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Introduction: Variants in the Ras-related GTPase D (RRAGD) gene have been associated with autosomal 
dominant kidney hypomagnesemia (ADKH) characterized by hypokalemia, nephrocalcinosis, and dilated 
cardiomyopathy (DCM). RRAGD, which encodes for the RagD protein, is involved in the activation of the 
mechanistic target of rapamycin complex 1 (mTORC1). Owing to the limited characterization of patients’ 
phenotypes, the understanding of RRAGD-associated ADKH (ADKH-RRAGD) remains incomplete. 
Consequently, available treatment strategies are primarily symptomatic and insufficient.

Methods: In the present case series, 13 new patients and 3 novel RRAGD variants, that is, p.(Ser77Phe), p. 
(Thr91Ile), and p.(Ile100Arg), are described. To assess the pathogenicity of the novel variants, an in vitro 
assay of mTORC1 activity was performed. In addition, the clinical response to diuretics (furosemide and 
thiazide, n = 4) and Na + -glucose cotransporter 2 (SGLT2) inhibitor, dapagliflozin (n = 6) was evaluated in 
patients carrying the RRAGD p.(Thr97Pro) variant during routine.
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Results: The patients presented with kidney tubulopathies, including hypomagnesemia, hypercalciuria, 
and nephrocalcinosis. Five patients also exhibited DCM. In vitro assays demonstrated constitutive acti-
vation of noncanonical mTORC1 signaling caused by the p.(Ser77Phe) and p.(Ile100Arg) variants. Clini-
cally, patients remained sensitive to diuretic challenges, whereas dapagliflozin treatment increased 
serum magnesium (Mg 2+ ) levels by 0.04 mM but exacerbated hypokalemia.

Conclusion: To date, 37 patients with ADKH-RRAGD have been identified. Kidney tubulopathy is the most 
prominent feature within the phenotypic spectrum of ADKH-RRAGD. Molecularly, constitutive activation 
of noncanonical mTORC1 is present in most RRAGD variants. From a therapeutic perspective, dapagli-
flozin may increase serum Mg 2+ levels in patients with RRAGD variants.

Kidney Int Rep (2025) 10, 3640–3655; https://doi.org/10.1016/j.ekir.2025.07.035
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R ecently, we identified gain-of-function variants inthe RRAGD gene as the cause of ADKH, which is
associated with hypokalemia, salt wasting, hypercal-
ciuria, and nephrocalcinosis. 1 In a subset of patients
with ADKH-RRAGD, these kidney defects cooccurred
with DCM, requiring early heart transplantation. 1 

Since our initial report, additional familial cases of 
ADKH-RRAGD have been reported. 2,3

RRAGD encodes for the small GTPase RagD, one of 
the 4 Rag GTPases in mammalian cells (i.e., RagA-D) 
that serve as intracellular amino acid (AA) sensors. 4,5 

Upon AA signaling, Rag GTPases form heterodimeric 
complexes composed of RagA or RagB with RagC or 
RagD. 6-8 In their active states, GTP-bound RagA/B and 
GDP-bound RagC/D recruit mTORC1 to the lysosomal 
surface, resulting in mTORC1 activation. 9,10 From 
there, mTORC1 phosphorylates its downstream targets 
such as the canonical cytosolic targets, S6 kinase (S6K) 
and eukaryotic initiation factor 4e-binding protein 1, 
and its noncanonical lysosomal targets such as the 
transcription factor EB (TFEB). 11-17

mTOR inhibition has been proposed as a potential 
treatment strategy to prevent dilated cardiomyopathy 
due to pathogenic RRAGD variants. Overexpression of 
the RRAGD-associated variants, p.(Ser76Leu) and p. 
(Pro119Arg) in zebrafish embryos resulted in cardiac 
dysfunctions. 18 Furthermore, exposure to rapamycin, 
an mTOR inhibitor, rescued these phenotypes. 18 

Nevertheless, clinicians have been hesitant to prescribe 
lifelong mTOR inhibitors because of their immuno-
suppressive properties and the lack of supporting ev-
idence for mTOR inhibitors efficiency and safety in 
cardiomyopathy and in patients with ADKH-RRAGD. 
Moreover, noncanonical mTORC1 signaling is known 
to be insensitive to rapamycin. 17 Therefore, patients 
with stable heart function are treated with magnesium 
and potassium supplements, limiting their options to 
symptomatic treatment only. For those with heart 
failure and mildly reduced ejection fraction, standard 
therapy includes diuretics and SGLT2 inhibitors. 19,20

Still, these patients are characterized by chronic ionic 
disturbances caused by a poorly understood tubular 
dysfunction, which might be pharmacologically 
improved or aggravated. This highlights the need for 
detailed phenotypic characterization and evaluation of 
diuretic response in patients with ADKH-RRAGD. 

Here, we report on a new cohort of 13 patients with 
ADKH-RRAGD, including 3 novel RRAGD-associated 
variants, namely (p.(Ser77Phe), p.(Thr91Ile), and p. 
(Ile100Arg)). The functional effect of these variants 
was assessed by in vitro mTOR activity assays, TFEB 
translocation in T-REx HeLa cells stably over-
expressing RRAGD-associated variants, and in silico 
RagD structure analysis. Moreover, we examined the 
biological response to 2 commonly used diuretics in 
clinical routine, that is, furosemide and hydrochloro-
thiazide (HCT). Finally, patients’ response to the 
SGLT2 inhibitor, dapagliflozin, was assessed as a po-
tential treatment strategy in patients with ADKH-
RRAGD.

METHODS
The complete methodare presented in the Supplementary 
Methods section.

Study Participants
The individuals included in this manuscript were 
identified by routine diagnostic DNA testing 
(Supplementary Methods). 3,21-23 Written informed 
consent was obtained for the genetic analysis and the 
publication of anonymized data, including the 
clinical challenges of diuretics.

Molecular Assays
All in vitro experiments were performed using T-REx 
HeLa cell lines stably overexpressing RRAGD wild 
type (WT) or variants described in this study. Immu-
noblotting was performed on protein materials of the 
cells under AA stimulation. Immunocytochemistry was 
performed on T-REx HeLa stable cell lines transfected
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with pcDNA3.1-TFEB-WT-MYC (Addgene plasmid 
#99955). 1 All HeLa T-REx cell lines were cultured in 
the culture medium described above in a humidified 37
◦ C incubator with 5% (v/v) CO 2 , unless stated 
otherwise.

Furosemide and HCT Testing
To assess the effects of furosemide on urinary ion 
excretion in patients with the p.(Thr97Pro) RRAGD 
variant, a single oral dose of 40 mg furosemide was 
administered in routine renal physiology explorations 
after informed consent of each participant (n = 4). To 
assess the effects of HCT on urinary ion excretion in 
patients with the p.The97Pro RRAGD variant, a single 
oral dose of 50 mg HCT was administered in routine 
renal physiology explorations after informed consent 
of each participant (n = 4). The study duration was 6 
hours postadministration of HCT. To compare the pa-
tients’ response to each diuretic to the healthy popu-
lation, we reanalyzed Cl − and Mg 2+ data from 
furosemide testing done by Bech et al. 24 using the same 
protocol. Mg 2+ levels were not reported in the original 
publication but were taken from the unpublished 
study files.

Dapagliflozin Treatment
To assess the effect of dapagliflozin on serum ion levels 
in patients with the p.(Thr97Pro) RRAGD variant (n = 
6), blood samples were collected at baseline and 15 
days after a daily oral dose of 10 mg of dapagliflozin in 
real-life settings.

Statistics
For the in vitro studies, 2-way analysis of variance was 
performed. This was followed by Dunnett multiple 
comparisons test for the immunocytochemistry results 
or � Sídák multiple comparisons test for the immuno-
blotting results. Multiple comparisons were performed 
by comparing the mean of mock, RRAGD mutants p. 
(Ser77Phe), p.(Thr91Ile), and p.(Ile100Arg) to the mean 
of RRAGD WT cells, within the AA treatment group. 
Statistical significance at P < 0.05 was considered 
significant. For other studies, no statistical tests were 
performed. All statistical tests were performed using 
GraphPad Prism version 10.4.0 for MacOS (GraphPad 
Software, MA). All image analyses were performed in 
Fiji, ImageJ2 version 2.14.0. 3,4

RESULTS
Clinical Presentation of New Patients With 
RRAGD Variants
Routine diagnostic screening of patients with sus-
pected familial kidney tubulopathies resulted in the 
identification of 8 families consisting of 13 individuals

with variants in RRAGD (Table 1). Clinical and labo-
ratory findings are described in Table 1, Figure 1, and 
Supplementary Figure S1A to C. The main kidney 
tubulopathy phenotypes in ADKH-RRAGD are present 
in all patients described in this study: hypomagnese-
mia, hypokalemia, salt-wasting, and nephrocalcinosis 
(Table 1, Figure 1a and b, Supplementary Figure S1A– 
C). In addition, nephrolithiasis was present in F1.III.1, 
F2.II.2, and F3.III.1 individuals. In family 1, the 
mother and 2 maternal uncles of the proband indi-
vidual F1.III.1 presented with kidney tubulopathy, 
whereas the maternal grandmother experienced 
nephrolithiasis. In addition to the kidney tubulopathy, 
DCM was found in 5 individuals (F4.II.1, F4.II.2, F5. 
II.1, F7.II.1, and F8.II.2) as shown by the enlargement 
of left ventricles (Figure 1b, Supplementary D). Indi-
vidual F4.III.3, daughter of F4.II.2, did not present 
with DCM but developed excessive apical trabecula-
tions with normal left ventricular ejection fraction at 
the age of 6 years. Family 4 was first described by de 
Frutos et al. 3 Heart transplantation was performed in 
individuals F4.II.1, F4.II.2, F5.II.1, and F7.II.1. In in-
dividual F7.1, Masson trichrome staining of explanted 
heart ventricular samples indicated the presence of 
diffuse myocardial fibrosis (Figure 1c). Moreover, 
extensive trabeculation was present in the apical side 
of the left ventricle (Figure 1d). The 7 families were 
described in more detail in the section Supplementary 
Methods.

Within this patient cohort, 3 novel variants, 
RRAGD p.(Ser77Phe), p.(Thr91Ile), and p.(Ile100Arg), 
were identified. These variants were absent in gno-
mAD. For 7 individuals from 5 families (F2.II.1, F2.II.2, 
F2.II.4, F5.II.1, F6.II.1, F7.II.1, and F8.II.2), the 
RRAGD p.(Thr91Ie), p.(Ser76Leu) and p.(Ser77Phe) 
variants occurred de novo because both parents of the 
patients were unaffected (Figure 2a).

Segregation testing for p.(Thr91Ile) in the parents 
despite 3 out of 4 siblings affected by RRAGD asso-
ciated hypomagnesemia in family 2 could not deter-
mine the parental origin of the de novo mutation. 
Family relationships were confirmed by microsatellite 
markers. In families 3 and 4, dominant inheritance was 
confirmed.

In silico Modeling of RRAGD p.(Ser77Phe), p. 
(Thr91Ile), and p.(Ile100Arg) Variants
To evaluate the consequences of the novel RRAGD 
variants on the protein structure, we generated an in 
silico modeling. All 3 variants are located just outside 
the G-box domains G1 and G2 (Figure 2b), which are 
predicted to mediate phosphate and Mg 2+ binding. 26 

Multiple sequence alignment analyses showed high 
conservation of the Ser77, Thr91, and Ile-100 residues
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Table 1. Clinical characteristics
Individuals F1.III.1

 
F2.II.1

 
F2.II.2

 
F2.II.4

 
F3.III.1

 
F3.II.1

 
F4.II.1

 
F4.II.2

 
F4.III.3

 
F5.II.1

 
F6.II.1

 
F7.II.1

 
F8.II.2

Origin Ashkenazi
Jew

UK-SE
Asia

UK-SE Asia UK-SE
Asia

Germany Germany Spain Spain Spain Argentina Spain Bosnian Ashkenazi Jew

Sex F F F M
 

F F F F F M
 

M
 

F F

Age at manifestation
 

Adulthood
 
a
 7

 
yr 2

 
yr 8

 
mo 15

 
yr 20

 
yr 3.5

 
yr 3.5

 
yr 6

 
yr 6

 
mo 5

 
yr 2.5

 
yr 3.1

 
yr

Current age 46
 
yr 11

 
yr 8

 
yr 1

 
yr 16

 
yr 44

 
yr 48

 
yr 48

 
yr 8

 
yr 16

 
yr 7.5

 
yr 13

 
yr 4.1

 
yr

Cardiac symptoms

DCM
 

(age of finding) N
 

N
 

N
 

N
 

N
 

N
 

Y (33
 
yr) Y (33

 
yr) N

 
b
 Y N

 
Y (7

 
yr) Y (3.1

 
yr)

FS
 
(%) N/A

 
N/A
 

N/A
 

N/A
 

N/A
 

N/A
 

N/A
 

N/A
 

N/A
 

25
 

26
 

6
 

7

EF (%) N/A N/A N/A N/A N/A N/A N/A N/A 55
 

48
 

50
 

21
 

16

LVEDD
 
(mm) N/A N/A N/A N/A N/A N/A N/A N/A 56

 
46
 

42
 

66
 

52

Heart transplantation 
(age)

N/A N/A N/A N/A N/A N/A Y, 47 yr Y, 42 yr N/A Y, 16 yr N/A Y, 9 yr N

Renal symptoms

Hypomagnesemia-
related symptoms

Y - 
paresthesia

N
 

N
 

N
 

Y - cramps, 
weakness

Y - carpopedal 
spasms

Y - carpopedal 
spasms

Y - paresthesia 
and tetany

Y N
 

N
 

Y - weakness

Nephrocalcinosis Y Y Y Y Y Y Y Y Y Y Y Y Y

Nephrolithiasis Y N
 

Y N
 

N
 

Y N
 

N
 

N
 

N
 

N
 

N
 

N

Polyuria N
 

N
 

N
 

N
 

N
 

N
 

? ? Y (+
 polyhydramnios)

N
 

Y Y N

Metabolic alkalosis Y Y Y N
 

Y n.d. Y Y Y Y Y Y N

Laboratory findings

S-Ca (mmol/l;
n =
 

2.2–2.6)
2.4
 

2.39
 

2.46
 

2.68
 

2.28
 

n.d. 1.72
 

1.72
 

2.5
 

2.44
 

2.37
 

2.48
 

2.1

S-Cl (mmol/l;
n =
 

98–107)
100

 
102

 
99
 

106
 

98
 

92
 

92
 

105
 

97
 

99
 

N/A 96

S-K
 
(mmol/l;

n =
 

3.5–5.1)
3.5
 

3.4
 

2.9
 

4.2
 

2.8
 

2.8
 

2.8
 

3.76
 

3.4
 

3
 

3
 

2.5

S-Mg (mmol/l; 
n =
 

0.7–1.1)
0.41

 
0.61

 
0.62

 
0.93

 
0.52

 
0.45

 
0.53

 
0.62

 
0.33

 
0.37

 
0.63

 
0.33

S-Na (mmol/l;
n =
 

136–145))
139

 
139

 
137

 
139

 
141

 
136

 
135

 
142

 
136

 
137

 
134

 
139

S-PO
 4
 
(mmol/l) 1.13

 
1.48

 
1.29

 
2.15

 
0.92

 
1.55

 
1.55

 
1.58

 
1.3
 

1.36
 

1.2
 

4.35

S-creatinine (mg/dl; 
n =
 

0.73–1.18)
0.64

 
0.47

 
0.41

 
0.29

 
0.41

 
0.8
 

0.8
 

0.34
 

0.38
 

0.37
 

0.38
 

0.6

S-HCO
 3
 
(mmol/l; 

n =
 

22–31)
22
 

26
 

27
 

21
 

27.9
 

31
 

30
 

29.4
 

29.8
 

23
 

N/A 19.7

FE-K
 
(%;

n =
 

5.5–17)
17–77

mmol/24
 
h 

55

13
 

19
 

11
 

n.d. n.d. n.d. 18.7
 

21
 

17
 

5.6
 

16

FE-Mg (%; n =
 

3–5) 51–269
 

mg/24
 
h 

246

3.2
 

6.2
 

2.9
 

n.d. n.d. n.d. 13
 

14.2
 

16
 

8.50
 

37

FE-Na (%
 

=
 

0.1–2) 0.3
 

0.1
 

0.4
 

n.d. n.d. n.d. 1.4
 

0.3
 

0.5
 

0.13
 

n.d.

(Continued on following page)
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Table 1. (Continued) Clinical characteristics
Individuals F1.III.1

 
F2.II.1

 
F2.II.2

 
F2.II.4

 
F3.III.1

 
F3.II.1

 
F4.II.1

 
F4.II.2

 
F4.III.3

 
F5.II.1

 
F6.II.1

 
F7.II.1

 
F8.II.2

41
 
- 227 

mmol/24
 
h
 

106

Ca-to-crea ratio (mol/ 
mol)

eGFR
 
>
 60

 
$
 

60
 

ml/min per 
1.73

 
m
 

2

0.26
 

1.03
 

1.4
 

0.14
 
mg/mg 0.17

 
mg/mg 0.44

 
mg/mg 0.05

 
mg/ 

mg
0.42

 
mg/ 

mg
0.16

 
0.27

Therapy (specify)

Magnesium
supplementation

400
 
mg N

 
N
 

N
 

300
 
mg Y Y Y Y Y Y Y

Potassium
supplementation

20
 
mEq CR N

 
N
 

N
 

315
 
mg Y Y Y Y Y N

 
N

Heart failure 
medication

Eplerenone N
 

N
 

N
 

N
 

Y
 

Y
 

N
 

Y
 

N
 

ACEi Y

Others laxatives Laxatives,
antibiotic 

prophylaxis 
(UTI)

N
 

Vit D 
1000

 
I.U. per day

Immunosuppressives (heart
transplant). Progression to 
renal failure, patient is being 
evaluated as a candidate for 

kidney transplant

immunosuppressives 
(heart transplant)

Citrate
supplementation

Carvedilol Potassium
citrate +

 thiazides +
 enalapril

Immunosuppressive
drugs: everolimus 

tacrolimus

Enalapril;
Carvedilol; Digoxin; 
Spironolactone; 

Hydrochlorothiazide

Genetic findings (RRAGD
 
variants)

Nucleotide c.272C>T c.272C>T c.272C>T c.272C>T c.299T>G
 

c.299T>G
 

c.227C>T c.227C>T c.227C>T c.227C>T c.227C>T c.230C>T c.227C>T

Protein p.
(Thr91Ile)

p.
(Thr91Ile)

p.(Thr91Ile) p.
(Thr91Ile)

p.
(Ile100Arg)

p.
(Ile100Arg)

p.(Ser76Leu) p.(Ser76Leu) p.(Ser76Leu) p.
(Ser76Leu)

p.
(Ser76Leu)

p.(Ser77Phe) p.(Ser76Leu)

Inheritance ? de novo de novo de novo Dominant Dominant Dominant Dominant Dominant de novo de novo de novo de novo

Cre, creatinine; DCM, dilated cardiomyopathy; EF, ejection fraction; eGFR, estimated glomerular filtration rate; F, female; FE, fractional excretion; FS, fractional shortening; LVEDD, left ventricular end-diastolic diameter; M, male; N, no; N/A, not 
applicable; n.d., not determined; S-, serum 

value, SE, Southeast; Y, yes, ?, unknown.
a
 Patient F1.III.1 experienced nephrolithiasis since the age of 15 mo. Further testing was performed only in adulthood. The inheritance pattern of this patient is unknown.
b
 Patient F4.III.3 developed apical trabeculations at the age of 6 yrs.

T
R
A
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LA

T
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(Supplementary Figure S1). Using the crystal structure 
of RagD in complex with a GTP analog (PDB: 2Q3F), 
the consequences of the p.(Ser77Phe), p.(Thr91Ile), and

p.(Ile100Arg) variants were evaluated. Residue Ser-77 
is located within the nucleotide-binding region in 
RagD (Figure 2c and d). Mutating Ser77 to Phe77

b

LV

LARA

RV
LV

LA

Aorta

RV

a

dc

Figure 1. Renal tubulopathy and dilated cardiomyopathy in ADKH-RRAGD patient F7.II.1. (a and b) Ultrasound images: (a) left and right kidney 
showing nephrocalcinosis (structures pointed by red arrow), (b) left: parasternal long axis view of the heart, right: apical 4 chamber view of the 
heart. (c) Masson trichrome staining of the explanted left ventricle anterior wall longitudinal section, showing interstitial fibrosis with blue 
collagen fibers surrounding red individual cardiomyocytes (magnification 200x). (d) Macroscopic image of the explanted left ventricle showing 
prominent apical excessive trabeculation (top to bottom: apical to basal). ADKH-RRAGD, RRAGD-associated ADKH; LA, left atrium; LV, left 
ventricle; RA, right atrium; RV, right ventricle.

A Adella et al.: Tubulopathy and Cardiomyopathy by RRAGD Variants TRANSLATIONAL RESEARCH

Kidney International Reports (2025) 10, 3640–3655 3645



S77

I100

T91

a

b

d

c

IV.

V.

I.

II.

III.

III.

I.

II.

F1: p.Thr91Ile

1

1

2 3

1 2

F2: p.Thr91Ile

1 2

1 2 3 4
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drastically enlarged the physical size of the residue; 
and therefore, would likely interfere with the 
nucleotide-binding capability of RagD (Figure 2d). 
Residue Thr91 is positioned closely to the binding site 
of the nucleotide (Figure 2c and e). Thus, mutation at 
this residue to a larger isoleucine might affect nucle-
otide binding (Figure 2e). Lastly, residue Ile100 is 
located in a hydrophobic pocket, surrounded by other 
hydrophobic residues (Figure 2c and f). Such hydro-
phobic sides are known to be energetically favorable 
for ligand binding. 27 The p.(Ile100Arg) variant, how-
ever, induced a change in properties from hydropho-
bic isoleucine to a larger and hydrophilic arginine 
(Figure 2f). In addition, upon change to arginine, a 
steric clash to neighboring residues was observed 
(Figure 2f). Thus, this variant might result in protein 
binding instability. Of note, we compared the corre-
sponding RagD residues to RagC in complex with 
Raptor, Ragulator, RagA, and TFEB (PDB: 7UX2) and 
found that Ile-100 residue is not directly interacting 
with any of these proteins.

Noncanonical mTORC1 Signaling is 
Constitutively Active Because of RRAGD 
Variants
We have previously reported that RRAGD variants 
identified in the initial cohort resulted in the over-
activation of mTORC1 signaling. 1 To study the effects 
of the new variants described in this study on 
mTORC1 signaling, stable T-REx HeLa cell lines 
overexpressing GFP (mock), or GFP-RagD WT or mu-
tants p.(Ser77Phe), p.(Thr91Ile), and p.(Ile100Arg) 
were generated. The cells were exposed to AA-rich or 
AA-deprived medium for 1 hour. Subsequently, 
phosphorylation of canonical and noncanonical 
mTORC1 targets, S6K, 4e-binding protein 1, and TFEB 
was assessed (Figure 3a–e). Under AA-deprived con-
ditions, phosphorylation of TFEB in RagD-p.(Ser77Phe) 
and -p.(Ile100Arg) cells was significantly higher than 
in RagD-WT cells (mean ± SEM; p.(Ser77Phe) 0.07 ± 
0.01 vs. WT 0.03 ± 0.01; p.(Ile100Arg) 0.80 ± 0.07 vs. 
WT 0.40 ± 0.06) (Figure 3a, d, and e). Interestingly, 
TFEB phosphorylation was not different in RagD-p. 
(Thr91Ile) cells compared with RagD-WT cells 
(Figure 3a–e). No significant differences in S6K and 4e-
binding protein 1 phosphorylation were detected in all

cell lines, both in AA-rich and AA-deprived conditions 
(Figure 3a–c).

Previously, TFEB was reported to be retained in the 
cytoplasm when RagD is constitutively active. 2 To test 
if TFEB subcellular localization is affected by the 3 
novel RRAGD variants, all GFP-RagD T-REx HeLa cell 
lines were transiently transfected with TFEB and 
exposed to AA deprivation (1 hour), after which 
immunocytochemistry was performed for TFEB 
(Figure 3f and g). In line with the immunoblotting 
results, overexpression of RagD-p.(Ser77Phe) and -p. 
(Ile100Arg) resulted in a significantly reduced nuclear 
translocation of TFEB under AA-deprived compared 
with RagD-WT cells (p.(Ser77Phe) 0.09 ± 0.01, p. 
(Ile100Arg) 0.13 ± 0.01 vs. WT 0.25 ± 0.02) (Figure 3f 
and g). In addition, RagD-p.(Thr91Ile) overexpression 
did not affect TFEB nuclear translocation in AA-
deprived conditions (Figure 3f and g).

Diuretic Challenges
To further characterize the renal phenotype of the 
RRAGD variants, we examined the patients’ response 
to furosemide and HCT diuretics as measures for Na + 

reabsorption in the thick ascending limb (TAL) and 
distal convoluted tubule, respectively. Four patients 
carrying the RRAGD p.(Thr97Pro) variant (previously 
reported in 1 ) were tested in hospital settings for renal 
physiology explorations. In healthy populations, 40 
mg of furosemide causes increased urinary excretion of 
Na + , K + , Cl − , Ca 2+ , and Mg 2+ . 24,28,29 As depicted in 
Table 2, the median (min–max) fractional excretions 
(FEs, %) at baseline (T = 0) were Na + (0.71 [0.1–1]), K + 

(14.6 [6.60–26]), Cl − (1.03 [0.2–2]), Ca 2+ (0.8 [0.1–1.1]), 
and Mg 2+ (5.6 [2.5–6.5]). These FEs increased over 
time after furosemide ingestion and peaked after 2 
hours (Figure 4a, Supplementary Table S2, 
Supplementary Figure S2A–D). Accordingly, serum 
Mg 2+ concentrations decreased from 0.44 mM (0.40– 
0.47) at baseline to 0.37 mM [0.36–0.41] (Figure 4b). To 
compare the patients’ response to furosemide to the 
healthy population, we reanalyzed data from Bech 
et al ..24 The maximal increase of FE of Cl − (i.e., 
maximal Δ FE Cl − ) of the patients with ADKH-RRAGD 
following furosemide treatment is within the range of 
healthy individuals (patients with ADKH-RRAGD: 
13.0% [12.4–17.6] vs. healthy individuals: 11.23%

◀
Figure 2. (continued) individuals are marked with a black arrow. * Adapted from de Frutos et al. 3 # Adapted from Schlingmann et al. 1 and
Trepiccione et al. 25 (b) Schematic representation of RagD domain organization and the location of novel RRAGD variants (in black) and
previously identified RRAGD variants (in grey). CTD, C-terminal domain. (c–f) Crystal structure of RagD in a complex with a GTP analog,
GMPPNP (PDB structure: 2Q3F, shown as colored spheres). (c) Overview of RagD. Variant sites Ser-77 (S77), Thr-91 (T91), and Ile-100
(I100) are highlighted in green. (d) Close-up views of the mutated residues: (left) p.(Ser77Phe) (S77F), (middle) p.(Thr91Ile) (T91I), and (right)
p.(Ile100Arg) (I100R). Mutated residues are highlighted in orange, the native residues are in green. The red dashed circle indicates a steric
clash. F, family.
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[3.9–26.3]) (Supplementary Figure S3E, Table 2). The 
maximal Δ FE Mg 2+ of patients with ADKH-RRAGD 
was in the higher portion than in healthy individuals 
but still falls within range (patients with ADKH-

RRAGD: 18.2% [17.1–19.9] vs. healthy individuals: 
11.1% [7.1–20.9]) (Figure 4c).

The administration of 50 mg of HCT typically 
causes an increased urinary excretion of Na + , K + , and
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Figure 3. The effects of RagD p.(Ser77Phe), p.(Thr91Ile), and p.(Ile100Arg) variants on mTORC1 signaling. (a) Representative immunoblots of 
S6K, p-S6K, 4E-BP1, p-4E-BP1, TFEB, p-TFEB, GFP (RagD), GAPDH, and Ponceau S staining in T-REx HeLa cell lines overexpressing GFP-Mock, 
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Cl - , with decreased Ca 2+ excretion. 24,30 Magnesium 
excretion physiologically remains unchanged or 
slightly increased after HCT. As summarized in 
Table 3, median (min–max) FEs (%) at baseline were 
Na + (0.5 [0.2–1.3]), K + (17.2 [6.3–25.5]), Cl − (1.2 [0.3– 
2.1]), Ca 2+ (0.6 [0.3–1]), and Mg 2+ (5.1 [2.9–9.9]). The 
FEs of Na + , K + , and Cl − increased in as early as 2 
hours and remained stably high (Supplementary 
Table S3, Supplementary Figure S4A–C). FE Ca 2+ 

stayed stable throughout the 6 hours (Supplementary 
Figure S4D). Compared with the healthy individuals 
cohort treated with 50 mg HCT for 6 hours, 24 the 
maximal median of Δ FE Cl − after HCT administration 
in patients with ADKH-RRAGD was similar to the 
healthy cohort (3.1% [2.5–4.3] patients with ADKH-
RRAGD vs. 2.5% [1.3–4.7] healthy individuals) 
(Supplementary Figure S4E, Table 3). 22 Furthermore, 
the FE of Mg 2+ steeply increased after 2-hour oral 
exposure to 50 mg of HCT (24.4% [19.6–25.3] vs. 
11.6% [7.7–18.8]) in healthy controls), with no sig-
nificant change in serum Mg 2+ levels (Figure 5 A and 
B, Table 3). The maximal median Δ FE Mg 2+ in

patients with ADKH-RRAGD, however, was in range 
with that in healthy individuals (2.8% [0–6.1] vs. 4% 
[0–7.9]) (Figure 5c, Table 3).

Therapeutic Perspective
Current therapy available for patients with ADKH-
RRAGD is limited to Mg 2+ and K + supplementation. 
Although SGLT2 inhibitors, including dapagliflozin, 
have been recommended in the management of pa-
tients with chronic cardiomyopathy, 31 no data are 
available on the use of SGLT2 inhibitors in patients 
with ADKH-RRAGD to date. Here, we have evaluated 
the impact of 15 days of daily exposure to 10 mg 
dapagliflozin on serum ion levels in 6 patients from the 
p.(Thr97Pro) RRAGD family. After 15 days of dapa-
gliflozin intake, serum concentration of Mg 2+ was 
increased by 0.04 mM from baseline (median [min– 
max], 0.40 [0.34–0.53] mM) to day 15 (0.44 [0.39– 
0.58] mM) (Table 4, Figure 6a). Of note, the median 
serum K + levels dropped by 0.25 mM at day 15 (3.4 
[3.0–4.1] at baseline; 3.15 [2.4–3.7] at day 15) 
(Figure 6b). Serum creatinine levels did not change 
within the 15 days of dapagliflozin treatment (0.68 mg/ 
dl [0.5–1] at baseline; 0.69 mg/dl [0.5–1] at day 15).

DISCUSSION
In this study, we identified 8 novel families comprising 
13 patients with pathogenic variants in RRAGD. 
Pathogenicity of the novel RRAGD variants was 
confirmed by assessing mTORC1 activity in T-REx 
HeLa cells. The identified RRAGD p.(Ser77Phe) and p. 
(Ile100Arg) variants rendered mTORC1 insensitive to 
AA starvation, resulting in a constitutive activation of 
the noncanonical mTORC1 signaling pathway. In 
addition, diuretic challenges revealed that Na + reab-
sorption in patients remained sensitive to furosemide 
and thiazide treatment. Most importantly, SGLT2

Table 2. Furosemide treatment

Furosemide treatment
Healthy controls 
(n � 25)

Patients with 
ADKH-RRAGD (n � 4)

Baseline FE Cl − (%) 1.16 (0.45–6.74) 1.0 (0.2–2.1)

Maximal FE Cl − (%) 12.79 (5.24–27.5) 14.3 (13.4–18.4)

Maximal ΔFE Cl − (%) 11.23 (3.91–26.29) 13.0 (12.4–17.6)

Time max. FE Cl − (h) 2 (1–3) 2 (2–2)

Baseline FE Mg 2+ (%) 2.8 (0.3–6.3) 5.6 (2.5–6.5)

Maximal FE Mg 2+ (%) 14.5 (7.7–25.8) 24.4 (19.6–25.3)

Maximal ΔFE Mg 2+ (%) 11.1 (7.1–20.9) 18.2 (17.1–19.9)

Time max. FE Mg 2+ (h) 2 (1–3) 2 (2–2)

ADKH-RRAGD, RRAGD-associated ADKH; FE, fractional excretion.
Fractional excretion (FE) of Cl − and Mg 2+ at baseline (T = 0), maximal, maximal Δ 
(maximal value − baseline value), and the time of maximal FE reached. Values 
represent the median [min–max] of 25 healthy individuals 22 and 4 patients with ADKH-
RRAGD following p.o. 40 mg furosemide for 3 h.
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inhibition by dapagliflozin increased serum Mg 2+ 

levels in a small cohort of 6 individuals with the 
RRAGD p.(Thr97Pro) variant. 

RagD, one of the 4 small Rag GTPases, is involved in 
AA sensing by mTORC1. Using an in vitro model, we 
demonstrated that p.(Ser77Phe) and p.(Ile100Arg) 
RRAGD variants rendered mTORC1 noncanonical 
signaling (i.e., TFEB phosphorylation) insensitive to 
AA signaling, but not the canonical signaling (i.e., S6K 
and 4e-binding protein 1 phosphorylation). Specif-
ically, these RRAGD variants led to constant phos-
phorylation of TFEB and reduced TFEB translocation 
to the nuclei. This is in line with Sambri et al.’s study, 
where noncanonical mTORC1 signaling was affected 
by the RRAGD variants in their in vitro model. 2 Con-
cerning mTORC1 canonical signaling, we previously 
showed that most of the RRAGD variants from the 
initial patient cohort resulted in the overactivation of 
canonical mTORC1 signaling as shown by increased 
phosphorylation of S6K under AA starvation. 1 Indeed, 
our results showed that p.(Ser77Phe) and p.(Ile100Arg) 
RRAGD variants tended toward a slight increase in

S6K phosphorylation, but this was not statistically 
significant. Therefore, we suggest that RRAGD vari-
ants affect noncanonical mTORC1 signaling more 
strongly than canonical signaling and that the degree 
of overactivation of the mTORC1 canonical signaling 
might vary per mutation, as already previously high-
lighted by the RRAGD p.(Thr97Pro) variant. 1 

Common symptoms reported in this cohort included 
hypomagnesemia (12/13), nephrocalcinosis (12/13), 
hypokalemia (11/13), metabolic alkalosis (10/13), and 
DCM (5/13). These 13 new patients with ADKH-
RRAGD, together with previous reports, represent 
the most extensive phenotypic characterization of the 
disease to date (Table 5). 1-3,25 Across 37 identified 
patients, kidney tubulopathies were nearly universal, 
with 24 presenting in childhood and 11 developing 
them later in life. In all known RRAGD cases, 
cardiomyopathies are present in about half of the 
patients (n = 18), with DCM being the most 
prominent form (n = 13). DCM was diagnosed in 
childhood in 9 out of the 13 affected patients. In 
addition to DCM, other forms of cardiomyopathy are 
found among patients with ADKH-RRAGD, which 
are ventricular arrhythmia (3/18), myocardial 
infarction (1/18), and excessive apical trabeculations 
with normal left ventricular ejection fraction (1/18). 
Among these cases of non-DCM cardiomyopathy, 3 
patients were diagnosed in childhood and the other 2 
in adulthood.

Interestingly, almost half of all patients (17/37) 
presented with isolated kidney tubulopathies (age 
range: 8–48 years), suggesting that renal and cardiac 
phenotypes can occur independently. Although car-
diomyopathies typically manifest early, 4 patients 
developed DCM in adulthood. Thus, we recommend 
that health care providers continue to monitor the 
cardiac health of patients with ADKH-RRAGD, with

Table 3. HCT treatment

HCT treatment
Healthy controls 
(n � 25)

Patienst with 
ADKH-RRAGD (n � 4)

Baseline FE Cl − (%) 1.04 (0.26–1.64) 1.19 (0.31–2.1)

Maximal FE Cl − (%) 3.47 (2.13–5.63) 4.18 (3.65–4.65)

Maximal ΔFE Cl − (%) 2.53 (1.32–4.73) 3.15 (2.46–4.29)

Time max FE Cl − (h) 4 (2–4) 3 (2–4)

Baseline FE Mg 2+ (%) 3.3 (0.1–6.3) 5.05 (2.9–9.9)

Maximal FE Mg 2+ (%) 6.6 (4–12.9) 8.45 (7.8–9.9)

Maximal ΔFE Mg 2+ (%) 4 (0–7.9) 2.8 (0–6.1)

Time max. FE Mg 2+ (h) 4 (0–6) 5 (0–6.1)

ADKH-RRAGD, RRAGD-associated ADKH; FE, fractional excretion; HCT, 
hydrochlorothiazide. 
FE of Cl − and Mg 2+ at baseline (T = 0), maximal, maximal Δ (maximal value – baseline 
value), and the time of maximal FE reached. Values represent the median [min–max] of 
25 healthy individuals 22 and 4 patients with ADKH-RRAGD following p.o. 50 mg HCT () for
6 h.
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Figure 5. The effects of HCT diuretics administration on fractional excretion of magnesium and serum magnesium in patients with ADKH-
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particular attention to pediatric cases. Regarding the 
distribution by sex of the patients with DCM, 43% of 
the affected females and 21% of the affected males 
presented with DCM. In the future, it would be 
important to monitor if age and sex are determinant 
factors for disease outcomes and if more factors can be 
identified. This would require the identification of 
more patients and follow-up of current patients. 
Finally, we would like to highlight that almost half of 
all patients (17/37) presented with only kidney 
tubulopathy and no cardiac dysfunction, at least until 
the most recent follow-up, suggesting that the 2 key 
phenotypes can occur separately. Therefore, future 
ADKH-RRAGD screening should be done in patient

cohorts with idiopathic DCM or other cardiomyopa-
thies with proven or frequent genetic origin.

Due to the variable expressivity (differences or 
discrepancies in the clinical phenotype between 
affected individuals) and the allelic heterogeneity 
observed (i.e., not all variants lead to the same clinical 
manifestations), we hypothesized that the severity of 
symptoms can be attributed to the degree of mTORC1 
dysregulation caused by the RRAGD variant. 1 How-
ever, our data revealed that the effects of the variant 
on mTORC1 activation alone are not linear to the 
clinical manifestations. In this study, we described 
patients with RRAGD p.(Thr91Ile) exhibiting the 
complete set of renal phenotypes seen in other patients 
without DCM. In vitro assessment showed that this 
variant did not induce mTORC1 overactivation in our 
stable T-REx HeLa cell line. Previously, we have 
observed that the RRAGD p.(Thr97Pro) variant 
induced a less pronounced mTORC1 signaling activa-
tion. 1 Interestingly, patients with p.(Ile100Arg) variant 
presented with the same clinical manifestations as p. 
(Thr91Ile) patients. However, the RRAGD p. 
(Ile100Arg) variant did show an increased mTORC1 
activity under AA starvation. Nevertheless, the effects 
of RRAGD variants on mTORC1 signaling have so far 
been assessed in HEK293 and HeLa cells, as well as 
whole zebrafish embryo lysates. 1,2,18 Future functional 
studies to assess the effects of RRAGD variants on 
renal transport and cardiac function are necessary to 
fully elucidate the molecular mechanisms of this rare 
disease.

Table 4. Dapagliflozin data
Dapagliflozin data Baseline Dapa Δ Dapa-baseline

Blood

Osmolarity (mosm/kg; n = 281–303) 281 (281–291) 282 (279–288) 1.00

Na + (mmol/l; n = 136–145) 142 (138–143) 141 (140–144) − 1.00

K + (mmol/l; n = 3.5–5.1) 3.4 (3–4.08) 3.15 (2.4–3.67) − 0.25

Cl − (mmol/l; n = 98–107) 96 (90–108) 95.5 (88–106) − 0.50

Ca 2+ (mmol/l; n = 2.2–2.6) 2.4 (2.3–2.7) 2.44 (2.3–2.51) 0.04

Mg 2+ (mmol/l; n = 0.66–1.07) 0.40 (0.34–0.53) 0.44 (0.39–0.58) 0.04

HCO3 (mmol/l; n = 22–31) 33.75 (26–38.4) 31.4 (27.4–39.6) − 2.35

Creatinine (mg/dl; n = 0.73–1.18) 0.68 (0.47–0.9) 0.69 (0.49–1) 0.01

eGFR (mL/min per 1.73 m 2 ; n $ 60) 109.9 (88.1–128.5) 104.65 (77.6–128.5) − 5.25

PTH 3rd generation (ng/l) 27.9 (18.1–40.1) 22.9 (15.5–33.4) − 5.00

Glucose (mg/dl; n = 60–100) 91.5 (75–142) 94 (78–151) 2.50

Urine 0.00

Osmolarity (mosm/kg; n = 50–1200) 152.65 (88–214.2) 112.75 (49–214) − 39.90

Na + (mmol/l; n = 22.3–200.1) 70.54 (42–82.94) 64.48 (47.3–95) − 6.07

K + (mmol/l; n = 20.6–101.9) 100.5 (76–125) 174 (131–217) 73.50

Cl − (mmol/l; n = 27–225) 3.96 (2.63–6.3) 4.3 (2.6–8.8) 0.34

Creat (mg/dl; n = 0–37.7) 5.06 (1.82–6.21) 3.9 (3.1–6.33) − 1.16

Ca/Creat (mmol/g creat; n = 0.3–6.1) 0.4 (0.4–0.4) 6.63 (1.6–27.09) 6.23

Mg/Creat (mmol/g creat; n = 0.74–4.53) 1.43 (0.7136–2.0) 1.31 (0.673–1.98) − 0.11

Creat, creatinine; eGFR, estimated glomerular filtration rate; PTH, parathyroid hormone.
Values represent the median [min; max] of 6 patients following p.o. 10 mg dapagliflozin for 15 days.
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Figure 6. Dapagliflozin and serum Mg 2+ and K + levels in patients 
with ADKH-RRAGD. Serum (a) Mg 2+ and (b) K + levels at day
0 (baseline) and after 15 days of 10 mg dapagliflozin treatment 
(dapa) in 6 patients with ADKH-RRAGD. Data points represent in-
dividuals. ADKH-RRAGD, RRAGD-associated ADKH.
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The renal phenotypes seen in patients with ADKH-
RRAGD resemble Bartter syndrome and familial hy-
pomagnesemia, hypercalciuria, and nephrocalcinosis, 
in which the TAL section of the renal tubule is 
affected. 32-35 In family 9, which is affected by the 
variant, p.(Thr97Pro), the absence of hypercalciuria 
and nephrocalcinosis more closely resembles 
Gitelman syndrome, where the Na + -Cl − cotransporter 
is impaired, suggesting a defect in the distal 
convoluted tubule. 36 This, together with the fact that 
RagD is mainly expressed in the distal segments of 
mouse nephrons, points to a TAL and distal 
convoluted tubule defect in patients with ADKH-
RRAGD. 1 Paracellular Mg 2+ and Ca 2+ transport in 
the TAL is driven by the activity of the Na + -K + -2Cl
cotransporter 2. Thus, dysfunctional Na + -K + -2Cl
cotransporter 2 could affect Mg2+ and Ca 2+

homeostasis. Our diuretics studies demonstrated that
the Na + and Cl − reabsorption in these 2 segments is 
unaffected by the RRAGD p.(Thr97Pro) variant 
because the patients remained sensitive to diuretic 
challenges. Moreover, the change in FE of Cl − 

induced by diuretics administration in patients with 
ADKH-RRAGD was comparable to the effects seen in 
healthy individuals administered with the same dose 
of diuretics and screened for the same amount of 
time as our patients. 24 Of note, our study was 
performed during clinical routine, whereas Bech 
et al. 24 controlled the chloride intake. Nevertheless, 
because patients’ response to diuretics is preserved, 
this suggests that Mg 2+ and Ca 2+ imbalances in 
patients with ADKH-RRAGD are not due to 
dysfunctions in Na + -K + -2Cl cotransporter 2 and

Na + -Cl − cotransporter but might directly target
Mg 2+ and Ca 2+ transport in the TAL and distal
convoluted tubule.

Currently, the therapeutic management of patients 
with ADKH-RRAGD focuses on symptomatic treatment 
with Mg 2+ and K + supplementation. According to 
guidelines, patients with DCM should also receive 
renin-angiotensin system and SGLT2 inhibitors. 19,20 In 
this study, we explored the impact of dapagliflozin (an 
SGLT2 inhibitor) treatment on serum Mg 2+ levels. We 
demonstrated that dapagliflozin increased serum Mg 2+ 

levels in patients with RRAGD p.(Thr97Pro) by 10% 
(i.e., by 0.04 mM). Interestingly, SGLT2 inhibitors 
have been shown to have both renal and car-
dioprotective properties in both patients with and 
without type 2 diabetes mellitus. 37,38 More recently, 
SGLT2 inhibitors have been associated with a mild 
increase in serum Mg 2+ levels (0.06–0.3 mM) in pa-
tients with diabetes with or without hypomagnesemia 
at baseline. 39-41 The mild increase in serum magnesium 
level is, however, significant because of the inherent 
difficulty to raise serum magnesium by oral 
supplementation in patients with a renal magnesium 
leak. In addition to increasing serum Mg 2+ levels, in 
separate studies, the use of SGLT2 inhibitors reduced 
mTORC1 activation in the kidney and cardiac 
myocytes, further strengthening the potential benefit 
of this drug for patients with ADKH-RRAGD. 42-44 

Although it was not investigated if mTORC1 
activation is dampened in patients upon dapagliflozin 
administration, this opens up a novel treatment 
option for patients with ADKH-RRAGD with hypo-
magnesemia, DCM, and mTORC1 overactivation.

Table 5. Summary of all identified patients with pathogenic RRAGD variants

Variants
p.

(Ser76Leu)
p.

(Ser76Trp)
p.

(Ser77Phe)
p.

(Pro88Leu)
p.

(Thr91Ile)
p.

(Thr97Pro)
p.

(Ile100Arg)
p.

(Pro119Leu)
p.

(Pro119Arg)
p.

(Ile221Lys) Total

Patients (no. of families) 9 (7) 1 (1) 1 (1) 8 (1) 4 (2) 8 (1) 2 (1) 1 (1) 2 (2) 1 (1) 37 (18)

Initial clinical presentation KT (5), 
DCM (4)

KT (1) KT (1) KT (5), 
DCM (1)

KT (4) KT (8) KT (2) DCM (1) KT (2) DCM (1) KT (28), 
DCM (7)

Childhood tubulopathies a Yes Yes Yes 3/8 3/4 2/8 1/2 Yes Yes Yes 24

Adulthood tubulopathies No No No 4/8 1/4 6/8 b 1/2 No No No 11

Hypomagnesemia Yes Yes Yes Yes Yes Yes 1/2 Yes Yes Yes 36

Nephrocalcinosis Yes Yes Yes 3/8 Yes No Yes Yes Yes Yes 22

Nephrolithiasis No No No 3/8 2/4 1/8 1/2 ? ? No 7

Polyuria 2/9 Yes Yes 2/8 No 2/8 No Yes Yes Yes 12

Metabolic alkalosis 6/9 Yes Yes ? 3/4 4/8 1/2 No No Yes 17

Childhood DCM a 4/9 No Yes No No No No Yes Yes Yes 9

Adulthood DCM 2/9 No No 2/8 No No No No No No 4

Heart transplantation 4/9 (27 yr) c No Yes (9 yr) 1/8 (43 yr) No No No No 1/2 (25 yr) Yes (15 yr) 7 (18 
yr) c

Other cardiomyopathies 1/9 No No 4/8 No No No No No No 5

DCM, dilated cardiomyopathy; KT, kidney tubulopathy; ?, unknown number of cases or has never been investigated. 
a Infancy – early adolescence (£ 18 yrs).
b some family members were incidentally diagnosed in adulthood due to family screening.
c average age.
Summary of known patients with pathogenic RRAGD variants described in this study and previous reports. 1-3,29
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However, the associated serum K + reduction (median: 
0.25 mM) warrants consideration when prescribing 
this treatment.

There are a few limitations in this study. First, HeLa 
cells lack the expression of relevant renal transporters, 
such as the claudins and Na + -K + -2Cl cotransporter 2, 
making functional studies not feasible in these cells. 
Here, we have provided evidence that mTORC1 acti-
vation is not linear to the clinical manifestations in 
HeLa cells in patients. It is, therefore, crucial to 
investigate how RRAGD variants affect renal ion 
transports and cardiac functions to further unravel the 
molecular mechanisms underlying this disease. Second, 
the dapagliflozin trial was conducted in only 1 family. 
As a part of the clinical workup, it should be empha-
sized that we did not control for the patients’ dietary 
intake. Future studies should evaluate the efficacy of 
SGLT2 inhibitors in larger cohorts with diverse 
RRAGD variants. Importantly, dapagliflozin has 
already been clinically tested for managing refractory 
hypomagnesemia and chronic cardiomyopathy. 31,40 

In conclusion, we report on a large cohort of pa-
tients with ADKH-RRAGD comprising 13 individuals 
with 3 novel RRAGD variants and present the most 
comprehensive phenotypic characterization of this 
disease to date. This work highlights the potential of 
SGLT2 inhibitors as a novel treatment option for pa-
tients with ADKH-RRAGD, particularly those with 
hypomagnesemia, DCM, and mTORC1 overactivation. 
Future studies should focus on elucidating the mech-
anisms of SGLT2 inhibitors and further assessing their 
therapeutic benefits in patients with ADKH-RRAGD.
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