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HIGHLIGHTS

e Portable Ion Mobility Spectrometry dis-
criminates odour sources in wastewater
plants.

e Achieved 94 % balanced accuracy
within a single plant and season.

e Model transfer across two different
plants with 96 % balanced accuracy.

e Ionic information is key for reliable
odour source classification.

e Promising approach for improved real-
time instrumental odour monitoring in
the field.
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ABSTRACT

Odour emissions from Wastewater Treatment Plants are a relevant issue concerning environmental and social
impact, regulatory compliance, and plant management. Instrumental Odour Monitoring Systems are widely used
for real-time odour emissions monitoring, but seasonal and plant variability limit their long-term reliability.
Therefore, new sensing technologies and approaches are being studied to improve their reliability and the
transferability of predictions between different plants and seasons. In this context, this work investigates the
suitability of portable Ion Mobility Spectrometers to discriminate the main odour sources in Wastewater
Treatment Plants. Two measurement campaigns were carried out in different seasons, considering different
odour sources in two independent plants. Through a proper data analysis approach, based on the importance of
ionic information, portable Ion Mobility Spectrometry proved effective in discriminating odour sources from the
two main process lines: water and sludge treatment. In the first phase, conducted in the same plant and season, a
balanced classification rate of 94 % (95 %CI: 82 %-100 %) was achieved. Subsequently, including seasonal and
plant variability, a model trained on one plant was applied to the second. The direct transfer of the calibration
achieved a balanced classification accuracy of 96 % (95 %CI: 86 %-100 %), confirming the relevance of the
selected ions for odour assessment across different plants. These results suggest that portable Ion Mobility
Spectrometry is a technology that deserves further attention for instrumental odour monitoring. The consistent
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classification rates obtained both within a single plant and when transferring the model demonstrate that Ion
Mobility Spectrometry, combined with feature selection, can reliably identify ions specifically relevant for odour

emission assessment.

1. Introduction

In recent years, specific regulations and methodologies have been
developed for monitoring odour emissions from various industrial ac-
tivities, responding to the increasing public awareness of air quality (Bax
et al., 2020). While odours are typically non-toxic and not directly
harmful to human health, prolonged exposure has been linked to stress,
headaches, nausea, and respiratory discomfort, affecting overall well-
being (Piccardo et al., 2022). At the European Union level, several
regulations have addressed the issue of odour exposure. EN 13725:2022
(CEN, 2022) introduced dynamic olfactometry to measure odour con-
centration, while EN 16841:2016 (CEN, 2016) standardized field in-
spections to assess odour exposure in surrounding areas. In particular,
Italy has issued specific regulations on odour impact assessment, further
developing the European regulatory framework (Bokowa et al., 2021).
This regulatory development has opened a path for setting acceptability
criteria for odour emissions ensured by standards in odour monitoring.

To ensure regulatory compliance, chemical analysis, dynamic
olfactometry, and dispersion modelling are effective tools to charac-
terize odour emissions and evaluate their impact (Munoz et al., 2010).
However, monitoring emissions is not exclusively about complying with
acceptability criteria. From an industrial perspective, it also serves as a
key management tool. Anomalous or excessive odour emissions often
signal malfunctions or inefficiencies, requiring intervention and miti-
gation (Brinkmann et al., 2016). Therefore, early detection and char-
acterization of odour release are fundamental also to reducing
operational costs.

Among the most relevant pollution-emitting plants (Bax et al., 2020;
Munoz et al., 2010), Wastewater Treatment Plants (WWTPs) are sig-
nificant contributors. The sludge treatment line is the most intense
source due to anaerobic processes in sludge storage, digestion, and
dewatering units, releasing high levels of HzS, NHs, and VOCs (Gonzalez
et al., 2022; Haider et al., 2022; Senatore et al., 2021). Water treatment
units, such as grit chambers and primary sedimentation tanks generate
less intense but more widespread odour emissions, due to their large
surface areas (Czarnota et al., 2023; Gonzalez et al., 2022; Haider et al.,
2022; Lebrero et al., 2011; Munoz et al., 2010; Senatore et al., 2021).
The diversity of odour sources makes their control and monitoring
challenging. Therefore, identifying whether odours originate from water
or sludge treatment is important for targeted mitigation, industrial ef-
ficiency, and regulatory compliance (Barbu et al., 2018; Czarnota et al.,
2023).

To tackle this, Instrumental Odour Monitoring Systems (IOMS) are
widely employed in WWTPs for monitoring odour emissions directly
over the emitting sources (Blanco-Rodriguez et al., 2018; Prudenza
et al., 2022) or at the plant fence line boundary (Cangialosi et al., 2021).
They have proved effective in classifying and quantifying odour emis-
sions from different process stages (Blanco-Rodriguez et al., 2018;
Burgués et al., 2022, 2021; Moufid et al., 2022; Prudenza et al., 2022;
Wang et al., 2023).

IOMS are technologies designed to continuously monitor and analyse
ambient air, correlating sensor outputs with odour presence and in-
tensity (Oliva et al., 2021). Among these devices, electronic noses (EN)
are the most used. They are instruments equipped with an array of gas
sensors and a data processing unit that is able to detect, classify, and
quantify odours in real time. EN can be equipped with partially specific
or non-specific gas sensors, as industrial odour emissions usually do not
depend on a single compound but rather on a complex fingerprint of
VOCs. Examples include Metal Oxide Sensors (MOX) (Blanco-Rodriguez
et al., 2018; Burgués et al., 2022, 2021; Moufid et al., 2022; Prudenza

et al., 2022; Wang et al., 2023), Electrochemical sensors (EC) (Gonzalez
etal., 2022; Prudenza et al., 2022), and Photoionization Detectors (PID)
(Gonzalez et al., 2022; Prudenza et al., 2022). Therefore, data acquired
by EN typically undergo visual inspection, for instance by means of
Principal Component Analysis (PCA) (Blanco-Rodriguez et al., 2018;
Burgués et al., 2021; Moufid et al., 2022; Prudenza et al., 2022).

By coupling EN responses with suitable machine learning ap-
proaches, it is possible to classify different odours using algorithms such
as Linear Discriminant Analysis (Wang et al., 2023), Multilayer Per-
ceptron, or Support Vector Machine (SVM) (Moufid et al., 2022; Pru-
denza et al., 2022; Wang et al., 2023) but also to estimate odour
“quantity” using methods such as Partial Least Squares (PLS) Regression
(Blanco-Rodriguez et al., 2018; Burgués et al., 2022, 2021; Moufid et al.,
2022; Wang et al., 2023), Random Forest (RF) (Cangialosi et al., 2021),
and Artificial Neural Networks (ANN) (Cangialosi et al., 2021). In gen-
eral, EN can be employed directly over the emitting sources (Blanco-
Rodriguez et al., 2018) for process control purposes (Prudenza et al.,
2023, 2022), to enhance plant management and interventions to resolve
odour emissions issues (Zarra et al., 2022) or to map emissions from
different sources (Burgués et al., 2022). They also provide better un-
derstanding of different contributions in odour emissions, or insight into
wastewater quality (Wang et al., 2023). The use of EN for real-time
emission monitoring at plant fence lines is also becoming increasingly
popular (Cangialosi et al., 2021). This type of deployment produces
information about general anomalous malfunctioning, permits the
implementation of alarm thresholds for odour emissions (Cangialosi
et al., 2021), and provides information to identify the origin of odour
nuisance (Cangialosi et al., 2021).

However, despite EN effectiveness and adaptability to different in-
dustrial applications and environments, EN are generally affected by
several problems, including sensitivity to humidity and temperature
fluctuations, as well as instrumental drift (Khorramifar et al., 2023;
Robbiani et al., 2023). Lack of reproducibility and generalizability are
also major challenges, requiring considerable time and effort for dedi-
cated calibration of each instrument and facility, as models cannot be
directly transferred between identical instruments or similar plants.
These issues are worsened by seasonal variability and plant-specific
conditions, making it difficult to establish generally applicable calibra-
tion models. Many of these issues are intrinsic to the sensor technologies
employed in EN and, although several machine learning approaches
attempt to mitigate them, they remain a major challenge in real-world
applications. There is a significant amount of research on calibration
transfer methods in laboratory settings (Fernandez et al., 2016; Fonol-
losa et al., 2016; Reimringer and Bur, 2023; Robin et al., 2023), but, as
far as we are aware, there is still a lack of approaches for applying them
to more complex, real-world situations.

In this context, other sensor technologies could be considered as
complementary approaches to enhance odour monitoring capabilities.
There are some laboratory applications of gas chromatography coupled
with ion mobility spectrometry (GC-IMS) that have proved effective in
identifying distinct VOC fingerprints from samples collected at different
stages of a WWTP process, highlighting the chemical differences be-
tween process lines and their respective odour impacts. Gas chroma-
tography separates mixture components based on their chemical
properties, while Ion Mobility Spectrometry (IMS) distinguishes ions by
their drift velocity in an electric field, adding a second dimension to the
analysis. However, GC-IMS systems are typically fixed laboratory in-
struments, limiting their applicability for real-time field monitoring.

Therefore, our purpose is to explore IMS standalone technology as a
tool for identifying odour sources in WWTPs. This technology allows us
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to exploit ion mobility spectrometry in a portable system, making it
well-suited for field application and onsite odour monitoring (Epping
and Koch, 2023; Marquez-Sillero et al., 2011). However, IMS analysis in
environmental conditions can be affected by factors such as slight var-
iations in temperature, pressure, and relative humidity, as well as
background interference, leading to issues like misalignment, noise, and
baseline drift, making it challenging to compare different analyses when
considering only raw spectra data. To address these challenges, specific
signal and data processing methods were applied to ensure comparable
analysis across different plants and seasons and data consistency.

To the best of our knowledge, this approach in real field applications
for characterizing odour sources in WWTPs has not been implemented
before. Therefore, this work aims to investigate the potential of a
portable IMS to classify odour emissions from WWTPs, representing a
novel approach and application. Furthermore, beyond the analytical
performance, the cost-effectiveness of the proposed approach is partic-
ularly relevant, as portable IMS reduces infrastructure requirements and
enables in-situ monitoring at lower operational costs compared to con-
ventional laboratory-based techniques.

Samples were collected in two different WWTPs during two mea-
surement campaigns directly over the emitting sources from the two
main process lines, i.e., the water and sludge treatment. The potential of
IMS to classify odours from the two process lines was investigated, along
with a data analysis approach that ensured objective and repeatable
results. This approach enabled the preliminary generalization of a
classification model from one plant to another, reducing both calibra-
tion and computational demands and illustrating the feasibility of the
method.

The article is organized as follows: in Section 2, Materials and
Methods are discussed. Relevant information about the Instrumentation,
Sampling sites in the plants, measurement campaigns, and data analysis
is provided. In Section 3, Results and Discussion presents the most
important features of the collected data and the results provided for the
trained models are presented and discussed. Also, a proper discussion
about the implications of this study on odour control and management
technology is provided. In Section 4, conclusions based on the results
presented in Section 3 and future work derived from the discussion
provided in the same section are summarized. Finally, a Table of Acro-
nyms is provided in the Supplementary Materials.

2. Materials and methods
2.1. Instrumentation and technology

In this study, the use of a handheld IMS device minimizes both
equipment and maintenance costs compared to more complex GC-IMS
setups. While still providing selective and sensitive measurements, this
equipment is more suitable for field deployment. Data was collected
directly at the WWTPs emission sources with an IMS: GDA2 from AIR-
SENSE Analytics GmbH. It is a handhewass detector array equipped with
4 gas sensors (1 Photo Ionization Detector (PID), 1 Electrochemical Cell
(EC), and 2 Metal Oxide Sensors (MOX)) and one water chemistry Ion
Mobility Spectrometer (IMS) able to alternate between positive and
negative modes. The GDA2 is also equipped with an automatic dilution
system: the sampled gas of interest can be diluted with filtered clean air
at different ratios that can be set by the operator. In this study, we
focused exclusively on the spectra signals from the IMS in the GDA2 with
a scan rate of 1 s and a sample rate of 18.25 KHz.

IMS is an analytical technique used to detect volatile organic com-
pounds (VOCs) through ionization of the sampled molecules. In the
GDA2 device, ionization is initiated by a Ni-63-p radioactive source
emitting p particles (17 keV) (Gabelica and Marklund, 2018), which
initially ionize No and O, molecules (Gabelica and Marklund, 2018). The
atmospheric pressure chemical reaction with water molecules in air
forms positively charged HsO" ions (reactant positive ions, RIP), while
interactions with oxygen molecules generate negatively charged Oz~
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ions (reactant negative ions, RIN). Once formed, these reactant ions
serve as intermediaries for the ionization of target molecules (M).
Indeed, RIP and RIN act as “charge” reservoirs, transferring positive or
negative charge to the target molecules (M) through collisions, ionizing
them via proton transfer in positive mode (electron transfer), or proton
abstraction and cluster formation in negative mode (Gabelica and
Marklund, 2018). In other words, when the peak area corresponding to
an ion increases in the spectrum, the area of the RIP (or RIN) decreases
accordingly.

The ionized molecules are introduced into a drift region where they
are accelerated by a homogeneous electric field (Fig. 1). Their terminal
velocities, influenced by their mass, charge, and cross-section, cause
them to reach the detector at different drift times, typically in the
millisecond range (Fig. 1). The resulting drift times produce peaks in the
spectra, each corresponding to a specific ion, providing a unique
chemical fingerprint of the sampled gas (Novillo and Verénica, 2015).
This fingerprint reflects the molecular composition of the sample, dis-
tinguishing various target compounds based on their interactions with
RIP and RIN.

2.2. Sampling sites

The sampling sites were two WWTPs, from now on designated as
Plant 1 (P1) and Plant 2 (P2) and schematically represented in Fig. 2.
WWTPs are facilities designed to reduce wastewater pollution to
acceptable limits by means of several unit operations. The two plants
considered in the study are located adjacent to each other. While they
share some similarities, they operate independently in most of their
processes. They treat different amounts of civil residues, measured in
daily flow of water in cubic meters (Q), with flowrates of QP1
130.000 mg/day, and QP2 = 217.000 m3/day from different sources, i.
e., providing the service to different municipalities. WWTPs typically
include two main process lines: the water treatment line (WTL) and the
sludge treatment line (STL) (Fig. 2) (Barbu et al., 2018). In P1, WTL
includes a water collector, a grid chamber for screening, and a desander,
followed by four primary sedimentation tanks operating in parallel
(Fig. 2). These are followed by two biological tanks and, finally, four
secondary sedimentation tanks (Fig. 2). P2 is composed of the same
process units as P1 including an additional physical-chemical treatment
section after the wastewater collector and before the primary sedimen-
tation (Fig. 2). However, during the measurement campaigns the
physical-chemical treatment section of P2 was not operational, meaning
that, in practice, the water treatment lines of both plants were identical
in terms of process units. The water separated during the secondary
sedimentation stage in both plants is subsequently treated together
through a filtration and chlorination process, with the addition of UV
treatments to reach potability standards (Fig. 2). The solid residues from
the WTL, referred to as sludge, are processed in a second line, called the
STL. In P1, this line consists of a sludge conveyor, three thickeners (two
of which operate while one is under maintenance on a rotational basis),
a sludge mixer, and a biodigester to produce biogas for energy genera-
tion (Fig. 2). Similarly, P2 includes two floaters (to remove suspended
solids, grease and colloids from the water) and a biodigester also dedi-
cated to biogas production for energy purposes.

The digested residual sludge from both plants' biodigesters is then
treated together through mechanical dehydration to produce a final
solid product that can be used as fertilizer or disposed of as waste.

The two plants can be treated as independent when considering the
water treatment line, up to the secondary sedimentation, and for the
sludge treatment line, up to the biodigesters (Fig. 2). Most of these
processes are associated with relevant diffuse sources of odour and VOCs
characterized by plant, seasonal, and temporal variability depending not
only on the process units directly involved but also on the variable
chemical composition of the treated wastewater from sewage (Beghi
et al., 2012; Lebrero et al., 2011).
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Fig. 1. Schematic representation of Ion Mobility Spectrometer (IMS). (a) Ionization source region in which the sample is ionized, (b) Drift tube where the ionized
molecules are accelerated by an electric field, (c) shutter grid allows the ionized molecules go into drift tube and (d) detector where the charge of molecules is
converted into a current output. RI: reference reactant ions; RIP: positive reactant ions; RIN: negative reactant ions.
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Fig. 2. Schematic representation of the process unit in Plant 1 (P1) and Plant 2 (P2), the main independent sections and the common final units of mechanical

dehydration and water purification.

2.3. Measurement campaigns and samples collection

Two measurement campaigns were carried out, one in January and
one in June 2023, to account for the odour-emitting sources variability
due to seasonal and inlet flow rate wastewater variations. Each mea-
surement campaign included both plant P1 and plant P2. Samples were
collected directly over the sources in field conditions employing the
GDA2 with its automatic dilution system to avoid sensors' saturation, set
at 10 % gas sample and 90 % filtered air. Field measurements were
organized to sample from both WTL and STL in both plants, focusing on
the most emission-intensive sources. The January measurement
campaign was carried out over two days, the first day sampling P1
sources and the second day sampling P2. The June measurement
campaign was carried out over three consecutive days, sampling every

day in both P1 and P2. In both campaigns and for each plant, samples
were collected randomly and with repetitions from both classes, WTL
and STL. A schematic report of the sampled sources in P1 and P2 during
the days of measurement in January and June is reported, respectively,
in Table 1 and Table 2.

P2 dataset presents less homogeneity in data distribution because of
adverse weather conditions during June field measurements. P1 dataset,
on the other hand, was better structured, more numerous, and with a
more evenly distributed set of each class across the different measure-
ment days, making it more suitable for calibration.

2.4. Data processing

Data processing included an initial pre-processing of the collected
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Table 1
Number of samples collected in P1 with the GDA2 during January and June field campaigns.
P1
WTL STL
Wastewater Grid/ Primary Aeration Thickener =~ Mixer  Total n° of independent samples
collector Screening sedimentation tank per day
Day 1 (January) 1 - 2 1 2 1 7
Day 2 (June) - - 2 - 1 3 6
Day 3 (June) 1 1 - — 1 1 4
Day 4 (June) 1 2 3 - 2 2 10
Total n° of independent samples 14 12 26
per class
Table 2
Number of independent samples collected in P2 with GDA2 during January and June field campaigns.
P2
WTL STL
Wastewater Grid/ Primary Floater  Sludge Total number of independent samples per
collector screening sedimentation deposit day
Day 1 (January) - 1 1 - 1 3
Day 2 (June) - - - 2 1 3
Day 3 (June) - - - 1 2 3
Day 4 (June) 3 2 5 2 2 14
Total n° of independent samples per 12 11 23

class

spectra to prepare the data, followed by exploration of patterns using
principal component analysis (PCA), extraction of the most important
information, and, finally, the development and validation of a model to
classify the different odours.

The pre-processing involved basic signal processing algorithms to
enhance signal quality because spectra sampled under field conditions
often contain interferences, background noise, baseline drift, and peak
shifts. The proposed feature extraction relies on peak intensities in both
the positive and negative polarity. Therefore, accurate comparison of
peak heights requires initial pre-processing to align the peaks, ensuring
they are mapped consistently across different samples, and removing the
baseline and noise. After the feature extraction stage, the dimensionality
of the feature vector is substantially reduced. Principal Component
Analysis (PCA) was applied to visualize the reduced dataset and assess
its potential for odour classification.

Two different scenarios were considered for the odour classification
models: the first one focused on a single plant and a single field
campaign (P1 June), while the second one considered both plants across
two seasons (P1 and P2, in January and in June).

In scenario 1, two models were developed for odour source classifi-
cation using the P1 dataset collected in June. The algorithm used for this
purpose was Partial Least Squares Discriminant Analysis (PLS-DA). The
first model was trained on data from the three days of measurements in
June, excluding one sample at a time for external validation developing
several train-test combinations. As described above, each sample is
composed of several spectral points, which are highly correlated with
each other. Consequently, for a fair comparison, internal cross-
validation (ICV) on each training set determined the optimal number
of latent variables (LVs) for the model. Each model was externally
validated on the independent test set, and its performance was assessed
in terms of a final Balanced Classification Accuracy based on the pre-
diction of each external validation. In classification tasks where the
number of samples per class is approximately balanced, the classifica-
tion rate (overall accuracy) is a suitable measure of classifier perfor-
mance. However, when the dataset is substantially imbalanced, the
majority class tends to dominate, leading to an overestimation of the
classification rate. To fairly evaluate classification quality under such
conditions, it is more appropriate to use the Balanced Classification

Accuracy (BCA) defined in Eq. (1), which equally weights the accuracy
achieved in each class and thus provides a more reliable performance
estimate across imbalanced datasets. In addition, since the BCA is a
random variable (it depends on the sample set), it is important not only
to report its point estimate but also to characterize its variability. Con-
fidence intervals serve this purpose: they define the range within which
we would expect the observed value of the statistic to for a given per-
centage of repeated experiments (typically 95 %, although other levels
such as 99 % can also be used). Narrower confidence intervals indicate
that the estimated performance is more stable and reproducible. As a
general principle, the larger the sample size, the narrower the confi-
dence intervals, thereby increasing our confidence in the robustness of
the classifier's performance. An additional optimization step was per-
formed by selecting the most relevant features based on Variable
Importance in Projection (VIP) scores from the PLS-DA model. Raw
predictions with the PLS-DA algorithm are made based on the single
spectrum A second model was then built using these selected features,
with the number of latent variables re-optimized. This refined model
was subsequently validated on the independent test set. After confirm-
ing the classification of the two odour sources within a single plant and
campaign, Scenario 2 expanded the analysis to cover a broader range of
variability. Again, two classification models were created. One model
was trained on the entire data from P1 (January and June) and validated
on the independent data from P2 (January and June) exploring the ca-
pacity of the method to be applied across plants. Internal cross-
validation and BCA on the external validation set were used to assess
performance. The other model was also developed using VIP scores for
feature selection, following the same procedure as in scenario 1. A
detailed explanation of this procedure can be found in Section 2.9.

Data analysis was carried out in MATLAB (2024B version) with
PLS_Toolbox 9.1 (Eigenvector Research) and a specific package for IMS
signal processing SmartIMS (Oller Moreno, 2018), previously developed
by the authors. Both traditional programming methods and the Graph-
ical User Interface (GUI) were employed. The data processing steps are
schematized in Fig. 3.
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2.5. IMS signals data structure

GDA2 acquires a time series of alternately positive and negative ion
mobility spectra (Pomareda Sesé, 2013). Each scan contains 2 m (m =
511) spectral samples resulting in m points from the positive spectra and
m points for the negative spectra. For data processing purposes, the
signals were organized in a 2D matrix, as shown in Fig. 4. The rows of
the matrix were arranged by grouping all scans for each sample (k)
together sequentially: the first n; rows correspond to the scans from
sample k = 1, the next ny rows correspond to the scans from sample k = 2
and so on (Fig. 4). The spectral acquisition at each location lasted from 3
to 10 min per sample, according to the specific case (for practical rea-
sons in the field). Consequently, the number of spectra for each mea-
surement (ny) ranged from 180 to 600.

2.6. Spectra pre-processing

To improve spectral quality noise was reduced by 2nd order
Savitzky-Golay filters of optimized length. Baseline was estimated with a
low order polynomial and peak alignment was based on a multiplicative
factor with respect to the RIP or RIN position (Novillo and Verénica,
2015; Oller Moreno, 2018; Savitzky and Golay, 1964; Szymanska et al.,

Positive Spectra from one sample

2016; Vu and Laukens, 2013). The specific parameters for each pre-
processing algorithm (window width and polynomial order in baseline
correction) were optimized by visual inspection of the pre-processed
spectra (refer to Section 3.4). Across the dataset, there are minor vari-
ations in peak positions between spectra from different samples due to
temperature and humidity differences. In this step, all scans were
aligned with respect to chosen reference RIP and RIN values for miti-
gating this misalignment. This alignment stage allowed for consistent
comparison of peak positions and intensities across samples and pro-
vided a basis for reliable feature extraction. The data pre-processing
steps are schematized in Fig. 5.

2.7. Feature extraction

Peak heights were extracted as features, as they indicate the con-
centration of ions. Each peak represents the presence of a specific ion
(monomer or dimer), providing a unique ion-fingerprint of the analyzed
samples and valuable information about their composition (Gabelica
and Marklund, 2018; Gao et al., 2021; Vera et al., 2016). Peak heights
were extracted from the positive and negative spectra of WTL and STL of
the training dataset.

Negative Spectra from one sample
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Fig. 5. Data pre-processing steps.

2.8. Exploratory analysis

After pre-processing and feature extraction, PCA was used for data
visualization and interpretation to assess its ability to distinguish odour
sources based on plant and seasonal variability (Bro and K. Smilde,
2014). Score plots of the principal components (PCs) were examined to
identify patterns. At each plot, the amount of explained variability in
percentage (the proportion of total variability explained by each prin-
cipal component) has been added to the component label to aid the
discussion presented in Section 3. Due to the variability of emissions
across plants and over time in WWTPs, PCA was applied step by step in
this study to explore differences between samples, campaigns, and
plants, supporting the development of the classification models.

2.9. Model building, optimization and validation

The proposed preprocessing and modelling pipeline relies on stan-
dard algorithms (baseline correction, peak alignment, PLS-DA), which
are computationally lightweight and easily transferable, thereby sup-
porting both reproducibility and cost-efficiency in data analysis. The
PLS-DA algorithm was used to develop the odour classification models.
Two different scenarios were considered in the development and vali-
dation of classification models. The first scenario included data from one
plant in one season. In this regard, P1 dataset from June proved most
suitable in terms of homogeneity and data distribution. Then, the second
scenario included both plants and both seasons, P1 and P2 in January
and June, to assess the model's transferability. In both cases, the dataset
was partitioned into a train set for model development with proper in-
ternal cross validation (ICV) and feature selection, and a test set for
external validation. Data were auto-scaled with respect to the train set.

In the first scenario, specifically, a double leave-one-out scheme was
performed to partition data in train and external validation and for in-
ternal cross validation. Iteratively, one sample from P1 June dataset was
used for external validation. The remaining samples constituted the
calibration set (Table 3). For each of the 19 Cal-Ext.Val combinations,
ICV was performed using a leave-one-block-out (LOBO) approach. A
LOBO approach was chosen, meaning that iteratively all spectra from
one sample were excluded from the calibration set and used as part of
the test set for internal validation, while the remaining samples formed
the training set. The entire block of spectra from the same sample was
excluded at each iteration from training set to avoid information
leakage. Since they belong to the same measurement, they were highly
correlated and not independent. Each of the 18 resulting train-
ing—validation combinations were tested with different numbers (q) of
latent variables (LVs), ranging from 1 to N, where N is the number of
extracted features. For every LVj4, a table that shows how well the
model's predictions match the true labels, highlighting correct pre-
dictions and errors (Confusion Matrix or CM) was produced. Each pre-
diction for the 18 samples resulted in a single confusion matrix, CM; q.

Table 3

The Balanced Classification Accuracy (BCA) was calculated for each LV
in each partition was calculated following Eq. (1):

BCA =1—-BER (@D)]

where BER is the Balanced Error derived from the confusion matrix
following Eq. (2):

(2)

BER = 0.5 < N il )

TP+FN+FP+TN

Here, TP, TN, FP, and FN are respectively the True Positives, True
Negatives, False Positives, and False Negatives from the sample pre-
diction confusion matrix (CM). Uncertainty of BER was estimated by the
bootstrap method.

For every partition i, the BER; 4 can be plotted against the number of
LVj4. The “knee-point” of this plot, where the error stops decreasing
significantly, was identified as the optimal number of LVs for the
partition i, balancing model complexity and classification performance.

Once the internal cross-validation was performed, the optimal
number of latent variables (LVs) for each i-calibration set was retained to
develop i classification models (Table 4). Each developed model was
then tested on the corresponding test set for external validation (ac-
cording to the partition Table 3). Final prediction was performed at the
level of individual spectra with final measurement classifications
determined by weighted majority (>50 % agreement among scans),
accounting for class imbalance during calibration through a corrective
weighting factor. The prediction in external validation of each i Cal-Ext.
Val combination was collected in a single and final CM to calculate a
final BCA. BCA with respect to measurement classification was used as
performance indicator. Additionally, a step of model optimization was
considered before external validation: keeping the optimal number of
LVs, a PLS-DA model was developed on the calibration set to compute
the VIP scores and select the most relevant features. Internal cross
validation was then repeated to re-optimize the number of LVs accord-
ing to the same ICV scheme but employing only the selected variables.
These optimized models were then externally validated on the test sets
and performances were evaluated in terms of samples classification.
Again, a final CM aggregating the results in external validation was built
to calculate a final BCA for scenario 1.

After the performances in a reference scenario, within the same plant
(P1) and within a single measurement campaign (i.e., one season, June),
were investigated, a second model including the entire dataset of P1
(January and June) was developed and validated on P2 (January and
June).

In this case, the calibration dataset (P1 January-June) is composed
of four days of measurement. The same data analysis pathway was
performed but for internal cross-validation, a leave-one-day-out (LODO)
approach was applied, considering each measurement day as an inde-
pendent block (Table 1). In each iteration, data from three blocks were
used for model training, while the fourth block was kept for validation

Data partition of P1 June dataset for i Cal-Ext.Val combinations where C are the data for calibration while E the data for external validation.

Scenario 1: P1 June

Data partitioni =1, ...,19

WTL STL Combination Cal-Ext.Val
Partition 1 E C C C C C C C C C a Model 1
Partition 2 C E C C C C C C C a Model 2
Partition i a Model i
Partition 19 C C C C C C C C C E a Model 19
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Table 4
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Data splitting for internal cross validation: Train dataset (T) and internal validation (V) with P1 June dataset for each i Ext.Val-Train partition. Data partitioni = 1 is

reported as an example.

Cal-Ext.Val partition i = 1
Train-test combinations j = 1, ..., 18

Calibration set SET: P1 June (Scenario 1)

Internal cross validation

Output for each LV a CM; 4 Final output a BER; q and BCa; q

Model i,j WTL STL Z_li (Samples predicn'onsi_q)_ BER; 4 and BCA; 4
Model 1,1 \4 T T T T T T T N 7= J perq=12,...,N
Model 1,2 T \Y, T T T T T T aCM;y,q for optimal number of LVs
Model 1,j .
Model 1,18 T T T T T T T \%
Table 5

Data splitting for internal cross validation: Train dataset (T) and internal validation (V) with P1 January and June as calibration dataset.

TRAIN SET: P1, January and June (Scenario 2)

Internal cross validation

Day 1 Day 2 Day 3 Day 4 Output for each LV a CM, Final output a BERy and BCA,
Model 1 \Y T T T 18 .. BER, and BCA
| Samples predictions; q
Model 2 T v T T Z’*l( 1'4)1' perq=12,...N
Model 3 T T \ T aCMy,q for optimal number of LVs
Model 4 T T T \%

(Table 5). As described above, the number of LVs was optimized based
on samples predictions, before and after performing the features selec-
tion with VIP scores. Finally, the entire P1 dataset (i.e., all four blocks)
was used to develop the final calibration model, which was subsequently
tested on the P2 dataset. Model performance on P2 samples was eval-
uated using BER and BCA with respect to sample classifications based on
spectra-majority voting as described for scenario 1.
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2.10. PLS-DA modelling

The PLS-DA algorithm was implemented to build the classification
models capable of discriminating odour sources by combining dimen-
sionality reduction with discriminant analysis. PLS-DA is a supervised
technique particularly suitable for datasets with more features than
observations (2 m > k) and where multicollinearity exists among the
predictors. It uses the features X (n x N) extracted from sensor signals,
where n represents the number of samples and N the number of features.
The method works by extracting latent variables (LVs), which are linear
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Fig. 6. Positive spectra from field samples collected during June measurements from both plants P1 and P2: (A) Raw spectra signals, (B) Pre-processed spectra signals
after noise removal, baseline correction and spectra alignment respect to the same reference RIP and RIN position.
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combinations of the original features, to reduce the dataset's dimen-
sionality while maximizing the covariance between the predictors and
the class labels. This approach enables the identification of key features
influencing the classification and provides a robust model for separating
observations into distinct groups based on their characteristics (Lee
et al., 2018; Marco and Gutierrez-Galvez, 2012).

2.11. Feature selection

Feature importance was evaluated on each training set using VIP
scores, which quantify each variable's contribution to the LVs. Features
with VIP scores greater than 1 were considered significant and selected,
while those below 1 were excluded. This process reduced the number of
features to an optimal subset for model development (Mehmood et al.,
2012).

3. Results and discussions
3.1. Raw sensor signal pre-processing

Fig. 6 shows an example of positive spectra points from all the
samples collected in both P1 and P2 during field measurements, before
and after pre-processing. The samples were collected from different
odour sources, at different times, and from different plants (as described
in Section 2.3 Measurement campaigns and samples collection). In the raw
signals extracted from IMS (Fig. 6(A)), noise, baseline and peaks mis-
alignments were present. The 2nd order Savitzky-Golay (SVG) filters
were optimized in length, 10 was identified as the optimal width,
avoiding excessive noise without distorting the shape of the peaks.
Multiplicative spectral alignment based on RIP/RIN position was
applied to standardize peak positions and facilitate ion matching within
and across samples. Spectral alignment is a key step; omitting this step
impairs feature extraction and reduces the model's ability to discrimi-
nate samples' odour class. Baseline removal also allowed a fair extrac-
tion of peak intensities. In this case, the baseline removal resulted
optimal with a fourth order polynomial fitted using the first 16 % and
the last 33 % of each individual spectrum where no peaks are present.

3.2. Feature extraction

Because of different chemical composition, samples from different
origins resulted in different spectra. The differences are evident in terms
of ionic presence, i.e., in terms of peaks in the spectra. Differences are
both qualitative, meaning that peaks are in different positions because
they are derived from different chemical compounds, and quantitative,
meaning that same nominal peaks in different samples can have
different heights due to varying quantities of the same chemical com-
pound. PCA was first applied to the full positive and negative spectra. In
this case, neither classes nor macro-classes were distinguishable;
redundancy was evident in the data with general overlapping in the PCs
space. Most of the variance in the definition the PCs was associated to
the RIP and RIN peaks. Since these reference ions are not chemically
informative for the discrimination of the odour sources they were
removed from the spectra. Additionally, feature extraction was based on
the intensity of the ions peaks, resulting in a significant reduction of
dimensionality. The extraction of the features was performed on the
calibration dataset for each scenario investigated.

Feature extraction in both scenario (P1 June and P1 January and
June) resulted in the identification of 17 different peaks in the positive
spectra signals and 17 different peaks in the negative spectra signals. A
total of 34 peaks were identified across all the spectra. The RIP and the
RIN were discarded as suggested above.

3.3. Exploratory analysis

The PCA score plots of the pre-processed signals, and the 32
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extracted features were computed to understand the relationship among
data and the instrument's potential in differentiating between two odour
classes of interest, WTL and STL. In general, in the next plots and
graphics, data concerning the WTL are coloured in blue and light-blue
shades while data from STL are in orange and brown shades. First,
data from the same measurement campaign (January) and the same
plant (P1) were examined (Fig. 7). From visual inspection, it is visible
that the information to distinguish WTL and STL classes is contained in
PC1. In Fig. 7, the results are reported in the PC1-PC3 plane for visu-
alization purposes. Indeed, along the PC1 scores space (Fig. 7(A)) the
samples belonging to the same process lines, WTL or STL, cluster
together, forming two clear distinguishable groups (Fig. 7(B)). This
statement is also reinforced by the amount of explained variability
corresponding to each PC. While PC3 represents only 7 % of the total
variability of the dataset, PC1 represents almost 32 % of the variability,
leading to a visual separation of the dataset. These two principal com-
ponents represent almost 40 % of the variability of the dataset which
explains the scattering observed in Fig. 7 and the need of better models
to achieve clear source discrimination. Similar results are observed in
Figs. 8 and 9.

This outcome highlights the instrument's ability to differentiate be-
tween the two odour classes analyzed under controlled conditions (i.e.,
the same measurement campaign and the same plant). The differentia-
tion between the two odour classes would allow the identification of the
odour source from one process line to another distinguishing the causes
and enabling targeted mitigation interventions.

Next, the study considers the effects of seasonal and plant variability
that characterize the WWTPs' emissions. Seasonal variability was
evident, since the same emitting sources, e.g., WTL samples from P1,
behave differently in January compared to June, resulting in distinct
clusters for each season (Fig. 8(A)) in the PC score plots. Analogously,
plant variability was observed, as samples from the same emitting
sources collected during the same season at different plants (e.g., WTL
samples in January from P1 and P2) grouped into distinct regions in the
PC score plot (Fig. 8(B)). STL samples from different seasons and
different plants behave similarly to the WTL samples shown, clustering
differently according to season and plants.

Finally, when combining data from both plants across the two sea-
sons (January and June) the variability is much higher, making it harder
to distinguish between WTL and STL (Fig. 9). The samples showed more
dispersion into the score plots without clear clustering of the two odour
(Fig. 9). This highlights how seasonal and plant variability of WWTPs'
emissions sources adds complexity to differentiating between the two
odour classes. These characteristics are driven by the intrinsic nature of
odour emissions from WWTPs, which are strongly influenced by
wastewater composition, environmental factors and process parameters
(Pasciucco et al., 2023). It is important to account for these aspects
during model calibration and to manage this complexity in real-field
scenarios. For these reasons, we considered developing at first a model
in a reference case considering one plant (P1) in one season (June) and
then including seasonal variability with a calibration on the entire P1
(January and June).

3.4. PLS-DA model building, optimization and validation

The models were built as described in Section 2.9. In the first sce-
nario, when only P1 in June was considered, the evaluation of the BER
vs. LVs (Balanced Error vs number of Latent Variables) curve, derived
from internal cross-validation across the different combinations, indi-
cated a number of LVs ranging from 1 to 3, with 2 being the most
frequently selected value. Among these 14 peaks, 11 were in the positive
spectra at positions 7.3 ms, 8.8 ms, 9.2 ms, 9.6 ms, 10.2 ms, 10.7 ms,
11.3 ms, 13.3 ms, 14.4 ms, 14.6 ms, 16.3 ms, and 3 in the negative
spectra in position 6 ms, 7.9 ms, 9.6 ms respectively. The same features
were extracted from the samples for external validation. The first model,
calibrated and validated within the same plant (P1) and same season
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(June), achieved an 89 % Balanced Classification (95 %CI 75 %-100 %)
when externally validated without the step of model optimization (i.e.,
calibrated with all the 32 extracted features). The same model devel-
oped with the thirteen VIP-selected features resulted in a balanced
classification of 94 % (95 %CI 82 %-100 %) (Table 6).

In the second scenario, when the entire P1 dataset (January and
June) was considered for calibration, two LVs were identified as the
optimal number. Among the 32 extracted peaks, 7 were selected: at
positions 7.3 ms, 8.8 ms, 9.6 ms, 10.2 ms from the positive spectra, and
the ones at positions 6.5 ms, 7.9 ms, 8.9 ms from the negative spectra.
The same features were extracted from the validation dataset from P2.

This second model achieved 82 % balanced classification accuracy
(95 %CI 64 %-97 %) in external validation on data from P2 January and
June considering all the features, and 96 % (95 %CI. 86 %-100 %) when
only the 7 selected features were used for model development (Table 6).

This demonstrates not only the potential of classifying samples in
controlled conditions, such as the same plant and the same seasons, but
also the model's strong performance in classifying new samples from a
different plant, even in the presence of seasonal and plant variability.
The classification model's ability to handle the complexity introduced by
these variabilities, as observed in Section 3.3, is particularly significant.
This indicates that the supervised PLS-DA model can partially mitigate
the effects of seasonal and plant variability by focusing on the classifi-
cation of target odour sources.

3.5. Discussion

Despite the challenges posed by seasonal and plant variability, as
evident from PC scores plot analysis (Figs. 7, 8 and 9), the PLS-DA
classification model effectively used the information contained in the
spectral signals features, i.e., the peak heights, addressing this vari-
ability, at least for the differences between plants. In both cases, scenario
1 and scenario 2, the optimization step in model development improved
classification performance. When different seasons are included in
model calibration, a lower number of features was selected as the most
important suggesting that the most essential information for the classi-
fication of two sources is retained in a few peaks. The development of
approaches the investigation of new techniques to monitor odour
emissions in WWTPs with generalized and reliable systems are impor-
tant under different perspectives. Distinguishing between odour sources
from WTL and STL is valuable for understanding the specific contribu-
tions of these process lines to overall emissions in WWTPs. This differ-
entiation is particularly relevant for implementing targeted preventive
and mitigation strategies, optimizing plant operations and control, and
ensuring compliance with environmental regulations. Prevention and
mitigation of odour emissions from a WWTP may vary between WTL and
the STL, and to implement targeted and cost-effective interventions, it is
crucial to identify the primary sources and address them correctly
(Munoz et al., 2010). When odours mainly originate from the WTL,
mitigation and prevention efforts should focus on the early stages of
wastewater collection. At these stages, covering systems can be installed
to contain odour emissions, coupled with localized ventilation
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(Brinkmann et al., 2016; Munoz et al., 2010; Senatore et al., 2021). If
significant emissions are detected and covering is not sufficient, air
collection systems with forced ventilation can be implemented to convey
odorous air to treatment units. Common treatment methods include
biofilters, which degrade odour compounds using bacteria; these typi-
cally use organic material like compost or wood chips, as they handle
lower odour loads (Brinkmann et al., 2016; De Sanctis et al., 2022;
Senatore et al., 2021). Chemical scrubbers and thermal or catalytic
oxidation may also be applied (Senatore et al., 2021).

Additionally, wastewater additives, such as oxidizing agents (chlo-
rine, potassium permanganate) or bacteria-based products, help prevent
hydrogen sulphide formation and the associated malodours (Brinkmann
et al., 2016). On the other hand, when the odour mainly originates from
STL, different targeted interventions are applicable (Munoz et al., 2010;
Senatore et al., 2021). In the STL, where odours mainly result from
anaerobic fermentation of organic material, prevention strategies
involve covering and isolating sludge thickening tanks and dewatering
stations, with dedicated air extraction and conveyance systems
(Brinkmann et al., 2016; Haider et al., 2022; Senatore et al., 2021). The
recovered air is treated using activated carbon filters, bio-scrubbers, or
biofilters. Due to higher odour loads, biofilters in this line often incor-
porate zeolites or activated carbons to enhance adsorption capacity
(Marquez et al., 2021). Chemical additives to the sludge, such as iron
salts or oxidants, help reduce hydrogen sulphide formation.

Moreover, optimizing sludge retention times, as well as ensuring
proper transport and storage under controlled conditions, can minimize
uncontrolled fermentation and reduce unwanted emissions (Haider
et al., 2022; McNevin and Barford, 2000; Munoz et al., 2010; Senatore
et al., 2021). Therefore, identifying the main odour sources among the
WTL and the STL is a critical step to implement suitable process control
strategies aimed at reducing odour impacts. While these lines are
interdependent, different control strategies are typically used to ensure
optimal and efficient operations (Barbu et al., 2018). Commonly moni-
tored variables include ammonia, nitrogen, chemical oxygen demand
(COD), biochemical oxygen demand (BOD), and oxygen content, which
help assess the quality of the effluent water, ensure compliance with
effluent limits, and control operational costs (Barbu et al., 2018, 2016).
Summarizing, an efficient IOMS capable of discriminating odour sources
and quantifying odour emissions from WTL or STL would contribute to
improve process control and further optimizing plant management.

Accordingly, the final performance of IOMS can be improved by
accurately classifying the odour sources in a plant and then appropri-
ately adjusting the prediction models. In this contribution, the relevance
of having equipment capable of analyzing the chemistry of different
source emissions in source classification has been highlighted.
Furthermore, the associated problems with portable IMS technology
(plant-to-plant and temporal variabilities) have been studied by using
data coming from two different plants. These problems have been
addressed by designing a clever data processing pipeline. Indeed, the
potential of the IMS instrument in classifying odour sources in WWTPs is
clearly demonstrated through the application of the PLS-DA algorithm.
However, the verification of the robustness of the model and the

Table 6
Classification results.
Model Train Test N° LVs Approach Features BCA (95 %
CD
First P1 June P1 June 3rd 1+3 (w0  Direct All 32 features 89 % (75 %—
scenario 1st'2nd day day 2) 100 %)
Optimized 14 selected features (Positive: 7,3 ms, 8,8 ms, 9,2 ms, 9,6 ms, 10,2 ms, 10,7 ms, 11,3 94 % (82 %-—
ms, 13,3 ms, 14,4 ms, 14,6 ms, 16,3 ms; Negative: 6,0 ms, 7,9 ms, 9,6 ms) 100 %)
Second P1 January P2 January 2 Direct All 32 features 82 % (64 %—
scenario and June and June 97 %)
Optimized 7 selected features 96 % (86 %—
(Positive: 7,3 ms, 8,8 ms, 9,6 ms, 10,2 ms; 100 %)

Negative: 6,5 ms, 7,9 ms, 8,9 ms
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repeatability of these results will require more measurement campaigns
covering at least one-year variability. Moreover, the direct trans-
ferability of models across plants should be assessed, including more
facilities of the same category in future studies.

To further enhance the performance of the IOMS, Calibration
Transfer techniques may be considered as well (Fernandez et al., 2016;
Fonollosa et al., 2016; Reimringer and Bur, 2023; Robin et al., 2023).
The transferability property, if further confirmed or developed, would
significantly enhance the field application of odour monitoring using
this approach, drastically reducing calibration work, as well as field and
computational effort. In the data processing pipeline presented here,
PCA and PLS-DA algorithms proved effective for visualization and pro-
cessing of IMS data, but these are not the only possible approaches.

In the scenarios considered (measurements within the same plant
and campaign, and measurements across two plants and campaigns),
consistent results in classification were obtained with both full feature
models and those built after feature selection. Models based on selected
features achieved better performance, which can be explained by the
removal of variables that contributed little to class separation or that
were strongly affected by noise. When comparing the confidence in-
tervals of the BCA for both approaches, a large overlap was observed.
This is a direct consequence of the limited number of independent
samples used for model building. Increasing the number of samples
would be necessary to confirm whether the models based on selected
features are significantly better. For instance, we observed narrower Cls
in the second scenario due to the larger number of samples. Alternative
techniques could potentially improve classification accuracy, and they
might provide valuable insights into the effectiveness and versatility of
various methods in similar scenarios. Overall, these preliminary results
on real field samples demonstrates the potential of IMS coupled with
robust data analysis to classify odour emissions from WWTPs, laying the
foundation for further research into its application for environmental
odour monitoring.

It should be highlighted that, while there are is an increasing
attention towards standardizing the way IOMS performances are eval-
uated, as proven by the recent Italian standard UNI 11761:2023 and the
CEN Working Group WG 41, to date, there are no established regulatory
requirements for IOMS minimum classification accuracy. In order to
define some benchmark accuracy, it is possible to refer to previous
recently published work discussing the attempt to develop IOMS for
environmental odour monitoring at plant fencelines, reporting classifi-
cation accuracies above 95 % on independent test sets after optimization
of the model for compensation of humidity effects on sensors (Ratti
et al., 2024), which are indeed comparable to the accuracy levels ob-
tained in this study. As an additional consideration, portable IMS may
allow both the identification of relevant chemical species as a subse-
quent step to the classification presented here. At present, only the
spectral features (ion peaks) associated with discrimination are known.
Assigning these features to ions corresponding to chemical species
would require complementary analyses by gas chromatography coupled
with mass spectrometry (GC-MS) to provide information on chemical
composition.

Taken together, these aspects highlight that our approach is not only
technically feasible but also cost-effective, offering a portable and
relatively low-maintenance solution for odour source classification in
WWTPs and the prediction of odour concentrations when proper cali-
bration is performed.

4. Conclusions

As odour monitoring in WWTPs has become more necessary than
ever, IOMS have emerged as convenient tools for emission monitoring,
source detection, and managing compliance with regulatory standards.
Due to the limitations of EN used as IOMS, it is important to explore the
possibilities offered by other technologies which might improve odour
source classification in the field. In this context, IMS may represent a
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valuable solution to be considered as a replacement for EN in field
monitoring and classification. The results of this study demonstrate that
the combined approach of IMS data, spectral analysis and classification
models, such as PLS-DA, is effective in achieving a high discrimination
capability between the two primary odour sources in a WWTP (i.e., WTL
and STL). The optimized model, calibrated and validated within the
same plant and the same measurement campaign, performed with an 89
% (95 %CI 75 %-100 %) balanced accuracy in predicting new samples.
In controlled conditions with low seasonal variability, the potential of
IMS-PLSDA is well demonstrated in discriminating the WTL from the
STL and the most important information are retained in few peaks. This
capability might contribute to evaluating the impact of each process line
on the overall odour impact of the plant, and thus, to implementing
targeted odour control strategies in a cost-effective manner.

The impact of seasonal and plant variability, considering datasets
from different seasons (winter and summer) and from different WWTPs,
has also been demonstrated in this contribution. Accounting for seasonal
variability is particularly important, especially for real-world field
monitoring in WWTPs, which requires continuous and reliable infor-
mation about the odour emitted from the facility over a long period of
time. Plant variability is also an issue when aiming to transfer a classi-
fication model between different plants, thereby reducing operational
and computational effort needed to calibrate the monitoring systems.
Here, we have presented a modelling approach that tackles this issue. A
second model was calibrated using data from one plant across different
seasons and successfully validated on data from a different plant,
achieving a balanced classification accuracy of 96 % (95 %CI. 86 %-100
%). It was also shown that, when seasonal and plant variability are
present, fewer chemical features (i.e., fewer peaks) can be retained to
address the complexity of transferring a model from one plant to
another.

Considering the performance of the presented models, this study
highlights with this study the potential of IMS-PLSDA combination as a
promising tool for odour source classification and source monitoring,
not only in reference and controlled conditions but also across different
facilities and with different environmental conditions. However, the
limited number of sources and the variety of plants included does not
allow generalization of the presented results.

To confirm the robustness of the model and the reproducibility of the
results, further studies are required. Future work should include addi-
tional measurements across different seasons and from a larger number
of WWTPs. This would allow for assessing the model's stability in real-
world scenarios and introducing potential adjustments to enhance ac-
curacy. Confidence intervals are expected to improve with a larger
dataset for external validation. Additionally, exploring alternative data
pre-treatment methods and classification models could offer valuable
insights and potentially improve system performance. Such in-
vestigations would also contribute to a better understanding of how this
technology can be deployed in a standardized and reproducible manner.
Furthermore, extending the use of portable IMS as IOMS beyond this
study could offer reliable tools to address issues of interest to the in-
dustrial community, such as the quantification of odour emission rates.
Integrating odour source classification (via portable IMS), odour con-
centration quantification (complementing IMS with GC-MS and dy-
namic olfactometries), and airflow rate estimation techniques, could
provide a very useful tool for odour monitoring (odour source control)
and managing (malodour event forecasting) at an industrial level.

Supplementary data to this article can be found online at https://doi.
org/10.1016/j.scitotenv.2025.180741.
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