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Abstract

This study investigated groundwater in the central Rif region of northern Morocco by analysing 55 water sampling points to
assess its physicochemical and hydrogeochemical properties. Through hydrochemical analysis, GIS spatial exploration, and
multivariate statistical analysis, a direct correlation was found between EC, TDS, and major ions, influencing overall water
mineralization. The key findings included pH levels ranging from 6.10 to 8.52, EC from 828 to 4581 pS/cm, and varying
concentrations of Ca®*, Mg?*, Na*, K*, HCO,™, CI-, N-NO,", and SO,*". Notably, TDS and TH ranged from 647.19-3609.36
mg/L and 64.23-1051.24 mg/L, respectively, with a significant portion of samples exceeding WHO guidelines, particularly
chloride (61.81%), sulfate (92.72%), and nitrate (12.72%) samples. The Piper diagram highlights sodium chlorides (Na—ClI)
as the predominant chemical facies (70.9%), while the Gibbs diagram emphasizes the impact of evaporation on water chem-
istry dynamics. This study revealed the complex influence of geological and anthropogenic factors on groundwater quality,
potentially leading to seawater intrusion in coastal aquifers. The observed high mineralization and hardness levels, in addition
to mild alkalinity, pose public health risks, underscoring the need for continuous monitoring and sustainable management
practices in coastal groundwater management to protect human health and the environment.
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Introduction

Water is a vital resource essential for human survival,
social progress, and economic growth. However, the dis-
tribution of these resources is not always equitable, with
hydrospheric groundwater accounting for 2.8% of fresh-
water resources, while lakes, reservoirs, and river systems
only contribute 0.26%. Sustainable water resource man-
agement is crucial for ensuring universal access to clean
and sufficient water (Shiklomanov 2000).

Groundwater, known for its superior quality, regularity,
and natural protection, plays a critical role as a water
source in various countries and regions. It often surpasses
surface water in quality, making it a vital water supply
source (Dole-Olivier et al. 2005). This invaluable resource
has diverse applications that benefit both the environment
and society, particularly in arid and semiarid regions (Li
et al. 2016; Wu and Sun 2016; Zabala et al. 2016; Li and
Qian 2018).

Climate change significantly impacts groundwater,
altering its physical and chemical properties and leading
to changes in water availability, increased salinity, and
pollution from extreme weather events (Dao et al. 2023).
These effects are particularly pronounced in hot, dry
climates reliant on groundwater (Javadinejad et al. 2019).
Predicting the complex impacts of climate change on
groundwater resources requires enhanced observations,
understanding of processes, and improved modelling
capabilities (Earman and Dettinger 2011). Additionally,
climate change can disrupt the hydrological system,
resulting in issues such as groundwater overexploitation,
water table depletion, and saltwater intrusion (Islam
and Mostafa 2024). Moreover, according to He et al.
(2019), the groundwater environment is significantly
impacted by climate change and human activities such
as rapid urbanization, intensive agricultural activities,
and industrial development. Indeed, the overexploitation
of natural resources, coupled with human activities, has
deteriorated groundwater quality in the Mediterranean
basin.

As the Mediterranean region is highly vulnerable to
water scarcity (Margat 2008), ensuring an adequate
groundwater supply has become crucial, and attention
must also be directed towards preserving the quality of
this vital resource (Aghazadeh and Mogaddam 2010; Neisi
etal. 2018).

In Morocco, groundwater is a crucial source of water,
particularly in the region of Al-Hoceima, which is located
on the northern coast of the Mediterranean Sea. This area
has high densities of natural sources for irrigation and
drinking water consumption. However, poor water quality
due to various types of contamination is a significant
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issue. The salinization of groundwater in Morocco has
garnered increasing research interest in recent years
(Elgettafi et al. 2012; Himi et al. 2017; Elmeknassi
et al. 2021). The chemical composition of groundwater,
resulting from interactions between the liquid phase and
solid matrix, is a significant concern (Mahlknecht et al.
2017). To prevent further degradation of groundwater
quality, a comprehensive understanding of its sources and
salinization processes is imperative (Bouissa et al. 2021).
Therefore, an in-depth understanding of the origin of this
salinity is crucial for effective aquifer management (Kamal
et al. 2021; Rochdane et al. 2022). Among the factors
contributing to groundwater quality deterioration, natural
and anthropogenic elements such as seawater intrusion,
adjacent aquifer impacts, hydrodynamic conditions,
dissolution of evaporitic rocks, upwelling of deep saline
waters, and unregulated fertilizer use are prominent
(Milnes 2011; Elgettafi et al. 2012; Giambastiani et al.
2013; Ledesma-Ruiz et al. 2015; Ouhamdouch et al. 2021).
Scientists have investigated chemical interactions through
hydrogeochemical approaches (Liu et al. 2017).

In groundwater studies, geochemical analysis of
groundwater plays a crucial role in understanding water
quality and salinization processes. Various studies have
delved into this aspect in different regions. For instance,
Panteleit et al. (2001) conducted a study on the Coastal
Aquifer Test Field in North Germany, Slama et al. (2022)
focused on the Korba coastal aquifer in Tunisia, and
Maman Hassan and Firat Ersoy (2022) investigated the
Carsamba coastal aquifer in Turkey. These studies have shed
light on seawater intrusion and agricultural contamination as
significant factors contributing to salinization.

On the other hand, the utilization of cartographic tools
such as the geographical information system (GIS) and
multivariate statistical analysis has become prevalent
in groundwater assessment. These tools allow for a
comprehensive interpretation of groundwater quality
and quantity. Previous studies have employed GIS-based
multicriteria analysis to identify potential recharge areas,
as seen in the work of Saidi et al. (2017) in Tunisia.
Additionally, remote sensing techniques and Kohonen
self-organizing maps were utilized by Abdelkarim et al.
(2022) to pinpoint recharge areas, while Msaddek et al.
(2019) employed multivariate statistical evaluation and the
analytic hierarchy process to map recharge potential. Hence,
by integrating geochemical analysis with cartographic tools
and statistical methods, current research can provide a
deeper understanding of groundwater dynamics, salinization
processes, and recharge area delineation, contributing to
informed decision-making in groundwater management and
sustainability efforts.

Groundwater serves as a critical source of drinking water
for rural populations, livestock, and irrigation in the central
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Rif region of Morocco. However, ensuring the quality
of drinking water remains a significant challenge across
all regions of Morocco, particularly in rural areas. The
utilization of untreated groundwater for drinking purposes
poses serious health risks to rural communities. Therefore,
it is imperative, as recommended by Laferriere (1996), to
prioritize close monitoring of water pollution, which is
a pressing concern regarding these vital water resources.
This proactive approach to monitoring is essential for
safeguarding public health and addressing the challenges
associated with water quality in rural areas of Morocco.

The aim of our study is to assess groundwater quality
in the central Rif region by conducting a detailed
physicochemical analysis, exploring correlations between
groundwater compositions, and utilizing point interpolation
for spatial distribution mapping. Our objective is to identify
salinization zones, understand contamination sources, and
propose corrective measures to prevent groundwater quality
deterioration in the study area.

Materials and methods
Study area
The study area is situated in the central Rif region and is

located along the coast of the Al-Hoceima region in northern
Morocco (Fig. 1).

The studied zone encompasses the western part of the
Bokkoya Plain extending to the eastern side of the Ghis-
Nekor Plain, bordered by the Mediterranean coast to the
north and the Tisirenes Flysch to the south. It falls within the
inner domain of the Rifian chain and was formed as a result
of the Alpine orogeny (Talhaoui et al. 2005). The geological
structure of the area consists of stacked structural units
separated by abnormal contacts, including outer limestone
ridges deposited on the ancient margin of the North African
continent and partially transformed during the late Oligocene
and Miocene (Frizon-De-Lamotte and Leikine 1985; Negro
et al. 2007). The topography of the internal calcareous ridges
is supported by tectonic cliffs featuring calcareous-dolomitic
dorsal scales and klipps of the Sebtides and Gomarides units
(Chalouan et al. 1995; Michard et al. 2002).

The area covers the westernmost part of the Bokkoya
Plain to the eastern side of the Ghis-Nekor Plain, bordered
by the Mediterranean coast to the north and the Tisirenes
Flysch to the south (Fig. 2). It belongs to the inner domain of
the Rifian chain and formed as a result of the Alpine orogeny
(Talhaoui et al. 2005).

The geological structure of the study area is imbricated
towards the south with the Tisirenes Flysch, with the pres-
ence of the Trougout Fault zone separating the Nekor basin
from the Ras Tarf horst (Galindo-Zaldivar et al. 2015). The
area comprises both shallow and deep aquifers, namely, the
Bokkoya and Ghis-Nekor aquifers. The Bokkoya aquifer is
drained by a network of oueds and tributaries, while the
Ghis-Nekor aquifer is fed by the Ghis River in the west and
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Fig.1 Study area and location of drinking water sites in the central Rif (North Morocco)
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the Nekor River in the east. The study area experiences
a semiarid climate with alternating dry and wet seasons,
characterized by an average annual rainfall of approximately
300 mm (Ghalit et al. 2017; Chafouq et al. 2018). The litho-
logical data for the study area were provided by the Loukkos
Hydraulic Basin Agency and Loukkos Regional Agricultural
Development Office.

Groundwater sampling and analysis

In this study, groundwater samples were collected from
both shallow and deep sources, including wells, under-
flows, and springs, across the central Rif region during
2020. The study area included a total of 55 monitored
sites, with the locations of each sampling point indicated
in Fig. 1. The hydrogen potential (pH), electrical conduc-
tivity (EC), and total dissolved solids (TDS) were meas-
ured in situ using a handheld multiparameter (HANNA, HI
991300). The collection of groundwater samples involved
the use of presterilized 5 L capacity polyethylene bottles
dedicated to physicochemical parameter analysis. Thus,
to ensure the integrity of the samples, the bottles were
thoroughly cleaned and then rinsed with the respective
fresh groundwater samples before being filled on board.
Subsequently, the plugs were securely fastened to prevent
any gas exchange with the surrounding atmosphere. All the
samples were quickly transported to the laboratory in cool-
ers at a temperature below 4 °C and then stored in a refrig-
erator prior to the start of laboratory analysis. The analysis
of these samples was conducted within a 48 h timeframe.
Thereafter, the concentrations of the major compo-
nents, including cations and anions, were determined in

a laboratory setting using the methods recommended by
Rodier et al. (2009). Hence, titration methods were used to
examine chloride (Cl7), bicarbonate (HCO;"), total hard-
ness (TH), and calcium ions (Ca’*). The concentration
of magnesium (Mg?*) was determined using the TH and
calcium content. Flame spectrophotometry was used to
determine the concentrations of sodium (Na*) and potas-
sium (K*) (Banerjee and Prasad 2020), while UV spec-
trophotometry was used to measure the concentrations of
nitrogen ions (N-NO;~ and N-NH,") and sulfate (SO,*7)
(Mulec et al. 2020).

The spatial variation in various groundwater parameters
was represented using a geographic information system
(GIS) (Abdelkarim et al. 2023), and the inverse distance
weighting (IDW) interpolation technique was used
to create spatial distribution maps via ArcGIS v10.8
software.

The hydrochemical processes controlling groundwater
mineralization and salinization in the central Rif were
studied using a Piper diagram and binary diagrams in
Aquachem software v12.0. (Sathish Mohan et al. 2017),
while XLstat software v.2023.5.1 was used to construct
a hydrochemical facies evolution diagram (HFE-D)
and Gibbs diagram (Ayed et al. 2017). Finally, Pearson
correlation analysis was conducted using IBM SPSS
Statistics version 25 to identify potential relationships
between the measured physicochemical parameters.
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Fig.3 Map of the spatial distri-
bution of the hydrogen potential
(pH) in the study area
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Fig. 4 Map of the spatial distri-
bution of electrical conductivity
(EC) in the study area
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Fig.5 Map of the spatial distri-
bution of total hardness (TH) in
the study area

Fig. 6 Map of the spatial distri-
bution of calcium (Ca*?) in the
study area
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Fig.7 Map of the spatial distri-
bution of magnesium (Mg*?) in
the study area
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Fig. 8 Map of the spatial distri-
bution of sodium ions (Na™) in
the study area
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Fig.9 Map of the spatial distri-
bution of potassium (K*) in the
study area

Fig. 10 Map of the spatial
distribution of bicarbonate
(HCOy") in the study area
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Fig. 11 Map of the spatial
distribution of chloride (C17) in
the study area
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Fig. 12 Map of the spatial 450w
distribution of nitrate (N-NO;™)
in the study area
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Fig. 13 Map of the spatial
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Table 2 Classification of groundwater samples in the study area
according to TDS

TDS (mg/L) Mineralization Number of % of samples
samples

<50 Very low 0 0.00

50-500 Low 3 5.45

500-1000 Moderate 10 18.18

1000-1500 High 13 23.64

> 1500 Very high 29 52.73

Results and discussion
Physicochemical characterization

The physicochemical qualities of the sampled groundwater
were compared with WHO standards (Table 1). The spa-
tial distributions of major element concentrations in the
groundwater of the central Rif, such as pH, TDS, EC, TH,
Ca’*, Mg**, Na*, K*, HCO;~, CI~, N-NO,~, and SO,*",
are presented in Figs. 3,4,5,6,7, 8,9, 10, 11, 12, 13.

Hydrogen potential (pH)

The pH values of the groundwater samples collected from
the study area ranged from 6.65 to 8.89, with an average

@ Springer

of 7.36 (Fig. 3). Most of the samples exhibit slightly
alkaline values (Table 1), which is in accordance with
prior research (Chafouq et al. 2018; Bouaissa et al. 2020;
Benyoussef et al. 2022; El Yousfi et al. 2023).

The observed low alkalinity of the groundwater in the
study area, likely due to seawater infiltration into the coastal
aquifer, aligns with findings by Chafouq et al. (2018) and
Giiner et al. (2021). While most groundwater samples fall
within the permissible pH range of 6.5 to 8.5 set by the
World Health Organization (WHO), a small percentage
(3.63%) exceeded the recommended limits set by the WHO
in this study. The issue of deteriorating groundwater quality,
particularly concerning pH levels, is a significant concern
across various regions. For instance, in the Zegoum region
of Algeria, Hiouani et al. (2020) discovered that the majority
of groundwater samples exhibited mediocre to poor quality,
characterized by elevated levels of calcium and sulfates
leading to a low alkalinity for groundwater. However, it is
worth noting that in the same area, Bouhout et al. (2023)
reported a pH ranging between 7.25 and 7.7, which falls
within the acceptable range for drinking water. This
variability highlights the importance of considering local
factors and specific studies when assessing groundwater
quality and its suitability for different purposes.

Total dissolved solids (TDS)

Groundwater potability and suitability for consumption
and agriculture are influenced by the total cation and anion
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Table 3 The groundwater samples in the study area were classified
according to EC (Detay and Carpenter 1997)

EC (uS/cm) Mineralization Number % of samples
of
samples
<1000 Very weakly mineralized 2 3.64
water
1000-2000  Weakly mineralized water 12 21.82
2000-4000  Lightly mineralized water 25 45.45
4000-6000 Moderately mineralized 5 9.10
water
6000-10000 Highly mineralized water 8 14.54
> 10000 Excessively mineralized 3 5.45
water

concentrations known as total dissolved solids (TDS) (Van
der Aa 2003; Rajesh et al. 2015). In this study, the TDS
content ranged from 749 to 6204 mg/L, with an average
value of 1960.45 mg/L. Approximately 60% of the ground-
water samples exceeded the World Health Organization's
desired limit of 500-1500 mg/L (WHO 2011) and were
unsuitable for consumption due to their high TDS values.
However, 40% of the samples fell within the desired limit
and were considered potable. Additionally, only 18.18% of
the samples showed moderate mineralization, as classified
by Van der Aa (2003) (Table 2).

The high levels of mineralization observed in the
groundwater samples from the study area can be attributed
to various factors, as indicated by previous findings. Water—
rock interactions, influenced by the geological substrate and
bottom salts, play a significant role in the mineralization
process (Dar et al. 2011; Tiwari and Singh 2014).
Additionally, nutrient supply and water—rock interactions
are predominant in aquifers, contributing to the observed
mineralization levels (Ghalit 2017).

In karst aquifers, intense water exploitation can lead to
changes in hydrogeochemistry, further impacting the mineral
content of groundwater (Bicalho 2010). The lithology,
water movement patterns, and recharge-discharge zones
also influence the mineralization of groundwater (Simoes
2003). Moreover, the substratum type in catchment areas
can affect the mineral content of rivers, highlighting the
complex interplay between geological factors and water
quality (Drive et al. 1989).

The observed increase in salinity in the groundwater sam-
ples may be attributed to the dissolution of soluble minerals
present in tertiary materials, underscoring the geological
influences on groundwater quality (Merchan et al. 2015).
Additionally, significant TDS values (surrounding 6000
mg/L) were found in coastal zones or originating from deep
aquifers, as highlighted in the study by Abdelkarim et al.

(2023), further emphasizing the impact of geological and
hydrological factors on groundwater mineralization.

Electrical conductivity

The electrical conductivity (EC) is a critical parameter
used to measure the amount of dissolved substances present
in water, indicating the level of inorganic contaminants
in water (Morrison et al. 2001; Li et al. 2021). The EC is
determined by measuring the water's ability to conduct an
electrical current. The more dissolved salts and minerals
present in water, the greater the electrical conductivity will
be. The concentration of ions, such as calcium, magnesium,
sodium, and chloride, influences the electrical conductivity
of water. The spatial distribution of electrical conductivity in
the study area is illustrated in Fig. 4. Thus, the groundwater
EC in the central Rif region ranged from 854 to 12400 pS/
cm, with an average of 3715.15 pS/cm.

The elevated levels of electrical conductivity (EC) in
groundwater samples, with 83.63% exceeding the WHO
permissible limits, as indicated in Table 1, raise concerns
about water quality and potential health risks. The WHO
guidelines specify that acceptable EC levels in drinking
water should not surpass 1000 pS/cm. High EC in water
can lead to adverse health effects such as hypertension,
cardiovascular disease, and kidney problems, as highlighted
by Fried (1991). Moreover, it can impact the suitability of
water for irrigation and other purposes. Notably, 14.54%
of the samples exhibited high mineralization levels, as
noted by Detay and Carpenter (1997) in Table 3. Hence,
various studies conducted in different regions, including
Sukkur city, Pakistan (Laghari et al. 2018); Oriental
Mindoro, Philippines (Kumara et al. 2020); Qambar city,
Pakistan (Lanjwani et al. 2020); and Cuddalore Old Town,
Tamilnadu (Selvaraju et al. 2022), have reported concerning
levels of contamination in groundwater in terms of EC
levels. Additionally, the presence of high mineralization
levels in a notable percentage of samples further supports
this issue, emphasizing the importance of monitoring and
managing groundwater quality to safeguard human health
and environmental well-being.

Table4 The classification of groundwater was based on the TH
(Sawyer and McCarty 1967)

Total hardness as ~ Hardness class Number of % of samples
CaCO3 (mg/L) samples

<75 Soft 0 0.00

75-150 Moderately high 0 0.00
150-300 Hard 2 3.63

300 Very hard 53 96.36
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Furthermore, an increase in EC indicates high ground-
water salinity. Thus, elevated levels of dissolved salts and
minerals in water can reduce the effectiveness of irriga-
tion and cause soil salinization, which can impact crop
yields and lead to long-term environmental degradation.
Several factors affect water conductivity, including ion
exchange, aquifer solubilization, and anthropogenic activ-
ities such as agricultural runoff and industrial activities
(Panaskar et al. 2007; Ramesh and Elango 2012). In addi-
tion, the phenomenon of corrosion of the mother rock
favoured in an acidic medium can greatly contribute to
the enrichment of groundwater in ions since the corrosive
potential of the water is increased by a low pH (Boyd
2015). This may be the case at many sampling points
(W12, W17, W37, W49 and W51), where the pH ranged
between 6.9 and 7.7, especially for wells W23 and W39,
which had pH values of 7.83 and 7.32 and EC values of
12,400 pS/cm and 10,240 pS/cm, respectively (Table 1).
Furthermore, anthropogenic activities such as irrigation,
the use of fertilizers, and the application of pesticides
can result in the accumulation of salts and minerals in
groundwater, leading to increased electrical conductivity.

Total hardness (TH)

The total hardness (TH) of water, measured in mg
CaCQOs, is a critical characteristic of domestic water and
is equivalent to the sum of Ca** and Mg?* concentrations.
In this study, the TH values of the collected groundwater
samples ranged from 210.28 to 2102.03 mg/L, with an
average of 1006.04 mg/L (Fig. 4).

Approximately 83.63% of the samples exceeded the
drinking water limit set by the World Health Organization
(WHO 2011) (Table 1). Based on the classification
proposed by Sawyer and McCarty (1967) (Table 4),
96.36% of the samples fall under the category of very
hard water, while only 3.63% fall under the hard water
category.

These results suggest that the majority of groundwater
samples analysed in the study area are unsuitable for human
consumption due to their exceptionally high hardness
levels. This exceedance of drinking water standards is a
prevalent issue in many Moroccan groundwater resources,
particularly in the semiarid regions of Morocco. For this
purpose, numerous studies have consistently reported that
a significant proportion of groundwater samples surpass
the World Health Organization's drinking water limits,
exhibiting elevated levels of total hardness and salinity,
namely, in the Essaouira Basin (Ouarani et al. 2020),
Ouazi Basin (Bahir et al. 2021; El Mountassir et al. 2022)
and Souk El Arbaa (Ghachoui et al. 2024).
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Calcium and magnesium ions (Ca?* and Mg*?)

Calcium (Ca?*) and magnesium (Mg*?) are vital
hydrochemical constituents of groundwater (Razowska-
Jaworek 2014) that contribute to water hardness and may be
associated with rock geochemistry (Olasehinde et al. 2015).
However, excessive amounts of these elements can have
detrimental impacts on human health. The calcium levels in
the groundwater samples collected in the study area ranged
from 26.43 to 408.81 mg/L, with an average value of 200.73
mg/L (Fig. 6). Similarly, the Mg?* concentrations varied
from 16.80 to 292.80 mg/L, with an average value of 121.01
mg/L (Fig. 7).

According to the WHO guidelines (2011), 67.27% of
the groundwater samples (Table 1) exceeded the desired
calcium limit, whereas 40% of the samples surpassed the
recommended magnesium level (50-150 mg/L).

The principal sources of calcium (Ca’") in the study
area seem to be gypsum, dolomite, and limestone (Ghalit
et al. 2017). Indeed, water in contact with gypsum can reach
higher calcium levels, increasing the solubility of gypsum
in salt water (Bhakar and Singh 2019), while dolomite and
rock mafic minerals (amphiboles) are sources of magnesium
in natural waters (Kwami et al. 2019).

Sodium ions (Na™)

Sodium ions occur naturally in groundwater due to
geological processes such as rock weathering, soil salt
dissolution from evaporation, agricultural activities and
human inputs (Wagh et al. 2016; Abbasnia et al. 2019;
Bhakar and Singh 2019). The high sodium content in some
samples may result from cation exchange processes with
other minerals (Abbasnia et al. 2019).

In the study area, as presented in Fig. 8, the groundwater
samples had variable sodium concentrations ranging from
68.5 to 884 mg/L, with an average of 384.54 mg/L (Table 1).

According to these results, over a quarter (29.09%)
of the samples exceeded the WHO limits (2011), posing
potential health risks to susceptible populations (Marghade
etal. 2011). Abnormally high sodium concentrations could
be attributed to the alteration of plagioclase feldspar or
exchange with sodium clay deposits (Ghalit et al. 2017,
Kwami et al. 2019).

Potassium ions (K*)

Potassium ions are essential nutrients for both plants
and animals, and their presence in groundwater can
have natural or anthropogenic origins. Natural sources
include the weathering of rocks and the dissolution of
minerals, while anthropogenic sources include chemical
fertilizers and domestic sewage (Moran-Ramirez et al.
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2016; Chandran et al. 2017). In this study, the average
concentration of potassium in the groundwater samples
was 9.71 mg/L, with a range of 0.4 to 54.9 mg/L. Only
5.45% of the samples exceeded the consumption standards
established by the World Health Organization (WHO) in
2011 (as shown in Fig. 9 and Table 1).

Although most of the groundwater samples had
potassium levels within acceptable limits, a small
percentage of the samples exceeded the recommended
limits for human consumption, which could pose a health
risk to those who rely on groundwater as their primary
source of drinking water. Thus, the presence of elevated
potassium levels in certain samples underscores the
importance of continued monitoring and management
of groundwater resources, especially in areas where
anthropogenic sources are prevalent. Overall, this study
highlights the importance of monitoring potassium
levels in groundwater, as excessive potassium can have
negative impacts on human health and the environment.
Additionally, this study underscores the need for
sustainable management practices to minimize the
anthropogenic sources of potassium in groundwater.

Bicarbonates (HCO;")

The groundwater bicarbonate content in the study area
varied widely, with an average of 379.10 mg/L and values
ranging from 54.9 to 634.4 mg/L (Table 1). However, a
small proportion (9.09%) of the samples fell below the WHO
recommended level for drinking (WHO 2011). Figure 10
illustrates the spatial distribution of HCO;"™.

The concentration of bicarbonate in groundwater is
primarily influenced by the presence of carbonate minerals
in soils and aquifers, such as calcite and dolomite, as well as
the dissolution of CO, gas from the atmosphere and soils of
recharge basins (Forstner and Wittmann 2012; Wagh et al.
2016).

Human activities can also contribute to elevated
bicarbonate concentrations (Zilberbrand et al. 2001).
Although most of the groundwater samples had bicarbonate
levels within the recommended limits, the presence of low
bicarbonate levels in some samples could affect the taste
and overall quality of the water. On the other hand, high
bicarbonate concentrations can lead to water hardness and
scaling in pipes, which can increase maintenance costs.

Therefore, it is important to continue monitoring and
managing groundwater resources to ensure that bicarbonate
levels remain within acceptable limits for drinking water.
Moreover, future studies could investigate the impact
of anthropogenic activities, such as land use change
and fertilizer application, on the bicarbonate levels in
groundwater in the study area.

Chlorides (CI")

Chloride is an important inorganic anion that can
originate from various anthropogenic and natural sources.
Anthropogenic sources include industrial and domestic
wastewater such as agricultural wastewater, fertilizer use,
and septic tank leachate, while natural sources include
interactions between water, soil, and rocks as well as marine
intrusion (Valdes et al. 2007; Ahmad and Bajahlan 2009;
Taiwo et al. 2011; Abbasnia et al. 2019). In this study, the
average chloride concentration in the water samples was
772.59 mg/L, ranging from 88.75 to 3150 mg/L (Fig. 11
and Table 1).

A significant proportion (61.81%) of the samples
exceeded the World Health Organization's recommended
limit for drinking water (WHO 2011). The high chloride
concentrations in the water samples could be attributed to
anthropogenic activities such as the discharge of domestic
and industrial wastewater into the groundwater system.
Fertilizers, particularly chloride-containing fertilizers, could
also be potential sources of high chloride concentrations in
water samples. Moreover, the presence of high chloride
concentrations in some of the water samples could also
be due to natural sources such as marine intrusion due to
existing fault zones in the study area, as demonstrated by
(Galindo-Zaldivar et al. 2015), interactions between water,
soil, and rocks. The spatial distribution of chloride in the
study area is shown in Fig. 11.

The presence of high chloride concentrations in
groundwater samples could pose health risks to humans and
animals. High chloride concentrations can impart a salty
taste to water, making it unpalatable and unsuitable for
drinking. While chloride (C17) helps maintain the balance
of electrolytes in blood plasma, elevated levels can lead to
physiological disorders (Garg et al. 2008).

Excessive intake of chloride has been associated with the
development of various health conditions, such as essential
hypertension, increased risk of stroke, left ventricular
hypertrophy, osteoporosis, renal stones, and asthma.
(McCarthy 2004). The results of this study underscore
the need for regular monitoring of groundwater quality,
particularly in areas where anthropogenic activities and
natural sources contribute to high chloride concentrations.
Thus, effective management and control measures are
required to prevent further degradation of groundwater
quality and to safeguard public health.

Nitrates (N-NO;")
Nitrate pollution is a global concern and has been identified
as a major contaminant of groundwater due to intensive

agricultural activities, large amounts of mineral fertilizers,
and local hydrogeological structures (Qin et al. 2013; Su
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et al. 2017; Zhai et al. 2017a). The presence of nitrates in
groundwater can adversely affect human health and disrupt
groundwater quality. In this study, the concentrations
of N-NO;™ in the groundwater ranged from 0.36 to
180.88 mg/L, with an average value of 23.28 mg/L (Fig. 12
and Table 1). While most of the samples were within the
limits allowed by the WHO (2011), 12.72% of the samples
analysed exceeded the limit of 50 mg/L. Hence, water with
nitrate concentrations above the permissible limit should
be treated before it can be used as drinking water. The
increased nitrate concentrations at these sites are likely due
to anthropogenic activity, including agricultural activity and
urban development recorded at the sites, and the presence of
uncontrolled septic tanks (Chafouq et al. 2018).

Various natural processes and human activities con-
tribute to water pollution from both point and nonpoint
sources of nitrates. Point sources include septic tanks,

dairy lagoons, wastewater effluents, and intensive livestock
farming, while nonpoint sources include fertilizers, pesti-
cides, manure application, heavy metals, and atmospheric
deposition.

These sources of contamination have been reported in
many developing and developed countries and regions
around the world (Qasemi et al. 2018a, b; Zhai et al. 2017a,
b).

Urban development, including the use of septic tanks and
the overpumping of groundwater due to high population den-
sity, can contribute to nitrate pollution. This study revealed
that anthropogenic activities, such as agriculture and urban
development, and the presence of uncontrolled septic tanks
were significant contributors to nitrate pollution in the study
area. The effective management of agricultural activities and
urban development is needed to minimize contamination,

Table 5 Groundwater types Water type Number
and their respective sampling of
locations in the study area

% Sample Sample location

samples
Ca-SO, 6 10.9
Na-HCO; 3 5.45
Na-SO, 3 5.45
Ca-Cl 3 5.45
Mg-HCO; 1 1.81
Na—Cl 39 70.9

W1, W18, W19, UF1, UF2, UF3
W2, W3, W16

W6, W8, W27

W10, W40, W50

W13

W4, W5, W7, W9, W11, W12, W14, W15, W17, W20, W21, W22,
W23, W24, W25, W26, W28, W29, W30, W31, W32, W33, W34,
W35, W36, W37, W38, W39, W41, W42, W43, W44, W45, W46,
W47, W48, W49, W51, S1

Fig. 14 Piper plot showing
major-ion types of groundwa- [
ter samples in the central Rif
aquifer
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and regular monitoring of groundwater quality is essential
to ensure safe drinking water for the population.

Sulfate ions (S0,%")

In addition to calcium and magnesium, sulfate is an
important factor in water hardness. In this study, the sulfate
concentrations in the investigated groundwater samples
were found to be high, with an average of 510.61 mg/L and
ranging from 27.11 to 1571.61 mg/L (Table 1). Notably,
92.72% of the samples exceeded WHO guidelines (2011).
The spatial distribution of sulfate indicates that the
concentration of this anion increases near the sea (Fig. 13)
due to intense agricultural and septic activities (Boateng
et al. 2016).

One possible explanation for the observed high levels
of sulfate in the groundwater samples is the presence of
sedimentary rocks containing gypsum and anhydrite in the
studied sites (Bhakar and Singh 2019). These rocks may be
a natural source of sulfate, contributing to the elevated lev-
els in the groundwater. Anthropogenic activities such as the
use of fertilizers and wastewater discharge can also lead to

increased sulfate levels in groundwater (Akhtar et al. 2021).
However, sulfate deficiency was observed in some samples,
especially W11 and W16, with values of 35.9 mg/L and
27.11 mg/L, respectively.

This may indicate a low impact of anthropogenic
activities (Barakat et al. 2020). High levels of sulfate
in groundwater samples may have negative impacts on
human health and the environment. Sulfates have a laxa-
tive effect that leads to dehydration, especially in infants.
However, over time, people and young livestock become
acclimated to sulfate, and symptoms disappear (Bashir
et al. 2012). In addition, sulfate can cause eutrophication
and algal blooms in surface waters, leading to decreased
oxygen levels and harm to aquatic organisms (Carpenter
et al. 1998).

Overall, the high levels of sulfate observed in the ground-
water samples in this study may have negative impacts on
both human health and the environment. Further studies
are needed to determine the sources and impacts of sulfate
in groundwater in this region. In addition, the significant
increase in sulfate concentration is most likely related to the
presence of gypsum and anhydrite in the sedimentary rocks
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that occupy some of the sites studied (Bhakar and Singh
2019). However, sulfate deficiency indicates a low impact
of anthropogenic activities (Barakat et al. 2020).

General hydrochemical characteristics
Groundwater hydrochemical facies and water type

The main cations and anions are represented on a trilinear
Piper diagram (Piper 1944) to understand the hydrochemical
evolution and identify the predominant groundwater types
(Table 5) in the study area.

Figure 14 shows three hydrogeochemical facies: the
sodium chloride facies (Na—Cl) represents 70.9% of the
water points studied (first facies), while 10.9% of the water
samples belong to the sulfated calcium facies (Ca—SO,) (sec-
ond facies). The third facies is represented by 5.45% sodium
bicarbonate water (Na—HCO;). However, the remainder of
the samples surveyed could correspond to fresh groundwater
influenced by ion exchange.

These facies highlight the complexity of the
hydrogeochemical processes that control groundwater
salinity in the Central Rif, including water mixing,
evaporation and the dissolution of evaporites such as halite,
gypsum and anhydrite (Sajilkumar and James 2016).

lonic ratio

The hydrogeochemical characteristics of an aquifer system
are influenced by various chemical reactions, frequently

%Mg2+
«— %Na*+ %K*
%Ca’t —>
100 66.6 S0 333 50 66.6 100

T 100 ! ! ! :

0OH-
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333 .L
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a
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Fig. 16 Representation of central Rif groundwater samples in the
HFE-D
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resulting in changes in ionic concentrations (Verma et al.
2021). The ionic ratios were established (Fig. 15) to assess
the origin of water mineralization (Ghalit et al. 2023) and to
determine the possibility of seawater intrusion (Edet 2016;
Aladejana et al. 2021) in the study area.

The bivariate plot of Ca** versus HCO;™ (Fig. 15A)
shows that the weathering of carbonate minerals (calcite)
resulted in more Ca’" ion release than the weathering
of carbonic acid (silicate) in most water samples. In
addition, the correlation between (Ca’t + Mg2+) and
(HCO;™ +S0,%7) was used to examine the effect of the
distribution of sulfate and carbonate minerals in the system.
Figure 15C shows that most samples follow the 1:1 line,
suggesting that these ions in the central Rif groundwater
originate from the dissolution of these minerals rather than
the weathering of silicates.

The Na*/CI™ ratio plot (Fig. 15D) shows that a significant
number of samples strongly approach the 1:1 line, suggesting
halite dissolution or possibly seawater intrusion (El Yousfi
et al. 2022). Nevertheless, the reverse ion exchange process
could explain the scattered points below this line, where
Ca”" replaces Na* in the groundwater of the Central Rif.
The Ca**Mg>* molar ratio indicates the presence of calcite
and the dissolution of dolomite (Kumar et al. 2006). The
graphical representation of this Ca>*/Mg”" ratio (Fig. 15E)
reveals a predominance of calcite dissolution over silicate
weathering.

Sulfate ions (SO,>") are frequently present in groundwater
and have mainly natural and anthropogenic origins.
Figure 15B illustrates the correlation between Ca>* and
SO,2~ concentrations in the sampled waters. This correlation
could be linked to the potential presence of gypsum and/or
anhydrite, thus suggesting a possible contribution of these
minerals to the mineralization of the waters in the central
Rif aquifer. Nevertheless, it is important to note that a group
of samples falls outside the 1:1 line, indicating an excess
of SO,*~ ions over Ca®* ions in a few waters studied. This
discrepancy can be attributed to other possible sources of
these ions, such as seawater intrusion and anthropogenic
sources.

Hydrochemical facies evolution (HFE-D)

The hydrochemical facies evolution (HFE-D) was used to
interpret and analyse possible hydrochemical facies and evo-
lutionary processes in coastal areas while taking into consid-
eration the percentage of the most significant ions and their
relationships (Giménez-Forcada and Sdnchez San Romén
2015). The results of the HFE plots indicate the dissolution
of salt marsh evaporites in aquifer materials, which are rich
in sulfate and chloride (Fig. 16).

The plot shows that more than half of the samples are
projected in the lower part of Fig. 16 (52.72% of the total
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Fig. 17 Gibbs diagram of anions and cations versus TDS

samples), representing the intrusion phase, while 47.27% of
the total samples represent the refreshment phase. Indeed,
water samples from the central Rif are of the Na—ClI type
(41.37%) and belong to saltwater intrusion facies affected to
some extent by the reverse cation exchange reaction (Na*/
Ca’"), as indicated by the presence of MixCa—Cl-type waters
in the aquifer in the study area. On the other hand, 34.61% of
the fresh groundwater in the central Rif is MixNa—HCO; and
is influenced by direct cation exchange reactions. Indeed,
factors such as the distance from the sea, intensive water
demand and hydrogeological characteristics of the aquifer
affect the degree of contamination of the aquifer by marine
intrusion (Yin et al. 2021; Benaafi et al. 2022).

Gibbs diagram

Gibbs diagrams (Gibbs 1970) are widely used to identify
the processes controlling groundwater geochemistry, includ-
ing precipitation, evaporation, rock—water interactions, and
seawater intrusion. Figure 17 shows the correlation between
cation and anion levels and TDS.

As shown by the plot of chemical data on the Gibbs
diagram, most groundwater samples in the study area fell
within the evaporation dominance zone and were closer to
seawater, revealing an interaction between groundwater and
seawater (Huang et al. 2013).
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Multivariate statistical analysis

To understand the relationships among the measured
hydrochemical parameters, Pearson correlation analysis (r)
was performed on 12 selected parameters to identify and
verify their origin. The results are presented in Table 6.

The correlation matrix reflects a strong positive
correlation between EC and TDS with major ions, indicating
the contribution of these ions to the overall mineralization of
the predicted groundwater (Elumalai et al. 2020).

A significant correlation among TDS, TH, Ca®* and
Mg** suggests that the host rock is the result of carbonate
and dolomite dissolution (Qin et al. 2013). It should also
be noted that TDS, EC, Na* and CI~ are strongly positively
correlated, which represents possible marine intrusion along
the coastal aquifer, and this correlation can be explained
by the precipitation/evaporation properties of the minerals
contained in the predicted waters (Rakib et al. 2020).

In addition, the mobilization of water from saline for-
mations by the overexploitation of aquifers (Giménez-For-
cada et al. 2010) and pollution due to anthropic activities
(septic tank effluents, use of synthetic fertilizers) may be
responsible for the relationship between these parameters
and the salinity of these waters (Re et al. 2013). It was con-
firmed that pH, HCO;™ and N-NO;~ had no correlation
with the other measured hydrochemical parameters. Since
N-NO;™ and other metrics did not significantly correlate,
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. human activity is likely the primary contributor to ground-
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