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evaluate their propagule emission capacity. In turn, 
dogs from the area were sampled to test potential 
zoochory dispersal capacity. In the resistance experi-
ment, we found living diatoms in all the rehydrated 
sediments but not in biofilms. Diatoms with mobility 
traits, high ecological plasticity, and resistance spores 
presented high, along with typical soil diatoms. In 
the resilience experiment, all mesocosms hosted liv-
ing diatoms, which were low-profile, pioneering, and 
small species. Diatoms found in the mesocosms were 
also common in the disconnected pools, underscoring 
the potential role of the latter as a propagule emission 
zone. Dogs’ paws also had living diatoms, which evi-
dences that wild fauna could potentially act as passive 
diatom vectors.

Keywords  Diatoms · Drying · Resistance · 
Resilience · Temporary rivers · Traits

Abstract  Temporary rivers are aquatic ecosystems 
that alternate periods of water flow with dry periods. 
Diatoms are a group of unicellular microalgae with a 
high colonizing ability, but little is known about their 
responses to drying. We carried out different resist-
ance and resilience experiments to evaluate temporal 
and spatial dispersal capacity of diatoms during the 
dry period. The resistance was tested experimen-
tally by rehydrating dried biofilms and sediments 
from temporary rivers, whereas resilience was tested 
by installing artificial mesocosms along a dry river 
section. Disconnected pools were also sampled to 
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Introduction

Temporary rivers are highly dynamic river 
ecosystems that alternate flowing and non-flowing 
phases (Datry et  al., 2014). They are distributed 
throughout the world and are the most common 
river type in the Mediterranean Basin (Larned et al., 
2010). Furthermore, it is believed that their number 
will increase as a result of global change (Döll & 
Schmied, 2012). Freshwater species that inhabit 
these streams might have developed resistance and 
resilience strategies to cope with drying (Bogan et al., 
2017b). Thus, while resistance is based on developing 
different tolerance mechanisms in  situ, resilience 
focuses on dispersal to other temporary habitats and 
subsequent recolonization after disturbance events 
(Bogan et al., 2017b).

Resistance strategies are considered a type of 
temporal dispersal and include adaptations such 
as diapause and dormancy (Robson et  al., 2011). 
Some organisms can also survive in disconnected 
pools, where the level of dissolved oxygen is low 
and temperatures are high (Bogan et  al., 2017b). 
Others even choose to move to deeper areas of the 
dry river bed where the humidity is higher (Bogan 
et  al., 2017a). In contrast, resilience strategies are 
a form of spatial dispersal that involves active or 
passive movements in space to avoid disturbance (e.g. 
Jiguet et  al., 2006; Alerstam, 2011). The existence 
of disconnected pools in drying riverbeds or nearby 
flowing reaches can act as temporary refuges during 
the dry period (Miller & Golladay, 1996; Boulton 
& Lake, 2008). Therefore, resilience requires that 
organisms have a strong dispersal capacity that allows 
a fast recolonization of riverbeds from refuges when 
flow resumes (Bogan et  al., 2017a; Sheldon et  al., 
2010).

Regardless of the type of strategy, several factors 
are involved in the reestablishment of freshwater 
communities after the dry period. For example, 
the high frequency and intensity of drying in desert 
areas results in a more slowly richness recovery than 
in other climatic areas (Bogan et  al., 2015, 2017b). 
The presence and connectivity to perennial refuges, 
as well as the type of taxonomic group are also key 
factors (Baguette et al., 2013). In alluvial rivers with 
short drying periods mayflies or amphipods are able 
to recolonize rehydrated aquatic environments very 
quickly, whereas fish usually take longer because they 

depend on the hydrological connectivity of the stream 
for their dispersion (Bogan et al., 2017a).

Diatoms have an important role as primary 
producers, and are present in practically all types 
of waters, even in humid terrestrial environments 
(Kooistra et  al., 2007). Diatoms are known as rapid 
colonizers in temporary rivers, but little is known 
about their resistance and resilience strategies to 
cope with drying (Robson & Matthews, 2004). The 
studies based on resistance show that diatoms are 
capable of persisting in dry biofilms during the 
dry period (Robson, 2000), because the mucilage 
of biofilms can retain enough moisture to protect 
them (Peterson, 1987; Hawkins et  al., 2014). They 
can also resist in moist refuges, such as leaf litter, 
leaves, seepage, woody debris, or sediments (Robson, 
2008; Davis, 1972; Falasco et  al., 2020). Regarding 
resilience strategies, drift is considered an important 
recolonization mechanism in perennial streams 
(McCormick & Stevenson, 1991; Biggs, 1996; 
Robson et al., 2008). However, the use of vectors that 
passively transport diatoms should also be considered. 
For example, waterfowl can carry diatoms in their 
plumage over long distances (Manning, 2019), and 
wind can also detach and move diatoms across the 
landscape (Agwu et  al., 2005; Chrisostomou et  al., 
2009). In spite of the relevance of these processes 
for structuring diatom communities, there is little 
information about the importance of both strategies to 
cope with drying in temporary rivers (Robson et al., 
2008).

In this study, the ability of diatoms to cope with 
drying through resistance and resilience strategies 
was studied. Resistance strategies were assessed 
by analyzing dry sediments and dry biofilms. We 
hypothesized (H1) that some species should resist 
drying in both sediment and biofilm, thanks to the 
presence of protective mucilage and their ability to 
find refuge in humid areas (Robson & Matthews, 
2004; Sabater et  al., 2016). Resilience strategies 
were assessed by analyzing the colonization of new 
freshwater habitats (mesocosms) and passive dispersal 
vectors (wind and zoochory). We hypothesized 
(H2) that colonization should be fast and that, in the 
absence of drift, dispersal should be mostly mediated 
by wind or mammal vectors (Kristiansen, 1996; 
Chrisostomou et  al., 2009), and thus explained by 
the distance to the closest permanent refuge or by the 
presence of diatoms in mammal fur, respectively.
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Material and methods

Study area

The study was carried out in Sant Llorenç del Munt 
i l’Obac Natural Park and its surroundings, located 
in the province of Barcelona (northeast of Spain) 
(Fig. 1). The Park has an area of almost 14,000 hec-
tares and a Mediterranean climate. Summers are 
very dry, and rains are usually torrential and occur 
in spring and autumn (Paül & Pérez, 2002; Rierade-
vall et  al., 1999). Five streams were sampled: 

Vall d’Horta (hereinafter Horta; 41°  40′  38.5ʺ  N 
2°  01′  46.0"  E), Riera de Rellinars (Rellinars; 
41°  37′  51.5"  N 1°  56′  03.2ʺ  E), Riera de Santa 
Creu (Santa Creu, 41° 41′ 48.9ʺ N 1° 53′ 07.7ʺ E), 
Torrent dels Oms (Sanana, 41°  37′  14.5ʺ  N 
1°  54′  40.0ʺ  E), and Riera de Talamanca (Tala-
manca, 41°  44′  21.8ʺ  N 1°  58′  56.5ʺ  E). These 
streams showed a wide degree of flow permanence 
(%) (i.e. percentage of days with surface water dur-
ing the study period), from 86.87% in Sanana to 
44.46% in Santa Creu.

Fig. 1   Study area and sampling points. a Location of Sant 
Llorenç del Munt i l’Obac Natural Park (Catalonia, Spain). 
b Diatom sampling points in the Natural Park and its sur-
roundings. The arrows indicate the exact sampling point. The 
colored circles refer to the different experiments carried out for 
resistance and resilience for each of the rivers (biofilm, sedi-

ments, disconnected pools, mesocosms and zoochory). In the 
case of disconnected pools, although they could be considered 
as a resistance refuge, they are considered in the resilience 
experiment because they can act as a source of diatoms for the 
mesocosms
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Resistance experiment

Nine calcareous stones (approx. 19 × 13 x 2 cm) were 
placed for diatom colonization in Sanana, Talamanca, 
and Santa Creu streams in May 2019, when all of 
them had been flowing (Fig.  2a). All stones were 
placed facing up (horizontal position) and submerged 
during the whole experiment. Stones were retrieved 
two months after their installation and samples from 
crusts growing on the bedrock were collected. Two 
months were assumed as enough time to get a mature 
biofilm, as suggested in Bogan et al. (2017a). Stones 
were left to dry outdoors at the University of Barce-
lona during summer to simulate the dry period under 
natural conditions. In September 2019, when rewet-
ting occurred in the streams, stones and crusts were 
randomly placed in 54 closed plastic containers (27 
with stones and 27 with crusts) with dechlorinated 
tap  water and oxygenators. Random diatoms sam-
ples were taken by scraping the surface of stones 
and crusts using a toothbrush every 20–30 days, and 
until November 2019. Samples were fixed in 4% 
formaldehyde.

Additionally, dry sediments of 5–20  cm depth 
were collected in September 2021 from Horta, 
Rellinars, and Sanana, which were dry during 

ca. 3  months. Three sediment samples from each 
stream were randomly placed in plastic closed 
containers (21 × 18  x  8  cm) and transported to the 
University of Barcelona, where they were exposed 
outdoors. Furthermore, four microscope slides 
were embedded vertically in all the sediments of 
each sample to facilitate diatom colonization. The 
long edge of the slide (76  mm) was placed in the 
sediment, whereas the short edge (26  mm) was 
placed on top of the sediment. A few days later, 
sediments were rehydrated with dechlorinated tap 
water and oxygenators were installed (Fig. 2b). All 
sediments and slides were submerged to an average 
depth of 4 cm. To detect possible air contamination, 
three control plastic containers were placed with 
water but without sediment (control samples). One 
month after rehydration (Time A: October 2021), 
the first sampling of rehydrated sediments and 
control samples was carried out. One blade was 
used for two slides and two sides of the plastic 
containers. The entire content was preserved in 75% 
ethanol. Two months after rehydration (Time B: 
November 2021), another sampling was performed 
on the other slides and walls of each remaining 
plastic container. In each sampling, 9 sediment 
samples and 3 control samples were collected, 

Fig. 2   A set of images of 
the resistance and resilience 
experiments. Resistance 
experiment: a installation 
of stones in the river for 
the colonization of biofilm, 
and b plastic containers 
with rehydrated sediment. 
Resilience experiment: c 
mesocosm (Meso. 7), d 
disconnected pool (Pool. 2), 
and e dog sampling process
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obtaining a total of 24 samples at the end of the 
experiment.

Resilience experiment

Eight mesocosms (119 × 79 × 42  cm) were placed 
along the dry riverbed in Horta stream in September 
2021. Each mesocosm contained 115 L of mineral 
water (with similar composition to the streams of 
the area, Supplementary Table  S1) and four sterile 
stones (Fig.  2c). Mesocosms (Meso.) were placed 
along two dry stream reaches between disconnected 
pools (Pool.) (Fig.  2d). Thus, the established order 
from downstream to upstream was as follows: Pool.1, 
Meso.1, Meso.2, Meso.3, Meso.4, Pool.2, Meso.5, 
Meso.6, Meso.7, Meso.8. Both disconnected pools 
were sampled at the beginning of the experiment 
(Time A). Although pools could be also considered 
as a resistance refuge, they were used in the resilience 
experiment to demonstrate that they can act as a 
source of diatoms for mesocosms. The mesocosms at 
Time A were sterile, so the total absence of diatoms 
was assumed. The average distance between each 
mesocosm and between each pool and its adjacent 
mesocosms was 74 m (SD: 45). However, the distance 
between Meso.2 and Meso.3 was 404  m. This 
allowed differentiating a downstream section (Pool.1, 
Meso.1 and Meso.2) from an upstream section 
(Meso.3, Meso.4, Pool.2, Meso.5, Meso.6, Meso.7 
and Meso.8). One month after the installation, all 
mesocosms and pools were sampled (Time B). A 
toothbrush was used to scrape the stone surfaces of 
each mesocosm. In total, 8 samples of the mesocosms 
and 4 of the disconnected pools were obtained. All 
samples were fixed with ethanol (75%).

To test zoochory, three dogs found in the area 
close to the mesocosms were sampled in Time A. 
According to their owners, the dogs had bathed in 
pools, ponds, and other water bodies near the study 
area the same day or less than two days ago. With 
the permission of their owners, the four paws of each 
dog were carefully placed into gloves cleaned with 
sterile water (Fig. 2e). Massages were performed on 
the lower part, sole of the foot and fingers to collect 
as many diatoms as possible. The upper part of the 
four legs was also massaged with water, collecting 
the contents in jars. Sterile water and not ethanol was 
used in these massages to avoid itching or stinging 
upon contact with a possible wound or any other side 

effect in the dogs. The entire content of the gloves and 
jars were poured into several bottles and fixed with 
ethanol (75%). Samples were let to settle during five 
days before being processed. Additionally, in order to 
assess whether the mesocosms were visited by wild 
mammals, a camera trap was installed near one of the 
mesocosms (Meso.2) and retrieved at the end of the 
mesocosm experiment.

Samples treatment and species identification

All samples were kept cold after collection. Two 
subsamples were taken from both the resistance 
and resilience experiments: one to check for living 
cells (frustules with chloroplasts) and the other for 
taxonomic identification. For the first subsample set, a 
minimum of 200 diatoms were counted under a Zeiss 
microscope to check. The second subsample set was 
treated with hydrogen peroxide, to remove organic 
matter, and rinsed with distilled water to obtain a 
clean frustule suspension. Drops of hydrochloric 
acid were added to remove calcium carbonate. 
Permanent slides were mounted on Naphrax© resin. 
All subsamples were identified to species level 
using diatom monographs (Hofmann et  al., 2011; 
Bey & Ector, 2013; Lange-Bertalot & Krammer, 
2000–2011) under a Zeiss microscope at ×  1000 
magnification with DIC and camera. A minimum 
of 400 diatom valves were counted. In the case of 
the zoochory experiment, it was necessary to make 
several subsamples due to the difficulty of finding the 
minimum number of diatom valves.

Statistical analysis

The average number of living cells from untreated 
samples and their standard deviation were calculated 
for each experiment. The rest of the statistical 
analyses of each experiment were carried out based 
on the results of the taxonomic identifications made 
from the relative abundance of the treated sample.

Firstly, for the resistance experiment, richness and 
Shannon diversity were calculated for each stream 
(Horta, Rellinars, and Sanana) and sampling time 
(A and B). An Analysis of Variance (ANOVA) was 
carried out to test for differences among all these 
factors on both diversity metrics. Tukey’s test was 
used for significant post hoc comparisons by treatment 
pairs (Sun et al., 2022). Normality and homogeneity 
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of variance were tested by Shapiro–Wilk and Levene 
tests, respectively. The number of common and 
exclusive species of each stream were represented 
using a Venn diagram. To compare the composition 
of the communities, a permutational analysis of 
variance (PERMANOVA) was used according to 
each sediment sample (Horta, Rellinars, and Sanana) 
and its sampling time (A and B). PERMANOVA test 
was based on Bray–Curtis distances with log(x + 1) 
transformation (Mangadze et al., 2017; Gething et al., 
2020). Post hoc comparisons of pairwise differences 
were also performed with Bonferroni corrections 
to account for multiple comparisons at P < 0.05 
(Arbizu, 2019; Gething et al., 2020). Finally, diatom 
communities were represented using non-metric 
multidimensional scaling (NMDS) using Bray–Curtis 
distances. The use of NMDS is considered a good 
tool for ecological data with many zero values in its 
matrix (Dexter et al., 2018).

Similarly, for the resilience experiment, richness 
and Shannon diversity were calculated for each 
mesocosm, pool, and dog, and analyzed as for the 
resistance experiment for mesocosms, disconnected 
pools, and dogs. Finally, linear models and Mantel 
tests were built to analyze richness and Bray–Curtis 
distances, respectively, to the geographical distances 
with disconnected pools, and separated for the lower 
part (Pool.1, Meso.1 and Meso.2) and the upper part 
of the river section (Meso.3, Meso.4, Pool.2, Meso.5, 
Meso.6, Meso.7 and Meso.8).

Results

Resistance experiment

For the resistance experiment, no living diatoms 
appeared after rehydration in any of the biofilm 
samples (stones or crusts, Fig.  3), although Cyano-
bacteria and other photosynthetic organisms were 
observed. Although no living diatoms were found, 
frustules without chloroplasts did appear. This shows 
that developed diatom communities existed before 
desiccation.

For the second resistance experiment, living 
diatoms were found in all sediment samples 
after rehydration, along with other algae, such 
as Cyanobacteria and charophytes. The average 
percentage of living cells in each sample was 58.40% 

(Time A, SD: 21.24) and 58.55 (Time B, SD: 28.89) 
in Horta, 49.20% (Time A, SD: 5.52) and 50.30% 
(Time B, SD: 3.40) in Rellinars, and 58.70 (Time 
A, SD: 1.41), and 56.80% (Time B, SD: 1.86) in 
Sanana (Fig.  3). No diatoms were recorded in any 
of the control samples. From the treated samples, 
the average of the 10 most abundant species and 
their standard deviation (SD) are shown in Table  1. 
For example, Nitzschia palea var. debilis (Kützing) 
Grunow was dominant in Horta and Sanana, whereas 
Cyclotella distinguenda Hustedt was the most 
abundant species in the dry sediments of Rellinars. 
Other abundant species were Hantzschia amphioxys 
(Ehrenberg) Grunow and Cymbella excisa Kützing 
in Horta, Luticola mutica (Kützing) D.G.Mann and 
Achnanthidium minutissimum (Kützing) Czarnecki in 
Rellinars, and Navicula veneta Kützing and Craticula 
ambigua (Ehrenberg) D.G.Mann in Sanana.

No significant differences in richness were 
found among streams (P = 0.0713), between times 
(P = 0.795) or their interaction (P = 0.966). Sig-
nificant differences for the Shannon index from 
rehydrated samples were found among streams 
(P = 0.011), but not between times (Time A and 
B) (P = 0.541) and their interaction (P = 0.812). 
According to Tukey’s test Rellinars had higher 

Fig. 3   Percentage of living cells with their standard deviation 
for each experiment. The resistance experiment is made up of 
rehydrated sediment samples from different streams (Horta, 
Rellinars, and Sanana) and the rehydrated biofilm. The resil-
ience experiment included the sampling of mesocosms, discon-
nected pools, and dogs. For both experiments, there may be 
two sampling moments marked as Time A (light gray) and B 
(dark gray)
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Shannon values than Sanana (P = 0.008). Regarding 
community composition of the rehydrated samples, 
48 species were totally or partially shared between 
the different rivers, whereas 26 taxa were exclu-
sively found in Horta, 15 in Rellinars, and 13 in 
Sanana (Fig. 4a). Regarding the composition of the 

community, significant differences among streams 
were detected with the PERMANOVA analysis 
(P = 0.001), which are also shown in the NMDS 
(Fig.  4b). Post hoc analysis with Bonferroni cor-
rection indicated significant differences between 
all pairs of streams: Horta-Rellinars (P = 0.003), 

Table 1   Top 10 most abundant diatom species (% valves) from the resistance and resilience experiments

The total number of average samples (nº) and at the different sampling times (A or A/ B) are indicated

Resistance experiment Resilience experiment

Horta sediments nº 6 (3A, 3B) Mean (SD) Mesocosms nº 8, (8A) Mean (SD)

Nitzschia palea var. debilis 25.92 (SD: 42.17) Achnanthidium minutissimum 37.21 (SD: 23.81)
Hantzschia amphioxys 14.01 (SD: 15.81) Planothidium frequentissimum 8.90 (SD: 24.08)
Cymbella excisa 13.73 (SD: 12.44) Mayamaea permitis 5.65 (SD: 9.04)
Luticola mutica 8.22 (SD: 8.91) Nitzschia palea var. debilis 4.59 (SD: 6.47)
Ulnaria danica 7.93 (SD: 8.50) Hantzschia amphioxys 3.93 (SD: 3.06)
Cymbella vulgata 4.43 (SD: 3.42) Aulacoseira granulata 3.79 (SD: 3.57)
Achnanthidium minutissimum 4.03 (SD: 4.44) Luticola mutica 3.31 (SD: 2.64)
Gomphonema cymbelliclinum 1.95 (SD: 2.60) Mastogloia smithii 2.43 (SD: 2.65)
Cymbella affinis var. procera 1.79 (SD: 1.83) Cymbella excisa 2.29 (SD: 2.4)
Mastogloia pumila 1.67 (SD: 4.08) Gomphonema lateripunctatum 2.08 (SD: 3.4)

Rellinars sediments nº 6 (3A, 3B) Mean (SD) Pools nº 4 (2A, 2B) Mean (SD)

Cyclotella distinguenda 22.83 (SD: 4.27) Achnanthidium minutissimum 53.02 (SD: 24.38)
Luticola mutica 11.51(SD: 6.63) Gomphonema lateripunctatum 16.47 (SD: 19.69)
Achnanthidium minutissimum 8.31 (SD: 2.29) Achnanthidium pyrenaicum 8.91 (SD: 5.63)
Gomphonema lateripunctatum 7.6 (SD: 1.28) Rhoicosphenia abbreviata 5.2 (SD: 6.73)
Eunotia arcubus 7.43 (SD: 2.3) Encyonopsis subminuta 3.97 (SD: 7.12)
Nitzschia palea var. debilis 5.03 (SD: 8.4) Planothidium frequentissimum 2.21 (SD: 3.51)
Brachysira neglectissima 4.75 (SD: 1.56) Cocconeis placentula 1.67 (SD: 1.93)
Denticula tenuis 4.64 (SD: 2.05) Encyonopsis minuta 1.38 (SD: 0.76)
Diploneis separanda 3.42 (SD: 1.3) Amphora pediculus 1.25 (SD: 1.58)
Hantzschia amphioxys 3.3 (SD: 1.83) Nitzschia palea var. debilis 1.21 (SD: 1.51)

Sanana sediments nº 6 (3A, 3B) Mean (SD) Dogs nº (3A) Mean (SD)

Nitzschia palea var. debilis 69.56 (SD: 11.88) Achnanthidium minutissimum 20.63 (SD: 12.51)
Navicula veneta 5.02 (SD: 5.25) Cymbella excisa 20.14 (SD: 15.38)
Craticula ambigua 4.96 (SD: 5.08) Hantzschia amphioxys 11.66 (SD: 13.32)
Mastogloia lacustris 4.09 (SD: 4.83) Planothidium frequentissimum 9.34 (SD: 15.55)
Nitzschia denticula 1.76 (SD: 1.14) Cymbella vulgata 4.3 (SD: 3.94)
Achnanthidium minutissimum 1.53 (SD: 1.17) Luticola mutica 3.40 (SD: 4.64)
Encyonopsis minuta 1.3 (SD: 1.03) Achnanthidium pyrenaicum 3.03 (SD: 2.77)
Mastogloia smithii 1.24 (SD: 1.47) Ulnaria danica 2.75 (SD: 0.62)
Hantzschia amphioxys 1.19 (SD: 1.22) Navicula cryptocephala 2.45 (SD: 1.73)
Eunotia arcubus 1.08 (SD: 0.68) Cymbella affinis var. procera 2.34 (SD: 2.07)

Biofilm nº 27 (27A) Mean (SD)

No data No data
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Horta-Sanana (P = 0.012), and Rellinars-Sanana 
(P = 0.009).

Resilience experiment

For the resilience experiment, living diatoms were 
found in all mesocosms (Fig.  3). The average 
percentage of living cells in mesocosms was 86.38 
(Time A, SD: 12.04). Macroinvertebrates (e.g. 
Baetidae, Chironomidae, Coleoptera, Heteroptera and 
Mollusca) were also found. Pools presented living 
diatoms at both sampling times, with 71.70% (SD: 
13.37) at Time A and 69.35% (SD: 9.82) at Time B. 
Living diatoms were found on dogs, with a percentage 
of living cells of 88.88 (Time A, SD: 2.07). Other 
types of propagules (pollen, fungal spores, fungi, etc.) 
also appeared.

From the treated samples, the average of the 10 
most abundant species and their standard deviation 
(SD) are shown in Table  1. In all type of samples 
(i.e. mesocosms, pools, and dogs), the most domi-
nant species was Achnanthidium minutissimum. Other 
abundant species were Planothidium frequentissimum 
(Lange-Bertalot) Lange-Bertalot and Mayamaea 
permitis (Hustedt) K.Bruder & Medlin in meso-
cosms, Gomphonema lateripunctatum E.Reichardt & 

Lange-Bertalot and Achnanthidium pyrenaicum (Hus-
tedt) H.Kobayasi in pools, and Cymbella excisa and 
Hantzschia amphioxys on dogs. No significant dif-
ferences were found among the type of samples for 
richness (P = 0.146) or Shannon diversity (P = 0.265). 
Regarding the composition of the community, 27 
exclusive species were found in mesocosms, 10 in 
pools, and 12 on dogs (Fig. 5a). Another 51 species 
were partially or completely shared between meso-
cosms, pools, and dogs.

Significant differences were found among the type 
of samples for community composition (P = 0.002). 
The post hoc analysis with the Bonferroni adjustment 
only highlighted differences between mesocosms 
and pools (P = 0.002), but not for mesocosm-dog 
(P = 0.141) or pool-dog (P = 0.081) comparisons. 
Actually, samples from dogs were placed in an 
intermediate position between mesocosm and pools 
in the NMDS (Fig.  5b). The NMDS also showed a 
differentiation between the two pools but not between 
the sampling times (A and B). Most mesocosms 
clustered together, but showed no apparent order 
based on their location along the stream. Only the 
mesocosm closest upstream of each pool showed a 
different community from the rest of the mesocosms 
(Meso.1 and Meso.5).

Fig. 4   Resistance experiment results. a Venn diagram for 
the composition of diatoms showing the number of exclusive 
and common species, and its percentage, in the sediments of 

Horta, Rellinars, and Sanana streams. b NMDS with samples 
separated by river (Horta, Rellinars, and Sanana) and sampling 
time (A and B)
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Linear models and Mantel tests did not detect 
any significant effect of the geographical distance 
to the pool to explain the mesocosms’ richness and 
composition (Supplementary Fig.  1). Finally, the 
camera trap installed near the mesocosms (Meso. 2) 
recorded several species of mammals: a field mouse 
(Apodemus sylvaticus), a squirrel (Sciurus vulgaris), 
a beech marten (Martes foina) and a wild boar (Sus 
scrofa) (Supplementary Fig.  2). The camera only 
photographed each animal once, ruling out false 
activations due to wind and light changes. In addition, 
during the days of monitoring the experiment, a 
weasel (Mustela nivalis) was found swimming 
in Pool.2 (Supplementary Fig.  2) and a roe deer 
(Capreolus capreolus) was also reported near the 
experimental setup.

Discussion

In temporary rivers, aquatic communities have 
developed different resistance and resilience strategies 
to cope with drying (Bogan et al., 2017b). Assessing 
these strategies is essential to understand how the 
recolonization and establishment of communities in 

these rivers occur (Robson et  al., 2008). Our results 
show that diatoms have a combination of both 
strategies, demonstrating that they potentially have a 
wide variety of adaptive traits to drying that would be 
interesting to study in future works.

In agreement with our first hypothesis (resistance 
experiment), living diatoms were found in the dry 
sediments after rehydration, demonstrating that 
the sediments served as refugia during drying in 
temporary rivers. As other studies have shown, 
diatoms and other aquatic groups can persist in 
humid habitats when superficial water is absent 
(Peterson, 1987; Bogan et  al., 2017a), where they 
find more stable and less harsh environmental 
conditions (Davis, 1972; del Rosario & Resh, 2000; 
DiStefano et al., 2009; Stubbington, 2012). We found 
a strong differentiation of diatom communities in 
the sediments depending on the stream, probably 
related to differences in the pre-desiccation 
communities. Many microorganism communities 
from temporary rivers are often composed of subsets 
of the communities existing during the flowing phase 
(Sabater et  al., 2016). Thus, diatom communities in 
each river would be able to develop resistant cells to 
desiccation just before the dry phase.

Fig. 5   Resilience experiment results. a Venn diagram for the 
composition of diatoms found in the resilience experiment 
showing the number of exclusive and common species, and 

its percentage, in mesocosms, pools, and dogs. b NMDS with 
samples separated by type (mesocosms, pool, and dog) and 
sampling time (A and B)
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In relation to resistant diatoms, there is evidence 
that certain species, and even genera, can cope with 
desiccation due to the presence of one or more 
distinctive traits (Falasco et al., 2021). Some of these 
traits are the production of mucilage (e.g., Cymbella 
sp. and Gomphonema sp.) and the ability to move to 
humid areas (Navicula sp., Nitzschia sp. and Surirella 
sp.) (Sabater et al., 2017; Falasco et al., 2021), or to 
produce resting cells (Fragilaria sp. and Diatoma 
sp.) (Sicko-Goad et  al., 1989). In our experiment, 
Nitzschia palea var. debilis was the most abundant 
species resisting desiccation. This species is known to 
move within the substrate and to have high ecological 
plasticity (Rimet & Bouchez, 2012; Machado et  al., 
2016), which allows rapid population development 
(Trobajo et  al., 2009). Therefore, Nitzschia palea 
var. debilis seems to be a species highly adapted to 
drying in temporary rivers thanks to its resistance 
strategies. In agreement with this, Falasco et  al. 
(2020) found a significant abundance of this species 
during the transitions between hydrological phases 
of a temporary alpine river, specifically in the lentic 
phase (prior to drying). Another important form of 
resistance is the production of resting sexual spores 
(Souffreau et al., 2013), a trait that may be present in 
Cyclotella distinguenda, an abundant species in our 
rehydrated sediment Rellinars samples. This ability 
is typical of centric diatoms and has been previously 
documented in marine species of the genus Cyclotella 
(Montresor et  al., 2013). These spores would allow 
the development of populations of C. distinguenda, 
despite being a non-motile planktic species. Other 
abundant species in our study were Hantzschia 
amphioxys and Luticola mutica, both also  adapted 
to terrestrial habitats (Souffreau et  al., 2013). It is 
possible that these species may increase during the 
dry season as a result of ecological succession, as 
occurs with aquatic and terrestrial macroinvertebrates 
(Bogan et al., 2017a). If so, freshwater diatoms would 
displace these soil diatoms during flow resumption. 
However, studying these communities in closed 
containers (without aerial dispersion, drift or vectors) 
makes it impossible to know the development of the 
communities with flow resumption in each river.

In the dried biofilm, contrary to our expectations, 
no living diatoms were found after rehydration. This 
contradicts the idea that biofilms serve as refugia 
during dry periods (Robson & Matthews, 2004; 
McKew et al., 2011; Sabater et al., 2016; Sarremejane 

et  al., 2020). However, it is known that diatoms do 
not resist complete desiccation, unlike other algal 
groups such as the Rhodophyta (Acuña et  al., 2005; 
Sabater et  al., 2016). In our case, the presence of 
diatom frustules without chloroplasts in the biofilm 
confirmed the existence of diatom communities prior 
to drying. Therefore, the resistance structures of 
diatoms located on rock surfaces may not be sufficient 
to withstand solar radiation during the dry season of 
Mediterranean climate, and alternative resistance 
mechanisms should be used. For example, many 
diatoms with mobile traits are capable of migrating 
from the shallowest to the deepest sediments as a 
consequence of the effects of flow intermittence 
(Mckew et  al., 2011). Therefore, further studies 
based on the actual capacity of biofilms to support 
diatom communities at different time intervals and 
solar intensities would be required. Despite this, the 
appearance of Cyanobacteria, together with other 
photosynthetic organisms, reaffirmed the ability of 
other algae to withstand the dry period in biofilms 
(Davis, 1972; Dodds et al., 1996; Robson, 2000). In 
fact, many Cyanobacteria react extremely quickly to 
humidity and flow resumption, withstanding much 
better flow intermittence than diatoms (Sabater, 2000; 
Sabater et al., 2016).

In agreement with our second hypothesis 
(resilience experiment), living diatoms were found 
in all mesocosms one month after being filled 
with water, confirming their high colonization 
capacity, even in the absence of drift (Larned et  al., 
2007). Algal biofilms are one the first biological 
communities recovering after flow resumption in 
temporary rivers (Bogan et  al., 2017a). Regarding 
colonizing diatoms, there is evidence that species 
of small size and low-profile traits (e.g. for 
Achnanthidium sp.) are often the first colonizers in 
rivers and lakes (Cyr, 2016; Falasco et  al., 2020). 
Other genera (e.g. Navicula sp. and Nitzschia sp.) also 
have a high colonization rate through their passive 
transport by wind (Chrisostomou et  al., 2009). In 
our experiment, although each mesocosm presented 
its own community, Achnanthidium minutissimum 
was the most abundant species in general. This small 
diatom with high reproduction rates is considered 
an r-species, and low-profile traits (characterized by 
short stature, resistant to physical disturbances, slow 
moving) (Rimet & Bouchez, 2012; de Oliveira & 
Ferragut, 2023). For this reason, it usually appears 
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quickly in colonization processes of benthic algal 
communities, and is often the most abundant (Cyr, 
2016). A. minutissimum also presents other traits 
that can facilitate colonization, such as the ability 
to develop short stems for adhesion to the substrate 
(Rimet & Bouchez, 2012). Other abundant species in 
our mesocosms were Planothidium frequentissimum 
and Mayamaea permitis. In this case, although only 
P. frequentissimum presents low-profile traits, both 
are very small species (Rimet & Bouchez, 2012). 
The small size of these diatoms could increase the 
probability of being passively dispersed by wind over 
greater distances compared to others.

Although it was not directly measured, 
disconnected pools can potentially behave as 
important propagule refugia and emission during the 
dry period (Robson, 2008; Davis, 1972; Bogan et al., 
2017a). Our analysis seems to confirm this, since the 
pools contained living diatoms in all samples and 
shared many species with the mesocosms. The pools 
were dominated by A. minutissimum, Gomphonema 
lateripunctatum, and Achnanthidium pyrenaicum, all 
of them being attached to the substrate by peduncles 
and stalks (Rimet & Bouchez, 2012). Therefore, it is 
possible that these attachment traits also confer some 
advantage for resistance in pools. However, contrary 
to our expectations, the geographical distance of these 
pools from the mesocosms did not show any trend 
in community diversity, suggesting that wind had a 
potentially low or random effect on diatom dispersal 
in our system.

Besides wind, in the absence of sediment (rocks 
and sterile mesocosms) and drift (no aquatic flow 
connectivity between pools and mesocosms), 
zoochory has been suggested as a potentially 
significant mechanism of passive transport of 
organisms (Kristiansen, 1996). In our study, the 
presence of living diatoms on dogs, many of them 
found in pools and mesocosms, confirmed the role 
of these mammals as dispersal vectors. Among 
the species potentially dispersed by dogs, A. 
minutissimum was very abundant, which reaffirms 
the high colonizing capacity of this species in aquatic 
environments (Cyr, 2016). In fact, it is known that 
the most abundant or widely distributed species in 
pre-drying streams tend to be the first to recolonize 
rewetted reaches (Detenbeck et  al., 1992; Whitney 
et al., 2015). Other abundant species in the fur of dogs 
were Cymbella excisa (whose hook shape possibly 

facilitates its transport) and Hantzschia amphioxys 
(a common  soil diatom possibly associated with 
the terrestrial way of life of mammals). In addition 
to dogs, our phototrapping cameras also revealed 
the frequent passage of wild mammals between 
mesocosms, adding evidence to the use of dry 
riverbeds as corridors (Kukielka et  al., 2013; Valera 
et al., 2011). Besides wild mammals, birds may also 
have played an important role in transporting living 
diatoms in their plumage and droppings (Kristiansen, 
1996; Atkinson, 1980). For this reason, the use of 
animal vectors is increasingly being recognized in 
the passive transport of diatoms (Leone et al., 2014; 
Manning, 2019; Donato-Rondon et  al., 2018; Leone 
et al., 2014). However, in general, the success of algae 
dispersal depends on many other factors, such as the 
distance between sites, the size of their population, 
the harshness of desiccation, and other types of 
abiotic stresses (Chrisostomou et al., 2009).

Conclusion

In conclusion, we show that diatoms present 
resistance and resilience strategies to cope with 
drying in temporary rivers. On the one hand, whereas 
resistance in the sediment seems to be related to 
traits of mobility, ecological plasticity, and the 
development of resistance spores, these traits do not 
seem to confer resistance to drying in biofilms. On 
the other hand, colonization through resilience seems 
to select species with low-profile traits, small-size 
and pioneering. Unlike macroinvertebrates, where 
resilience clearly stands out over resistance in our 
studied streams (Pineda-Morante et  al., 2022), both 
strategies seem possible for diatoms. In fact, although 
there are species highly adapted to a specific strategy, 
they are not exclusive since we have found diatoms 
with both strategies at the same time (e.g. Cymbella 
excisa, Hantzschia amphioxys and Achnanthidium 
minutissimum). Therefore, we suggest that a 
combination of resistance and resilience strategies 
allow diatoms to cope with drying in temporary rivers 
and to quickly develop new viable populations with 
flow resumption.
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