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H I G H L I G H T S G R A P H I C A L  A B S T R A C T

• Portable Ion Mobility Spectrometry dis
criminates odour sources in wastewater 
plants.

• Achieved 94 % balanced accuracy 
within a single plant and season.

• Model transfer across two different 
plants with 96 % balanced accuracy.

• Ionic information is key for reliable 
odour source classification.

• Promising approach for improved real- 
time instrumental odour monitoring in 
the field.
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A B S T R A C T

Odour emissions from Wastewater Treatment Plants are a relevant issue concerning environmental and social 
impact, regulatory compliance, and plant management. Instrumental Odour Monitoring Systems are widely used 
for real-time odour emissions monitoring, but seasonal and plant variability limit their long-term reliability. 
Therefore, new sensing technologies and approaches are being studied to improve their reliability and the 
transferability of predictions between different plants and seasons. In this context, this work investigates the 
suitability of portable Ion Mobility Spectrometers to discriminate the main odour sources in Wastewater 
Treatment Plants. Two measurement campaigns were carried out in different seasons, considering different 
odour sources in two independent plants. Through a proper data analysis approach, based on the importance of 
ionic information, portable Ion Mobility Spectrometry proved effective in discriminating odour sources from the 
two main process lines: water and sludge treatment. In the first phase, conducted in the same plant and season, a 
balanced classification rate of 94 % (95 %CI: 82 %–100 %) was achieved. Subsequently, including seasonal and 
plant variability, a model trained on one plant was applied to the second. The direct transfer of the calibration 
achieved a balanced classification accuracy of 96 % (95 %CI: 86 %–100 %), confirming the relevance of the 
selected ions for odour assessment across different plants. These results suggest that portable Ion Mobility 
Spectrometry is a technology that deserves further attention for instrumental odour monitoring. The consistent 
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classification rates obtained both within a single plant and when transferring the model demonstrate that Ion 
Mobility Spectrometry, combined with feature selection, can reliably identify ions specifically relevant for odour 
emission assessment.

1. Introduction

In recent years, specific regulations and methodologies have been 
developed for monitoring odour emissions from various industrial ac
tivities, responding to the increasing public awareness of air quality (Bax 
et al., 2020). While odours are typically non-toxic and not directly 
harmful to human health, prolonged exposure has been linked to stress, 
headaches, nausea, and respiratory discomfort, affecting overall well- 
being (Piccardo et al., 2022). At the European Union level, several 
regulations have addressed the issue of odour exposure. EN 13725:2022 
(CEN, 2022) introduced dynamic olfactometry to measure odour con
centration, while EN 16841:2016 (CEN, 2016) standardized field in
spections to assess odour exposure in surrounding areas. In particular, 
Italy has issued specific regulations on odour impact assessment, further 
developing the European regulatory framework (Bokowa et al., 2021). 
This regulatory development has opened a path for setting acceptability 
criteria for odour emissions ensured by standards in odour monitoring.

To ensure regulatory compliance, chemical analysis, dynamic 
olfactometry, and dispersion modelling are effective tools to charac
terize odour emissions and evaluate their impact (Muñoz et al., 2010). 
However, monitoring emissions is not exclusively about complying with 
acceptability criteria. From an industrial perspective, it also serves as a 
key management tool. Anomalous or excessive odour emissions often 
signal malfunctions or inefficiencies, requiring intervention and miti
gation (Brinkmann et al., 2016). Therefore, early detection and char
acterization of odour release are fundamental also to reducing 
operational costs.

Among the most relevant pollution-emitting plants (Bax et al., 2020; 
Muñoz et al., 2010), Wastewater Treatment Plants (WWTPs) are sig
nificant contributors. The sludge treatment line is the most intense 
source due to anaerobic processes in sludge storage, digestion, and 
dewatering units, releasing high levels of H₂S, NH₃, and VOCs (González 
et al., 2022; Haider et al., 2022; Senatore et al., 2021). Water treatment 
units, such as grit chambers and primary sedimentation tanks generate 
less intense but more widespread odour emissions, due to their large 
surface areas (Czarnota et al., 2023; González et al., 2022; Haider et al., 
2022; Lebrero et al., 2011; Muñoz et al., 2010; Senatore et al., 2021). 
The diversity of odour sources makes their control and monitoring 
challenging. Therefore, identifying whether odours originate from water 
or sludge treatment is important for targeted mitigation, industrial ef
ficiency, and regulatory compliance (Barbu et al., 2018; Czarnota et al., 
2023).

To tackle this, Instrumental Odour Monitoring Systems (IOMS) are 
widely employed in WWTPs for monitoring odour emissions directly 
over the emitting sources (Blanco-Rodríguez et al., 2018; Prudenza 
et al., 2022) or at the plant fence line boundary (Cangialosi et al., 2021). 
They have proved effective in classifying and quantifying odour emis
sions from different process stages (Blanco-Rodríguez et al., 2018; 
Burgués et al., 2022, 2021; Moufid et al., 2022; Prudenza et al., 2022; 
Wang et al., 2023).

IOMS are technologies designed to continuously monitor and analyse 
ambient air, correlating sensor outputs with odour presence and in
tensity (Oliva et al., 2021). Among these devices, electronic noses (EN) 
are the most used. They are instruments equipped with an array of gas 
sensors and a data processing unit that is able to detect, classify, and 
quantify odours in real time. EN can be equipped with partially specific 
or non-specific gas sensors, as industrial odour emissions usually do not 
depend on a single compound but rather on a complex fingerprint of 
VOCs. Examples include Metal Oxide Sensors (MOX) (Blanco-Rodríguez 
et al., 2018; Burgués et al., 2022, 2021; Moufid et al., 2022; Prudenza 

et al., 2022; Wang et al., 2023), Electrochemical sensors (EC) (González 
et al., 2022; Prudenza et al., 2022), and Photoionization Detectors (PID) 
(González et al., 2022; Prudenza et al., 2022). Therefore, data acquired 
by EN typically undergo visual inspection, for instance by means of 
Principal Component Analysis (PCA) (Blanco-Rodríguez et al., 2018; 
Burgués et al., 2021; Moufid et al., 2022; Prudenza et al., 2022).

By coupling EN responses with suitable machine learning ap
proaches, it is possible to classify different odours using algorithms such 
as Linear Discriminant Analysis (Wang et al., 2023), Multilayer Per
ceptron, or Support Vector Machine (SVM) (Moufid et al., 2022; Pru
denza et al., 2022; Wang et al., 2023) but also to estimate odour 
“quantity” using methods such as Partial Least Squares (PLS) Regression 
(Blanco-Rodríguez et al., 2018; Burgués et al., 2022, 2021; Moufid et al., 
2022; Wang et al., 2023), Random Forest (RF) (Cangialosi et al., 2021), 
and Artificial Neural Networks (ANN) (Cangialosi et al., 2021). In gen
eral, EN can be employed directly over the emitting sources (Blanco- 
Rodríguez et al., 2018) for process control purposes (Prudenza et al., 
2023, 2022), to enhance plant management and interventions to resolve 
odour emissions issues (Zarra et al., 2022) or to map emissions from 
different sources (Burgués et al., 2022). They also provide better un
derstanding of different contributions in odour emissions, or insight into 
wastewater quality (Wang et al., 2023). The use of EN for real-time 
emission monitoring at plant fence lines is also becoming increasingly 
popular (Cangialosi et al., 2021). This type of deployment produces 
information about general anomalous malfunctioning, permits the 
implementation of alarm thresholds for odour emissions (Cangialosi 
et al., 2021), and provides information to identify the origin of odour 
nuisance (Cangialosi et al., 2021).

However, despite EN effectiveness and adaptability to different in
dustrial applications and environments, EN are generally affected by 
several problems, including sensitivity to humidity and temperature 
fluctuations, as well as instrumental drift (Khorramifar et al., 2023; 
Robbiani et al., 2023). Lack of reproducibility and generalizability are 
also major challenges, requiring considerable time and effort for dedi
cated calibration of each instrument and facility, as models cannot be 
directly transferred between identical instruments or similar plants. 
These issues are worsened by seasonal variability and plant-specific 
conditions, making it difficult to establish generally applicable calibra
tion models. Many of these issues are intrinsic to the sensor technologies 
employed in EN and, although several machine learning approaches 
attempt to mitigate them, they remain a major challenge in real-world 
applications. There is a significant amount of research on calibration 
transfer methods in laboratory settings (Fernandez et al., 2016; Fonol
losa et al., 2016; Reimringer and Bur, 2023; Robin et al., 2023), but, as 
far as we are aware, there is still a lack of approaches for applying them 
to more complex, real-world situations.

In this context, other sensor technologies could be considered as 
complementary approaches to enhance odour monitoring capabilities. 
There are some laboratory applications of gas chromatography coupled 
with ion mobility spectrometry (GC-IMS) that have proved effective in 
identifying distinct VOC fingerprints from samples collected at different 
stages of a WWTP process, highlighting the chemical differences be
tween process lines and their respective odour impacts. Gas chroma
tography separates mixture components based on their chemical 
properties, while Ion Mobility Spectrometry (IMS) distinguishes ions by 
their drift velocity in an electric field, adding a second dimension to the 
analysis. However, GC-IMS systems are typically fixed laboratory in
struments, limiting their applicability for real-time field monitoring.

Therefore, our purpose is to explore IMS standalone technology as a 
tool for identifying odour sources in WWTPs. This technology allows us 
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to exploit ion mobility spectrometry in a portable system, making it 
well-suited for field application and onsite odour monitoring (Epping 
and Koch, 2023; Márquez-Sillero et al., 2011). However, IMS analysis in 
environmental conditions can be affected by factors such as slight var
iations in temperature, pressure, and relative humidity, as well as 
background interference, leading to issues like misalignment, noise, and 
baseline drift, making it challenging to compare different analyses when 
considering only raw spectra data. To address these challenges, specific 
signal and data processing methods were applied to ensure comparable 
analysis across different plants and seasons and data consistency.

To the best of our knowledge, this approach in real field applications 
for characterizing odour sources in WWTPs has not been implemented 
before. Therefore, this work aims to investigate the potential of a 
portable IMS to classify odour emissions from WWTPs, representing a 
novel approach and application. Furthermore, beyond the analytical 
performance, the cost-effectiveness of the proposed approach is partic
ularly relevant, as portable IMS reduces infrastructure requirements and 
enables in-situ monitoring at lower operational costs compared to con
ventional laboratory-based techniques.

Samples were collected in two different WWTPs during two mea
surement campaigns directly over the emitting sources from the two 
main process lines, i.e., the water and sludge treatment. The potential of 
IMS to classify odours from the two process lines was investigated, along 
with a data analysis approach that ensured objective and repeatable 
results. This approach enabled the preliminary generalization of a 
classification model from one plant to another, reducing both calibra
tion and computational demands and illustrating the feasibility of the 
method.

The article is organized as follows: in Section 2, Materials and 
Methods are discussed. Relevant information about the Instrumentation, 
Sampling sites in the plants, measurement campaigns, and data analysis 
is provided. In Section 3, Results and Discussion presents the most 
important features of the collected data and the results provided for the 
trained models are presented and discussed. Also, a proper discussion 
about the implications of this study on odour control and management 
technology is provided. In Section 4, conclusions based on the results 
presented in Section 3 and future work derived from the discussion 
provided in the same section are summarized. Finally, a Table of Acro
nyms is provided in the Supplementary Materials.

2. Materials and methods

2.1. Instrumentation and technology

In this study, the use of a handheld IMS device minimizes both 
equipment and maintenance costs compared to more complex GC–IMS 
setups. While still providing selective and sensitive measurements, this 
equipment is more suitable for field deployment. Data was collected 
directly at the WWTPs emission sources with an IMS: GDA2 from AIR
SENSE Analytics GmbH. It is a handhewass detector array equipped with 
4 gas sensors (1 Photo Ionization Detector (PID), 1 Electrochemical Cell 
(EC), and 2 Metal Oxide Sensors (MOX)) and one water chemistry Ion 
Mobility Spectrometer (IMS) able to alternate between positive and 
negative modes. The GDA2 is also equipped with an automatic dilution 
system: the sampled gas of interest can be diluted with filtered clean air 
at different ratios that can be set by the operator. In this study, we 
focused exclusively on the spectra signals from the IMS in the GDA2 with 
a scan rate of 1 s and a sample rate of 18.25 KHz.

IMS is an analytical technique used to detect volatile organic com
pounds (VOCs) through ionization of the sampled molecules. In the 
GDA2 device, ionization is initiated by a Ni-63–β radioactive source 
emitting β particles (17 keV) (Gabelica and Marklund, 2018), which 
initially ionize N2 and O2 molecules (Gabelica and Marklund, 2018). The 
atmospheric pressure chemical reaction with water molecules in air 
forms positively charged H₃O+ ions (reactant positive ions, RIP), while 
interactions with oxygen molecules generate negatively charged O₂−

ions (reactant negative ions, RIN). Once formed, these reactant ions 
serve as intermediaries for the ionization of target molecules (M). 
Indeed, RIP and RIN act as “charge” reservoirs, transferring positive or 
negative charge to the target molecules (M) through collisions, ionizing 
them via proton transfer in positive mode (electron transfer), or proton 
abstraction and cluster formation in negative mode (Gabelica and 
Marklund, 2018). In other words, when the peak area corresponding to 
an ion increases in the spectrum, the area of the RIP (or RIN) decreases 
accordingly.

The ionized molecules are introduced into a drift region where they 
are accelerated by a homogeneous electric field (Fig. 1). Their terminal 
velocities, influenced by their mass, charge, and cross-section, cause 
them to reach the detector at different drift times, typically in the 
millisecond range (Fig. 1). The resulting drift times produce peaks in the 
spectra, each corresponding to a specific ion, providing a unique 
chemical fingerprint of the sampled gas (Novillo and Verónica, 2015). 
This fingerprint reflects the molecular composition of the sample, dis
tinguishing various target compounds based on their interactions with 
RIP and RIN.

2.2. Sampling sites

The sampling sites were two WWTPs, from now on designated as 
Plant 1 (P1) and Plant 2 (P2) and schematically represented in Fig. 2. 
WWTPs are facilities designed to reduce wastewater pollution to 
acceptable limits by means of several unit operations. The two plants 
considered in the study are located adjacent to each other. While they 
share some similarities, they operate independently in most of their 
processes. They treat different amounts of civil residues, measured in 
daily flow of water in cubic meters (Q), with flowrates of QP1 =
130.000 m3/day, and QP2 = 217.000 m3/day from different sources, i. 
e., providing the service to different municipalities. WWTPs typically 
include two main process lines: the water treatment line (WTL) and the 
sludge treatment line (STL) (Fig. 2) (Barbu et al., 2018). In P1, WTL 
includes a water collector, a grid chamber for screening, and a desander, 
followed by four primary sedimentation tanks operating in parallel 
(Fig. 2). These are followed by two biological tanks and, finally, four 
secondary sedimentation tanks (Fig. 2). P2 is composed of the same 
process units as P1 including an additional physical-chemical treatment 
section after the wastewater collector and before the primary sedimen
tation (Fig. 2). However, during the measurement campaigns the 
physical-chemical treatment section of P2 was not operational, meaning 
that, in practice, the water treatment lines of both plants were identical 
in terms of process units. The water separated during the secondary 
sedimentation stage in both plants is subsequently treated together 
through a filtration and chlorination process, with the addition of UV 
treatments to reach potability standards (Fig. 2). The solid residues from 
the WTL, referred to as sludge, are processed in a second line, called the 
STL. In P1, this line consists of a sludge conveyor, three thickeners (two 
of which operate while one is under maintenance on a rotational basis), 
a sludge mixer, and a biodigester to produce biogas for energy genera
tion (Fig. 2). Similarly, P2 includes two floaters (to remove suspended 
solids, grease and colloids from the water) and a biodigester also dedi
cated to biogas production for energy purposes.

The digested residual sludge from both plants' biodigesters is then 
treated together through mechanical dehydration to produce a final 
solid product that can be used as fertilizer or disposed of as waste.

The two plants can be treated as independent when considering the 
water treatment line, up to the secondary sedimentation, and for the 
sludge treatment line, up to the biodigesters (Fig. 2). Most of these 
processes are associated with relevant diffuse sources of odour and VOCs 
characterized by plant, seasonal, and temporal variability depending not 
only on the process units directly involved but also on the variable 
chemical composition of the treated wastewater from sewage (Beghi 
et al., 2012; Lebrero et al., 2011).
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2.3. Measurement campaigns and samples collection

Two measurement campaigns were carried out, one in January and 
one in June 2023, to account for the odour-emitting sources variability 
due to seasonal and inlet flow rate wastewater variations. Each mea
surement campaign included both plant P1 and plant P2. Samples were 
collected directly over the sources in field conditions employing the 
GDA2 with its automatic dilution system to avoid sensors' saturation, set 
at 10 % gas sample and 90 % filtered air. Field measurements were 
organized to sample from both WTL and STL in both plants, focusing on 
the most emission-intensive sources. The January measurement 
campaign was carried out over two days, the first day sampling P1 
sources and the second day sampling P2. The June measurement 
campaign was carried out over three consecutive days, sampling every 

day in both P1 and P2. In both campaigns and for each plant, samples 
were collected randomly and with repetitions from both classes, WTL 
and STL. A schematic report of the sampled sources in P1 and P2 during 
the days of measurement in January and June is reported, respectively, 
in Table 1 and Table 2.

P2 dataset presents less homogeneity in data distribution because of 
adverse weather conditions during June field measurements. P1 dataset, 
on the other hand, was better structured, more numerous, and with a 
more evenly distributed set of each class across the different measure
ment days, making it more suitable for calibration.

2.4. Data processing

Data processing included an initial pre-processing of the collected 

Fig. 1. Schematic representation of Ion Mobility Spectrometer (IMS). (a) Ionization source region in which the sample is ionized, (b) Drift tube where the ionized 
molecules are accelerated by an electric field, (c) shutter grid allows the ionized molecules go into drift tube and (d) detector where the charge of molecules is 
converted into a current output. RI: reference reactant ions; RIP: positive reactant ions; RIN: negative reactant ions.

Fig. 2. Schematic representation of the process unit in Plant 1 (P1) and Plant 2 (P2), the main independent sections and the common final units of mechanical 
dehydration and water purification.

V. Villa et al.                                                                                                                                                                                                                                    Science of the Total Environment 1004 (2025) 180741 

4 



spectra to prepare the data, followed by exploration of patterns using 
principal component analysis (PCA), extraction of the most important 
information, and, finally, the development and validation of a model to 
classify the different odours.

The pre-processing involved basic signal processing algorithms to 
enhance signal quality because spectra sampled under field conditions 
often contain interferences, background noise, baseline drift, and peak 
shifts. The proposed feature extraction relies on peak intensities in both 
the positive and negative polarity. Therefore, accurate comparison of 
peak heights requires initial pre-processing to align the peaks, ensuring 
they are mapped consistently across different samples, and removing the 
baseline and noise. After the feature extraction stage, the dimensionality 
of the feature vector is substantially reduced. Principal Component 
Analysis (PCA) was applied to visualize the reduced dataset and assess 
its potential for odour classification.

Two different scenarios were considered for the odour classification 
models: the first one focused on a single plant and a single field 
campaign (P1 June), while the second one considered both plants across 
two seasons (P1 and P2, in January and in June).

In scenario 1, two models were developed for odour source classifi
cation using the P1 dataset collected in June. The algorithm used for this 
purpose was Partial Least Squares Discriminant Analysis (PLS-DA). The 
first model was trained on data from the three days of measurements in 
June, excluding one sample at a time for external validation developing 
several train-test combinations. As described above, each sample is 
composed of several spectral points, which are highly correlated with 
each other. Consequently, for a fair comparison, internal cross- 
validation (ICV) on each training set determined the optimal number 
of latent variables (LVs) for the model. Each model was externally 
validated on the independent test set, and its performance was assessed 
in terms of a final Balanced Classification Accuracy based on the pre
diction of each external validation. In classification tasks where the 
number of samples per class is approximately balanced, the classifica
tion rate (overall accuracy) is a suitable measure of classifier perfor
mance. However, when the dataset is substantially imbalanced, the 
majority class tends to dominate, leading to an overestimation of the 
classification rate. To fairly evaluate classification quality under such 
conditions, it is more appropriate to use the Balanced Classification 

Accuracy (BCA) defined in Eq. (1), which equally weights the accuracy 
achieved in each class and thus provides a more reliable performance 
estimate across imbalanced datasets. In addition, since the BCA is a 
random variable (it depends on the sample set), it is important not only 
to report its point estimate but also to characterize its variability. Con
fidence intervals serve this purpose: they define the range within which 
we would expect the observed value of the statistic to for a given per
centage of repeated experiments (typically 95 %, although other levels 
such as 99 % can also be used). Narrower confidence intervals indicate 
that the estimated performance is more stable and reproducible. As a 
general principle, the larger the sample size, the narrower the confi
dence intervals, thereby increasing our confidence in the robustness of 
the classifier's performance. An additional optimization step was per
formed by selecting the most relevant features based on Variable 
Importance in Projection (VIP) scores from the PLS-DA model. Raw 
predictions with the PLS-DA algorithm are made based on the single 
spectrum A second model was then built using these selected features, 
with the number of latent variables re-optimized. This refined model 
was subsequently validated on the independent test set. After confirm
ing the classification of the two odour sources within a single plant and 
campaign, Scenario 2 expanded the analysis to cover a broader range of 
variability. Again, two classification models were created. One model 
was trained on the entire data from P1 (January and June) and validated 
on the independent data from P2 (January and June) exploring the ca
pacity of the method to be applied across plants. Internal cross- 
validation and BCA on the external validation set were used to assess 
performance. The other model was also developed using VIP scores for 
feature selection, following the same procedure as in scenario 1. A 
detailed explanation of this procedure can be found in Section 2.9.

Data analysis was carried out in MATLAB (2024B version) with 
PLS_Toolbox 9.1 (Eigenvector Research) and a specific package for IMS 
signal processing SmartIMS (Oller Moreno, 2018), previously developed 
by the authors. Both traditional programming methods and the Graph
ical User Interface (GUI) were employed. The data processing steps are 
schematized in Fig. 3.

Table 1 
Number of samples collected in P1 with the GDA2 during January and June field campaigns.

P1

WTL STL

Wastewater 
collector

Grid/ 
Screening

Primary 
sedimentation

Aeration 
tank

Thickener Mixer Total n◦ of independent samples 
per day

Day 1 (January) 1 – 2 1 2 1 7
Day 2 (June) – – 2 – 1 3 6
Day 3 (June) 1 1 – – 1 1 4
Day 4 (June) 1 2 3 – 2 2 10
Total n◦ of independent samples 

per class
14 12 26

Table 2 
Number of independent samples collected in P2 with GDA2 during January and June field campaigns.

P2

WTL STL

Wastewater 
collector

Grid/ 
screening

Primary 
sedimentation

Floater Sludge 
deposit

Total number of independent samples per 
day

Day 1 (January) – 1 1 – 1 3
Day 2 (June) – – – 2 1 3
Day 3 (June) – – – 1 2 3
Day 4 (June) 3 2 5 2 2 14
Total n◦ of independent samples per 

class
12 11 23
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2.5. IMS signals data structure

GDA2 acquires a time series of alternately positive and negative ion 
mobility spectra (Pomareda Sesé, 2013). Each scan contains 2 m (m =
511) spectral samples resulting in m points from the positive spectra and 
m points for the negative spectra. For data processing purposes, the 
signals were organized in a 2D matrix, as shown in Fig. 4. The rows of 
the matrix were arranged by grouping all scans for each sample (k) 
together sequentially: the first n1 rows correspond to the scans from 
sample k = 1, the next n2 rows correspond to the scans from sample k = 2 
and so on (Fig. 4). The spectral acquisition at each location lasted from 3 
to 10 min per sample, according to the specific case (for practical rea
sons in the field). Consequently, the number of spectra for each mea
surement (nk) ranged from 180 to 600.

2.6. Spectra pre-processing

To improve spectral quality noise was reduced by 2nd order 
Savitzky-Golay filters of optimized length. Baseline was estimated with a 
low order polynomial and peak alignment was based on a multiplicative 
factor with respect to the RIP or RIN position (Novillo and Verónica, 
2015; Oller Moreno, 2018; Savitzky and Golay, 1964; Szymańska et al., 

2016; Vu and Laukens, 2013). The specific parameters for each pre- 
processing algorithm (window width and polynomial order in baseline 
correction) were optimized by visual inspection of the pre-processed 
spectra (refer to Section 3.4). Across the dataset, there are minor vari
ations in peak positions between spectra from different samples due to 
temperature and humidity differences. In this step, all scans were 
aligned with respect to chosen reference RIP and RIN values for miti
gating this misalignment. This alignment stage allowed for consistent 
comparison of peak positions and intensities across samples and pro
vided a basis for reliable feature extraction. The data pre-processing 
steps are schematized in Fig. 5.

2.7. Feature extraction

Peak heights were extracted as features, as they indicate the con
centration of ions. Each peak represents the presence of a specific ion 
(monomer or dimer), providing a unique ion-fingerprint of the analyzed 
samples and valuable information about their composition (Gabelica 
and Marklund, 2018; Gao et al., 2021; Vera et al., 2016). Peak heights 
were extracted from the positive and negative spectra of WTL and STL of 
the training dataset.

Fig. 3. Data processing steps.

Fig. 4. (A) positive spectra; (B) negative spectra; (C) Dataset structure with k samples, nk scans/spectra each sample, m positive spectral samples and m negative 
spectral samples.
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2.8. Exploratory analysis

After pre-processing and feature extraction, PCA was used for data 
visualization and interpretation to assess its ability to distinguish odour 
sources based on plant and seasonal variability (Bro and K. Smilde, 
2014). Score plots of the principal components (PCs) were examined to 
identify patterns. At each plot, the amount of explained variability in 
percentage (the proportion of total variability explained by each prin
cipal component) has been added to the component label to aid the 
discussion presented in Section 3. Due to the variability of emissions 
across plants and over time in WWTPs, PCA was applied step by step in 
this study to explore differences between samples, campaigns, and 
plants, supporting the development of the classification models.

2.9. Model building, optimization and validation

The proposed preprocessing and modelling pipeline relies on stan
dard algorithms (baseline correction, peak alignment, PLS-DA), which 
are computationally lightweight and easily transferable, thereby sup
porting both reproducibility and cost-efficiency in data analysis. The 
PLS-DA algorithm was used to develop the odour classification models. 
Two different scenarios were considered in the development and vali
dation of classification models. The first scenario included data from one 
plant in one season. In this regard, P1 dataset from June proved most 
suitable in terms of homogeneity and data distribution. Then, the second 
scenario included both plants and both seasons, P1 and P2 in January 
and June, to assess the model's transferability. In both cases, the dataset 
was partitioned into a train set for model development with proper in
ternal cross validation (ICV) and feature selection, and a test set for 
external validation. Data were auto-scaled with respect to the train set.

In the first scenario, specifically, a double leave-one-out scheme was 
performed to partition data in train and external validation and for in
ternal cross validation. Iteratively, one sample from P1 June dataset was 
used for external validation. The remaining samples constituted the 
calibration set (Table 3). For each of the 19 Cal–Ext.Val combinations, 
ICV was performed using a leave-one-block-out (LOBO) approach. A 
LOBO approach was chosen, meaning that iteratively all spectra from 
one sample were excluded from the calibration set and used as part of 
the test set for internal validation, while the remaining samples formed 
the training set. The entire block of spectra from the same sample was 
excluded at each iteration from training set to avoid information 
leakage. Since they belong to the same measurement, they were highly 
correlated and not independent. Each of the 18 resulting train
ing–validation combinations were tested with different numbers (q) of 
latent variables (LVs), ranging from 1 to N, where N is the number of 
extracted features. For every LVi,q, a table that shows how well the 
model's predictions match the true labels, highlighting correct pre
dictions and errors (Confusion Matrix or CM) was produced. Each pre
diction for the 18 samples resulted in a single confusion matrix, CMi,q. 

The Balanced Classification Accuracy (BCA) was calculated for each LV 
in each partition was calculated following Eq. (1): 

BCA = 1 − BER (1) 

where BER is the Balanced Error derived from the confusion matrix 
following Eq. (2): 

BER = 0.5
(

FN
TP + FN

+
FP

FP + TN

)

(2) 

Here, TP, TN, FP, and FN are respectively the True Positives, True 
Negatives, False Positives, and False Negatives from the sample pre
diction confusion matrix (CM). Uncertainty of BER was estimated by the 
bootstrap method.

For every partition i, the BERi,q can be plotted against the number of 
LVi,q. The “knee-point” of this plot, where the error stops decreasing 
significantly, was identified as the optimal number of LVs for the 
partition i, balancing model complexity and classification performance.

Once the internal cross-validation was performed, the optimal 
number of latent variables (LVs) for each i-calibration set was retained to 
develop i classification models (Table 4). Each developed model was 
then tested on the corresponding test set for external validation (ac
cording to the partition Table 3). Final prediction was performed at the 
level of individual spectra with final measurement classifications 
determined by weighted majority (≥50 % agreement among scans), 
accounting for class imbalance during calibration through a corrective 
weighting factor. The prediction in external validation of each i Cal-Ext. 
Val combination was collected in a single and final CM to calculate a 
final BCA. BCA with respect to measurement classification was used as 
performance indicator. Additionally, a step of model optimization was 
considered before external validation: keeping the optimal number of 
LVs, a PLS-DA model was developed on the calibration set to compute 
the VIP scores and select the most relevant features. Internal cross 
validation was then repeated to re-optimize the number of LVs accord
ing to the same ICV scheme but employing only the selected variables. 
These optimized models were then externally validated on the test sets 
and performances were evaluated in terms of samples classification. 
Again, a final CM aggregating the results in external validation was built 
to calculate a final BCA for scenario 1.

After the performances in a reference scenario, within the same plant 
(P1) and within a single measurement campaign (i.e., one season, June), 
were investigated, a second model including the entire dataset of P1 
(January and June) was developed and validated on P2 (January and 
June).

In this case, the calibration dataset (P1 January–June) is composed 
of four days of measurement. The same data analysis pathway was 
performed but for internal cross-validation, a leave-one-day-out (LODO) 
approach was applied, considering each measurement day as an inde
pendent block (Table 1). In each iteration, data from three blocks were 
used for model training, while the fourth block was kept for validation 

Fig. 5. Data pre-processing steps.

Table 3 
Data partition of P1 June dataset for i Cal-Ext.Val combinations where C are the data for calibration while E the data for external validation.

Scenario 1: P1 June

Data partition i = 1, …,19

WTL STL Combination Cal-Ext.Val

Partition 1 E C C C C C C C C C à Model 1
Partition 2 C E C C C C C C C à Model 2
Partition i … … … … … … … … … … à Model i
Partition 19 C C C C C C C C C E à Model 19

V. Villa et al.                                                                                                                                                                                                                                    Science of the Total Environment 1004 (2025) 180741 

7 



(Table 5). As described above, the number of LVs was optimized based 
on samples predictions, before and after performing the features selec
tion with VIP scores. Finally, the entire P1 dataset (i.e., all four blocks) 
was used to develop the final calibration model, which was subsequently 
tested on the P2 dataset. Model performance on P2 samples was eval
uated using BER and BCA with respect to sample classifications based on 
spectra-majority voting as described for scenario 1.

2.10. PLS-DA modelling

The PLS-DA algorithm was implemented to build the classification 
models capable of discriminating odour sources by combining dimen
sionality reduction with discriminant analysis. PLS-DA is a supervised 
technique particularly suitable for datasets with more features than 
observations (2 m > k) and where multicollinearity exists among the 
predictors. It uses the features X (n x N) extracted from sensor signals, 
where n represents the number of samples and N the number of features. 
The method works by extracting latent variables (LVs), which are linear 

Table 4 
Data splitting for internal cross validation: Train dataset (T) and internal validation (V) with P1 June dataset for each i Ext.Val-Train partition. Data partition i = 1 is 
reported as an example.

Cal-Ext.Val partition i = 1 
Train-test combinations j = 1, …,18

Calibration set SET: P1 June (Scenario 1)

Internal cross validation

Output for each LV à CMi,q Final output à BERi,q and BCai,q

Model i,j WTL STL ∑18
j=1

(
Samples predictionsi,q

)

j 

à CM1,q

BER1,q and BCA1,q 

per q = 1,2, …,N 
for optimal number of LVs

Model 1,1 V T T T T T T T T
Model 1,2 T V T T T T T T T
Model 1,j … … … … … … … … …
Model 1,18 T T T T T T T T V

Table 5 
Data splitting for internal cross validation: Train dataset (T) and internal validation (V) with P1 January and June as calibration dataset.

TRAIN SET: P1, January and June (Scenario 2)

Internal cross validation

Day 1 Day 2 Day 3 Day 4 Output for each LV à CMq Final output à BERq and BCAq

Model 1 V T T T ∑18
j=1

(
Samples predictionsi,4

)

j 

à CM1,q

BERq and BCAq 

per q = 1,2, …,N 
for optimal number of LVs

Model 2 T V T T
Model 3 T T V T
Model 4 T T T V

Fig. 6. Positive spectra from field samples collected during June measurements from both plants P1 and P2: (A) Raw spectra signals, (B) Pre-processed spectra signals 
after noise removal, baseline correction and spectra alignment respect to the same reference RIP and RIN position.
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combinations of the original features, to reduce the dataset's dimen
sionality while maximizing the covariance between the predictors and 
the class labels. This approach enables the identification of key features 
influencing the classification and provides a robust model for separating 
observations into distinct groups based on their characteristics (Lee 
et al., 2018; Marco and Gutierrez-Galvez, 2012).

2.11. Feature selection

Feature importance was evaluated on each training set using VIP 
scores, which quantify each variable's contribution to the LVs. Features 
with VIP scores greater than 1 were considered significant and selected, 
while those below 1 were excluded. This process reduced the number of 
features to an optimal subset for model development (Mehmood et al., 
2012).

3. Results and discussions

3.1. Raw sensor signal pre-processing

Fig. 6 shows an example of positive spectra points from all the 
samples collected in both P1 and P2 during field measurements, before 
and after pre-processing. The samples were collected from different 
odour sources, at different times, and from different plants (as described 
in Section 2.3 Measurement campaigns and samples collection). In the raw 
signals extracted from IMS (Fig. 6(A)), noise, baseline and peaks mis
alignments were present. The 2nd order Savitzky-Golay (SVG) filters 
were optimized in length, 10 was identified as the optimal width, 
avoiding excessive noise without distorting the shape of the peaks. 
Multiplicative spectral alignment based on RIP/RIN position was 
applied to standardize peak positions and facilitate ion matching within 
and across samples. Spectral alignment is a key step; omitting this step 
impairs feature extraction and reduces the model's ability to discrimi
nate samples' odour class. Baseline removal also allowed a fair extrac
tion of peak intensities. In this case, the baseline removal resulted 
optimal with a fourth order polynomial fitted using the first 16 % and 
the last 33 % of each individual spectrum where no peaks are present.

3.2. Feature extraction

Because of different chemical composition, samples from different 
origins resulted in different spectra. The differences are evident in terms 
of ionic presence, i.e., in terms of peaks in the spectra. Differences are 
both qualitative, meaning that peaks are in different positions because 
they are derived from different chemical compounds, and quantitative, 
meaning that same nominal peaks in different samples can have 
different heights due to varying quantities of the same chemical com
pound. PCA was first applied to the full positive and negative spectra. In 
this case, neither classes nor macro-classes were distinguishable; 
redundancy was evident in the data with general overlapping in the PCs 
space. Most of the variance in the definition the PCs was associated to 
the RIP and RIN peaks. Since these reference ions are not chemically 
informative for the discrimination of the odour sources they were 
removed from the spectra. Additionally, feature extraction was based on 
the intensity of the ions peaks, resulting in a significant reduction of 
dimensionality. The extraction of the features was performed on the 
calibration dataset for each scenario investigated.

Feature extraction in both scenario (P1 June and P1 January and 
June) resulted in the identification of 17 different peaks in the positive 
spectra signals and 17 different peaks in the negative spectra signals. A 
total of 34 peaks were identified across all the spectra. The RIP and the 
RIN were discarded as suggested above.

3.3. Exploratory analysis

The PCA score plots of the pre-processed signals, and the 32 

extracted features were computed to understand the relationship among 
data and the instrument's potential in differentiating between two odour 
classes of interest, WTL and STL. In general, in the next plots and 
graphics, data concerning the WTL are coloured in blue and light-blue 
shades while data from STL are in orange and brown shades. First, 
data from the same measurement campaign (January) and the same 
plant (P1) were examined (Fig. 7). From visual inspection, it is visible 
that the information to distinguish WTL and STL classes is contained in 
PC1. In Fig. 7, the results are reported in the PC1-PC3 plane for visu
alization purposes. Indeed, along the PC1 scores space (Fig. 7(A)) the 
samples belonging to the same process lines, WTL or STL, cluster 
together, forming two clear distinguishable groups (Fig. 7(B)). This 
statement is also reinforced by the amount of explained variability 
corresponding to each PC. While PC3 represents only 7 % of the total 
variability of the dataset, PC1 represents almost 32 % of the variability, 
leading to a visual separation of the dataset. These two principal com
ponents represent almost 40 % of the variability of the dataset which 
explains the scattering observed in Fig. 7 and the need of better models 
to achieve clear source discrimination. Similar results are observed in 
Figs. 8 and 9.

This outcome highlights the instrument's ability to differentiate be
tween the two odour classes analyzed under controlled conditions (i.e., 
the same measurement campaign and the same plant). The differentia
tion between the two odour classes would allow the identification of the 
odour source from one process line to another distinguishing the causes 
and enabling targeted mitigation interventions.

Next, the study considers the effects of seasonal and plant variability 
that characterize the WWTPs' emissions. Seasonal variability was 
evident, since the same emitting sources, e.g., WTL samples from P1, 
behave differently in January compared to June, resulting in distinct 
clusters for each season (Fig. 8(A)) in the PC score plots. Analogously, 
plant variability was observed, as samples from the same emitting 
sources collected during the same season at different plants (e.g., WTL 
samples in January from P1 and P2) grouped into distinct regions in the 
PC score plot (Fig. 8(B)). STL samples from different seasons and 
different plants behave similarly to the WTL samples shown, clustering 
differently according to season and plants.

Finally, when combining data from both plants across the two sea
sons (January and June) the variability is much higher, making it harder 
to distinguish between WTL and STL (Fig. 9). The samples showed more 
dispersion into the score plots without clear clustering of the two odour 
(Fig. 9). This highlights how seasonal and plant variability of WWTPs' 
emissions sources adds complexity to differentiating between the two 
odour classes. These characteristics are driven by the intrinsic nature of 
odour emissions from WWTPs, which are strongly influenced by 
wastewater composition, environmental factors and process parameters 
(Pasciucco et al., 2023). It is important to account for these aspects 
during model calibration and to manage this complexity in real-field 
scenarios. For these reasons, we considered developing at first a model 
in a reference case considering one plant (P1) in one season (June) and 
then including seasonal variability with a calibration on the entire P1 
(January and June).

3.4. PLS-DA model building, optimization and validation

The models were built as described in Section 2.9. In the first sce
nario, when only P1 in June was considered, the evaluation of the BER 
vs. LVs (Balanced Error vs number of Latent Variables) curve, derived 
from internal cross-validation across the different combinations, indi
cated a number of LVs ranging from 1 to 3, with 2 being the most 
frequently selected value. Among these 14 peaks, 11 were in the positive 
spectra at positions 7.3 ms, 8.8 ms, 9.2 ms, 9.6 ms, 10.2 ms, 10.7 ms, 
11.3 ms, 13.3 ms, 14.4 ms, 14.6 ms, 16.3 ms, and 3 in the negative 
spectra in position 6 ms, 7.9 ms, 9.6 ms respectively. The same features 
were extracted from the samples for external validation. The first model, 
calibrated and validated within the same plant (P1) and same season 
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Fig. 7. PC1 and PC3 scores plot of P1 samples from January field campaign coloured by: (A) The independent samples (Sludge thickener, sludge thickener building, 
Sludge mixer, Aeration tank, Primary sedimentary tank, Water collector, Primary sedimentary); (B) The two odour classes WTL and STL.

Fig. 8. PC1 and PC3 scores plot of: (A) WTL samples from P1 collected in January and the ones collected in June; (B) WTL samples from P1 and P2 collected in 
January. Data from P1 are represented by circle markers while P2 as squared markers.

Fig. 9. PC1 and PC3 scores plot of the whole dataset: samples collected from P1 and P2 in January and June, both WTL and STL.
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(June), achieved an 89 % Balanced Classification (95 %CI 75 %–100 %) 
when externally validated without the step of model optimization (i.e., 
calibrated with all the 32 extracted features). The same model devel
oped with the thirteen VIP-selected features resulted in a balanced 
classification of 94 % (95 %CI 82 %–100 %) (Table 6).

In the second scenario, when the entire P1 dataset (January and 
June) was considered for calibration, two LVs were identified as the 
optimal number. Among the 32 extracted peaks, 7 were selected: at 
positions 7.3 ms, 8.8 ms, 9.6 ms, 10.2 ms from the positive spectra, and 
the ones at positions 6.5 ms, 7.9 ms, 8.9 ms from the negative spectra. 
The same features were extracted from the validation dataset from P2.

This second model achieved 82 % balanced classification accuracy 
(95 %CI 64 %–97 %) in external validation on data from P2 January and 
June considering all the features, and 96 % (95 %CI. 86 %–100 %) when 
only the 7 selected features were used for model development (Table 6).

This demonstrates not only the potential of classifying samples in 
controlled conditions, such as the same plant and the same seasons, but 
also the model's strong performance in classifying new samples from a 
different plant, even in the presence of seasonal and plant variability. 
The classification model's ability to handle the complexity introduced by 
these variabilities, as observed in Section 3.3, is particularly significant. 
This indicates that the supervised PLS-DA model can partially mitigate 
the effects of seasonal and plant variability by focusing on the classifi
cation of target odour sources.

3.5. Discussion

Despite the challenges posed by seasonal and plant variability, as 
evident from PC scores plot analysis (Figs. 7, 8 and 9), the PLS-DA 
classification model effectively used the information contained in the 
spectral signals features, i.e., the peak heights, addressing this vari
ability, at least for the differences between plants. In both cases, scenario 
1 and scenario 2, the optimization step in model development improved 
classification performance. When different seasons are included in 
model calibration, a lower number of features was selected as the most 
important suggesting that the most essential information for the classi
fication of two sources is retained in a few peaks. The development of 
approaches the investigation of new techniques to monitor odour 
emissions in WWTPs with generalized and reliable systems are impor
tant under different perspectives. Distinguishing between odour sources 
from WTL and STL is valuable for understanding the specific contribu
tions of these process lines to overall emissions in WWTPs. This differ
entiation is particularly relevant for implementing targeted preventive 
and mitigation strategies, optimizing plant operations and control, and 
ensuring compliance with environmental regulations. Prevention and 
mitigation of odour emissions from a WWTP may vary between WTL and 
the STL, and to implement targeted and cost-effective interventions, it is 
crucial to identify the primary sources and address them correctly 
(Muñoz et al., 2010). When odours mainly originate from the WTL, 
mitigation and prevention efforts should focus on the early stages of 
wastewater collection. At these stages, covering systems can be installed 
to contain odour emissions, coupled with localized ventilation 

(Brinkmann et al., 2016; Muñoz et al., 2010; Senatore et al., 2021). If 
significant emissions are detected and covering is not sufficient, air 
collection systems with forced ventilation can be implemented to convey 
odorous air to treatment units. Common treatment methods include 
biofilters, which degrade odour compounds using bacteria; these typi
cally use organic material like compost or wood chips, as they handle 
lower odour loads (Brinkmann et al., 2016; De Sanctis et al., 2022; 
Senatore et al., 2021). Chemical scrubbers and thermal or catalytic 
oxidation may also be applied (Senatore et al., 2021).

Additionally, wastewater additives, such as oxidizing agents (chlo
rine, potassium permanganate) or bacteria-based products, help prevent 
hydrogen sulphide formation and the associated malodours (Brinkmann 
et al., 2016). On the other hand, when the odour mainly originates from 
STL, different targeted interventions are applicable (Muñoz et al., 2010; 
Senatore et al., 2021). In the STL, where odours mainly result from 
anaerobic fermentation of organic material, prevention strategies 
involve covering and isolating sludge thickening tanks and dewatering 
stations, with dedicated air extraction and conveyance systems 
(Brinkmann et al., 2016; Haider et al., 2022; Senatore et al., 2021). The 
recovered air is treated using activated carbon filters, bio-scrubbers, or 
biofilters. Due to higher odour loads, biofilters in this line often incor
porate zeolites or activated carbons to enhance adsorption capacity 
(Márquez et al., 2021). Chemical additives to the sludge, such as iron 
salts or oxidants, help reduce hydrogen sulphide formation.

Moreover, optimizing sludge retention times, as well as ensuring 
proper transport and storage under controlled conditions, can minimize 
uncontrolled fermentation and reduce unwanted emissions (Haider 
et al., 2022; McNevin and Barford, 2000; Muñoz et al., 2010; Senatore 
et al., 2021). Therefore, identifying the main odour sources among the 
WTL and the STL is a critical step to implement suitable process control 
strategies aimed at reducing odour impacts. While these lines are 
interdependent, different control strategies are typically used to ensure 
optimal and efficient operations (Barbu et al., 2018). Commonly moni
tored variables include ammonia, nitrogen, chemical oxygen demand 
(COD), biochemical oxygen demand (BOD), and oxygen content, which 
help assess the quality of the effluent water, ensure compliance with 
effluent limits, and control operational costs (Barbu et al., 2018, 2016). 
Summarizing, an efficient IOMS capable of discriminating odour sources 
and quantifying odour emissions from WTL or STL would contribute to 
improve process control and further optimizing plant management.

Accordingly, the final performance of IOMS can be improved by 
accurately classifying the odour sources in a plant and then appropri
ately adjusting the prediction models. In this contribution, the relevance 
of having equipment capable of analyzing the chemistry of different 
source emissions in source classification has been highlighted. 
Furthermore, the associated problems with portable IMS technology 
(plant-to-plant and temporal variabilities) have been studied by using 
data coming from two different plants. These problems have been 
addressed by designing a clever data processing pipeline. Indeed, the 
potential of the IMS instrument in classifying odour sources in WWTPs is 
clearly demonstrated through the application of the PLS-DA algorithm. 
However, the verification of the robustness of the model and the 

Table 6 
Classification results.

Model Train Test N◦ LVs Approach Features BCA (95 % 
CI)

First 
scenario

P1 June 
1st-2nd day

P1 June 3rd 
day

1÷3 (ν0 
2)

Direct All 32 features 89 % (75 %– 
100 %)

Optimized 14 selected features (Positive: 7,3 ms, 8,8 ms, 9,2 ms, 9,6 ms, 10,2 ms, 10,7 ms, 11,3 
ms, 13,3 ms, 14,4 ms, 14,6 ms, 16,3 ms; Negative: 6,0 ms, 7,9 ms, 9,6 ms)

94 % (82 %– 
100 %)

Second 
scenario

P1 January 
and June

P2 January 
and June

2 Direct All 32 features 82 % (64 %– 
97 %)

Optimized 7 selected features 
(Positive: 7,3 ms, 8,8 ms, 9,6 ms, 10,2 ms; 
Negative: 6,5 ms, 7,9 ms, 8,9 ms

96 % (86 %– 
100 %)

V. Villa et al.                                                                                                                                                                                                                                    Science of the Total Environment 1004 (2025) 180741 

11 



repeatability of these results will require more measurement campaigns 
covering at least one-year variability. Moreover, the direct trans
ferability of models across plants should be assessed, including more 
facilities of the same category in future studies.

To further enhance the performance of the IOMS, Calibration 
Transfer techniques may be considered as well (Fernandez et al., 2016; 
Fonollosa et al., 2016; Reimringer and Bur, 2023; Robin et al., 2023). 
The transferability property, if further confirmed or developed, would 
significantly enhance the field application of odour monitoring using 
this approach, drastically reducing calibration work, as well as field and 
computational effort. In the data processing pipeline presented here, 
PCA and PLS-DA algorithms proved effective for visualization and pro
cessing of IMS data, but these are not the only possible approaches.

In the scenarios considered (measurements within the same plant 
and campaign, and measurements across two plants and campaigns), 
consistent results in classification were obtained with both full feature 
models and those built after feature selection. Models based on selected 
features achieved better performance, which can be explained by the 
removal of variables that contributed little to class separation or that 
were strongly affected by noise. When comparing the confidence in
tervals of the BCA for both approaches, a large overlap was observed. 
This is a direct consequence of the limited number of independent 
samples used for model building. Increasing the number of samples 
would be necessary to confirm whether the models based on selected 
features are significantly better. For instance, we observed narrower CIs 
in the second scenario due to the larger number of samples. Alternative 
techniques could potentially improve classification accuracy, and they 
might provide valuable insights into the effectiveness and versatility of 
various methods in similar scenarios. Overall, these preliminary results 
on real field samples demonstrates the potential of IMS coupled with 
robust data analysis to classify odour emissions from WWTPs, laying the 
foundation for further research into its application for environmental 
odour monitoring.

It should be highlighted that, while there are is an increasing 
attention towards standardizing the way IOMS performances are eval
uated, as proven by the recent Italian standard UNI 11761:2023 and the 
CEN Working Group WG 41, to date, there are no established regulatory 
requirements for IOMS minimum classification accuracy. In order to 
define some benchmark accuracy, it is possible to refer to previous 
recently published work discussing the attempt to develop IOMS for 
environmental odour monitoring at plant fencelines, reporting classifi
cation accuracies above 95 % on independent test sets after optimization 
of the model for compensation of humidity effects on sensors (Ratti 
et al., 2024), which are indeed comparable to the accuracy levels ob
tained in this study. As an additional consideration, portable IMS may 
allow both the identification of relevant chemical species as a subse
quent step to the classification presented here. At present, only the 
spectral features (ion peaks) associated with discrimination are known. 
Assigning these features to ions corresponding to chemical species 
would require complementary analyses by gas chromatography coupled 
with mass spectrometry (GC–MS) to provide information on chemical 
composition.

Taken together, these aspects highlight that our approach is not only 
technically feasible but also cost-effective, offering a portable and 
relatively low-maintenance solution for odour source classification in 
WWTPs and the prediction of odour concentrations when proper cali
bration is performed.

4. Conclusions

As odour monitoring in WWTPs has become more necessary than 
ever, IOMS have emerged as convenient tools for emission monitoring, 
source detection, and managing compliance with regulatory standards. 
Due to the limitations of EN used as IOMS, it is important to explore the 
possibilities offered by other technologies which might improve odour 
source classification in the field. In this context, IMS may represent a 

valuable solution to be considered as a replacement for EN in field 
monitoring and classification. The results of this study demonstrate that 
the combined approach of IMS data, spectral analysis and classification 
models, such as PLS-DA, is effective in achieving a high discrimination 
capability between the two primary odour sources in a WWTP (i.e., WTL 
and STL). The optimized model, calibrated and validated within the 
same plant and the same measurement campaign, performed with an 89 
% (95 %CI 75 %–100 %) balanced accuracy in predicting new samples. 
In controlled conditions with low seasonal variability, the potential of 
IMS-PLSDA is well demonstrated in discriminating the WTL from the 
STL and the most important information are retained in few peaks. This 
capability might contribute to evaluating the impact of each process line 
on the overall odour impact of the plant, and thus, to implementing 
targeted odour control strategies in a cost-effective manner.

The impact of seasonal and plant variability, considering datasets 
from different seasons (winter and summer) and from different WWTPs, 
has also been demonstrated in this contribution. Accounting for seasonal 
variability is particularly important, especially for real-world field 
monitoring in WWTPs, which requires continuous and reliable infor
mation about the odour emitted from the facility over a long period of 
time. Plant variability is also an issue when aiming to transfer a classi
fication model between different plants, thereby reducing operational 
and computational effort needed to calibrate the monitoring systems. 
Here, we have presented a modelling approach that tackles this issue. A 
second model was calibrated using data from one plant across different 
seasons and successfully validated on data from a different plant, 
achieving a balanced classification accuracy of 96 % (95 %CI. 86 %–100 
%). It was also shown that, when seasonal and plant variability are 
present, fewer chemical features (i.e., fewer peaks) can be retained to 
address the complexity of transferring a model from one plant to 
another.

Considering the performance of the presented models, this study 
highlights with this study the potential of IMS-PLSDA combination as a 
promising tool for odour source classification and source monitoring, 
not only in reference and controlled conditions but also across different 
facilities and with different environmental conditions. However, the 
limited number of sources and the variety of plants included does not 
allow generalization of the presented results.

To confirm the robustness of the model and the reproducibility of the 
results, further studies are required. Future work should include addi
tional measurements across different seasons and from a larger number 
of WWTPs. This would allow for assessing the model's stability in real- 
world scenarios and introducing potential adjustments to enhance ac
curacy. Confidence intervals are expected to improve with a larger 
dataset for external validation. Additionally, exploring alternative data 
pre-treatment methods and classification models could offer valuable 
insights and potentially improve system performance. Such in
vestigations would also contribute to a better understanding of how this 
technology can be deployed in a standardized and reproducible manner. 
Furthermore, extending the use of portable IMS as IOMS beyond this 
study could offer reliable tools to address issues of interest to the in
dustrial community, such as the quantification of odour emission rates. 
Integrating odour source classification (via portable IMS), odour con
centration quantification (complementing IMS with GC–MS and dy
namic olfactometries), and airflow rate estimation techniques, could 
provide a very useful tool for odour monitoring (odour source control) 
and managing (malodour event forecasting) at an industrial level.

Supplementary data to this article can be found online at https://doi. 
org/10.1016/j.scitotenv.2025.180741.
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