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Abstract
This study investigated groundwater in the central Rif region of northern Morocco by analysing 55 water sampling points to 
assess its physicochemical and hydrogeochemical properties. Through hydrochemical analysis, GIS spatial exploration, and 
multivariate statistical analysis, a direct correlation was found between EC, TDS, and major ions, influencing overall water 
mineralization. The key findings included pH levels ranging from 6.10 to 8.52, EC from 828 to 4581 μS/cm, and varying 
concentrations of Ca2+, Mg2+, Na+, K+, HCO2

–, Cl–, N–NO2
–, and SO4

2–. Notably, TDS and TH ranged from 647.19–3609.36 
mg/L and 64.23–1051.24 mg/L, respectively, with a significant portion of samples exceeding WHO guidelines, particularly 
chloride (61.81%), sulfate (92.72%), and nitrate (12.72%) samples. The Piper diagram highlights sodium chlorides (Na–Cl) 
as the predominant chemical facies (70.9%), while the Gibbs diagram emphasizes the impact of evaporation on water chem-
istry dynamics. This study revealed the complex influence of geological and anthropogenic factors on groundwater quality, 
potentially leading to seawater intrusion in coastal aquifers. The observed high mineralization and hardness levels, in addition 
to mild alkalinity, pose public health risks, underscoring the need for continuous monitoring and sustainable management 
practices in coastal groundwater management to protect human health and the environment.
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Introduction

Water is a vital resource essential for human survival, 
social progress, and economic growth. However, the dis-
tribution of these resources is not always equitable, with 
hydrospheric groundwater accounting for 2.8% of fresh-
water resources, while lakes, reservoirs, and river systems 
only contribute 0.26%. Sustainable water resource man-
agement is crucial for ensuring universal access to clean 
and sufficient water (Shiklomanov 2000).

Groundwater, known for its superior quality, regularity, 
and natural protection, plays a critical role as a water 
source in various countries and regions. It often surpasses 
surface water in quality, making it a vital water supply 
source (Dole-Olivier et al. 2005). This invaluable resource 
has diverse applications that benefit both the environment 
and society, particularly in arid and semiarid regions (Li 
et al. 2016; Wu and Sun 2016; Zabala et al. 2016; Li and 
Qian 2018).

Climate change significantly impacts groundwater, 
altering its physical and chemical properties and leading 
to changes in water availability, increased salinity, and 
pollution from extreme weather events (Dao et al. 2023). 
These effects are particularly pronounced in hot, dry 
climates reliant on groundwater (Javadinejad et al. 2019). 
Predicting the complex impacts of climate change on 
groundwater resources requires enhanced observations, 
understanding of processes, and improved modelling 
capabilities (Earman and Dettinger 2011). Additionally, 
climate change can disrupt the hydrological system, 
resulting in issues such as groundwater overexploitation, 
water table depletion, and saltwater intrusion (Islam 
and Mostafa 2024). Moreover, according to He et  al. 
(2019), the groundwater environment is significantly 
impacted by climate change and human activities such 
as rapid urbanization, intensive agricultural activities, 
and industrial development. Indeed, the overexploitation 
of natural resources, coupled with human activities, has 
deteriorated groundwater quality in the Mediterranean 
basin.

As the Mediterranean region is highly vulnerable to 
water scarcity (Margat 2008), ensuring an adequate 
groundwater supply has become crucial, and attention 
must also be directed towards preserving the quality of 
this vital resource (Aghazadeh and Mogaddam 2010; Neisi 
et al. 2018).

In Morocco, groundwater is a crucial source of water, 
particularly in the region of Al-Hoceima, which is located 
on the northern coast of the Mediterranean Sea. This area 
has high densities of natural sources for irrigation and 
drinking water consumption. However, poor water quality 
due to various types of contamination is a significant 

issue. The salinization of groundwater in Morocco has 
garnered increasing research interest in recent years 
(Elgettafi et  al. 2012; Himi et  al. 2017; Elmeknassi 
et al. 2021). The chemical composition of groundwater, 
resulting from interactions between the liquid phase and 
solid matrix, is a significant concern (Mahlknecht et al. 
2017). To prevent further degradation of groundwater 
quality, a comprehensive understanding of its sources and 
salinization processes is imperative (Bouissa et al. 2021). 
Therefore, an in-depth understanding of the origin of this 
salinity is crucial for effective aquifer management (Kamal 
et al. 2021; Rochdane et al. 2022). Among the factors 
contributing to groundwater quality deterioration, natural 
and anthropogenic elements such as seawater intrusion, 
adjacent aquifer impacts, hydrodynamic conditions, 
dissolution of evaporitic rocks, upwelling of deep saline 
waters, and unregulated fertilizer use are prominent 
(Milnes 2011; Elgettafi et al. 2012; Giambastiani et al. 
2013; Ledesma-Ruiz et al. 2015; Ouhamdouch et al. 2021). 
Scientists have investigated chemical interactions through 
hydrogeochemical approaches (Liu et al. 2017).

In groundwater studies, geochemical analysis of 
groundwater plays a crucial role in understanding water 
quality and salinization processes. Various studies have 
delved into this aspect in different regions. For instance, 
Panteleit et al. (2001) conducted a study on the Coastal 
Aquifer Test Field in North Germany, Slama et al. (2022) 
focused on the Korba coastal aquifer in Tunisia, and 
Maman Hassan and Firat Ersoy (2022) investigated the 
Çarşamba coastal aquifer in Turkey. These studies have shed 
light on seawater intrusion and agricultural contamination as 
significant factors contributing to salinization.

On the other hand, the utilization of cartographic tools 
such as the geographical information system (GIS) and 
multivariate statistical analysis has become prevalent 
in groundwater assessment. These tools allow for a 
comprehensive interpretation of groundwater quality 
and quantity. Previous studies have employed GIS-based 
multicriteria analysis to identify potential recharge areas, 
as seen in the work of Saidi et  al. (2017) in Tunisia. 
Additionally, remote sensing techniques and Kohonen 
self-organizing maps were utilized by Abdelkarim et al. 
(2022) to pinpoint recharge areas, while Msaddek et al. 
(2019) employed multivariate statistical evaluation and the 
analytic hierarchy process to map recharge potential. Hence, 
by integrating geochemical analysis with cartographic tools 
and statistical methods, current research can provide a 
deeper understanding of groundwater dynamics, salinization 
processes, and recharge area delineation, contributing to 
informed decision-making in groundwater management and 
sustainability efforts.

Groundwater serves as a critical source of drinking water 
for rural populations, livestock, and irrigation in the central 
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Rif region of Morocco. However, ensuring the quality 
of drinking water remains a significant challenge across 
all regions of Morocco, particularly in rural areas. The 
utilization of untreated groundwater for drinking purposes 
poses serious health risks to rural communities. Therefore, 
it is imperative, as recommended by Laferriere (1996), to 
prioritize close monitoring of water pollution, which is 
a pressing concern regarding these vital water resources. 
This proactive approach to monitoring is essential for 
safeguarding public health and addressing the challenges 
associated with water quality in rural areas of Morocco.

The aim of our study is to assess groundwater quality 
in the central Rif region by conducting a detailed 
physicochemical analysis, exploring correlations between 
groundwater compositions, and utilizing point interpolation 
for spatial distribution mapping. Our objective is to identify 
salinization zones, understand contamination sources, and 
propose corrective measures to prevent groundwater quality 
deterioration in the study area.

Materials and methods

Study area

The study area is situated in the central Rif region and is 
located along the coast of the Al-Hoceima region in northern 
Morocco (Fig. 1).

The studied zone encompasses the western part of the 
Bokkoya Plain extending to the eastern side of the Ghis-
Nekor Plain, bordered by the Mediterranean coast to the 
north and the Tisirenes Flysch to the south. It falls within the 
inner domain of the Rifian chain and was formed as a result 
of the Alpine orogeny (Talhaoui et al. 2005). The geological 
structure of the area consists of stacked structural units 
separated by abnormal contacts, including outer limestone 
ridges deposited on the ancient margin of the North African 
continent and partially transformed during the late Oligocene 
and Miocene (Frizon-De-Lamotte and Leikine 1985; Negro 
et al. 2007). The topography of the internal calcareous ridges 
is supported by tectonic cliffs featuring calcareous-dolomitic 
dorsal scales and klipps of the Sebtides and Gomarides units 
(Chalouan et al. 1995; Michard et al. 2002).

The area covers the westernmost part of the Bokkoya 
Plain to the eastern side of the Ghis-Nekor Plain, bordered 
by the Mediterranean coast to the north and the Tisirenes 
Flysch to the south (Fig. 2). It belongs to the inner domain of 
the Rifian chain and formed as a result of the Alpine orogeny 
(Talhaoui et al. 2005).

The geological structure of the study area is imbricated 
towards the south with the Tisirenes Flysch, with the pres-
ence of the Trougout Fault zone separating the Nekor basin 
from the Ras Tarf horst (Galindo-Zaldívar et al. 2015). The 
area comprises both shallow and deep aquifers, namely, the 
Bokkoya and Ghis-Nekor aquifers. The Bokkoya aquifer is 
drained by a network of oueds and tributaries, while the 
Ghis-Nekor aquifer is fed by the Ghis River in the west and 

Fig. 1   Study area and location of drinking water sites in the central Rif (North Morocco)



	 Environmental Earth Sciences (2024) 83:515515  Page 4 of 25

the Nekor River in the east. The study area experiences 
a semiarid climate with alternating dry and wet seasons, 
characterized by an average annual rainfall of approximately 
300 mm (Ghalit et al. 2017; Chafouq et al. 2018). The litho-
logical data for the study area were provided by the Loukkos 
Hydraulic Basin Agency and Loukkos Regional Agricultural 
Development Office.

Groundwater sampling and analysis

In this study, groundwater samples were collected from 
both shallow and deep sources, including wells, under-
flows, and springs, across the central Rif region during 
2020. The study area included a total of 55 monitored 
sites, with the locations of each sampling point indicated 
in Fig. 1. The hydrogen potential (pH), electrical conduc-
tivity (EC), and total dissolved solids (TDS) were meas-
ured in situ using a handheld multiparameter (HANNA, HI 
991300). The collection of groundwater samples involved 
the use of presterilized 5 L capacity polyethylene bottles 
dedicated to physicochemical parameter analysis. Thus, 
to ensure the integrity of the samples, the bottles were 
thoroughly cleaned and then rinsed with the respective 
fresh groundwater samples before being filled on board. 
Subsequently, the plugs were securely fastened to prevent 
any gas exchange with the surrounding atmosphere. All the 
samples were quickly transported to the laboratory in cool-
ers at a temperature below 4 °C and then stored in a refrig-
erator prior to the start of laboratory analysis. The analysis 
of these samples was conducted within a 48 h timeframe. 
Thereafter, the concentrations of the major compo-
nents, including cations and anions, were determined in 

a laboratory setting using the methods recommended by 
Rodier et al. (2009). Hence, titration methods were used to 
examine chloride (Cl−), bicarbonate (HCO3

−), total hard-
ness (TH), and calcium ions (Ca2+). The concentration 
of magnesium (Mg2+) was determined using the TH and 
calcium content. Flame spectrophotometry was used to 
determine the concentrations of sodium (Na+) and potas-
sium (K+) (Banerjee and Prasad 2020), while UV spec-
trophotometry was used to measure the concentrations of 
nitrogen ions (N–NO3

− and N–NH4
+) and sulfate (SO4

2−) 
(Mulec et al. 2020).

The spatial variation in various groundwater parameters 
was represented using a geographic information system 
(GIS) (Abdelkarim et al. 2023), and the inverse distance 
weighting (IDW) interpolation technique was used 
to create spatial distribution maps via ArcGIS v10.8 
software.

The hydrochemical processes controlling groundwater 
mineralization and salinization in the central Rif were 
studied using a Piper diagram and binary diagrams in 
Aquachem software v12.0. (Sathish Mohan et al. 2017), 
while XLstat software v.2023.5.1 was used to construct 
a hydrochemical facies evolution diagram (HFE-D) 
and Gibbs diagram (Ayed et al. 2017). Finally, Pearson 
correlation analysis was conducted using IBM SPSS 
Statistics version 25 to identify potential relationships 
between the measured physicochemical parameters.

Fig. 2   Map of the geologi-
cal structure of the study area 
(extracted from the geological 
maps of Rouadi and Al-
Hoceima at 1:50,000)
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Fig. 3   Map of the spatial distri-
bution of the hydrogen potential 
(pH) in the study area

Fig. 4   Map of the spatial distri-
bution of electrical conductivity 
(EC) in the study area
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Fig. 5   Map of the spatial distri-
bution of total hardness (TH) in 
the study area

Fig. 6   Map of the spatial distri-
bution of calcium (Ca+2) in the 
study area
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Fig. 7   Map of the spatial distri-
bution of magnesium (Mg+2) in 
the study area

Fig. 8   Map of the spatial distri-
bution of sodium ions (Na+) in 
the study area
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Fig. 9   Map of the spatial distri-
bution of potassium (K+) in the 
study area

Fig. 10   Map of the spatial 
distribution of bicarbonate 
(HCO3

−) in the study area
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Fig. 11   Map of the spatial 
distribution of chloride (Cl−) in 
the study area

Fig. 12   Map of the spatial 
distribution of nitrate (N–NO3

−) 
in the study area
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Results and discussion

Physicochemical characterization

The physicochemical qualities of the sampled groundwater 
were compared with WHO standards (Table 1). The spa-
tial distributions of major element concentrations in the 
groundwater of the central Rif, such as pH, TDS, EC, TH, 
Ca2+, Mg2+, Na+, K+, HCO3

−, Cl−, N–NO3
−, and SO4

2−, 
are presented in Figs. 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13.

Hydrogen potential (pH)

The pH values of the groundwater samples collected from 
the study area ranged from 6.65 to 8.89, with an average 

of 7.36 (Fig.  3). Most of the samples exhibit slightly 
alkaline values (Table 1), which is in accordance with 
prior research (Chafouq et al. 2018; Bouaissa et al. 2020; 
Benyoussef et al. 2022; El Yousfi et al. 2023).

The observed low alkalinity of the groundwater in the 
study area, likely due to seawater infiltration into the coastal 
aquifer, aligns with findings by Chafouq et al. (2018) and 
Güner et al. (2021). While most groundwater samples fall 
within the permissible pH range of 6.5 to 8.5 set by the 
World Health Organization (WHO), a small percentage 
(3.63%) exceeded the recommended limits set by the WHO 
in this study. The issue of deteriorating groundwater quality, 
particularly concerning pH levels, is a significant concern 
across various regions. For instance, in the Zegoum region 
of Algeria, Hiouani et al. (2020) discovered that the majority 
of groundwater samples exhibited mediocre to poor quality, 
characterized by elevated levels of calcium and sulfates 
leading to a low alkalinity for groundwater. However, it is 
worth noting that in the same area, Bouhout et al. (2023) 
reported a pH ranging between 7.25 and 7.7, which falls 
within the acceptable range for drinking water. This 
variability highlights the importance of considering local 
factors and specific studies when assessing groundwater 
quality and its suitability for different purposes.

Total dissolved solids (TDS)

Groundwater potability and suitability for consumption 
and agriculture are influenced by the total cation and anion 

Fig. 13   Map of the spatial 
distribution of sulfate (SO4

2−) in 
the study area

Table 2   Classification of groundwater samples in the study area 
according to TDS

TDS (mg/L) Mineralization Number of 
samples

% of samples

 < 50 Very low 0 0.00
50–500 Low 3 5.45
500–1000 Moderate 10 18.18
1000–1500 High 13 23.64
 > 1500 Very high 29 52.73
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concentrations known as total dissolved solids (TDS) (Van 
der Aa 2003; Rajesh et al. 2015). In this study, the TDS 
content ranged from 749 to 6204 mg/L, with an average 
value of 1960.45 mg/L. Approximately 60% of the ground-
water samples exceeded the World Health Organization's 
desired limit of 500–1500 mg/L (WHO 2011) and were 
unsuitable for consumption due to their high TDS values. 
However, 40% of the samples fell within the desired limit 
and were considered potable. Additionally, only 18.18% of 
the samples showed moderate mineralization, as classified 
by Van der Aa (2003) (Table 2).

The high levels of mineralization observed in the 
groundwater samples from the study area can be attributed 
to various factors, as indicated by previous findings. Water‒
rock interactions, influenced by the geological substrate and 
bottom salts, play a significant role in the mineralization 
process (Dar et  al. 2011; Tiwari and Singh 2014). 
Additionally, nutrient supply and water‒rock interactions 
are predominant in aquifers, contributing to the observed 
mineralization levels (Ghalit 2017).

In karst aquifers, intense water exploitation can lead to 
changes in hydrogeochemistry, further impacting the mineral 
content of groundwater (Bicalho 2010). The lithology, 
water movement patterns, and recharge-discharge zones 
also influence the mineralization of groundwater (Simoes 
2003). Moreover, the substratum type in catchment areas 
can affect the mineral content of rivers, highlighting the 
complex interplay between geological factors and water 
quality (Drive et al. 1989).

The observed increase in salinity in the groundwater sam-
ples may be attributed to the dissolution of soluble minerals 
present in tertiary materials, underscoring the geological 
influences on groundwater quality (Merchán et al. 2015). 
Additionally, significant TDS values (surrounding 6000 
mg/L) were found in coastal zones or originating from deep 
aquifers, as highlighted in the study by Abdelkarim et al. 

(2023), further emphasizing the impact of geological and 
hydrological factors on groundwater mineralization.

Electrical conductivity

The electrical conductivity (EC) is a critical parameter 
used to measure the amount of dissolved substances present 
in water, indicating the level of inorganic contaminants 
in water (Morrison et al. 2001; Li et al. 2021). The EC is 
determined by measuring the water's ability to conduct an 
electrical current. The more dissolved salts and minerals 
present in water, the greater the electrical conductivity will 
be. The concentration of ions, such as calcium, magnesium, 
sodium, and chloride, influences the electrical conductivity 
of water. The spatial distribution of electrical conductivity in 
the study area is illustrated in Fig. 4. Thus, the groundwater 
EC in the central Rif region ranged from 854 to 12400 μS/
cm, with an average of 3715.15 μS/cm.

The elevated levels of electrical conductivity (EC) in 
groundwater samples, with 83.63% exceeding the WHO 
permissible limits, as indicated in Table 1, raise concerns 
about water quality and potential health risks. The WHO 
guidelines specify that acceptable EC levels in drinking 
water should not surpass 1000 μS/cm. High EC in water 
can lead to adverse health effects such as hypertension, 
cardiovascular disease, and kidney problems, as highlighted 
by Fried (1991). Moreover, it can impact the suitability of 
water for irrigation and other purposes. Notably, 14.54% 
of the samples exhibited high mineralization levels, as 
noted by Detay and Carpenter (1997) in Table 3. Hence, 
various studies conducted in different regions, including 
Sukkur city, Pakistan (Laghari et  al. 2018); Oriental 
Mindoro, Philippines (Kumara et al. 2020); Qambar city, 
Pakistan (Lanjwani et al. 2020); and Cuddalore Old Town, 
Tamilnadu (Selvaraju et al. 2022), have reported concerning 
levels of contamination in groundwater in terms of EC 
levels. Additionally, the presence of high mineralization 
levels in a notable percentage of samples further supports 
this issue, emphasizing the importance of monitoring and 
managing groundwater quality to safeguard human health 
and environmental well-being.

Table 3   The groundwater samples in the study area were classified 
according to EC (Detay and Carpenter 1997)

EC (μS/cm) Mineralization Number 
of 
samples

% of samples

 < 1000 Very weakly mineralized 
water

2 3.64

1000–2000 Weakly mineralized water 12 21.82
2000–4000 Lightly mineralized water 25 45.45
4000–6000 Moderately mineralized 

water
5 9.10

6000–10000 Highly mineralized water 8 14.54
 > 10000 Excessively mineralized 

water
3 5.45

Table 4   The classification of groundwater was based on the TH 
(Sawyer and McCarty 1967)

Total hardness as 
CaCO3 (mg/L)

Hardness class Number of 
samples

% of samples

 < 75 Soft 0 0.00
75–150 Moderately high 0 0.00
150–300 Hard 2 3.63
300 Very hard 53 96.36
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Furthermore, an increase in EC indicates high ground-
water salinity. Thus, elevated levels of dissolved salts and 
minerals in water can reduce the effectiveness of irriga-
tion and cause soil salinization, which can impact crop 
yields and lead to long-term environmental degradation. 
Several factors affect water conductivity, including ion 
exchange, aquifer solubilization, and anthropogenic activ-
ities such as agricultural runoff and industrial activities 
(Panaskar et al. 2007; Ramesh and Elango 2012). In addi-
tion, the phenomenon of corrosion of the mother rock 
favoured in an acidic medium can greatly contribute to 
the enrichment of groundwater in ions since the corrosive 
potential of the water is increased by a low pH (Boyd 
2015). This may be the case at many sampling points 
(W12, W17, W37, W49 and W51), where the pH ranged 
between 6.9 and 7.7, especially for wells W23 and W39, 
which had pH values of 7.83 and 7.32 and EC values of 
12,400 µS/cm and 10,240 µS/cm, respectively (Table 1). 
Furthermore, anthropogenic activities such as irrigation, 
the use of fertilizers, and the application of pesticides 
can result in the accumulation of salts and minerals in 
groundwater, leading to increased electrical conductivity.

Total hardness (TH)

The total hardness (TH) of water, measured in mg 
CaCO3, is a critical characteristic of domestic water and 
is equivalent to the sum of Ca2+ and Mg2+ concentrations. 
In this study, the TH values of the collected groundwater 
samples ranged from 210.28 to 2102.03 mg/L, with an 
average of 1006.04 mg/L (Fig. 4).

Approximately 83.63% of the samples exceeded the 
drinking water limit set by the World Health Organization 
(WHO 2011) (Table  1). Based on the classification 
proposed by Sawyer and McCarty (1967) (Table  4), 
96.36% of the samples fall under the category of very 
hard water, while only 3.63% fall under the hard water 
category.

These results suggest that the majority of groundwater 
samples analysed in the study area are unsuitable for human 
consumption due to their exceptionally high hardness 
levels. This exceedance of drinking water standards is a 
prevalent issue in many Moroccan groundwater resources, 
particularly in the semiarid regions of Morocco. For this 
purpose, numerous studies have consistently reported that 
a significant proportion of groundwater samples surpass 
the World Health Organization's drinking water limits, 
exhibiting elevated levels of total hardness and salinity, 
namely, in the Essaouira Basin (Ouarani et  al. 2020), 
Ouazi Basin (Bahir et al. 2021; El Mountassir et al. 2022) 
and Souk El Arbaa (Ghachoui et al. 2024).

Calcium and magnesium ions (Ca2+ and Mg+2)

Calcium (Ca2+) and magnesium (Mg+2) are vital 
hydrochemical constituents of groundwater (Razowska-
Jaworek 2014) that contribute to water hardness and may be 
associated with rock geochemistry (Olasehinde et al. 2015). 
However, excessive amounts of these elements can have 
detrimental impacts on human health. The calcium levels in 
the groundwater samples collected in the study area ranged 
from 26.43 to 408.81 mg/L, with an average value of 200.73 
mg/L (Fig. 6). Similarly, the Mg2+ concentrations varied 
from 16.80 to 292.80 mg/L, with an average value of 121.01 
mg/L (Fig. 7).

According to the WHO guidelines (2011), 67.27% of 
the groundwater samples (Table 1) exceeded the desired 
calcium limit, whereas 40% of the samples surpassed the 
recommended magnesium level (50–150 mg/L).

The principal sources of calcium (Ca2+) in the study 
area seem to be gypsum, dolomite, and limestone (Ghalit 
et al. 2017). Indeed, water in contact with gypsum can reach 
higher calcium levels, increasing the solubility of gypsum 
in salt water (Bhakar and Singh 2019), while dolomite and 
rock mafic minerals (amphiboles) are sources of magnesium 
in natural waters (Kwami et al. 2019).

Sodium ions (Na+)

Sodium ions occur naturally in groundwater due to 
geological processes such as rock weathering, soil salt 
dissolution from evaporation, agricultural activities and 
human inputs (Wagh et al. 2016; Abbasnia et al. 2019; 
Bhakar and Singh 2019). The high sodium content in some 
samples may result from cation exchange processes with 
other minerals (Abbasnia et al. 2019).

In the study area, as presented in Fig. 8, the groundwater 
samples had variable sodium concentrations ranging from 
68.5 to 884 mg/L, with an average of 384.54 mg/L (Table 1).

According to these results, over a quarter (29.09%) 
of the samples exceeded the WHO limits (2011), posing 
potential health risks to susceptible populations (Marghade 
et al. 2011). Abnormally high sodium concentrations could 
be attributed to the alteration of plagioclase feldspar or 
exchange with sodium clay deposits (Ghalit et al. 2017; 
Kwami et al. 2019).

Potassium ions (K+)

Potassium ions are essential nutrients for both plants 
and animals, and their presence in groundwater can 
have natural or anthropogenic origins. Natural sources 
include the weathering of rocks and the dissolution of 
minerals, while anthropogenic sources include chemical 
fertilizers and domestic sewage (Morán-Ramírez et al. 
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2016; Chandran et al. 2017). In this study, the average 
concentration of potassium in the groundwater samples 
was 9.71 mg/L, with a range of 0.4 to 54.9 mg/L. Only 
5.45% of the samples exceeded the consumption standards 
established by the World Health Organization (WHO) in 
2011 (as shown in Fig. 9 and Table 1).

Although most of the groundwater samples had 
potassium levels within acceptable limits, a small 
percentage of the samples exceeded the recommended 
limits for human consumption, which could pose a health 
risk to those who rely on groundwater as their primary 
source of drinking water. Thus, the presence of elevated 
potassium levels in certain samples underscores the 
importance of continued monitoring and management 
of groundwater resources, especially in areas where 
anthropogenic sources are prevalent. Overall, this study 
highlights the importance of monitoring potassium 
levels in groundwater, as excessive potassium can have 
negative impacts on human health and the environment. 
Additionally, this study underscores the need for 
sustainable management practices to minimize the 
anthropogenic sources of potassium in groundwater.

Bicarbonates (HCO3
−)

The groundwater bicarbonate content in the study area 
varied widely, with an average of 379.10 mg/L and values 
ranging from 54.9 to 634.4 mg/L (Table 1). However, a 
small proportion (9.09%) of the samples fell below the WHO 
recommended level for drinking (WHO 2011). Figure 10 
illustrates the spatial distribution of HCO3

−.
The concentration of bicarbonate in groundwater is 

primarily influenced by the presence of carbonate minerals 
in soils and aquifers, such as calcite and dolomite, as well as 
the dissolution of CO2 gas from the atmosphere and soils of 
recharge basins (Förstner and Wittmann 2012; Wagh et al. 
2016).

Human activities can also contribute to elevated 
bicarbonate concentrations (Zilberbrand et  al. 2001). 
Although most of the groundwater samples had bicarbonate 
levels within the recommended limits, the presence of low 
bicarbonate levels in some samples could affect the taste 
and overall quality of the water. On the other hand, high 
bicarbonate concentrations can lead to water hardness and 
scaling in pipes, which can increase maintenance costs.

Therefore, it is important to continue monitoring and 
managing groundwater resources to ensure that bicarbonate 
levels remain within acceptable limits for drinking water. 
Moreover, future studies could investigate the impact 
of anthropogenic activities, such as land use change 
and fertilizer application, on the bicarbonate levels in 
groundwater in the study area.

Chlorides (Cl−)

Chloride is an important inorganic anion that can 
originate from various anthropogenic and natural sources. 
Anthropogenic sources include industrial and domestic 
wastewater such as agricultural wastewater, fertilizer use, 
and septic tank leachate, while natural sources include 
interactions between water, soil, and rocks as well as marine 
intrusion (Valdes et al. 2007; Ahmad and Bajahlan 2009; 
Taiwo et al. 2011; Abbasnia et al. 2019). In this study, the 
average chloride concentration in the water samples was 
772.59 mg/L, ranging from 88.75 to 3150 mg/L (Fig. 11 
and Table 1).

A significant proportion (61.81%) of the samples 
exceeded the World Health Organization's recommended 
limit for drinking water (WHO 2011). The high chloride 
concentrations in the water samples could be attributed to 
anthropogenic activities such as the discharge of domestic 
and industrial wastewater into the groundwater system. 
Fertilizers, particularly chloride-containing fertilizers, could 
also be potential sources of high chloride concentrations in 
water samples. Moreover, the presence of high chloride 
concentrations in some of the water samples could also 
be due to natural sources such as marine intrusion due to 
existing fault zones in the study area, as demonstrated by 
(Galindo-Zaldívar et al. 2015), interactions between water, 
soil, and rocks. The spatial distribution of chloride in the 
study area is shown in Fig. 11.

The presence of high chloride concentrations in 
groundwater samples could pose health risks to humans and 
animals. High chloride concentrations can impart a salty 
taste to water, making it unpalatable and unsuitable for 
drinking. While chloride (Cl−) helps maintain the balance 
of electrolytes in blood plasma, elevated levels can lead to 
physiological disorders (Garg et al. 2008).

Excessive intake of chloride has been associated with the 
development of various health conditions, such as essential 
hypertension, increased risk of stroke, left ventricular 
hypertrophy, osteoporosis, renal stones, and asthma. 
(McCarthy 2004). The results of this study underscore 
the need for regular monitoring of groundwater quality, 
particularly in areas where anthropogenic activities and 
natural sources contribute to high chloride concentrations. 
Thus, effective management and control measures are 
required to prevent further degradation of groundwater 
quality and to safeguard public health.

Nitrates (N–NO3
−)

Nitrate pollution is a global concern and has been identified 
as a major contaminant of groundwater due to intensive 
agricultural activities, large amounts of mineral fertilizers, 
and local hydrogeological structures (Qin et al. 2013; Su 
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et al. 2017; Zhai et al. 2017a). The presence of nitrates in 
groundwater can adversely affect human health and disrupt 
groundwater quality. In this study, the concentrations 
of N–NO3

− in the groundwater ranged from 0.36 to 
180.88 mg/L, with an average value of 23.28 mg/L (Fig. 12 
and Table 1). While most of the samples were within the 
limits allowed by the WHO (2011), 12.72% of the samples 
analysed exceeded the limit of 50 mg/L. Hence, water with 
nitrate concentrations above the permissible limit should 
be treated before it can be used as drinking water. The 
increased nitrate concentrations at these sites are likely due 
to anthropogenic activity, including agricultural activity and 
urban development recorded at the sites, and the presence of 
uncontrolled septic tanks (Chafouq et al. 2018).

Various natural processes and human activities con-
tribute to water pollution from both point and nonpoint 
sources of nitrates. Point sources include septic tanks, 

dairy lagoons, wastewater effluents, and intensive livestock 
farming, while nonpoint sources include fertilizers, pesti-
cides, manure application, heavy metals, and atmospheric 
deposition.

These sources of contamination have been reported in 
many developing and developed countries and regions 
around the world (Qasemi et al. 2018a, b; Zhai et al. 2017a, 
b).

Urban development, including the use of septic tanks and 
the overpumping of groundwater due to high population den-
sity, can contribute to nitrate pollution. This study revealed 
that anthropogenic activities, such as agriculture and urban 
development, and the presence of uncontrolled septic tanks 
were significant contributors to nitrate pollution in the study 
area. The effective management of agricultural activities and 
urban development is needed to minimize contamination, 

Table 5   Groundwater types 
and their respective sampling 
locations in the study area

Water type Number 
of 
samples

% Sample Sample location

Ca–SO4 6 10.9 W1, W18, W19, UF1, UF2, UF3
Na–HCO3 3 5.45 W2, W3, W16
Na–SO4 3 5.45 W6, W8, W27
Ca–Cl 3 5.45 W10, W40, W50
Mg–HCO3 1 1.81 W13
Na–Cl 39 70.9 W4, W5, W7, W9, W11, W12, W14, W15, W17, W20, W21, W22, 

W23, W24, W25, W26, W28, W29, W30, W31, W32, W33, W34, 
W35, W36, W37, W38, W39, W41, W42, W43, W44, W45, W46, 
W47, W48, W49, W51, S1

Fig. 14   Piper plot showing 
major-ion types of groundwa-
ter samples in the central Rif 
aquifer
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and regular monitoring of groundwater quality is essential 
to ensure safe drinking water for the population.

Sulfate ions (SO4
2−)

In addition to calcium and magnesium, sulfate is an 
important factor in water hardness. In this study, the sulfate 
concentrations in the investigated groundwater samples 
were found to be high, with an average of 510.61 mg/L and 
ranging from 27.11 to 1571.61 mg/L (Table 1). Notably, 
92.72% of the samples exceeded WHO guidelines (2011). 
The spatial distribution of sulfate indicates that the 
concentration of this anion increases near the sea (Fig. 13) 
due to intense agricultural and septic activities (Boateng 
et al. 2016).

One possible explanation for the observed high levels 
of sulfate in the groundwater samples is the presence of 
sedimentary rocks containing gypsum and anhydrite in the 
studied sites (Bhakar and Singh 2019). These rocks may be 
a natural source of sulfate, contributing to the elevated lev-
els in the groundwater. Anthropogenic activities such as the 
use of fertilizers and wastewater discharge can also lead to 

increased sulfate levels in groundwater (Akhtar et al. 2021). 
However, sulfate deficiency was observed in some samples, 
especially W11 and W16, with values of 35.9 mg/L and 
27.11 mg/L, respectively.

This may indicate a low impact of anthropogenic 
activities (Barakat et al. 2020). High levels of sulfate 
in groundwater samples may have negative impacts on 
human health and the environment. Sulfates have a laxa-
tive effect that leads to dehydration, especially in infants. 
However, over time, people and young livestock become 
acclimated to sulfate, and symptoms disappear (Bashir 
et al. 2012). In addition, sulfate can cause eutrophication 
and algal blooms in surface waters, leading to decreased 
oxygen levels and harm to aquatic organisms (Carpenter 
et al. 1998).

Overall, the high levels of sulfate observed in the ground-
water samples in this study may have negative impacts on 
both human health and the environment. Further studies 
are needed to determine the sources and impacts of sulfate 
in groundwater in this region. In addition, the significant 
increase in sulfate concentration is most likely related to the 
presence of gypsum and anhydrite in the sedimentary rocks 

Fig. 15   Binary diagrams between, A HCO3
− vs. Ca2+; B SO4

2− vs. Ca2+; C (HCO3
− + SO4

2−) vs. (Ca2+  + Mg2+); D Cl− vs. Na+ and E Mg2+ vs. 
Ca2+



	 Environmental Earth Sciences (2024) 83:515515  Page 18 of 25

that occupy some of the sites studied (Bhakar and Singh 
2019). However, sulfate deficiency indicates a low impact 
of anthropogenic activities (Barakat et al. 2020).

General hydrochemical characteristics

Groundwater hydrochemical facies and water type

The main cations and anions are represented on a trilinear 
Piper diagram (Piper 1944) to understand the hydrochemical 
evolution and identify the predominant groundwater types 
(Table 5) in the study area.

Figure  14 shows three hydrogeochemical facies: the 
sodium chloride facies (Na–Cl) represents 70.9% of the 
water points studied (first facies), while 10.9% of the water 
samples belong to the sulfated calcium facies (Ca–SO4) (sec-
ond facies). The third facies is represented by 5.45% sodium 
bicarbonate water (Na–HCO3). However, the remainder of 
the samples surveyed could correspond to fresh groundwater 
influenced by ion exchange.

These facies highlight the complexity of the 
hydrogeochemical processes that control groundwater 
salinity in the Central Rif, including water mixing, 
evaporation and the dissolution of evaporites such as halite, 
gypsum and anhydrite (Sajilkumar and James 2016).

Ionic ratio

The hydrogeochemical characteristics of an aquifer system 
are influenced by various chemical reactions, frequently 

resulting in changes in ionic concentrations (Verma et al. 
2021). The ionic ratios were established (Fig. 15) to assess 
the origin of water mineralization (Ghalit et al. 2023) and to 
determine the possibility of seawater intrusion (Edet 2016; 
Aladejana et al. 2021) in the study area.

The bivariate plot of Ca2+ versus HCO3
− (Fig. 15A) 

shows that the weathering of carbonate minerals (calcite) 
resulted in more Ca2+ ion release than the weathering 
of carbonic acid (silicate) in most water samples. In 
addition, the correlation between (Ca2+  + Mg2+) and 
(HCO3

− + SO4
2−) was used to examine the effect of the 

distribution of sulfate and carbonate minerals in the system. 
Figure 15C shows that most samples follow the 1:1 line, 
suggesting that these ions in the central Rif groundwater 
originate from the dissolution of these minerals rather than 
the weathering of silicates.

The Na+/Cl− ratio plot (Fig. 15D) shows that a significant 
number of samples strongly approach the 1:1 line, suggesting 
halite dissolution or possibly seawater intrusion (El Yousfi 
et al. 2022). Nevertheless, the reverse ion exchange process 
could explain the scattered points below this line, where 
Ca2+ replaces Na+ in the groundwater of the Central Rif. 
The Ca2+/Mg2+ molar ratio indicates the presence of calcite 
and the dissolution of dolomite (Kumar et al. 2006). The 
graphical representation of this Ca2+/Mg2+ ratio (Fig. 15E) 
reveals a predominance of calcite dissolution over silicate 
weathering.

Sulfate ions (SO4
2−) are frequently present in groundwater 

and have mainly natural and anthropogenic origins. 
Figure 15B illustrates the correlation between Ca2+ and 
SO4

2− concentrations in the sampled waters. This correlation 
could be linked to the potential presence of gypsum and/or 
anhydrite, thus suggesting a possible contribution of these 
minerals to the mineralization of the waters in the central 
Rif aquifer. Nevertheless, it is important to note that a group 
of samples falls outside the 1:1 line, indicating an excess 
of SO4

2− ions over Ca2+ ions in a few waters studied. This 
discrepancy can be attributed to other possible sources of 
these ions, such as seawater intrusion and anthropogenic 
sources.

Hydrochemical facies evolution (HFE‑D)

The hydrochemical facies evolution (HFE-D) was used to 
interpret and analyse possible hydrochemical facies and evo-
lutionary processes in coastal areas while taking into consid-
eration the percentage of the most significant ions and their 
relationships (Giménez‐Forcada and Sánchez San Román 
2015). The results of the HFE plots indicate the dissolution 
of salt marsh evaporites in aquifer materials, which are rich 
in sulfate and chloride (Fig. 16).

The plot shows that more than half of the samples are 
projected in the lower part of Fig. 16 (52.72% of the total 

Fig. 16   Representation of central Rif groundwater samples in the 
HFE-D
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samples), representing the intrusion phase, while 47.27% of 
the total samples represent the refreshment phase. Indeed, 
water samples from the central Rif are of the Na–Cl type 
(41.37%) and belong to saltwater intrusion facies affected to 
some extent by the reverse cation exchange reaction (Na+/
Ca2+), as indicated by the presence of MixCa–Cl-type waters 
in the aquifer in the study area. On the other hand, 34.61% of 
the fresh groundwater in the central Rif is MixNa–HCO3 and 
is influenced by direct cation exchange reactions. Indeed, 
factors such as the distance from the sea, intensive water 
demand and hydrogeological characteristics of the aquifer 
affect the degree of contamination of the aquifer by marine 
intrusion (Yin et al. 2021; Benaafi et al. 2022).

Gibbs diagram

Gibbs diagrams (Gibbs 1970) are widely used to identify 
the processes controlling groundwater geochemistry, includ-
ing precipitation, evaporation, rock‒water interactions, and 
seawater intrusion. Figure 17 shows the correlation between 
cation and anion levels and TDS.

As shown by the plot of chemical data on the Gibbs 
diagram, most groundwater samples in the study area fell 
within the evaporation dominance zone and were closer to 
seawater, revealing an interaction between groundwater and 
seawater (Huang et al. 2013).

Multivariate statistical analysis

To understand the relationships among the measured 
hydrochemical parameters, Pearson correlation analysis (r) 
was performed on 12 selected parameters to identify and 
verify their origin. The results are presented in Table 6.

The correlation matrix reflects a strong positive 
correlation between EC and TDS with major ions, indicating 
the contribution of these ions to the overall mineralization of 
the predicted groundwater (Elumalai et al. 2020).

A significant correlation among TDS, TH, Ca2+ and 
Mg2+ suggests that the host rock is the result of carbonate 
and dolomite dissolution (Qin et al. 2013). It should also 
be noted that TDS, EC, Na+ and Cl− are strongly positively 
correlated, which represents possible marine intrusion along 
the coastal aquifer, and this correlation can be explained 
by the precipitation/evaporation properties of the minerals 
contained in the predicted waters (Rakib et al. 2020).

In addition, the mobilization of water from saline for-
mations by the overexploitation of aquifers (Giménez-For-
cada et al. 2010) and pollution due to anthropic activities 
(septic tank effluents, use of synthetic fertilizers) may be 
responsible for the relationship between these parameters 
and the salinity of these waters (Re et al. 2013). It was con-
firmed that pH, HCO3

− and N–NO3
− had no correlation 

with the other measured hydrochemical parameters. Since 
N–NO3

− and other metrics did not significantly correlate, 

Fig. 17   Gibbs diagram of anions and cations versus TDS
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human activity is likely the primary contributor to ground-
water nitrate contamination (Helena et al. 1999).

Conclusion

This study of the hydrogeochemical properties of 
groundwater in the central Rif region, northern Morocco, 
reveals intricate relationships among various influences. 
Physicochemical analysis of 55 groundwater points 
highlights interactions between hydrogeochemical processes, 
geological factors, and anthropogenic influences. The study 
of water mineralization processes, employing Piper, HFE-
D, Gibbs, and binary diagrams, demonstrated that water 
mineralization results from evaporite (gypsum and halite) 
and carbonate (limestone and dolomite) dissolution, silicate 
alteration, and cation exchange.

Key findings point to increasing mineralization, with 
a significant proportion of samples exceeding WHO 
guidelines for essential ions such as chloride, sulfates, 
nitrates, sodium, and potassium. The predominant presence 
of sodium chloride (Na–Cl) as the primary chemical facies 
and the impact of evaporation on water chemistry dynamics 
underscore the complexity of groundwater composition. 
Furthermore, this research suggests that seawater intrusion 
at the Trougout Zone Fault could contribute to heightened 
mineralization trends. Acknowledging seawater as a 
potential factor for elevated mineral content enhances the 
understanding of regional groundwater intricacies.

Given these findings, the importance of continuous 
monitoring and informed management strategies is 
emphasized, ensuring the responsible use and preservation 
of coastal groundwater reserves. The urgency lies in the 
potential repercussions for public health and environmental 
balance. Thus, this study underscores the necessity of a 
proactive approach to groundwater governance and decision-
making, not only in the central Rif region but also in a 
broader context.
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