)
= v . DifferenF objective of_
developing a population
model, n = 56
2 Full-text records assessed for [ *  Neonates with
= eligibility (n = 178) > pathologies, ECMO or
) controlled hypothermia, n
i =19
° Other populations than
neonates in the same
— model, n =6
) . Not population model (in
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) ) ° Validation of an already
- Full-text articles included published model, n = 14
] (n=68) e Review (not original
% Vancomycin, n = 34 article), n =3
£ Gentamicin, n = 21 o Antibiotic administered
Amikacin,n =13 IM,n=3
. Not possible to access to

5 Discussion

This literature review identified 68 popPK models for van-
comycin, gentamicin, and amikacin in neonates and infants.
The most models have been developed for vancomycin (n =
34) because of its wide use in clinical practice and experi-
ence with TDM, followed by gentamicin (n = 21) and, to a
lesser extent, amikacin (n = 13). In all three antibiotics, the
most common covariate included to explain the variability
in CL was WT, especially in vancomycin (83.3%). Some

studies [6, 24, 40, 41, 43, 49, 51, 54, 56-58, 72, 74,75, 79,
80, 84-86] included this covariate in the equation using the
accepted and commonly used allometric scaling of weight,
with a fixed exponent of 0.75. Others [29, 30, 32, 44, 46,
48,61, 69, 73, 78, 81, 82] reported estimated values ranging
from 0.155 to 1.45. This wide range could be because the
estimation of the allometric coefficient may be quite impre-
cise and depends mainly on the weight distribution in the
subjects used to develop the popPK model [87].
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Table 2 Median values of the pharmacokinetic parameters of the vancomycin population pharmacokinetic models calculated for the “typical”

neonate
1-CMT (n = 29) 2-CMT (n=4)
cl v, cl 0 v, v,

0.18 [0.05-4.33] 1.73[0.138-2.81]
L/h/kg L/kg

0.198 [0.08-0.45]
L/h/kg

0.387 [0.09-1.14] 1.32[0.42-1.59] 0.87 [0.08-2.29]
L/h/kg L/kg L/kg

Data are presented as median (range)

Abbreviations: Cl, clearance; Q, intercompartmental clearance; Vc volume of distribution of peripheral compartment model; V4 volume of dis-
tribution; Vp, volume of distribution of peripheral compartment; 1-CMT, one-compartment model; 2-CMT, two-compartment model

Similarly, WT was the most frequent covariate used to
describe the variability in V, especially in vancomycin
(91.7%). The exponent for the allometric scale was fixed to
one in most models, which is supported by fractal geomet-
ric concepts and observations from diverse areas in biology
[87]. However, 12 models estimated a value other than one
[19, 27, 29, 30, 32, 44, 50, 69, 73, 78, 81, 82]. The applica-
tion of allometric scaling methods for size scaling has been
employed to overcome the limitations associated with sim-
plistic weight-scaled approaches when characterizing V, and
CL parameters in neonates. In general, changes in body size
can affect the distribution of drugs in the body, and this can
be represented by V,. Although CL is more closely related
to maturation of organ functions than size, the latter could
also affect CL because of physiological development [54].
Fat-free mass might be expected to estimate better than WT
when there are wide variations in fat affecting body com-
position, although the percentage of fat is low in newborns
[87]. However, it is a more challenging parameter to deter-
mine in routine clinical practice than WT, although it has
already been incorporated in vancomycin pediatric popPK
models [88, 89].

PMA seems to have a substantial influence on van-
comycin (44.4%) and amikacin (36.4%) and less so on
gentamicin (9.5%). Clearance pathways develop in the
fetus before birth. Although PMA is the covariate most
frequently used to describe age-dependent maturation in
pediatric PopPK models, it is important to characterize
development before birth and maturation after birth sepa-
rately, so it is interesting to consider other covariates such
as PNA and GA to explain the changes after birth [87,
90, 91]. In the updated version of the Rhodin et al. [90]
function, PNA was included as a descriptor of renal matu-
ration, as it describes changes after birth. The transition
from the intrauterine to the extrauterine environment is
linked with major changes in blood flow and oxygenation.
This can cause changes in glomerular filtration rate (GFR),
kidney function, and drug metabolism. Therefore, PNA
maturation has been used to account for those changes
in addition to that predicted using PMA [92]. PMA was
commonly included in popPK models using a sigmoidal

function, especially in vancomycin [51, 53, 55, 58, 59, 74].
A nonlinear relationship between organ maturation and
PMA has been described, which can be explained using
a sigmoidal maximum response (E,,,,) model of gradual
maturation of CL in early life leading to a mature adult
CL achieved at a later age according to the Hill equation
[54, 90].

Another covariate frequently reported to be a determinant
predictor of CL in all three antibiotics was Cr, which was
included in over half of the popPK models for vancomy-
cin. Cr concentration decreases with age in the newborn; in
the first few days of life, it reflects the mother’s concentra-
tions rather than neonatal renal function, and subsequent
concentrations are influenced by tubular reabsorption [87,
93]. Three studies used an equation to predict the creatinine
production rate [40, 41, 80]. Preterm infants have a slower
increase in the GFR during their first weeks of life than do
full-term infants [87].

Extracellular water is relatively higher in neonates than
in children [94]. For this reason, the V, for hydrophilic
drugs such as aminoglycosides and vancomycin is higher
in neonates than in infants and older children. Extracel-
lular water decreases during development, from 80 to 70%
WT in newborns to 61.2% in 1-year-old infants [5, 95].
According to previous literature, the average V, for amino-
glycosides was 0.45 + 0.1 L/kg in neonates and decreased
to 0.3 + 0.1 L/kg in adults. Premature neonates tend to
have a larger V, (nearer 0.5-0.55 L/kg), whereas full-term
neonates tend to have smaller values (nearer 0.4-0.45 L/
kg) [95]. When assessing the pharmacokinetic parameters
standardized for a “typical” neonate of 3 kg, the results
obtained in our review for gentamicin were mean+ SD V,
1.54 + 0.53 L for the 1-CMT models and V, 1.32 + 0.08
L for the 2-CMT and 3-CMT models. For amikacin, the
mean V, was slightly higher (1.67 + 0.27 L) for the 1-CMT
models, and the V. was 1.17 + 0.19 L for the 2-CMT
models. In the case of vancomycin, the mean V, has been
reported to be 0.56 + 0.02 L/kg in premature neonates and
ranged from 0.69 to 0.79 in infants and full-term neonates
[95]. In our review for the “typical” neonate, mean + SD
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Table 3 Median values of the pharmacokinetic parameters of the gentamycin population pharmacokinetic models calculated for the “typical” neonate.

3-CMT (n = 2)

Cl

2-CMT (n = 3)

Cl

1-CMT (n = 21)

Vi3

VpZ

0;

0,

Vi

Cl

10.78 (6.34—

0.92

17

1.

0.03 (0.025-

0.205

0.05 (0.005 1.45 (1.39- 0.73 (0.42—  0.317 (0.184—

1.435 0.19 (0.142—

0.16

15.21) L/kg

(0.91-0.93)

L/kg

(1.14-1.20)

0.77) L/kg 0.45) L/h/kg  (0.2-0.21) 0.04) L/h/kg
L/h/kg L/kg

1.60) L/kg

0.2) L/h/kg -0.2) L/h/kg

(0.41-1.79)
L/kg

(0.05-2.15)
L/h/kg

Data are presented as median (range)

Abbreviations: Cl, clearance; Q, intercompartmental clearance; 0, and Q5: Intercompartmental clearances between the central and each of the two peripheral compartments; V.. volume of dis-

tribution of peripheral compartment model; V, volume of distribution; V), volume of distribution of peripheral compartment; V,, and V,;: volume of distribution of peripheral compartments;

1-CMT, one-compartment model; 2-CMT, two-compartment model; 3-CMT, three-compartment model

V,was 1.75 + 0.65 L for the 1-CMT models, and mean V,
was 1.08 + 0.55 L for the 2-CMT models.

Pathological states such as sepsis also influenced the
V, of all three antibiotics. Sepsis involves increased per-
meability, which is responsible for a fluid shift and may
be consistent with higher V, [82]. Moreover, the volume
expanders given by intravenous infusion in the sepsis state
contribute to an increase in extracellular fluid volume
[73]. For these reasons, the V, in neonates with sepsis
[46, 59, 70, 73, 82, 84] is higher than in neonates with-
out sepsis. For gentamicin, Lingvall et al. showed that V,
increased by 14% in septic neonates, which implies that
larger doses may be required to achieve peak therapeutic
concentrations [70]. Similarly, for amikacin, the septic
population studied by Amponsah et al. had a higher V,
than the median (1.15 L/kg) [82]. Because of the higher
V, for water-soluble drugs in neonates and the nonlinear
scale of clearance, neonates must receive higher doses of
gentamicin per kilogram of bodyweight than older pediat-
ric patients and adults to achieve comparable plasma and
tissue concentrations [96, 97].

The aminoglycosides are mainly eliminated by glomeru-
lar filtration, and their elimination rates are reduced at birth.
In preterm newborns, the GFR corresponds to 25-30% of
the adult value [16]. CL of aminoglycosides is lower in neo-
nates than in more mature infants [98]. The mean + SD CL
in neonates has been reported to be 0.05 + 0.01 L/kg/h,
increasing to 0.13 + 0.03 L/h/kg in children and 0.08 =+
0.03 L/kg/h in adults [95]. The mean + SD values obtained
for gentamicin in our review for the “typical” neonate were
CL 0.27 £ 0.49 L/h for 1-CMT models and 1.32 + 0.08 L/h
for the 2-CMT and 3-CMT models. For amikacin, the mean
+ SD CL was 0.19 + 0.07 L/h for 1-CMT models and 0.24
+ 0.13 L/h for 2-CMT models. In newborns, renal func-
tion increases rapidly; GFR tends to double during the first
14 days of life because of the rapid changes in glomerular
hemodynamics, which are characterized by an increase in
arterial blood pressure and renal blood flow and a decrease
in renal vascular resistance [90, 99]. CL of aminoglycosides
is lower in low-birth-weight neonates than in non-premature
and normal weight newborns [26, 60, 79, 80].

Similarly, vancomycin CL increases with PMA and PNA,
leading to a greater elimination rate constant and shorter
half-life in premature neonates [100]. In the review by
Chung et al. [5], the typical CL for neonates ranged from
0.014 to 0.273 L/kg/h (median 0.06 L/kg/h). In our review,
the median for a “typical” neonate was 0.18 L/h (0.05-4.33
L/h) in the 1-CMT models and 0.20 L/h (0.081-0.45 L/h) in
the 2-CMT models.

The data of the pharmacodynamic targets included in
our review show how these targets have evolved over time,
especially for vancomycin. Historically, vancomycin dosing
has been titrated to obtain serum trough concentrations of
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Table 4 Median values of the pharmacokinetic parameters of the amikacin population pharmacokinetic models calculated for the “typical” neo-

nate
1-CMT (n = 8) 2-CMT (n = 6)
cl v, cl 0 v, v,

0.15 (0.11-0.304)
L/h/kg

1.62 [1.37 - 2.26] L/kg 0.17 (0.13-0.43) L/h/kg 0.15 (0.06-0.18) L/h/kg 1.08 (1.01-1.40) L/kg 1.36 (0.16-1.44) L/kg

Data are presented as median (range).

Abbreviations: Cl, clearance; Q, intercompartmental clearance; V, volume of distribution of peripheral compartment model; V,; volume of distri-

bution; Vp,

10-15 mg/L for mild infections and 15-20 mg/L for severe
infections [6]. However, several vancomycin pharmacody-
namic targets are currently available for neonates. In the ini-
tial studies, peak and trough were the most used parameters
for monitoring. However, there has been a transition from
trough concentrations to area under the concentration—time
curve over minimum inhibitory concentrations (AUC,_,,/
MIC) with a target of 400—-600 [5, 57-59]. Peaks and troughs
are still used for gentamicin. In most studies, the target was
trough ~1-2 mg/L and peak ~ 5-10 mg/L, although some
studies used higher peaks [68, 71]. The variation in trough
values was greater for amikacin, with target values ~1-3
mg/L. However, for the peak, there appears to be consensus
of ~25-35 mg/L. Data for the pharmacodynamic targets of
each study are summarized in Table S1 in the supplementary
material.

The limited antibiotic blood samples in most stud-
ies meant that a 1-CMT approach was more frequently
described than a 2-CMT approach. Nevertheless, in all three
antibiotics, the studies with more samples used 2-CMT or
3-CMT models to describe the pharmacokinetic parameters
(CL and V,_). Aminoglycosides exhibit a three-compart-
ment distribution when given intravenously, but the V, is
quite small, at approximately one-third to one-half of the
volumes used for general dosing with 1-CMT approaches
[101]. The first distribution phase, during the first hour,
is generally not detected because it is masked by the infu-
sion time (0.5—-1 h) [95]. For vancomycin, 1-CMT, 2-CMT,
and 3-CMT approaches have all been described in adults,
although 1-CMT models seem to be a valid tool for predict-
ing serum concentrations in the post-distribution phase in
newborns [102].

Optimal dosing of these three antibiotics is challeng-
ing in newborns and infants because of their physiological
characteristics and the pharmacokinetic characteristics of
the drugs. The higher level of extracellular fluids per kilo-
gram in neonates affect the V,, of water-soluble medications.
Moreover, as nephrogenesis is completed late in gestation,
the renal function of premature neonates is compromised
regarding renally excreted drugs [97]. Vancomycin and ami-
noglycosides have narrow therapeutic margins and can easily

volume of distribution of peripheral compartment; 1-CMT, one-compartment model; 2-CMT, two-compartment model.

lead to nephrotoxicity. Therefore, TDM has a fundamental
role in this population, not only to avoid toxicity but also to
attain the desired pharmacokinetic/pharmacodynamic target
[7]. PopPK models combined with TDM help to achieve
the goal of MIPD, improving drug treatment outcomes by
achieving an optimal balance between beneficial effects and
toxicity [13].

TDM using Bayesian forecasting can be a valuable tool
for optimizing drug therapy in clinical practice [5]. A Bayes-
ian approach allows the estimation of individual pharma-
cokinetic parameters (i.e. CL and V,) based on the data but
also considers prior information from the literature. Never-
theless, before implementing a popPK model into clinical
practice, an external validation should be conducted to eval-
uate its predictive performance. In addition, other aspects
that need to be considered when selecting one pharmacoki-
netic model over another are the characteristics of the popu-
lation in which it has been developed and the covariates, as
well as the complexity and feasibility of adapting the model
to a certain software.

This research highlights the numerous attempts that have
been made to characterize the pharmacokinetics of anti-
biotics in newborns and infants to respond to the special
characteristics of this population. The multiple model prop-
erties (constants and functions) and covariates included in
the popPK models account for the differences among this
population regarding age, physiological development, and
comorbidities. From our review, for each of the antibiotics,
different models could be considered to assess their per-
formance in clinical practice before implementing them.
For vancomycin and gentamycin, a meta-analysis was car-
ried out for each to determine a “meta-model” for neonates
[74, 103]. For vancomycin, a 2-CMT “meta-model” was
built using NONMEM?® incorporating the current weight
(CW), PMA, and Cr as significant covariates for CL [103].
For gentamycin, a 3-CMT “meta-model” was built using
NONMEM?® with the covariates WT, PMA, PNA, and Cr
for the CL and WT for the V,; [74].

Our review provides a comprehensive summary of all
the evidence published to date related to popPK models for
vancomycin, gentamicin, and amikacin in neonates. Previous
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Table 5 (continued)

Mean V,in L/kg

V, equation

Variables used for V, estima-

tion

Mean CL in L/h/kg

CL equation

Variables used for CL estima-

tion

Study, year of publication

0.359
0.439

VL
VI’

25.1 x (WT/70)
33.5 x (WT/70)

V. (L)
v, M)

WT

=0.057
=0.054

CL
Q

(WT/70)* 7 x (PMA/38)"0!

CL (L/h/70kg) = 1.79 x

WT, PMA, Cr, shock, sepsis

Severino et al., 2023 [84]

X [1 =0.78 x (Cr — 0.44)] x
[1 + (shock — 0) x (- 0.24)]
X [1 + (sepsis — 0) x 0.33]

0.76 if shock present,

0 if absent
Sepsis = 1.33 if sepsis present,

Shock

0 if absent

0.076 x WT°7

0 (L/h)

distribution of the central compartment; V,,, volume of distribution; VENT, artificial ventilation; V , volume of distribution of peripheral compartment; sz and Vp\;, volume of distribution of

partments; pts, patients; RF, renal function; SGA, intrauterine growth retardation; SPI, spironolactone; TSCr, typical value of serum creatinine concentration for a specific PMA; V,, volume of
peripheral compartments; V,,, volume of distribution at steady state; wks, weeks; WT, total body weight; 1-CMT, one-compartment model; 2-CMT, two-compartment model

tional age; PMA, postmenstrual age; PNA, postnatal age; Q, intercompartmental clearance; Q, and Q;, intercompartmental clearances between the central and each of the two peripheral com-

Abbreviations: AMX, amoxicillin-clavulanic acid; AP, Apgar score at 5 minutes; BW, birth weight; CL, clearance; CLCer, creatinine clearance; CPR, creatinine production rate; Cr, creatinine
(mg/dL); DA, dopamine; GA, gestational age; IBU, ibuprofen; IND, indomethacin; INO, inotropes; M, model; ND, no data; NSAID, nonsteroidal anti-inflammatory drugs; PCA, post-concep-

*Values of patients from group 1: patients with vancomycin and without indomethacin
“Weighted averages of the subgroups of included patients

bSerum creatinine (pmol/L)

reviews focused on pediatrics (children, infants, and neo-
nates) and included patients with and without pathologies as
well as those undergoing extracorporeal membrane oxygena-
tion and/or controlled hypothermia [5, 16]. However, our
review focuses only on neonates and infants because of the
physiological particularities of this population and includes
only individuals with no previous pathologies, as we believe
that a different approach is required for pathologic condi-
tions. We included observational studies and clinical trials
conducted in different countries to integrate a large number
of popPK models developed from newborns with different
racial backgrounds. Nevertheless, several limitations must
be acknowledged when interpreting the results. First, our
review cannot be classified as a systematic review since the
literature search, data extraction, and interpretation of the
results was conducted by a single investigator. However, any
discrepancies were resolved with input from a second inves-
tigator. No formal evaluation of the quality of the included
studies was performed. Second, the biggest limitation of
the included studies was that most of the popPK models
lacked external validation, which is essential to evaluate
whether the models extend to neonates outside the origi-
nal population used to develop the model and to assess bias
and precision [5, 15]. The US Food and Drug Administra-
tion considers external validation to be the most stringent
method for testing a developed model [15, 104]. Third, the
number of blood samples used to develop some models was
limited. This explains why the 1-CMT approach was more
commonly described than the 2-CMT or 3-CMT approach.
Fourth, our review focuses only on the neonatal and infant
population because of its unique characteristics, especially in
terms of body water content and lower fat content per kilo-
gram, which influences the V; of hydrophilic and lipophilic
drugs and therefore drug distribution. Drug metabolism and
clearance in neonates is influenced by size-related changes,
ontogeny of isoenzymes, and maturation of renal function.
Therefore, it is especially important to include a maturation
function (on top of allometric scaling) in the equations for
describing those changes. Although the pediatric population
shares some physiological characteristics with the neona-
tal population, only models that included neonates in their
development may be suitable to use in this population. Fifth,
it is possible that some published popPK models may have
been missed in the search and are not included in the review.

Considering these limitations, further research should
prioritize the external validation of the popPK models
developed, as advocated by the US Food and Drug Admin-
istration. External validation was performed in <10% of
published pharmacokinetic models, and questions concern-
ing the clinical applicability of models frequently remain
unaddressed [15]. Moreover, endeavors should be directed
toward expanding the scope of prospective studies with opti-
mal sampling designs. By addressing these issues, future
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research can substantially contribute to advancing the reli-
ability, applicability, and clinical relevance of popPK models
for neonates.

6 Conclusions

Overall, this study includes the best available evidence of
neonatal popPK models used for some of the most com-
monly prescribed antibiotics (vancomycin, gentamicin, and
amikacin) and enhances our understanding of them. WT,
PMA, and Cr, followed by PNA, were the most frequent
covariates included in CL equations, and WT was most com-
monly included in V, equations. 1-CMT approaches were
more commonly described than 2-CMT approaches, prob-
ably because of the difficulties of obtaining blood samples
in neonates. The substantial variability between the popPK
models for all three antibiotics and the characteristics of
study populations, coupled with the limited prospective
studies and the absence of external validation of most mod-
els, makes it impossible to implement a single, globally
applicable, and uniform popPK model for all neonates.
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