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Technical and Bioethical
Challenges Associated with
using Stem Cells for Research
and Therapy

J.L. Tremoleda,”” I. de Lecuona? and S.E. Harding?

Introduction: development of cell-based therapies for
liver diseases

Millions of patients worldwide suffer from end-stage liver disease.
Orthotopic liver transplantation has rapidly advanced and is currently the
treatment of choice for patient with end-stage liver disease. However, the
procedure requires major surgery, with many liver transplant recipients
needing to spend time in intensive care units in the post-operative period,
with considerable risks for infectious complications, acute renal failure and /
or poorly functioning grafts (Razonable et al. 2011). Given the donor shortage
and that only one or two patients at most may benefit from one donor liver,
and the complexity associated with the transplantation procedure various
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alternatives have been evaluated, including cell therapies. The use of
living cells as a therapeutic source to restore, maintain and/or enhance
the liver function have numerous advantages when compared to organ
transplantation as cells can be expanded in vitro to overcome the limits of
organ shortage, cells can be genetically manipulated to correct functional
and/or metabolic alterations, cells can be cryopreserved, transplanted
without major surgical procedures and can be obtained from the same
patients avoiding major risk of rejection and need for immunosuppressive
treatments (Locke et al. 2009).Unfortunately adult hepatocytes cannot be
expanded in vitro and cryopreserved cells are easily damaged during the
freezing /thawing procedure

The transplantation of fresh isolated adult hepatocytes has been
explored as an alternative to liver transplantation. Despite some
encouraging results, demonstrating a clinical improvement for up to 12
mon following hepatocyte transplantation, this approach is hampered by
the heterogeneity of patients treated, variety of transplantation reports
with different setting and follow up studies (Sancho-Bru et al. 2009) and,
importantly, the difficulties in harvesting and storing sufficient quantities
of hepatocytes along with the significant cell loss following transplantation.
All these factors have so far limited the potential applications of using adult
hepatocytes for therapy (Han et al. 2009).

Alternative cell sources for hepatic cell therapy are being examined
and of particular interest are both adult and foetal liver stem cells and
pluripotent stem cells, with its great potential as an expandable and reliable
cell source (Table 11.1). Stem cells are undifferentiated cells capable of
proliferation, self-maintenance and are able to differentiate with plasticity
into diverse mature progeny, including hepatocytes. Indeed, hepatocyte-
like cultures have been generated in vitro from both Embryonic Stem Cells
(ESCs), human peripheral blood monocytes and bone marrow-derived
stem cells (Ruhnke et al. 2005, Agarwal et al. 2008, Chivu et al. 2009) and
their administration in rodent models has been shown to support hepatic
function (Sato et al. 2005, Moriya et al. 2008). Initial clinical pilot studies
testing the direct administration of bone marrow derived stem cells have
been encouraging, supporting and improving liver function in patients with
chronic liver disease (Terai et al. 2006, Lyra et al. 2007). Indeed, Bone Marrow
Stem Cells (BMSCs) have long been recognized as possessing potential to
support hepatic population. A mobilization of the bone marrow derived
hematopoietic stem cells fraction has been observed during hepatic injury
and seems to play an important role in hepatic regeneration (Russo et al.
2006). However, the bone marrow derived mesenchymal stem cell fraction
can potentially contribute to liver fibrosis (Forbes et al. 2004), highlighting
the complexity of the injury/regeneration process in the liver. Further
revisions on the role of bone marrow-derived hepatocytes in preclinical and



156  Regenerative Medicine, Stem Cells and the Liver

clinical studies have indeed highlighted remarkable differences in the way
that cells may support this cellular regenerative process and this is likely to
have an important impact in the development of therapeutic approaches
(Stutchfield et al. 2010). Two main cellular regenerative processes to injured
liver have emerged including a) a direct contribution to the resident
hepatocyte population and progenitor cells and b) the supportive indirect
role of bone marrow derived stem cells to promote endogenous processes. In
the latter, investigations for therapies are largely focussed on investigating
the paracrine mechanism by which bone marrow stem cells may promote
tissue repair and how to mobilize the endogenous cell and/or paracrine
factors resources in the patients.

In this chapter we will address the different technical and bioethical
challenges associated with the development of stem cell treatments for
hepatic disease. The main sources of stem cells that have been proposed for
cell transplantation are described and the practical challenges for their use
as models of human disease and their potential for clinical applications are
discussed, with a particular emphasis on the use of induced reprogrammed
pluripotent stem cells.

Sources of stem cells for cell therapy

1. Embryonic stem cells

ESCs are pluripotent cells derived from the inner cell mass of the blastocyst-
stage embryos and possess potent differentiation potential as they can
generate any differentiated phenotype of the three primary germ layers
(endoderm, mesoderm and ectoderm), as well as germ cells (Thompson
et al. 1998). Moreover, due to their capacity for self-renewal they can
theoretically provide an unlimited supply of cells that could be differentiated
into hepatocytes to support regeneration of the diseased liver. In vitro
differentiation of ESCs towards the hepatic lineage is well documented,
generating functional but immature hepatocytes (Yamamoto et al. 2003,
Agarwal et al. 2008) and when they are transplanted in animal models of
hepatic disease, these ESCs-derived hepatocytes were able to engraft in
the damaged liver and support differentiation towards hepatocytes but
with limited regenerative and function capacity (Heo et al. 2006). Ongoing
studies are focussed on improving the differentiation protocols to generate
more robust hepatocyte-like cells from ESCs with greater functional and
regenerative properties (Hay et al. 2008, 2011, Payne et al. 2011).
However, bridging the therapeutic potential of human Embryonic
Stem Cells (hESCs) towards its clinical applications has raised one of the
most controversial debated areas in scientific research. This debate largely
revolves around the ethical implications of using human embryos as the
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main source for obtaining these promising stem cells, mostly from surplus
embryos created for the purpose of assisted reproduction. Such controversy
also derives from the potential application of somatic cell nuclear transfer
to generate blastocysts in order to produce immunologically compatible
hESC lines for therapeutic use in patients. The most controversial argument
against the research with human embryonic stem cells is that this technique
involves the use of human embryos and, as largely argued, this represents
the destruction of human life for those who considers life begins at
conception (Green 2007). Similarly, the creation of embryos specifically
for the sole purpose of deriving stem cells may have more considerable
moral implications than using surplus embryos that would eventually be
destroyed. The main point of argument is that there are two approaches to
assess the embryo, the biological one, by which that embryo is part of the
development process as proven scientific consensus and the metaphysic-
theological approach which debates the issue strictly in terms of absolute
moral values. In this vein, any regulatory system should be based on
scientific facts and integrating the real facts that affect society, not in specific
moral beliefs (Casado and Egozcue 2000).

Opponents to the use of embryonic stem cells cite the advantages of
adult stem cells and, more recently, induced pluripotent stem cells. The
moral objection to ESCs has had the effect of driving forward the research in
these alternative areas more strongly. On the one hand, this can be beneficial
in developing new lines of enquiry, but it may also have the consequence
of accepting a lower standard of human material.

Furthermore translational research with human ESCs has also raised
other controversies related to the mixing of human and animal cells or
DNA. Studies using chimaeras are common in biomedical research and
introduction of human DNA into animal cell lines (or vice versa) is an
everyday occurrence. Vaccines and xenotransplantation research represent
some of the more visible examples in which animal-human mixing has
been routinely applied. Similarly, human ES cells are implanted into
immunodeficient mice to test for teratoma formation as the standard to
assess stem cell quality and developmental potential (Lensch et al. 2007).
Indeed, the International Society for Stem Cell Research (ISSCR) endorse
the use of these forms of human/animal chimeras on which a limited
number of human cells are introduced at any stage of pre-or post-natal
development, and where incorporation into any lineage or tissue is likely to
be minimal. However, those protocols in which human cells may contribute
a significant degree of chimerism to the central nervous system and/or
germ line raised serious ethical concerns as prospects that they may develop
human features. This is especially concerns when human ES cells might be
incorporated into the brain or gonads of a closely related primate (Hyun
et al. 2007). The National Academy of Sciences (NAS) and the ISSCR have
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Where does this close?

formulated guidelines for involving human-animal chimeras and
recommend that ‘&f research involving the introduction of human ES cells
into nonhuman animals at any stage of pre/post-natal development should
be reviewed by the Embryonic Stem Cell Research Oversight committees

(ESCRO; NRC-U.S; eir opposition to research in which
human ES cells are introduced into non-human primate blas

implantation embryos), as well as the breeding of any animal into which
human embryonic ES cells have been introduced.

Another aspect associated to the clinical use of human ESC-derived
therapies into patients is the potential risk of teratoma formation and the
immunocompatibility issues following transplantation. Several preclinical
studies are addressing the safety issues related to phenotype stability of the
derived ESCs but the real proof remains to be validated through long-term
trials (Wu et al. 2007). Similarly, there are concerns about the compatibility
between ESCs-derived tissues between patients. Even though ESCs seem to
display a certain degree of immune privilege due to their minor expression
of histocompatibility antigens, it has been shown to be sufficient to induce
an acute rejection in differentiated tissues derived from ESCs (Robertson et
al. 2007). Several approaches have been proposed to overcome the immune
barrier including the use of somatic cell nuclear transfer from given donors
to generate blastocysts and their derived patient-specific hESCs lines that are
immunologically compatible for therapeutic use. However, as mentioned
there are also serious ethical concerns with the use nuclear transfer technique
in human embryos and the targeted “creation” of human embryos for the
sole purpose of deriving hESCs.

Professional groups including the NAS in the US, the Human
Fertilisation and Embryology Authority within the UK and the ISSCR
clearly oppose to reproductively clone humans and prohibit in vitro culture
of human embryos beyond 14 d. These guidelines allow the derivation of
human ESCs lines from excess embryos from IVF, from embryos created
explicitly for human ESC research, or from embryos created by therapeutic
cloning, including the necessity for appropriately detailed and informed
consent. Such approval would be only granted where the research is
“necessary or desirable” and the use of human embryos is essential. It is
of interest that these guidelines also include the possibility for interspecies
mixing, in particular regarding the production of cybrids, in which human
somatic cell nuclei are introduced into enucleated animal oocytes to induce
reprogramming. Such procedures have been recently approved in the
UK but only after a considerable debate (St John and Lovell-Badge 2007).
While the use of this technology may overcome the difficulties of using
human oocytes to carry out similar procedures, mostly compromised by
the shortage of donated human oocytes (Holden 2005), there are important
scientific concerns mostly associated with the presence of both animal
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and human mitochondria (St John and Schatten 2004). The overall idea is
that stem cells obtained from human-nonhuman cybrid embryos could
be suitable for in vitro purposes of studying human diseases, despite
the presence of animal mitochondria (St John and Lovell-Badge 2007).
However, these cells may not be fully functional after transplantation in
vivo into animal models as mitochondrial function would be essential in this
setting. Similar to nuclear transfer, the complexity and poor understanding
of the intrinsic mechanisms along with the limited results have critically
compromised the further progression of this technique.

2. Adult stem/progenitor liver cells and bone marrow
stem cells

The postnatal liver has an extensive regenerative potential grossly
supported by the presence of a progenitor cell population and the plasticity
of the hepatocyte. In response to an injury and/or regenerative stimulus,
the normally quiescent hepatocytes will become activated and initially
drive the regeneration response. However, such regenerative response of
resident hepatocytes may be overwhelmed and /or compromised and then
the Hepatic Progenitor Cell population (HPCs) will support the hepatic
regeneration, as detected in several hepatopathies (Zhou et al. 2007).
However, the identification and further characterization of this putative
liver progenitor cell population remains controversial and warrants further
research. To add to the complexity, the presence of such cell populations
in the liver has been related to the existence of multiple stem cell niches
within the liver that can become activated depending on the mechanisms
and location of injury (Petersen and Shupe 2008). In rodents these liver stem
cells have been termed oval cells and are capable of differentiation into both
hepatocytes and biliary epithelia. In humans, the presence of a similar stem
cell niche population in the adult liver and their role in hepatic regeneration
remains uncertain. Despite all these hurdles, the potential application of
these adult stem/progenitor cells remains interesting as it avoids many of
the ethical issues related to ESCs and safety issues associated to teratoma
formation, allowing the development of autologous transplantation with
no need for immunosupression. Ongoing studies are focussing on the
characterization of these liver stem cells and their functional regenerative
role during liver disease.

Although liver regeneration is mainly an endogenous process, the
supportive role of extra-hepatic Bone Marrow Stem Cells (BMSC), in
particular the HSCs subpopulation, that migrate into the liver and contribute
to its regeneration has long been recognized (Petersen et al. 1999, Forbes et al.
2004). Several hypotheses about the mechanism by which BMSC contribute
to liver regeneration have included differentiation into hepatocytes, cell
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fusion with hepatocytes to form cell hybrids and stimulation of paracrine
effects (Stutchfield et al. 2010). Although transdifferentiation of progenitor
cells into hepatocytes and the differentiation of hepatocyte like cells have
been demonstrated, the mechanism that seems to be more favourable
clinically is the role of BMSCs in modulating the endogenous repair
mechanisms through their paracrine effects promoting angiogenesis which
is crucial to liver regeneration (Beaudry et al. 2007).

HPCs and/or BMSCs have relevant benefits as cell sources for
autologous transplantation in liver disease. However, there are some critical
issues associated with, their identification and characterization, to obtain a
well-standardized homogeneous cell population, and further concerns over
the phenotypic stability of the engrafted BMSCs, their risk for contributing
to liver fibrosis and whether the regenerative potential of cells derived
from diseased patients may already be critically compromised. Despite all,
autologous stem cells derived from bone marrow are the only stem cell type
to have undergone clinical investigation to date. However, published studies
have been small and mostly reporting safety, with limited information on
efficacy of repair (Piscaglia et al. 2010). Further randomized controlled trials
are needed to establish a genuine role of these cells in liver repair.

3. Alternatives approaches to deriving pluripotent stem
cell lines

There is a general agreement on the great potential for human health in
cellular-based therapies. Through recent years we have seen extensive
debates discussing alternative sources to obtain pluripotent cells, with
the aim to reinforce the development of these cell-based therapies and to
bring new resources that may help to somehow soften the stringent attitude
overshadowed by all the debate on the use of human embryos as a source
(Fig. 11.1).

One proposed method is a modified approach for the nuclear transfer
technique, in which a single blastomere from an eight to 16-cell embryo
is used to create a hESC line while not compromising the potential of the
embryo to develop further. This has been successfully carried out in mice
(Chung et al. 2006) and it is also clinically used for Preimplantation Genetic
Diagnosis (PGD). The isolated cell can be cultured, expanded and used for
genetic diagnosis and the derivation of embryonic stem cells line. With more
than a decade of experience in this technology and hundreds of children
born following PGD, the evidence suggests that the procedure does not
impair the embryo’s developmental capacity with no proven risk for higher
malformations or related developmental problems in the born children
(Verlinsky et al. 2004). Moreover, researchers have reported the successful
development of pluripotent stem cells lines from single cells taken from
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Figure 11.1. Approaches to generating pluripotent stem cells: Derivation of human embryonic
stem cells from the inner cell mass of blastocysts that form after fertilization of the oocyte
by spermatozoa, after somatic-cell nuclear transfer into an enucleated oocyte or by direct
activation of the oocyte (parthenogenesis). Alternatively, pluripotent stem cells can be obtained
by direct reprogramming of somatic cells by culture with factors such as Oct4, c-Myc, Sox2,
Nanog (induced pluripotent stem cells: iPSCs). ESCs: embryonic stem cells.

thawed human embryos (Klimanskaya et al. 2006), providing the proof-of-
concept for the feasibility of this approach. However, it is not clear that this
could be implemented as a routine approach for couples undergoing ART
procedures, as they would more likely opt for implanting an embryo that
has not been exposed to such manipulations. Although evidence suggests
the removal of a single blastomere imposes very little risk on a child that is
born as a result of this procedure, there is much uncertainty about whether
such an approach could become a standard procedure for isolating and
developing personalized pluripotent stem cell lines from hESCs.

Another potential source of pluripotent embryonic stem cells is through
parthenogenesis, which involves the development of an embryo directly
from an oocyte without fertilization by sperm. Parthenogenetic oocyte
activation can be induced in the absence of spermatozoa by exposure to
certain chemicals (e.g., ionomycin, cycloheximide) and physical stimuli
(e.g., electric stimulation) in various mammalian species including humans
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(Revazova et al. 2007). Although parthenote embryos do not produce viable
offspring (both maternal and paternal gene imprinting are required for
development), the derived ESCs can differentiate into cellular derivatives
in vitro and form teratomas in vivo (Lengerke et al. 2007). Despite such
characteristics, the potential clinical application of parthenogenetic
human ESCs has not been very attractive mostly due to observations that
parthenote-derived cells are not genetically identical to the oocyte donor
raising immunocompatibility concerns for clinical transplantation. Also
there is the question whether the absence of paternal imprinting will
affect the normal development of these cells, and the fact that the source of
oocytes are very restricted and limited to the patients that are able to donate
an oocyte. For all these issues parthenogenesis remains a controversial
approach for deriving pluripotent human ESCs, mostly associated to its
“artificiality” and their lacking of full developmental capacity.

Taking into account the ethical, social and legal implications involved,
and with new discoveries in the area of cellular reprogramming research,
seeking to reprogram adult somatic cells to become pluripotent represents a
very promising approach and hence the large amount of public support and
high number of research groups working in this field. With the pioneering
work of Yamanaka’s group (Takahashi and Yamanaka 2006) reporting the
generation of ESCs from an adult fibroblasts by forcing the expression of
specific genes and changing the epigenetic status of the adult differentiated
cell to become a pluripotent cell, has brought a whole new perspective
in the stem cell field. Undoubtedly, this opens whole new perspectives
for continuing the development of stem-cell derived therapies, as such
technology might obviate the need for destroying the embryo and have
great potentially facilitating the derivation of an immune compatible
cell-based therapeutic products from patients, overcoming the need for
immunosuppressive treatments. However, all the gene manipulation
work also raises some other safety and bioethical concerns regarding the
epigenetic stability of the differentiated cell state.

Finally another approach of remarkable growing interest is the
induction of transdifferentiation of somatic cells into other differentiated
lineages. Indeed, this approach argues whether cells can be induced to
“transdifferentiate” directly into another state of differentiation, converting
from a somatic cell type to another type without first reprogramming into
pluripotent cells (Graf and Enver 2009). This transdifferentiaton between
somatic cell lines of cells it is well reported in several studies, with examples
of conversion within the same germinal layer such as fibroblast into muscle
cells (Weintraub et al. 1989) within the hematopoietic lineage converting T
and B-cells into macrophages (Xie et al. 2004) and cardiac fibroblasts into
cardiomyocytes-like cells (Ieda et al. 2010). Recent studies have reported the
transdifferentiation potential between different germ layers, Vierbuchen et
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al. (2010) converted fibroblast (mesoderm) to neurons-like cells (ectoderm)
and Efe et al. (2011) converted mouse fibroblast to cardiomyocytes, shedding
some new light on the biology underlying cell differentiation and cell-fate,
suggesting new avenues for induced reprogramming protocols obviating
the need to pass through a pluripotent state.

Overall, this approach for inducing differentiation is increasingly
being investigated and ongoing research is providing good evidence of cell
plasticity; however it also brings with it the risk of aberrant gene expression
patterns and therefore serious consequences for its clinical use.

Prospects of iPSCs for disease modelling and cell
transplantation

Recently, the generation of Hepatocyte-Like Cells (HLCs) has also been
demonstrated to be feasible with human-induced pluripotent stem cells
(iPSCs) (Song et al. 2009, Sullivan et al. 2010, Touboul et al. 2010, Si-Tayeb
et al. 2010). IPSCs appear to be a promising source for the generation of
hepatocyte-like cells that could provide a defined and renewable source of
human cells relevant for cell therapies and pharmacological in vitro testing.
But there are several technical challenges regarding the reprogramming
procedure and the expansion and derivation of pluripotent-induced cells
and their differentiation towards functional hepatocytes. These issues will
be discussed below.

1. Introduction to cell reprogramming and induction of
pluripotency: technical issues

Cells are characterized by their gene expression patterns and function.
For a cell to achieve its differentiated status during development a series
of changes which take place in a tightly regulated manner to allow the
adequate modifications in the genetic profile and function. To investigate
these epigenetic changes is crucial to understand how cell fates are regulated
and thus how can this be controlled physically.

During development, cells proceed from a state of totipotency,
pluripotency to a more differentiated and tissue restricted fate. As the
embryo develops, forming the trophoblast lineage and the inner cell mass,
cells are characterized as pluripotent because they can be differentiated into
all somatic cells and germ line cells of the developing embryo. Such changes
through the cell potency to differentiate into specific lineages depend on
tightly regulated intrinsic molecular signalling pathways. However, cell fates
during development are neither restrictive nor irreversible. Initial studies
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in cell reprogramming, using nuclear transplantation of somatic nuclei into
eggs (Gurdon 1962) showed that the epigenome of differentiated cells can
be reset to a pluripotent state. Thus to elucidate the factors that maintain
the pluripotent state of the early embryonic cells and their modulation
during differentiation is the key to understand the potential application of
reprogramming cell technology in basic and translational research.
Reprogramming of somatic cells to pluripotency is accompanied by
extensive remodelling and epigenetic modifications. Despite the research
much remains to be understood about the nature of gene regulation
during iPSCs formation. Although several strategies are used to induce
reprogramming, only a small fraction of the initial cells will become iPSCs,

with the first reprogrammed cells appearing no earlier W
expression of the reprogramming factors (Jaenisch and “oung 2008). The

determination of efficiency of in vitro reprogramming is typically based upon
the arbitrary appearance of iPSCs colonies and being calculated by the cells
that expressed pluripotency markers (Hanna et al. 2010). This methodology,
while informative, remains purely descriptive and provides very limited
information on intrinsic cell changes and their expansion and differentiation
potential. Moreover, it does not account for differences in cell population
size, cell division times, fluctuations in the number of cells that are lost or
undergoing apoptosis during passaging and cell culture raises variability
among the cell population undergoing reprogramming.

Many studies suggest that somatic cells can be reprogrammed
effectively to a pluripotent state with molecular and biological characteristics
indistinguishable to those for ESCs. However, it is important to realize
that accurate and quantifiable assessment of these characteristics remains
challenging mostly due to the methodological limitations and the
complexity of the dynamics of the cellular reprogramming process. Some
of the main limitations that may affect the gene expression of the iPSC and
their biological characteristics are the presence and incomplete silencing of
the reprogramming transgene used to induce the reprogramming the cells
of origin (Kim et al. 2010, Sullivan et al. 2010 i
perturb the identity and functionality of the induced cells. Another factor is
that the in vivo developmental competency of the iPSCS may also depend on
the original genetic background of the cells of origin, and they may respond
differently to the induced reprogramming. Other critical parameters relate
to the effects of the expanding protocols as reprogrammed cells may adapt
differently to culture conditions. Overall these constraints may affect the
epigenetic state and biology of the iPSCs which can translate into serious
genetic deregulation events and abnormal developmental potential.

One of the main issues regarding the potential use of iPSCs in the
clinics as a good alternative to hESCs is how similar these pluripotent
reprogrammed cells are to ESCs. Are iPSCs equivalent to ESCs? Have the
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iPSCs the same differentiation potency as their embryonic counterparts? Can
the genetic and/or epigenetic profile of the reprogrammed cells be affected
or destabilized during differentiation to targeted lineages and/or during
transplantation, generating cells that are different from those derived from
ESCs? All these questions raise important biological issues regarding the
safety and the efficacious use of this cell source for developing cell-based
therapies, and also its ethical and legal implications.

Biological assays and gene expression studies are the main criteria
generally used to assess the quality of the iPSCs. The chimera formation and
germ line contributions assays by which iPSCs derived cells prove capable
of forming all cell types of the body are crucial to prove that the iPSCs are
pluripotent. In fact in mice it has been proven that the iPSCs have the same
developmental potential as ESCs (Zhao et al. 2009). However, these types of
assays are impossible in the human system (Lensch et al. 2007, Dolgin 2010).
In this field most tests rely on in vitro pluripotency assays and teratoma
formation. Indeed, the teratoma assay is currently the only established
means of demonstrating how human iPSCs possess pluripotency when
placed in an in vivo system. However, this approach remains a qualitative
test and it is difficult to have a quantitative comparative approach with
this type of assay. Other tests relying on identifying the genetic signature
of these cells allow for a more comparative approach between iPSCs and
ESCs. Several studies have indicated the similarities between these cells
but the gene expression signatures remain controversial, in particular in
early passage iPSCs lines in which larger variation in chromatin structure
and gene expression are observed (largely associated with the residual

epigenetic memory of the cell of origin (Polo et al. 2010)), and thi
affect their differentiation potential (Sullivan etét: . The fact that such

patterns are not seen in ESCs derived from nuclear transfer suggests that
reprogramming in vitro with transcription factors may be suboptimal.
Several studies have reported differences in gene expression, patterns
of DNA methylation and differentiation potential (Chin et al. 2009, Doi
et al. 2009, Hu et al. 2010). Many of these studies have focussed on few
cell lines and therefore it is difficult to systematically study the role of
epigenetic and transcriptional variation. In a recent study researchers
tested a large panel of 16 iPSCs lines derived from multiple donors of
varying age, sex and health status and examined their pluripotency and
their ability to generate terminally differentiated cells, in particular, motor
neurons (Boulting et al. 2011). Most of the iPSCs were capable of expressing
similar pluripotent markers and generating functional neurons under a
stringent standard protocol in a very efficient manner. These procedures
were highly reproducible between laboratories, indicating the robustness
of the standardized protocols as quality control for this stem cell resource.
This extensive study found that human iPSCs could be differentiated on
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average as well as hESCs, supporting their similarities. Although there
were some variations in the differentiation efficiency from individual
human iPSCs, these differences were highly reproducible suggesting that
this may be related to intrinsic characteristics of the cell lines and
reprogramming.

Interestingly, in a recent study Sullivan et a 10), showed that iPSCs
lines derived from both female and male sexes and from two different
ethnicities (North-American Indian and Caucasian) could be successfully
differentiated to hepatocytes-like cells at efficiency similar to that for
human ESCs (iPSCs efficiency of 70-90% vs. hESCs efficiency of 90-95%).
It was suggested that iPSCs may prove a more uniform starting cell pool
for derivation hence the better response to the differentiation protocols but
iPSC-derived hepatocytes seem to be less functional that those derived from
hESCs. Further research is required to clarify these possible differences in
susceptibility to differentiation and function between pluripotent cell lines.
Such studies are the key to the progression of these iPSCs derived cells
towards modelling and clinical use.

2. Applications for modeling human diseases

Human pluripotent stem cells have the potential to generate all tissues
of the body (Thomson et al. 1998, Park et al. 2008) which present@€xciting
opportunities for in vitro modelling of specific human disedaSes. They have
great potential for investigating pathogenesis, aidiag therapeutic discovery
and exploring functional genomics (Colméfin and Dreesen 2009, Freund
and Mummery 2009), in particular for those disorders without suitable
animal models and/or those previously lacking lineage specific cells for
in vitro studies (Fig. 11.2).

Itis hoped that human iPSC-derived cells can provide complementary
information even for diseases in which animal models are available. The
limitations of animal models are being realized, especially by pharmaceutical
companies who have experienced high attrition rates when compounds
are transferred from animal experiments to human. The initial approach
evolved from researchers isolating cells from preimplantation embryos
used for genetic diagnosis purposes and deriving “disease-specific” human
embryonic stem cells from the embryos affected by some genetic disorders
such as cystic fibrosis and Huntington’s disease (Mateizel et al. 2006).
This allowed for the generation of mutant hESC lines that could be used
as disease models. In this vein, the development of pluripotent stem cells
derived from reprogrammed adult somatic cells harvested from patients
with specific disorders provides new scope for creating disease-specific cell
lines for modelling (Saha and Jaenisch 2009). These techniques have been
applied successfully to blood and skin derived cells and their potential to
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Reprogramming factors/delivery method
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reprogramming I
Desired properties: Critical Technical Issues:
= Proliferation in undifferentiated state: limitless = Stability of pluripotent status and risk of genetic
expansion aberrations
. Renewable source of cells for therapeutic . Transgene-containing iPSCs: generation of
purposes vector-free reprogrammed cells
. Directed production of specific cell lineages. . Poor reprogramming efficiency and heterogeneity
- Genotype and phenotype stability of epigenetic signatures
. Immuno-compatibility - Tumorigenicity
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Figure 11.2. Schematic representation of the generation process of iPSCs and their research and
clinical applications: different tools can be used to reprogram different adult cells inducing
it to become an “undifferentiated” and to regain pluripotency; A number of desirable factors
influencing the properties of induced pluripotent stem cells and constraints that may affect
their biology and potential clinical use.

progress towards a disease phenotype has been demonstrated (Ebert et al.
2009, Raya et al. 2009).

We will now address the practicalities and critical issues associated with
the development of cell sources for modelling from human iPSCs.

2.1 Harvesting cells from a patient and induction of
pluripotency

Somatic cells are harvested from patients; this is usually done by tissue
biopsy or blood sampling (e.g., a cell fraction expressing the surface protein
CD34 from the general blood sample or fibroblasts from skin samples). Then
reprogramming protocols will be implemented to generate cell lines that
will be critically screened for their pluripotent phenotype.

The direct reprogramming strategies currently available are using viral
vectors generating human iPSCS with multiple integrated copies of these viral
transgenes. The possibility of persistence of these integrated reprogramming
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vectors in the disease specific human derived iPSCs poses the risk of being
reactivated during further development and/or differentiation during
disease modelling leading towards abnormal and / or cancerous phenotypes.
This is of lesser relevance for modelling than for clinical studies, but still
has the potential to disrupt experimental results. A well reported example
is the use of the transcription factor c-Myc which studies have shown that
led to high incidence of tumours in chimeras generated from mouse iPSCs
(Nakagawa et al. 2008). Thus it is vital to develop alternative methods to
induce cell reprogramming without using viral vectors and c-Myc. Studies
using lentiviral vectors with the Cre-recombinase enzyme have shown to
induce a higher reprogramming efficiency and vector deletion, but viral
elements still remain. Other strategies such as the use of peptide or small

molecules to induce reprogramming in the cells without the integratio Prl]ea?e EE==lcEl
any viral derived factors have extremely low efficienc Stll tobe |1
fully validated (O’Malley et al. 2009- ng)-:

2.2 Induced differentiation to specific cell lineages

In order to fully investigate the disease cell phenotype we will require
protocols to differentiate iPSCs to functional somatic cells. Several studies
have successfully reported the differentiation of HiPSCs into different

cell lineages (neuronal: Chambers et al. 2009, hepatocytes: Sullivafi et

al. 2010-see Fig 11.3; fibroblasts: Hokemeyer et al. 2008). However, such
protocols are not well standardized, with different time courses and varying
effectiveness between lines. Differentiated cells will undergo an extensive
functional and biochemical analysis to identify their phenotype and how
its matches the specific phenotype associated to the disease pathology.
Due to the complexity of multigenetic disorders, this approach is mostly
valuable for those monogenic disorders with well characterized phenotype
disorder patterns (Raya et al. 2009, Ebert et al. 2009). The application of this
approach for disorders with more complex genetic phenotypes associated to
multifactorial disorders remains rather difficult. Indeed, disease associated
to complex and significant epigenetic modifications pose a serious challenge
for modelling. It is clear that obtaining a disease related phenotype from a
given patient will critically depend on the characterization of the disease
phenotype and its comparison with healthy control induced pluripotent
cells. In addition, most derived cells will display immature phenotypes
compared to authentic adult cells. Certain aspects of pathology are likely
only to be observed in the adult phenotype. To complicate matters,
development of disease can be associated with regression to a foetal
phenotype, for example in heart, making it difficult to distinguish between
immaturity and disease-related characteristics.
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Phase Contrast microscopy images of hepatocyte-llke cells der/ved from hESCs (A) and h/PSCs
(B). Images provided by Dr Claire N. Medine (MRC CRM, University of Edinburgh)

Figure 11.3. Phase Contrast microscopy images of hepatocytes derived from H1-hESCs (A)
and hiPSCs human iPSCs cells. Images kindly provided by Dr Claire N. Medine (MRC CRM,
University of Edinburgh).

2.3 Generation of disease-relevant phenotypes from the
pluripotent iPSCs

The main objective is to ensure that efficient differentiation methods
are implemented to induce the differentiation of the pluripotent iPSCs
derived from specific patients towards the disease-relevant phenotype (Fig.
11.2). The use of reporter genes is extensively applied to identify genetic
modifications during cell differentiation to specific phenotypes, which may
help to understand the dynamics of genetic changes associated to specific
progression towards a disease phenotype. However, the integration of
these reporter genes can also be quite inefficient for human ESCs, with
limited transduction efficiency (Xia et al. 2007). Nevertheless, this is a
growing area of research and new techniques are evolving to facilitate the
incorporation of reporter genes for targetting endogenous genes in human
iPSCS (Hockemeyer et al. 2009).

Remarkable progress has already been made with some cases of
modelling monogenic diseases and some complex genetic disorders with
early or short term developmental pathogenesis. Park et al. (2008) reported
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the production of human iPSC lines for 10 diseases, ranging from simple |delete cell
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to complex conditions (e.g., Parkinson’s disease and Type 1 Diab
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perspectives for developing new sources of hepatocytes from iPSCs derived
from patients suffering form polymorphic metabolic disorders and other
liver associated disease genotypes (e.g., alpha-1-antitrypsin), to model liver
disorders in vitro allowing for the development of novel biomarkers and in
vitro drug toxicity assays.

Another challenging factor is that the relevant —disease specific
phenotype may also require specific environmental stimuli, from the
neighbouring cells and surrounding tissues, cell matrix and mechano-
physical properties. Therefore we need to provide an in vitro environment
that will mimic this extracellular milieu during co culture of the differentiated
disease-specific human iPSCs. Extensive work is ongoing in the field of
biomaterial engineering to develop powerful supportive co culture in vitro
systems to provide effective rich context for studying disease related cell-cell
interactions and extracellular matrix effects (Guilak et al. 2009). The use of
iPSCs derivatives with several bioactive materials and other evolving 2D
and 3D scaffolds (Hay et al. 2011) may open new perspectives for cell culture,
studying differentiation and disease modelling. A particular example for the
liver is the development of micro patterned cell clusters from human hepatic
cells to study liver function and hepatotoxicity assays (Khetani and Bhatia
2008). Recently Spence et al. (2011) efficiently directed the differentiation
of human IPSCs into a three dimensional functional intestine which has
great potential for generating intestinal tissue ex vivo.

Nevertheless, there are still some limitations when modelling human
disorders, the latent period associated with some disorders such as
Alzheimer’s or late onset Parkinson’s disease are especially difficult to
mimic. Therefore for some diseases, an in vivo approach may be more
suitable. Chimera assays provide a long-term access to complex and
changing environment context for studying iPSCs; however there are some
ethical concerns associated with this experimental approach. Human-
animal interspecies chimeras can be generated by grafting pluripotent
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cells into embryos, feotuses or adult animals (see Behringer 2007). The
transplantation of human cells into immunocompromised animal models
is extensively used in regenerative research. Similarly, humanized mouse
models are being developed with successful hematopoietic, neural and
hepatic reconstitution with human stem cell derivatives (Friese et al. 2006).
In particular, a hepatocyte-humanized mouse has been generated for
exhibition of human-type responses for drug-related cytotoxicity assays
and studying the pathogenesis of some viral infections (Kneteman and
Mercer 2005).

3. Perspectives for clinical applications of IPSCs:
Bioethical, legal and social issues

Despite the rapid progress in understanding cellular reprogramming to
induce pluripotency, many technical and biological hurdles remain before
their translation into clinical applications. Summing up the main challenges
already discussed, including the inefficient direct reprogramming
methodology, the difficulties for expanding the induced pluripotent cells
in a robust and stable manner and the standardization of the molecular
profiling on the cells, it is obvious that researchers need to establish reliable
and reproducible standardized protocols to test pluripotent cell lines in
the laboratory. Despite extensive research efforts focussed in setting up
reliable test set for these cells (Boulting et al. 2011), a recent study reported
aberrant epigenomic reprogramming in five human iPSCs cells, showing
significant reprogramming variability and aberrant DNA methylation
profiles (Lister et al. 2011). Hence the importance of ensuring that extensive
and thorough studies are carried out to characterize the genomic signature

footprint in the derived cells (&
genetic elements , or using che thods (Saha and
Jaenisch 2009, Kim D et al. 200p, Hanna et a& 2 ¢) diff tation o

the induced pluripotent cells into the target cell type of choice using robust
differentiation protocols for the purpose of cell therapeutic source and /or
as supportive cell source for thie development of bioactive artificial devices.
These differentiated cells shguld be thoroughly characterized for their
genetic signature and phenotype as a quality test for their differentiation;
d) investigation of their pote%ial therapeutic interest through in vitro and
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preclinical evaluation studies; e) long term safety studies to ensure that the
cell source is safe and efficacious for human clinical use. The timescale of
this process may pose a problem for the treatment of rapidly developing
conditions.

Despite the general belief that the use of iPSCs raise fewer ethical
concerns than those related to embryonic stem cells it must be acknowledged
that, as reprogramming technology evolves, there are important dilemmas
that have to be addressed (Fig. 11.4). These divide into donor-related issues
such as the consent to donate material for iPSC derivation, and to matters
of the safety of these untested therapies as they are translated towards
clinical trials. It is crucial to realize the potential scaling prospect of the
iPSCs derivatives and to understand whether the original donor will be

Bioethical, Social and Legal issues challenges for stem cell based therapies

«Clinical needs: life threatening disorders

*Regulatory framework: patient protection and “social justice”
*Ethical debate: “use of human embryos”

*Oversight basic and translational research

*Donation of cell sources: “Informed Consent”

*Ownership of cell/tissue donations & patenting scientific discoveries
Figure 11.4. Factors influencing stem cell based therapies towards the clinics.

able to foresee a clear picture of their potential downstream use. These cells
may be used extensively by researchers who will carry out a large variety
of studies worldwide including genetic modification of the cells, preclinical
testing in animal models, large scale genome sequencing, and sharing cell
lines with other researchers. This raises issues of confidentiality protection
and also as therapeutic applications evolve further issues with patenting,
intellectual property and commercialization of the cell derivatives with/
without proprietary right and share of royalties (Lo and Parham 2009).
Several ethical, legal and social aspects must be considered for a responsible
transition of stem cell research into appropriate clinical applications, as
discussed in the Guidelines approved by the ISSCR (Hyun et al. 2008).

It may also be envisaged that selecting which disorders should be
targeted for such experimental therapies is likely to raise a substantial
bioethical debate. Clearly this is going to be a political decision that
could be supported by legislation promoting specific areas of research.
However, such legal response should also be supported by a social debate,
where the scientific background, with its expectations and limitations,
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are clearly discussed. It is important to not generate false expectations or
misconceptions in patients affected by the disease being studied.

3.1 Oversight of iPSC research and translation

First of all, it is imperative that individuals with stem-cell-specific expertise
assist in the assessment of translational research, supporting an independent
and thorough oversight of the studies that will lead to the clinical trials. This
will involve a good scientific evaluation of the in vitro and in vivo preclinical
studies that will form the basis for proceeding towards clinical application.
This is particularly relevant when assessing potential treatment with iPSCs
as there are technicalities that must be addressed as already discussed.
Approved principles of quality control must be in place to promote maximal
quality and safety of the cells to be used, and all is supervised by expert
and independent oversight committee. It is important to acknowledge the
complexities associated with some cell types and to ensure a systematic
assessment of the integrity and potency of the cell products to minimize any
risk to patients. Preclinical testing plays a key role in assessing the safety
and establishing a proof of principle for therapeutic effect. Good preclinical
studies must support the clinical strategy, providing convincing evidence
of the safety of using these cells before advancing to human studies. Some
of these studies can be particularly challenging as some human disease
conditions may not be easily translatable to animal models and also there
may be some existing physiological differences between species. Another
challenge is that stem cells can act through multiple mechanisms and thus
predicting their behaviour may prove difficult. Indeed, this is of particular
interest for the iPSCs, in which it is crucial to prove that the reprogramming
method worked well. The major stem cell banks such as the NIH’s Human
Pluripotent Stem Cell Registry requires the researchers submitting new cell
lines of teratoma formation as it is currently considered the gold standard
for assessing pluripotency. However, there is increasing debate on the
efficacy and reliability of this test (Dolgin 2010). Some researchers argue
that there may be no need to categorize for pluripotency as long as the cells
can differentiate towards the required cell phenotype, e.g., hepatocytes for
liver diseases. But others maintain that is crucial to ensure that that the cell
line’s developmental capacity is fully tested to ensure a safe and effective
derivation of differentiated cells. There is the risk that if we attempt to
shortcut the characterization of targeted derived cells from iPSCs we may
miss important developmental pathways that are key for the “normal”
differentiation of the cells towards a mature phenotype. Moreover, the
in vivo teratoma assay has the added value that cells are injected into a
living animal, thereby taking advantage of all the in situ growth factors
that help to develop three-dimensional structurized tissues. Nevertheless,
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extensive ongoing work is focused on elopment of genomic and
bioinformatics” methods as ative methods for appraising a cell line’s
pluripotency (Miiller 2810). However, until further consensus is achieved
among the stem cells community, quantitative in vitro assays may so far
remain as a good alternative in development.

These arguments demonstrated the complexity for developing reliable
translational assays hence the importance of ensuring that individuals with
stem cell expertise are involved in reviewing such translational research
and to ensure that only when compelling preclinical data are available is
there a justification for moving into clinical trials.

3.2 Consent for the derivation of human iPSCs

As with all clinical research, when planning for clinical trials of stem cell-
based interventions the internationally accepted principles governing
ethical conduct of clinical research and the protection of human subjects
must be guaranteed. This requirement is identified as a fundamental
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Undoubtedly many of the research uses with iPSCs may evoke
concerns about privacy and confidentiality. Donors may not be fully aware
of the whole research potential and they might consider certain aspects a
violation of their privacy: for example, in large scale genomic studies one
could foresee complexity with DNA databases and confidentiality issues
(Lowrance and Collins 2007). That is why it is crucial to give consent
specifically about the future consequences; it is important to realize that
to revoke the consent may not imply that the information generated until
then will all be deleted. (Seoane et al. 2008). However, the Council of
Europe permits research on identifiable bodily material without consent
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In the initial stages of translating these iPCS-derived cell based therapies,
we would envisage that the donation would be for allogeneic use towards
the development of patient-specific iPSCs derived therapies. In this case it
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may be useful that along with the voluntary informed consent, the donor is
provided with all the information related to all the preparation and health
screening of the cells, their storage and its duration and that the donor may
be approached in the future to seek additional consent for new users. A
relevant issue is the protection of donor privacy and the confidentiality of
the acquired information, and the terms for their disclosure. This can raise
some concerns on the future use of any resulting cell-derived products
and the ownership of commercial and intellectual property rights. In some
countries the regulatory bodies specifically mentioned the gratuity of the
tissue/organ donation as a principle.

A key requirement for recipients of stem cells and cell products is also
voluntary informed consent. This is particularly endorsed by the ISSCR
guidelines and also by many of the jurisdictions regulating stem cell
research in most of the westernized countries (Caufiled et al. 2007, ISSCR
Guidelines 2008, McGuire et al. 2008). Special emphasis needs to be placed
on the unique risk of stem cell-based clinical research during the informed
consent process, including cell proliferation, phenotype stability and/or
tumour development, exposure to animal source materials, risk associated
with viral vectors and possibly other unknown risks. Indeed, the informed
consent is particularly challenging for these stem-cell therapies, and thus
patients must be told about the realistic potential for therapeutic benefits
as, the consent must emphasize the novel and experimental aspects of these
cell based interventions. Information related to risk and benefits are crucial
to avoid misconception on the therapeutic outcomes. It should be noted
that for an adult who lacks capacity to make a decision regarding his/her
body material, participation in research is only lawful if the research has
the capacity to benefit the person, or where the risk involved is negligible.
Hence the importance of providing detailed recommendations for patient
selection when seeking appropriate consent for future research.

3.3 Property rights associated to iPSCs and derived products

Indeed, the use of personal genetic information by third parties has
important ethical implications, mostly associated to the commercial use
of these cells or the disclosure of personal information that could lead to
discrimination towards the donor (e.g., disclosure of genetic predisposition
could compromise employment and fairness assessment by insurance
companies). To avoid such discrimination due to genetic causes and/or
personal health, and to ensure the protection of sensitive personal medical
information, the regulatory bodies encourage a strong level of protection
and respect to such personal data as clearly stated in the article 10 of the
Private life and right to information of the Oviedo’s Convention (Cotffcil
of Europe, Convention on Human Rights and Biomedicine 1997) and its
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Additional Protocol on Biomedical Research (2004). Such guidelines and
regulations tend to protect the privacy and confidentiality of the donor,
avoiding any genetic or any kind of discrimination based on data obtained.
While one could argue that the rational use of these derived cells should be
only used for the benefit of the donor, it is important to ensure the benefits of
such research are fairly and justly shared. In this vein, another key principle
to consider is the benefit to other patients with similar disorders, not only
to those directly involved in the donation and clinical trials; in agreement
with the social justice values stated in the Universal Declaration on Bioethics
and Human Rights by the UNESCO (2005).

Bodily material collected in the course of health interventions and /or
collected and used for research purposes, with the consent of the patient
concerned, may be stored in cell banks for long term. As the collected
material (e.g., cells, tissue biopsies) have a unique identity, as they may
be derived from the body of a person, this raises important bioethical
concerns regarding the ownership and commercialization of this bodily
material. Generally there can be no property rights in a human body,
living or dead. The rights of individuals to their own bodies are not legally
of “property ownership”, as individuals cannot be owned as property
by others. However, it is well established that where body parts “have
acquired different attributes by virtue of the application of skill” then

they may become property. For example any form of tissue that has beer
processed into a product, including modified tissues or cells, m
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considered property and may legitimately be commercialized
who have undertaken the procedure and not the person
donated the source of material (Rv Kelly and Lindsa
The Human Tissue Act (UK rohibits any mercialism of human
material for transplantation, this does not cover any parts that may have
acquired the character of property by virtue of modification/application
of human skill.

Regarding the issue of commercialization fgind financial gain, The
Oviedo Convention and Additional Protocols stated that “the human
body and its parts shall not, as such, give rise tq financial gain”; as al
stated in the Convention on Human Rights and Biomedicine (Cha
prohibition of financial gain and disposal of a part of the h
However, as these body parts are “processed” they becopae property and
potentially a lucrative product for sale and resale (Huro Group on Ethics
in Science and new technologies, European Co ission 2002) creating a
whole new perspective regarding the ethical, legall and financial aspects of
commercialization of these “processed” products,

As stem cells technologies move forward, property and financial issues
are becoming increasingly relevant, and it is up to the regulatory bodies and
the oversight ethical committees to ensure that thepe are addressed with the
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appropriate proportionality, protecting the donor’s rights and providing
all the adequate information during the informed consent process but also
protecting the research community and the industry interest for continuing
advancing and investing in such technologies.

3.4 Sensitive research with iPSCs

Although there are several areas of research with iPS cells that raised
some socio-ethical concerns, the fields of transplantation into humans and
reproductive manipulation remain particularly controversial (Aalto-Setald
et al. 2009).

Despite the technical issues associated with reprogramming, we
can foresee that “virus-free reprogrammed” —iPSCs will develop in the
near future making human transplantation possible. In addition to the
development of allogeneic transplantation applications, it is very likely
that with the development of stem cell banks access to a large number of
iPSCs lines may be feasible. As previously discussed, this may raise concern
on the control that a donor may be able to exert on the iPSCs derived and
expanded from their own cells; some people may not want their cells to be
transplanted into another person, or may want to restrict the use of these
cells for particular areas of research and we should ensure that the donor’s
autonomy is thoroughly respected.

Therefore it is important that all the aspects regarding the “ownership”
of bodily parts that have been manipulated are clearly reflected in the
consent procedure and that during the informed consent procedure the
donor is provided with sufficient information about the possibility for
transplantation. Even in the case of autologous transplantation, it should
be explained that the procedure may be long and thus regular screening
of the derived cells through this period will be critical.

Furthermore, it is should be recognized that during this procedure
the donor conditions may worsen towards a terminal state of disease or a
life-threatening injury. In such conditions, it is very likely that end-of-life
decisions may affect the potential use of the donors” stem cells and/or
their derivatives. The merits of ensuring that that some kind of advance
care directives have been previously discussed and agreed with the donor
include the respect of the donor’s autonomy in decision making, the
respect to his/her personal values and the complexity of involving third
persons such as family or health care providers. Advance care directives
allow patients to provide instructions about their preferences regarding
the care they would like to receive if they develop a terminal illness or
a life-threatening condition. However, these directives cannot predict
what situation may arise in the future or what new therapies may be
available, which is particularly critical for stem cell derived treatment.
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Critically ill and / or end-of-life patients may not want to go ahead with the
stem cell treatment at that stage. A clear example is patients undergoing
hematopoietic stem cell transplantation which is a high risk procedure that
is performed with a curative intent in patients with certain hematologic
malignancies, but it is associated with significant short-term morbidity
and mortality. To confront the potential loss of decision-making capacity by
advanced patients, it is important to encourage them to engage in advance
care discussions (Joffe et al. 2007). Interestingly, some clinical studies have
shown the relevance of confronting such discussions with the patients,
indicating that the lack of engagement in advance care decision is associated
with increased mortality suggesting that patients may well benefit from
considering these issues (Ganti et al. 2007). The process of incorporating
stem cell derived therapies with advance care planning may be difficult and
complex as many of these techniques are still in development, especially
for the iPS cell technologies.

Another sensitive area of research is the differentiation of stem cells
into primordial germ cells that then can differentiate into mature gametes.
(Ko and Scholer 2006). Although gametes derived from iPSCs would be
useful for understanding the process of gametogenesis and towards the
development of therapeutic approaches for infertility, their use also raises
serious ethical concerns as they could potentially lead to the creation of
another human being. Moreover, gametes derived from iPS cells would
virtually have the same DNA as the somatic cell isolated from a specific
donor. Indeed, there is a critical moral responsibility when attempting
reproduction for the creation of embryos, since it raises all the ethical aspects
related to the moral status of the embryo and its human entity (Green 2007).
Indeed, such type of reproductive research while ethically arguable by many
as a relevant experimental approach for infertility treatments would also
create important social objections to the iPSC technology. At the early stages
of the iPSCs technology the field should try to restrict this type of research
through explicit regulations and appropriate consent from donors.

3.6 Social justice considerations

Another potential issue is related to subject selection, ensuring fair access
to well-designed clinical trials and effective stem-cell therapies without
regards to patients’ financial status, insurance coverage, social background
or beliefs. It is important that stem cell research endorse the fairness of
the social benefit of its progress. The ISSCR guidelines recommend that
researchers and regulatory bodies attend to these issues of social justice and
fairness when addressing the preparation of clinical trials and to ensure that
benefits of research and discoveries are justly shared (Hyun et al. 2008). In
this vein, the sponsor and the investigators have an ethical responsibility
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to make good efforts to secure sufficient funding to ensure that no eligible
candidates are prevented from enrolling to any trial because of their inability
to cover the costs of experimental treatment. Groups or individuals must
not be excluded from the opportunity to participate in clinical stem cell
research without rational justification.

Despite all these guidelines and the efforts of regulatory bodies,
there are growing concerns that the development of customized cells
and cellular products will remain unavailable to the vast majority of the
population, mostly for financial reasons. While it is difficult to predict the
future approach of the biotechnology industry and national health services
regarding investment on these customized stem cell based therapies, at these
early stages of translational development it is crucial that all the research
community pool their efforts to facilitate international collaborations and
universal access to stem cell-based treatment. These efforts may enable
the implementation of more efficacious and cost-effective derivation and
manufacturing procedures facilitating the establishment of large-scale banks
for the benefit of the population.

3.6 Regulatory issues relevant to cell therapy

Abroad variety of stem- cell derived products are likely to be developed for
therapeutic purposes, including simple biomaterials and autologous cells
through pluripotent, viral modified cells with full spectrum of risk for the
patients. Moreover, stem cell therapies are likely to be developed through
very different routes than pharmaceuticals and therefore guidelines for
safety and efficacy testing of pharmaceuticals and medical devices may
not be suitable for regulating such stem cell-based products. Therefore to
ensure that these are regulated in a proportionate, fair and adequate manner,
several regulatory agencies are working together to establish an effective
legislation. In particular, it is essential that countries work together to
promoting good standards and importantly, a flexible approach facilitating
the development of new treatments for the benefit of patients. It is therefore
necessary to develop a regulatory framework capable to strike the balance
between fostering research for the general benefit and the protection of
the rights, well-being and security of those involved. Again, this would
also be an active role of the oversight ethics and research committees as
previously discussed.

Stem cell therapy is considered one of the Advanced Therapy Products
(ATP), together with gene therapy and tissue engineered products.
A regulatory framework is required for these ATP’s to ensure patient
accessibility to products and governmental assistance for their regulation
and control. The guideline has to be multidisciplinary and address the
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development, manufacture and quality control, as well as the preclinical
and clinical development.

Legislation on cell therapy in Europe is based in three Directives:
Directive 2003/63/EC (amending Directive 2001/83/EC), which defines
cell therapy product as clinical products and specifies their requirements;
The Clinical Trials Directive 2001/20/EC, which lays down the rules for
conducting clinical trials to establish the safety, efficacy and quality of
medicine products approved in the EU; and The Human Tissues and Cells
Directive 2004/23 /EC which establishes the standard quality, safety for the
donation, harvesting, processing, preservation, storage and distribution of
human tissues and cells. In addition, different levels of risk can be associated
with specific types of stem cells, for example, the risk profile associated
with induced pluripotent stem cells is expected to be different from those
of adult stem cells for which substantial amount of clinical experience has
already been gained. Therefore, a specific risk based approach according
to Annex I, part IV of Dir 2001463 /EC can be applied to such pluripotent
stem cells containing medicinal pro These technical requirements
stated in this Annex are included in the Regulatio (No) 1394/2007 on
advanced therapy medicinal products which addresses gé& aspects of
manipulated and genetically modified cells. The marketing authorizat
in Europe has to be prepared through the European Medicines Agency
(EMA) which provides several guidance documents on cell-based medicinal
products (Guidelines on human cell-based medicinal products EMEA/
CHMP/410869/2006) which cover the general aspects of all cell-based
products including stem cell advanced therapy medicinal products. In
particular for stem cells that are genetically modified, of particular interest
for iPSCs, see the draft for the guidelines on the quality, preclinical and
clinical aspects of medicinal products containing genetically modified cells
(EMEA/CHMP/GTWP/671639/2010). Recently the European Medicines
Agency released a new document on drug products that are manufactured
using stem cells (EMA /CAT /571134 /2009). Titled, Reflection Paper on Stem
Cell-Based Medicinal Products, the document advises manufacturers on
quality-control issues regarding these products and provides an overview
of the use of stem cells in drug development. The document applies directly
to those companies pursuing marketing authorization for stem cell-based
products.

In the USA, the Food and Drug Administration (FDA) has jurisdiction
over the production and marketing of any stem cell-based therapy
involving transplantation of human cells into patients. The FDA provides
the regulatory structure regarding human cells, tissues and cellular and
tissue based products, covering the wide range of stem cell-based products
that may be developed for therapeutic purposes. This is subjected to the
Public Health Act, Section 361, which sets the regulatory framework that
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prevents the use of contaminated tissues or cells, limits the improper
handling of tissues and ensures the clinical safety and efficacy of cells or
tissues that are highly processed, are used for other than normal function,
are combined with non-tissue components, or are used for metabolic
purposes (FDA 1997). Stem cell-based products are also subjected to the
Public Health Act, Section 351, which regulates the licensing of biological
products to be used in studies involving humans (Halme and Kessler, 2006).
This regulation envisions most, if not all, stem cell-based therapies to be
considered biological products, and the manufacturer must ensure that
product is “safe, pure and potent” (42 USCA § 262); the application for a
new proposed stem cell-based product must provide data from preclinical
studies on the likely safety and efficacy of the investigated product; and
that approval and license of the product must be granted by the FDA once
sufficient data demonstrates that the investigational product is safe and
effective in humans. The key points of the current FDA regulation for cell
therapy products include a) demonstration of clinical safety and efficacy;
b) no risk for donors of transmission of infectious or genetic diseases; c)
no risk for recipients of contamination or other adverse effects of cells or
sample processing; d) specific and detailed determination of the type of cells
forming the product and what are their exact purity and potency; e) in vivo
safety and efficacy of the product. Moreover, specific recommendations are
included regarding the use of cells or tissue that have been manipulated
and may pose greater risk of disease transmission. Standardized procedures
for processing and testing are required for the derivation, expansion,
manipulation, banking and characterization of stem-cell products (21
C.ER. § 610.12.). There have been concerns also about the potential use
of stem cell products derived in xenogeneic feeder cells, and the FDA
has established specific testing for adventitious agents according to the
guidelines for xenotransplantation (U.S. Public Health Service Guideline
on Infectious Disease Issues in Xenotransplantation). Another area which
is becoming increasingly relevant relates to the safety concerns of cells
that have undergone genetic alterations. The possibility that induced
pluripotent cells could acquire genomic alterations that make them prone
to transformation must be considered. New technologies are evolving
to efficiently investigate genomic alterations and abnormalities. Recent
studies have shown that karyotypically normal hiPSC lines possess small
deletions and duplications that can be detectable by high profile genomic

screening (Chin 20€9y—Atthough This screening process is fast improving
and new reprogramming techniques using non-integrative techniques are
being developed, it is very likely that an IPSC line that has to be expanded
through culture for a long time will have some genomic changes. This is
challenging for the FDA when addressing the monitoring of iPSC lines; it is
very likely that their approach for approving the clinical use of these cells
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may require a diligent monitoring of genomic alterations combined with all
the other issues associated with transplantation (Lowry and Quan 2010).

There is still much work to be done and lots to be learned about the
procedures to establish the safety and efficacy of iPSC based therapy
products. The regulatory framework is very likely to evolve, as main
regulatory bodies are actively trying to work in close collaboration with
industry and academia to provide appropriate structure for ensuring
the safety and efficacy of this new generation of stem cell-base products.
Although at this stage the regulations may permit the use of xenobiotic
reagents (based on their level of safety) and even viral integrative method
for reprogramming cells (all under GMP grade approval), some effects of
genomic instability or mutagenesis might not arise until several years of
treatment. Indeed there are important hurdles to be addressed and such
collaborations with the regulatory bodies are crucial towards the generation
of safe iPSCs-based therapies.

Conclusion

Despite all the technical, ethical, social and legal hurdles associated with the
induced reprogramming technology and the derivation of iPSCs, research
in the field is rapidly advancing toward the clinic. IPSCs hold enormous
potential for fundamental stem cell research, disease modelling and clinical
therapies. The generation of isogenic cells by direct genetic reprogramming
with well defined factors through a standard and well defined protocol
seems quite challenging, but exciting times to come are just around the
corner. Recently, the field has taken an important step forward by giving
the green light for two stem cell trials, one using cells derived from hESCs
for the treatment of spinal cord injury and the other using adult stem ¢
that have been genetically engineered to be conditionally imm or the
treatment of ischemic stroke ; i - While it
is very hard to predict what will happen with any of these therapies, it is
very good to see that the fields are taking such steps forward. From this
perspective, the prospects for implementing the iPS cell technology in
disease modelling and patient specific cell therapies in the near future are
very bright. And surely it will demand a multidisciplinary cooperation
involving fundamental research, preclinical testing, clinical translation,
bioethical considerations and economical policies.

It is important to address all the technical issues and challenges that
are discussed to promote a responsible translation of stem cell research into
safe and clinically effective stem cell- based therapies for various human
disorders.
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