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Learning the syntax of plant assemblages
 

To address the urgent biodiversity crisis, it is crucial to understand the nature 
of plant assemblages. The distribution of plant species is shaped not only by 
their broad environmental requirements but also by micro-environmental 
conditions, dispersal limitations, and direct and indirect species interactions. 
While predicting species composition and habitat type is essential for 
conservation and restoration purposes, it remains challenging. In this 
study, we propose an approach inspired by advances in large language 
models to learn the ‘syntax’ of abundance-ordered plant species sequences 
in communities. Our method, which captures latent associations between 
species across diverse ecosystems, can be fine-tuned for diverse tasks. 
In particular, we show that our methodology is able to outperform other 
approaches to (1) predict species that might occur in an assemblage given the 
other listed species, despite being originally missing in the species list (16.53% 
higher accuracy in retrieving a plant species removed from an assemblage 
than co-occurrence matrices and 6.56% higher than neural networks), and 
(2) classify habitat types from species assemblages (5.54% higher accuracy 
in assigning a habitat type to an assemblage than expert system classifiers 
and 1.14% higher than tabular deep learning). The proposed application has a 
vocabulary that covers over 10,000 plant species from Europe and adjacent 
countries and provides a powerful methodology for improving biodiversity 
mapping, restoration and conservation biology. As ecologists begin to 
explore the use of artificial intelligence, such approaches open opportunities 
for rethinking how we model, monitor and understand nature.

Understanding vegetation patterns and plant assemblages is central to 
ecology, as co-occurring species ultimately determine the structure and 
function of ecosystems1. Plant species rarely exist in isolation2; instead, 
they form complex assemblages influenced by biotic and abiotic con-
ditions3. These assemblages represent the emergent properties of 
ecosystems, where each species contributes to and is influenced by the 
broader assemblage4. Identifying and analysing these intricate patterns 
is crucial for understanding the underlying mechanisms governing 
biodiversity and ecosystem stability and dynamics5. Despite progress, 
unravelling these patterns remains challenging, given the high dimen-
sionality and complexity of community assembly6. In this study, we 
attempt to decode the ‘syntax’ of plant community structure, aiming 
to provide insights on the composition of vegetation across diverse 
ecosystems. In this context, ‘syntax’ refers to the implicit rules and 

patterns that govern how plant species co-occur and interact to form 
structured assemblages, similar to how syntax in language defines the 
arrangement of words to create meaningful sentences. Just as language 
syntax reveals relationships between words on the basis of their posi-
tions and roles, the syntax of plant assemblages represents the hidden 
shared environmental preferences, direct and indirect interactions, and 
organization underlying species assemblages (that is, just as the order-
ing of words in a sentence matters, the ranking of species names in a 
community matters as well). We focus particularly on how this approach 
can be used to improve habitat type identification, offering insights 
that could enhance ecological classification and conservation efforts.

The analysis of species communities is often done by leveraging 
presence–absence matrices of species co-occurrences7, which record 
how many times two different species were observed together in the 
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contains at least five levels of complexity. We focused our analysis on 
the first three levels: broad habitat groups (level one), habitat groups 
(level two) and habitat types (level three). Specifically, our experi-
ments concentrated on predicting habitat types that are within eight  
broad habitat groups. It is important to note that habitat types, such 
as those defined by the EUNIS typology, are human-constructed cate
gories that impose structure on a continuum of vegetation patterns.

Habitat distribution modelling typically involves linking informa-
tion on plant species composition (such as a full list of vascular plant 
species with estimates of cover abundance) and environmental covari-
ates (such as whether a community is located on a coastal dune20 or 
within a specific terrestrial ecoregion21) to habitat type occurrences. 
This approach helps identify the habitat type of vegetation plots. There 
are two basic types of methodologies used for vegetation classification 
based on species composition22: expert systems23 and machine learn-
ing24. The former leverage explicitly defined logical rules and emulate 
the process of expert classification done by humans, whereas the latter 
are tools for induction of the independent knowledge base.

Expert systems, even though they are still the most used tools to 
assign plots to vegetation types, do not consistently align with the basic 
requirements for vegetation classification25:

•	 They tend to overfit by learning the detail in the training data too 
well. Thus, minor changes in a vegetation plot (for example, a 
small difference in the cover of an individual species) can consider-
ably alter the result of the classification procedure, making those 
expert systems not robust.

•	 Some of them involve sets of external criteria (for example, envi-
ronmental or geographical attributes of vegetation plots in addi-
tion to species composition) to classify some vegetation types, 
making those expert systems not simple.

•	 They are often based on one specific nomenclatural and taxonomic 
dataset, but using vegetation plots from different origins might 
result in different names for the same entity or identical names 
for different entities (depending on the taxonomic concepts and 
determination literature used in a particular region or period), 
making those expert systems not consistent.

Modern deep learning techniques have great potential for model-
ling habitat distributions26. In particular, experiments with feedforward 
neural networks have shown that they have the ability to capture com-
plex information about the plant species composition of vegetation 
plots to classify plant communities27. One limitation of such models, 
however, is that their architecture induces an intrinsic inductive bias 
in the sense that they process each plant species as if it is equally differ-
ent from all the others28. Thus, they cannot accurately model complex 
relationships between plant species. They are therefore not really 
suitable for modelling ecological systems and identifying habitat 
types where the interdependencies between plant species are com-
plex29. Classical approaches offer interpretable and mathematically 
grounded methods for ecological modelling30. However, they may 
lack the capacity to learn latent patterns from high-dimensional data, 
such as subtle co-occurrence relationships between plant species, 
hierarchical community structures or environmental gradients that 
shape species assemblages.

In contrast, transformers31, a different kind of deep learning model, 
go beyond local processing and exploit global attention mechanisms 
for increased performance. Although transformers have been lever-
aged in various fields of biology (for example, the extraction of mor-
phological traits32 or the prediction of protein structures33), their use in 
vegetation classification is still largely unexplored. Such models should 
allow the segmenting of habitats in a much more efficient manner than 
current methods. In particular, large language models (LLMs) have 
not yet been embraced by the global community of ecologists despite 
their ability to find patterns and correlations in noisy biological data34.

same vegetation plot. This traditional approach allows for global analy-
ses of co-occurrence patterns in vegetation plots found in a dataset, 
making it suitable for detecting broad patterns, such as clusters of spe-
cies with a high tendency of co-occurrence8. However, this method is 
often biased towards common species9, as they have higher occurrence 
frequencies across vegetation plots, leading to inflated co-occurrence 
estimates. This can obscure the detection of rare or specialized species 
interactions10, which may play critical ecological roles but are under-
represented in presence–absence matrices.

To address this limitation, alternative approaches such as fidelity  
indices11 quantify species’ specificity to particular habitat types rather 
than relying solely on their co-occurrence frequencies, making these 
approaches particularly useful for distinguishing diagnostic spe-
cies from widely distributed ones. While such methods might offer 
an improvement over raw co-occurrence counts, they remain con-
strained by predefined habitat classifications and do not fully capture 
the hierarchical and context-dependent nature of species associa-
tions. In addition, most co-occurrence matrices only account for 
species presence or absence in the assemblage, but the relative abun-
dance of species within plant assemblages, which is often important 
for habitat and vegetation classification12, is not taken into account. 
Statistical interdependencies, which reflect biotic interactions, often 
exhibit asymmetric, transitive and hierarchical patterns13 that are 
beyond the scope of classical co-occurrence approaches but can be 
captured by more recent and sophisticated AI-based abundance-order 
language models. These models use a transformer-type deep learn-
ing architecture based on self-attention mechanisms (which allow 
the model to weight the importance of each species in relation to 
all others in a given assemblage, much like how one might focus on 
key words in a sentence to understand its meaning). This allows such 
a model to account for bidirectional dependencies in a statistical 
sense (that is, in the extent to which the presence or abundance of 
one or several species helps predict others), not necessarily reflect-
ing ecological causality. These patterns include asymmetries (that is, 
if species A statistically influences species B but species B does not 
necessarily statistically influence species A), indirect relationships 
such as transitivities (that is, if species A statistically influences spe-
cies B and species B statistically influences species C, then species 
A statistically influences species C) and hierarchical patterns in the 
assemblage (for example, abundant species that tend to co-occur 
with other less abundant species).

A concrete application of the model evaluated in our study is the 
classification of European habitat types based on ordered species 
assemblages. Europe hosts a rich diversity of vascular plant species, 
contributing to a great number of unique habitats14 shaped by both 
biotic and abiotic factors and protected by the European Habitats 
Directive. However, this biodiversity faces many threats, including the 
effects of various kinds of agricultural activities (for example, intensi-
fication for more productive farming and abandonment of traditional 
land use) and modifications of natural systems (for example, dredging 
and sea defence works), among others15. All habitats protected by 
the Habitat Directive are listed in Annex I of this directive16, and with 
the new European Union restoration law, a large proportion of these 
habitats have to be in a favourable state in the near future17. A major 
challenge is that in many European Union countries, only a fraction 
of these habitats have been mapped, making it difficult to monitor 
their development and condition. Moreover, even when mapped, 
their ecological quality often remains unknown, further complicat-
ing conservation and management efforts. Here we try to patch this 
major knowledge gap.

For the purpose of this study, habitats were defined as terres-
trial, freshwater or marine areas characterized by geographic, abiotic 
and biotic features18. We leveraged the European Nature Information 
System (EUNIS)19 maintained by the European Environment Agency. 
This hierarchical classification system covers all types of habitats and 
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The goal of this work is to enhance the understanding of species 
assemblages and facilitate habitat identification in Europe through the 
use of LLMs (Fig. 1). To achieve this goal, we introduce a computational 
pipeline centred on Pl@ntBERT35, a model based on BERT36 (that is,  
Bidirectional Encoder Representations from Transformers, a deep 
learning model originally designed for natural language under-
standing). This means that without any further adaptation (that is, 
fine-tuning), Pl@ntBERT would be pretrained only in a self-supervised 
manner on very large volumes of common text data unrelated to  
vegetation (that is, BookCorpus and English Wikipedia) and would  
be a Swiss army knife solution (that is, this model would work for the 
most common language tasks, such as sentiment analysis or named 
entity recognition, as long as they did not require a deep knowledge  
of the domain). However, to make it ecologically meaningful, we 
pretrain it (that is, we make the model learn the general structure in  
the data) on an in-domain dataset named the European Vegetation 
Archive (EVA)37, an integrated database of European vegetation plots. 
This adaptation allows Pl@ntBERT to develop a statistical representa-
tion of the vegetation assemblages, capturing implicit relationships 
between species that commonly co-occur, and boost the performance 
of the downstream task (for example, keeping the learned features  
but replacing the final layer improves habitat type identification).

The next step is to train the model for a supervised classification 
task: assigning habitat types to species assemblages. We use the EUNIS 
classification system, a widely used European framework that organizes 
vegetation into hierarchical habitat types based primarily on dominant 
species composition, ecological structure and environmental condi-
tions. The EUNIS typology provides a standardized way to classify and 
compare habitats across Europe, making it a key reference for conserva-
tion and land management. However, as EUNIS is a human-constructed 
typology, it has to be noted that sometimes, the habitat type labels 
that were assigned to vegetation plots by the vegetation scientists 
that collected the data may be ambiguous or uncertain. Unlike tradi-
tional expert systems, which rely on manually defined classification 
rules, or classical machine learning approaches, which process species  
independently without considering their ecological interdepend-
encies, Pl@ntBERT learns to infer habitat types by recognizing  
patterns in species composition and their statistical relationships.  
This approach enhances classification accuracy, mitigates inconsist-
encies in taxonomic nomenclature (by accommodating variation in 
species names such as synonyms) and provides a scalable solution for 
habitat identification, including for habitats under threat of collapse.

Results
The syntax of species assemblages
Understanding the structure of species assemblages requires capturing 
both direct and indirect relationships between co-occurring species. 
To measure Pl@ntBERT’s ability to capture these complex relation-
ships from abundance-ordered species communities, we evaluated it 
on a so-called masking or fill-mask task (that is, a species is removed 
from the assemblage, and the accuracy of the model in recovering 
the right species is measured). This approach is conceptually related 
to the notion of dark diversity38, as it aims to identify missing species 
that, on the basis of the ecological context, are expected to be present  
but are absent in a given assemblage. For this evaluation, we tested 
different versions of Pl@ntBERT, which vary in how they tokenize  
species names (refer to Methods for more details about these different 
versions). Naturally, the models using a tokenizer where species names 
are split into two tokens (one for the genus name and one for the species 
epithet) tend to perform better in the masked token prediction task. 
This result is expected, since each mask hides only half of the species 
name rather than the entire binomial name. As a result, it is easier for 
these models to figure out what the other half of the binomial name 
is (for example, ‘Thinopyrum junceum, [MASK] marina, Pancratium 
maritimum’). In contrast, the models using a tokenizer where species 
names are considered as one single token have to choose between over 
14,000 different species to replace the mask, which completely hides a 
species name (for example, ‘Thinopyrum junceum, [MASK], Pancratium 
maritimum’), making the task harder.

To assess how well Pl@ntBERT captures species relationships 
beyond simple co-occurrences, we conducted a comparative evalu-
ation against two alternative approaches: (1) a naive Bayes model39 
using only the species co-occurrence matrix and (2) a classical deep 
learning model40 based on a feedforward neural network (Fig. 2). This 
comparison allowed us to determine whether Pl@ntBERT’s ability to 
encode species assemblages translates into improved predictive power 
when identifying missing species in vegetation plots. Pl@ntBERT 
clearly outperforms the co-occurrence matrix at every rank—that is, at 
every position that species can occupy in the vegetation plot when they 
are sorted by cover abundance (Fig. 2b). Moreover, the co-occurrence 
matrix tends to perform worse when the species is less abundant. The 
neural network is very good for the most dominant species, even out-
performing the Pl@ntBERT model on the first ranks. However, when 
the species become less abundant, it quickly loses its predictive power. 
In contrast, the Pl@ntBERT model tends to perform better for scarce 

Masked language 
model

Classifier model

In each plant 
assemblage, species 
are randomly masked

The goal of the model 
is to replace the 
masks with real speciesTrained on over

1.4 million 
vegetation plots

The goal of the model
is to assign a EUNIS 
habitat type to the 
species assemblage

Trained on over
800,000 
vegetation plotsThe real plant 

assemblage recorded 
on site is used

The 
classifier is 
trained 
directly from 
the 
fine-tuned 
model

Able to retrieve the 
missing species from 
the incomplete 
assemblage

Able to assign the 
EUNIS habitat type 
to the species 
assemblage

bellis perennis, poa pratensis,
[MASK], pteridium aquilinum,
amaranthus retroflexus 

acer saccharum, lonicera 
japonica, poa pratensis, typha 
latifolia, pteridium aquilinum, 
betula pendula, trifolium repens

 

Sentences are formed by ranking
the lowercase species in descending
order of cover abundance

Over 1.4 million vegetation
plots from Europe and
adjacent areas collected by 
phytosociologists are used 
(they contain over 29 million 
occurrences of over 14,000
species)

?

Fig. 1 | The proposed approach leverages LLMs to capture the latent 
dependencies between plant species in diverse ecosystems. By training on over 
1.4 million vegetation plots, 29 million species occurrences and 14,000 species 
from Europe and adjacent regions, the model learns the ‘syntax’ of sentences 

formed by abundance-ordered plant species sequences, allowing it to predict 
missing (that is, [MASK]) taxa in sequences of species. The resulting foundation 
model can be further fine-tuned to assign EUNIS habitat types to vegetation 
plots, outperforming traditional methods on both tasks.
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species than for abundant species. Indeed, the accuracy of its predic-
tions drops sharply when the first ranked species (most abundant) are 
masked (from around 22% to around 16% for species ranked second to 
third) but then slowly increases for species ranked after (and stabilizes 
around 18% for species ranked tenth). This indicates that, as the first 
species is the one contributing the most to the assemblage structure 
and identity, it is more likely for our model to find it if it has complete 
knowledge of the assemblages (that is, all other species), especially 
the second and third species. Moreover, it shows that the presence 
of abundant species is essential but not sufficient to determine the 
assemblage. However, the assemblage of the first three species (and 
also the assemblage of only the second and third species) is often suf-
ficient to determine the ecosystem. This emphasizes the critical role 
that species abundance plays in accurately predicting missing species 
in an assemblage. As it is often the rarer and less abundant species that 
are missing from vegetation-plot records, this experiment highlights 
the importance of using models like Pl@ntBERT to capture nuanced 
relationships between species. See appendix 36 in the Supplementary 
Information for a more in-depth overview of each method’s result.

The task of finding missing species from highly diverse, incom-
plete plant assemblages benefits notably from the ability to capture 
complex relationships, leverage extensive textual data for contextual 
understanding and learn rich, abstract data representations. A com-
parison between the results obtained by the Pl@ntBERT model, the 
co-occurrence matrix and the neural network (Supplementary Fig. 12) 
shows that the LLM clearly outperforms the other two approaches 
in this regard. LLMs provide a holistic view that aids in recognizing 
patterns and improving species identification. The co-occurrence 
matrix relies on simple frequency counts of species pairs appearing 
together in the training dataset41, and the neural network relies on 
one-hot encoded assemblages of co-occurring species42, which lack the 
contextual understanding necessary to accurately predict the masked 
tokens in a complex and domain-specific dataset such as plant species 
names. Whatever the broad habitat groups (for example, vegetated 
man-made habitats, wetlands, forests and other wooded land), Pl@
ntBERT consistently outperforms the co-occurrence matrix by a factor 
of more than ten and, except for littoral biogenic habitats and coastal 
habitats, the neural network by a factor of almost two (overall accuracy 
of 17.49% for the Pl@ntBERT model, 0.96% for the co-occurrence matrix 
and 10.93% for the neural network; Fig. 2a).

Furthermore, we show that Pl@ntBERT is able to perform better 
than both the co-occurrence matrix and the neural network when 
detecting species patterns (appendix 29 in the Supplementary Informa-
tion). In scenarios where three species A, B and C occur together more 

than 100 times in a vegetation plot but where species A and species 
C never occur together without species B, Pl@ntBERT is often able 
to predict that the species B is required for the presence of the other 
two species, unlike the other methods. In contrast, the co-occurrence 
matrix and the neural network repeatedly predict common species 
(for example, Dactylis glomerata, which is the most frequent species in 
the dataset, or Phragmites australis), even in cases where they are not 
plausible candidates, showing a tendency to favour species that appear 
many times in the dataset rather than recognizing specific ecological 
patterns. Pl@ntBERT’s success demonstrates its capacity to learn the 
complex syntax of plant assemblages and correctly identify species 
occurrence relationships, even in complicated ecological contexts. 
Practically, Pl@ntBERT can support vegetation surveys by suggesting 
species that are probably present but unrecorded. After conducting an 
initial survey and recording a set of species, one can append [MASK] 
tokens sequentially to the end of the observed species list. At each 
iteration, the model outputs probabilities over all tokens, both species 
tokens and special tokens—including the [SEP] token, which indicates 
the end of the sentence (that is, the end of the list). When [SEP] has the 
highest probability, it indicates that the model considers the assem-
blage complete, hence providing a natural stopping criterion without 
prior knowledge of total species richness. This capability can also help 
flag potential omissions or inconsistencies in species lists. By offering  
context-aware predictions, the model can act as a quality-control 
tool that complements field observations and contributes to more 
complete and reliable habitat assessments. Indeed, observer errors 
(for example, overlooking errors and misidentification errors) may 
result in species richness being artificially underestimated43. This 
fill-mask task can thus support rapid floristic assessments, where only 
dominant or easily identified species are observed, by predicting likely 
missing species.

The task of finding a missing species in an assemblage is a complex 
problem, as the hypothesis space is large. Indeed, when asked to replace 
a [MASK] token in a sentence describing a vegetation plot, the model 
Pl@ntBERT must select from over 14,000 different vascular plant spe-
cies. However, the perplexity of the base model indicates that it mostly 
hesitates between around 12 species when it has to replace the mask. 
More importantly, an experiment shown in Supplementary Fig. 15 
indicates the following:

•	 When the Pl@ntBERT model (the large-species version) does 
not replace the [MASK] token with the correct species, it actually 
outputs a species coming from the same vegetation class44 (that 
is, a species belonging to the same broad unit in a hierarchical 
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standard deviations). Only the labelled vegetation plots for which over ten 

species were recorded were kept in the test set. For each remaining vegetation 
plot (n = 705,479), the ten most abundant species were masked one by one, and 
the accuracy corresponding to each species rank was computed.
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classification system that groups plant communities on the basis 
of shared floristic composition, ecological characteristics and 
biogeography) over 39% of the time. For comparison, a random 
approach (that is, predicting a random species to replace the 
[MASK] token) would result in a species coming from the same 
vegetation class around 3.5% of the time. Pl@ntBERT thus provides 
a substantial improvement over chance, especially considering 
there are over 100 vegetation classes in the classification system, 
many of which share ecologically similar species that may co-occur 
across different vegetation classes.

•	 When the Pl@ntBERT model (the large-species version) does not 
replace the [MASK] token with the correct species, it actually out-
puts a species that is characteristic of the habitat type (level 3) of 
the vegetation plot 49% of the time, of the habitat group (level 2) 
66% of the time and of the broad habitat group (level 1) 76% of the 
time. For comparison, a random approach would result in a spe-
cies being characteristic of the habitat type of the vegetation plot 
0.3% of the time, of the habitat group 2.3% of the time and of the 
broad habitat group 7.0% of the time. Again, Pl@ntBERT provides 
a substantial improvement over chance, especially considering 
there are hundreds of habitat types in the classification system, 
many of which share ecologically similar species that may co-occur 
across different habitat types.

A comparison of the vocabularies of different models can be  
found in appendix 18 in the Supplementary Information. For example, 
verticillatoinundata, a species epithet, is divided into eight pieces ([ve, 
##rti, ##ci, ##lla, ##to, ##in, ##unda, ##ta]) by BERT and into seven 
pieces ([ver, ##tic, ##illa, ##to, ##in, ##und, ##ata]) by SciBERT45 
(that is, a BERT model trained on scientific text). In contrast, this term 
appears in the in-domain vocabulary of Pl@ntBERT, as well as around 
10,000 other genus names and species epithets. Species names are 
specific, meaningful biological entities. Splitting them into multiple 
smaller components (referred to as subwords in machine learning 
terminology) blocks the model’s ability to recognize these tokens as 
representing a unified biological entity. Instead of treating the entire 
species name as a single, coherent unit, the model sees it as a collection 

of unrelated fragments, which reduces its ability to capture biologi-
cal relationships. An example of the benefits of domain adaptation is 
shown in Fig. 3. It shows that Pl@ntBERT (that is, a fine-tuned BERT), 
compared with a vanilla BERT (that is, the standard, pretrained BERT 
model not specialized for plant-related data), really ‘understands’ plant 
species compositions. A visualization of the attention in Pl@ntBERT 
can be found in Supplementary Fig. 8. This makes the model more 
accessible and shows at multiple scales which species in a vegetation 
plot most influence the predictions.

Identifying habitat types
To optimize the hyperparameters (that is, learning rate and batch size) 
and identify the set of parameters yielding the most accurate model, we 
first fine-tuned all versions of Pl@ntBERT using the first fold as a test 
set and the remaining nine folds as a training set. All results obtained 
during this fine-tuning process can be found in Supplementary Table 4. 
Table 1 gives an overview of the results obtained in the text classifica-
tion task, and Supplementary Fig. 5 provides more details. Among all 
tested models, Pl@ntBERT-large-species appears as the clear winner 
when it comes to identifying habitat types. It outperforms all other 
models, whether it is on top-one accuracy (that is, the first candi-
date output by the model is the real habitat type, or level 3 habitat), 
top-three accuracy (that is, among the three first candidates output 
by the model is the real habitat type, or level 3 habitat), group accu-
racy (that is, the first candidate output by the model belongs to the 
real habitat group, or level 2 habitat) or broad accuracy (that is, the 
first candidate output by the model belongs to the real broad habitat 
group, or level 1 habitat). It also outperforms models that, in addi-
tion to species composition, use the abiotic environment and geo-
graphic location as classification criteria. The different versions of the  
expert system EUNIS-ESy and the different models of hdm-framework, 
as statistical and general-purpose machine learning approaches, are 
not capable of matching domain-adapted models such as Pl@ntBERT 
for specialized tasks in vegetation classification.

Pl@ntBERT (the large-species version) achieves an accuracy 
of 92% when asked to classify a vegetation plot into one of the 227 
habitat types present in the dataset. More details on how some 

prunus padus, [MASK] and crataegus monogyna are constant
species of temperate hardwood riparian forests (T13).

BERT Pl@ntBERT

Predictions like in the
pretraining dataset 

Predictions like in the
fine-tuning dataset 

>>> prunus padus, willow and crataegus monogyna are constant species of temperate hardwood
riparian forests (T13). (28%) 

>>> prunus padus, acacia and crataegus monogyna are constant species of temperate hardwood
riparian forests (T13). (26%) 

>>> prunus padus, eucalyptus and crataegus monogyna are constant species of temperate
hardwood riparian forests (T13). (20%) 

>>> prunus padus, aspen and crataegus monogyna are constant species of temperate hardwood
riparian forests (T13). (15%) 

>>> prunus padus, oak and crataegus monogyna are constant species of temperate hardwood
riparian forests (T13). (11%) 

>>> prunus padus, acer campestre and crataegus monogyna are constant species of temperate
hardwood riparian forests (T13). (44%) 

>>> prunus padus, sorbus aucuparia and crataegus monogyna are constant species of temperate
hardwood riparian forests (T13). (17%) 

>>> prunus padus, viburnum opulus and crataegus monogyna are constant species of temperate
hardwood riparian forests (T13). (17%) 

>>> prunus padus, cornus sanguinea and crataegus monogyna are constant species of temperate
hardwood riparian forests (T13). (12%) 

>>> prunus padus, euonymus europaeus and crataegus monogyna are constant species of
temperate hardwood riparian forests (T13). (10%) 

Fig. 3 | Comparison of the top five predictions for the BERT (large-uncased 
version) and Pl@ntBERT (large-species version trained on folds 1–9) models 
for our sample text of ‘prunus padus, [MASK] and crataegus monogyna 
are constant species of temperate hardwood riparian forests (T13)’. The 
percentages next to each predicted species represent the probabilities assigned 
by the models for replacing the [MASK] token, normalized so that the top five 

predictions sum to 100%. On the one hand, the candidates from BERT are all 
trees, which shows that the model ‘understood’ we are in a forest. However, all 
of them are common plant names (and not scientific names of taxa) and, except 
for the oak, which is the last candidate, are not found within the T13 habitat type. 
On the other hand, the candidates from Pl@ntBERT are all scientific names of 
constant species from the required habitat type.
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habitat groups are sometimes confused with other habitat groups 
can be found in Supplementary Fig. 13. As shown in Fig. 4, when 
assessing the risk of habitat collapse (after converting the predictions  
from EUNIS habitat types to European Red List of Habitats categories), 
Pl@ntBERT achieves an overall micro-accuracy of 96.5%. Furthermore, 
our transformer-based method outperforms all other approaches 
(Table 4c) and shows very strong accuracy when identifying individual 
conservation statuses (Fig. 4a) and broad habitat groups (Fig. 4b). As a 
result, Pl@ntBERT can be seen as a powerful tool to inform and catalyse 
action for biodiversity conservation and policy change. More details 
about the distribution of the European Red List of Habitats categories 
across the dataset can be found in appendix 27 in the Supplementary 
Information. We used this model to map all the unlabelled vegetation 
plots from the dataset, and we compare the output with the map of  
all labelled vegetation plots from the dataset in appendix 33 in the  
Supplementary Information (with a further breakdown on each indi-
vidual broad habitat group from the fill-mask dataset in appendix 34 
in the Supplementary Information).

Some other experiments (shown in Supplementary Fig. 17) dem-
onstrated that the most important species for identifying the habitat 
type of a vegetation plot are the first ones in the cover-abundance rank. 
Indeed, over all the vegetation plots of the dataset containing ten spe-
cies or more, Pl@ntBERT-large-species achieves an accuracy of 92.2%. 
When the first species (that is, the most abundant) of each vegetation 
plot is removed, the accuracy drops by 35 percentage points to 57.2%. 
When the last species (that is, the least abundant) of each vegetation 
plot is removed, the accuracy almost stays the same and drops by only 
0.43 percentage points (91.7%). When a random species from each 
vegetation plot is removed, the accuracy decreases by 3.0 percentage 
points to 89.2%. This discrepancy probably arises because dominant 
species shape the ecological structure of habitats. These results high-
light the strong influence of dominant species in habitat type identifica-
tion, while rare species contribute minimally to the model’s predictive 
performance. This could allow less well-trained botanists who know 
only common and/or abundant species to conduct field surveys and 
still identify the habitat of the area while speeding up data collection.

Open science
To facilitate the reproducibility of our study and the reuse of codes and 
models, we develop, share and maintain a generic, free and open-source 
deep learning framework facilitating the training and evaluation of pre-
dictive models of habitats from in situ observation data and inference 
on new and unseen vegetation-plot records. The framework, coded 
in the programming language Python and powered by the parallel 
computing platform CUDA for accelerated training and inference, 
is accessible to various user profiles (including non-deep-learning 
experts who want to easily identify European habitat types) at https://
github.com/cesar-leblanc/plantbert. A user guide on how to install 
the framework and run the basic tasks (that is, data curation, fill-mask 
training, text classification training and inference) can be found in 
Supplementary Text 20, and some examples of how the model works 
can be found Supplementary Text 23. If the user has only a few vegeta-
tion plots from which they want to find potentially missing species or 
identify the habitat type, a quicker way to test the framework is to visit 
the tool available at https://huggingface.co/spaces/CesarLeblanc/
plantbert_space. A demo can be found in Supplementary Fig. 19.

Discussion
The Pl@ntBERT model has been created to offer insights into how 
vegetation patterns can be encoded and classified, contributing to 
advancements in plant ecology and conservation biology. It intro-
duces an innovative approach by leveraging natural language pro-
cessing techniques on top of abundance-ordered species lists from 
specific sites aimed at capturing complex species relationships such as  
transitive or sequential dependencies. As a result, it can model the 
species composition of hundreds of terrestrial, freshwater and marine 
habitat types that contain plants, including most of the threatened, 
vulnerable and endangered ecosystems found across Europe and adja-
cent areas. In addition, this approach can be expanded worldwide—for 
example, by applying it to the global vegetation-plot database sPlot46.

The model has been primarily designed to predict missing species  
in an assemblage (which can also be used for predicting species pools 
of plant assemblages47)—for example, in incomplete monitoring 

Table 1 | Comparison of Pl@ntBERT, the expert system EUNIS-ESy and the deep learning models from hdm-framework (with 
the settings recommended by the authors) for habitat type classification

Framework Model Fine-tuning

Accuracy (%) Top-three accuracy (%) Group accuracy (%) Broad accuracy (%)

Predictors: species composition, abiotic environment and geographic location

EUNIS-ESy v.2020-06-08 82.68 – 84.34 90.72

v.2021-06-01 86.44 – 88.26 94.64

hdm-framework MLP72 90.84 98.90 93.94 95.79

RFC73 80.37 95.73 87.85 92.13

XGB74 88.81 98.95 93.00 95.69

TNC75 81.50 92.13 87.11 90.70

FTT76 88.84 97.28 92.65 94.92

Predictors: species composition

hdm-framework MLP 90.00 98.73 93.36 95.27

RFC 80.34 95.66 87.82 92.00

XGB 88.11 98.75 92.60 95.29

TNC 80.64 91.73 86.40 89.98

FTT 87.92 97.06 92.08 94.40

Pl@ntBERT (ours) Large-species 91.98 99.10 94.79 96.42

All models were evaluated using the same ten cross-validation folds. Predictions were made at level 3 of the EUNIS hierarchy, with group (level 2) and broad (level 1) accuracies derived from 
the habitat types. EUNIS-ESy and hdm-framework77 used additional location covariates (for example, country, ecoregion and elevation), while Pl@ntBERT used species composition only 
(hdm-framework was also evaluated without location covariates). EUNIS-ESy uses the exact cover abundance of all species instead of their relative ranks. An en dash indicates that the cell is 
not applicable or relevant for the corresponding model. Bold indicates the best-performing model per metric. See Supplementary Text 6 for metric definitions.
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projects48, leveraging masked language modelling to infer statistically 
probable species compositions, hence enhancing species complete-
ness and improving vegetation surveys. This capability is especially 
relevant in cases where survey data may be incomplete or where  
one or more species could be overlooked due to sampling limita-
tions or observer bias. By simulating the expected species pool, Pl@
ntBERT offers a means to improve the ecological relevance of data used  
for habitat assessments, management and reporting. This predic-
tive function can support the identification of indicator species and 
enhance the detection of key ecological patterns that may be other-
wise underrepresented. However, although Pl@ntBERT can predict 
missing species in incomplete assemblages, caution is needed when 
interpreting these predictions. In some cases, a species’ absence from a 
vegetation plot might be due to observer bias or sampling limitations, 
in which case its predicted presence could be justified. But some absent 
species belong to dark diversity (that is, species expected to occur  
on the basis of ecological conditions but that are genuinely missing 
due to dispersal limitations, competition or other constraints). In  
such cases, attempting to ‘correct’ field surveys by adding model- 
predicted species risks misrepresenting reality and creating fictional 
plots, which could introduce more error than it solves. From an ethical 
standpoint, modifying field data in this way might also be controversial, 
as it could lead to unintended biases in conservation and manage-
ment decisions. Incomplete data are an inherent part of ecological  
research, and rather than filling gaps artificially, it might sometimes be 
preferable to acknowledge and work with these uncertainties.

The second key application of Pl@ntBERT is its capacity to classify 
plant species records into EUNIS habitat types. This ability addresses 
an essential need in habitat identification and conservation planning, 
where the ability to classify survey data is foundational for monitoring 
biodiversity and guiding restoration efforts. Traditional methods have 
largely relied on manual expertise or rigid algorithms that cannot cap-
ture the complex patterns and overlook associations that occur in large 
ecological datasets. By leveraging transformer-based architectures 
and fine-tuning them with domain-specific botanical datasets, Pl@
ntBERT offers a more refined and accurate approach. It is also worth 
noting that some vegetation plots in the EVA database may represent 
transitional or ecotonal habitats that do not fit neatly into a single 
EUNIS type. Such cases introduce ambiguity in classification and may 
contribute to an underestimation of Pl@ntBERT’s true accuracy, as the 
model, even though capable of assigning multiple habitat types to a 
vegetation plot, is evaluated on the task of assigning only one, which 
might be ecologically reasonable but could differ from the labelled 

category (in this case, considering the top-three accuracy might be 
wiser). It is also important to consider potential regional biases due to 
uneven plot densities in EVA. Some habitat types may be dispropor-
tionately represented in well-surveyed regions, leading the model to 
learn patterns that reflect data availability rather than true ecological 
distributions. This could result in higher accuracy for frequently sam-
pled habitats and reduced performance for underrepresented ones.

By learning the context to translate plant species into a modelled 
ecological process within an ecosystem, Pl@ntBERT is able to improve 
vegetation models for identifying habitat types. This domain adapta-
tion helps the model automatically understand that some species 
occur only in very specific assemblages, while others can tolerate and 
thrive in a wide range of ecosystems. Predictions are therefore influ-
enced not only by the actual occurrence of a given species but also by 
the relative probability of the presence of this species. However, some 
habitat types, such as those listed in Annex I, are not defined solely by 
vegetation but rather by geomorphological or geolocational param-
eters (for example, springs, cliffs and dune slacks). These features are 
unlikely to be predictable by Pl@ntBERT, as they do not necessarily cor-
relate with species composition alone. Similarly, certain species-poor 
EUNIS habitat types present challenges for classification since their 
low species richness limits the available signal for distinguishing 
between communities. Moreover, in few cases, it is impossible to dis-
tinguish some habitat types by plant species composition and relative 
abundance alone, because their species composition can be the same 
even if they occur in different regions of the world. This is one of the 
main reasons why attribute data (for example, coordinates, country 
and elevation) were incorporated in expert-based systems such as 
EUNIS-ESy, rather than relying purely on species presence.

The relative positions of the species within a vegetation plot (that 
is, their abundance compared to the other species) are key to habitat 
type identification and fragmentary records completion (even more 
than the exact cover-abundance information of each individual spe-
cies). When surveying plant species, it might be hard, whatever the 
level of expertise, to accurately collect the exact abundance of plants 
in a vegetation plot. However, recording the relative abundance of the 
most abundant species is much easier and often sufficient. It has to be 
noted that we did not explicitly consider the spatial scale when select-
ing data for domain adaptation (the fill-mask task) and training (the 
text classification task). Since plant species typically co-occur at small 
spatial scales (a few metres), including plots from larger spatial scales 
may introduce noise by grouping species that do not actually form a 
coherent community. For example, a few metres’ difference in elevation 

Category Best model (%) Runner-up (%)
Grouped IUCN statuses

Data de�cient Pl@ntBERT (95.96) hdm-framework (95.45)
Not threatened Pl@ntBERT (96.97) hdm-framework (96.18)
Threatened Pl@ntBERT (96.41) hdm-framework (96.10)
All statuses Pl@ntBERT (96.51) hdm-framework (95.97)

Grouped EUNIS habitats

Sparse Pl@ntBERT (89.71) hdm-framework (87.28)
Vegetated Pl@ntBERT (99.19) hdm-framework (99.05)
Anthropogenic Pl@ntBERT (95.76) hdm-framework (95.35)
All groups Pl@ntBERT (98.40) hdm-framework (98.13)

100 95.96% 95.83% 95.20% 95.19%
92.19%

73.54%

95.23% 95.42%

86.20%

97.07% 96.67%
94.00%

99.16%
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95.76% 96.42%
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a Accuracy across the European Red List
of Habitats categories

b Accuracy across level 1 of the
EUNIS typology

c Comparison of model accuracy across
typologies

Fig. 4 | Accuracy obtained by the Pl@ntBERT-large-species model on different 
typologies (results averaged over the ten cross-validation folds). a, Accuracy 
results (in %, with the best accuracy in green and the worst accuracy in red) of  
Pl@ntBERT across the European Red List of Habitats categories (DD, data 
deficient; LC, least concern; NT, near threatened; VU, vulnerable; EN, 
endangered; CR, critical endangered). b, Accuracy results (in %, with the best 
accuracy in green and the worst accuracy in red) of Pl@ntBERT across level 1  

(that is, broad habitat groups) of the EUNIS typology (MA2, marine; N, coastal;  
Q, wetlands; R, grasslands; S, heathlands; T, forests; U, inland; V, man-made).  
c, Comparison of the accuracy (in %, best accuracy in bold) of the models 
across grouped European Red List of Habitats statuses (data deficient, {DD}; 
not threatened, {LC + NT}; threatened, {VU + EN + CR}) and EUNIS broad habitat 
groups (sparse, {MA2 + U}; vegetated, {R + N + Q + S + T}; anthropogenic, {V}).
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or soil moisture can lead to entirely different plant communities, yet 
a model trained on large-scale data may incorrectly associate species 
that do not truly co-occur. The larger the spatial scale used, the messier 
the ecological signal becomes. We did not account for this explicitly 
because EVA contains a limited number of plots, and we aimed to retain 
as many as possible, assuming that vegetation scientists conducted 
relevés with spatial scale in mind. However, future work should inves-
tigate how different spatial resolutions impact model performance.

The use of LLMs for understanding vegetation patterns is par-
ticularly interesting because these models can learn and interpret 
the syntax of plant species assemblages. As natural languages are 
composed of words following grammatical rules, plant assemblages 
can be thought of as following certain ecological ‘rules’ that dictate 
how species co-occur and interact49. By leveraging the bidirectional 
architecture of BERT, Pl@ntBERT can effectively learn these intricate 
patterns by capturing relationships between species in both forward 
and backward directions, which provides a more comprehensive view 
of assemblage composition. This allows the model to understand not 
only direct associations but also higher-order dependencies within 
complex assemblages50. Such a syntactic approach enables Pl@ntBERT 
to represent ecological interdependencies with a level of detail that is 
challenging for traditional statistical methods, offering an alternative 
way of encoding the relationships that define biodiversity. Through 
this perspective, Pl@ntBERT provides a more nuanced understanding 
of the ‘grammar’ underlying ecosystem composition and dynamics, 
which could support better conservation and habitat management 
strategies, and possibly a better fundamental understanding of nature. 
However, as it is an LLM, Pl@ntBERT can only learn from existing 
datasets and cannot anticipate novel species assemblages that may 
emerge in response to climate change, species invasions or land-use 
changes. This is particularly relevant for neoecosystems, where new 
combinations of native and non-native species form as environmental 
conditions shift. Pl@ntBERT cannot infer future biodiversity patterns 
beyond what is already recorded in datasets, meaning that ongoing 
field surveys and expert input remain essential. Ecologists will need 
to continuously document new assemblages and update training 
data to keep the model relevant in a rapidly changing world. This 
underscores that Pl@ntBERT is not a replacement for field expertise 
but rather a tool to assist researchers in making sense of complex 
ecological patterns.

When it comes to vegetation classification, having a good under-
standing of how and why Pl@ntBERT assigns a EUNIS habitat type to a 
given vegetation plot is essential if we want researchers and practition-
ers to trust the results51. Integrated gradients52, a method to calculate 
how important each input feature (that is, plant species) is to the 
prediction (that is, habitat types), were used to explain how positively 
or negatively a species contributes to the classification of a vegetation 
plot. A more detailed overview of species attributions on a vegetation 
plot can be found in appendix 28 in the Supplementary Information. 
It is interesting to see how a change in diagnostic, constant or domi-
nant taxa can change the model behaviour. This study shows that the 
most abundant species in a vegetation plot (that is, the first species 
of the sentence) is often the one that contributes the most to the clas-
sification, which reflects the experience with probabilistic keys for 
identifying vegetation types53. One of the advantages of this model 
is that it brings vegetation science closer to a wider circle of people.

Other experiences, whose details can be found in appendix 22 in 
the Supplementary Information, corroborate these findings. When 
the information on abundance is removed (that is, by forming sen-
tences with species in random order), the performance of Pl@ntBERT 
significantly drops. For example, the accuracy of the text classifica-
tion task decreased by 14% compared with the classical approach. 
This drop was more substantial than when we kept the information 
on abundance but removed 30% of the species by random selection, 
meaning that capturing the relative abundance is more important than 

recording all plant species. Similarly, when it comes to finding which 
species is hiding behind a mask in a vegetation plot, Pl@ntBERT went 
from assigning the correct species in over 17% of the cases when the 
species were sorted to less than 7% of the cases when the species were 
not sorted. This means that plant assemblages are defined not only 
by the species present but also by their order of abundance because 
abundance influences community structure, ecological interactions 
and ecosystem functioning. Abundance also influences functional 
diversity, which is critical for ecosystem processes. Species with higher 
abundance often have significant roles in ecosystem functioning due 
to their traits and interactions with other species54.

While Pl@ntBERT demonstrates promising results in identifying 
vegetation patterns and assigning habitat types on the basis of species 
co-occurrence, one key limitation of the current model is that it does 
not explicitly account for the vertical structure of plant communities. 
Some habitats are characterized not only by their species composi-
tion but also by their layering structure, which plays a crucial role in 
defining their ecological identity. Thus, a possible improvement would 
be to introduce explicit hierarchical encoding of vegetation strata in  
Pl@ntBERT’s input data. This could be achieved by adopting a stand-
ardized syntax, such as: ‘Tree layer: Fagus sylvatica, Quercus robur; 
Shrub layer: Carpinus betulus, Fagus sylvatica, Corylus avellana; Herb 
layer: Anemone nemorosa, Hyacinthoides non-scripta, Mercurialis 
perennis’. If layering information is integrated into Pl@ntBERT’s train-
ing, the model could better capture functional differences between 
habitats (especially those that are defined as much by their structural 
complexity as by species composition alone), improve classification 
accuracy and potentially enhance its ability to predict missing spe-
cies within specific strata. This hierarchical representation could also 
facilitate better interpretability, as users could analyse species asso-
ciations within distinct vertical layers rather than treating all species 
as equally co-occurring in a single homogeneous space. Future work 
should explore how to best format and standardize stratification data, 
as well as whether habitat-specific differences in layering (for example, 
grasslands versus forests) require different encoding strategies. Incor-
porating structural information into Pl@ntBERT could significantly 
refine its ecological modelling capabilities, making it a more powerful 
tool for vegetation science and conservation applications.

The study areas of the experiments done with Pl@ntBERT were 
Europe and adjacent areas (for example, Anatolia and the Caucasus). A 
key challenge for scaling the model beyond the studied regions lies in 
its transferability to undersampled or floristically distinct areas. While 
our model was trained on a large and diverse corpus of vegetation plots 
across Europe, applying it to other biogeographic regions will require 
retraining or fine-tuning on locally relevant species assemblages. How-
ever, data scarcity in such areas could limit the model’s performance. 
One possible solution lies in leveraging transfer learning, where  
Pl@ntBERT could be adapted to new regions using smaller, region- 
specific datasets (for example, the Tropical African Vegetation Archive,  
which is a continental data aggregator, similarly to EVA) while retain-
ing general semantic knowledge from the broader model. Future 
work could explore this idea by subsampling existing training data 
or simulating low-data settings to evaluate performance degra-
dation and retraining requirements. Such studies are essential to 
assess the robustness and practical deployment of LLMs for global 
biodiversity monitoring.

Beyond habitat identification and assemblage completion tasks, 
Pl@ntBERT may also provide insights into ecosystem condition by 
detecting deviations from the expected species assemblages. For 
instance, by comparing the real observed species lists to the mod-
el’s predicted co-occurrence patterns, it is possible to quantify how 
‘natural’ a given community appears. Such deviations could reflect 
ecological disturbances, including invasion by non-native species. In 
particular, we foresee applications in early warning systems where the 
increasing dominance of introduced species might signal ecosystem 
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change. In this context, the likelihoods of the masked species output 
by Pl@ntBERT in given assemblages could serve as indicators of unex-
pected patterns, complementing traditional biodiversity indicators. 
For instance, starting from an observed assemblage, masking each 
species one by one would give the likelihood of the species belonging 
to the assemblage (that is, the higher the value, the more expected the 
species within the assemblage). As a result, counting the number of 
species below a given threshold (that is, through a statistical hypothesis 
test) in an assemblage could give an insight on the habitat condition 
(for example, by detecting the increasing dominance of non-native 
species). Exploring such diagnostic capabilities represents a promising 
direction for future research.

While the masked species prediction task was primarily designed 
to evaluate the model’s understanding of species co-occurrence pat-
terns, we acknowledge that its direct use in field applications may  
be limited. However, it opens up interesting possibilities for devel-
oping alternative field protocols. For example, one could imagine 
adaptive sampling schemes where species discovery rates are tracked,  
and sampling is stopped once a threshold is reached (for example, 
around 15 species, more or less depending on the habitat type and plot 
size). A model such as Pl@ntBERT could then suggest additional likely, 
but unobserved, species on the basis of the partial list, particularly 
focusing on less abundant or harder-to-detect taxa. Such an approach 
could accelerate vegetation surveys while incorporating the model’s 
uncertainty. More broadly, we see this task as a conceptual bridge 
towards expert-led and model-assisted field methods, where machine 
learning can help (but not replace) vegetation experts.

As a perspective, one promising direction is to use Pl@ntBERT 
to complete partial species assemblages derived from species distri-
bution models (SDMs). While SDMs have long been used to predict  
species occurrences on the basis of environmental conditions55,  
recent deep-learning-based approaches, referred to as deep-SDMs, 
have shown stronger performance for modelling vascular plant  
species distribution56–59. Typically, these models generate a ranked list 
of species predicted to occur at a given location. Pl@ntBERT could be 
applied to such lists to infer plausible co-occurring species that might 
have been missed or are underreported, especially in the context of 
citizen science observations.

Citizen science platforms60,61 now provide far more plant occur-
rence data than traditional vegetation-plot databases62. However, 
these data often lack completeness, as contributors tend to report only 
common or iconic species and may miss rarer or harder-to-identify 
taxa63,64. Here, Pl@ntBERT could be particularly useful: by capturing 
co-occurrence patterns learned from expert-labelled vegetation plots, 
it can be used to fill in likely missing species and improve the quality  
of predicted assemblages. Within citizen science platforms, such as 
Pl@ntNet or iNaturalist, Pl@ntBERT could help with automated spe-
cies identification by estimating which species are most likely on the 
basis of those already observed in an area.

More broadly, a future pipeline could combine multiple deep 
learning techniques to build habitat distribution models. For instance, 
image classification models (for example, convolutional neural net-
works65) could be used to extract environmental features from satellite 
imagery and predict likely species occurrences. Pl@ntBERT could then 
apply a fill-mask strategy to reconstruct plausible assemblages from 
these partial species lists. Finally, Pl@ntBERT could again be used, this  
time to assign habitat types using text classification on the pre-
dicted assemblages. Such a multimodal and end-to-end approach66 
could bridge the gap between raw species occurrence data and 
habitat type inference, contributing to finer-scale and more scalable 
biodiversity monitoring.

Methods
A visualization of the methodology used in this paper is shown in 
Fig. 1, a more complete overview is provided in appendix 26 in the 

Supplementary Information and a detailed description of each step 
is shown in Supplementary Figs. 9–11. An explanation of all acronyms 
and terms can be found in Supplementary Texts 30 and 31.

Leveraging vegetation plots
The data used for training the Pl@ntBERT model were extracted from 
EVA37. EVA is a database of vegetation plots—that is, records of plant 
taxon co-occurrence that have been collected by vegetation scientists 
at particular sites and times. The EVA data were extracted on 22 May 
2023. They contained all georeferenced plots from Europe and adjacent 
areas (that is, 1,731,055 vegetation plots and 36,670,535 observations 
from 34,643 different taxa).

These vegetation plots were first split into two sets, depending on 
the presence or absence of a habitat type label:

	 (1)	 A dataset containing unlabelled data—that is, vegetation plots 
with a missing indication of EUNIS habitat type. This dataset 
(henceforth ‘fill-mask dataset’) containing 572,231 vegetation 
plots could be used only for training the masked language 
model.

	 (2)	 A dataset containing labelled data—that is, vegetation plots 
with an indication of EUNIS habitat type. This dataset (hence-
forth ‘text classification dataset’) containing 850,933 vegeta-
tion plots could be used for training both the masked language 
model and the text classification model.

To ensure a clean dataset representing vegetation patterns well, 
some additional pre-processing steps were conducted. We removed 
the few species with a given cover percentage of 0, assuming these 
were errors or scientists reporting absent species (which resulted in 
31,813,043 observations remaining). We merged duplicated species 
in the same vegetation plots (that is, species that appeared twice or 
more in one vegetation plot because they were in different layers) 
and summed their percentage covers (which resulted in 31,036,661 
observations remaining). The taxon names were then standardized 
using the API of the Global Biodiversity Information Facility (GBIF). 
It relies on the GBIF Backbone Taxonomy as its nomenclatural source 
for species taxon names and integrates and harmonizes taxonomic 
data from multiple authoritative sources (for example, Catalogue of 
Life, International Plant Names Index and World Flora Online). As EVA 
is an aggregator of national and regional vegetation-plot databases, 
this step ensured that the same species collected in two very distant 
areas still shared the same name67. If no direct match was found for 
the species name (for example, the GBIF Backbone Taxonomy was not 
able to provide a scientific name for the EVA species Carex cuprina), 
then it was dropped. As we focused on the species taxonomic rank, 
taxa identified only to the genus level were dropped, and taxa identi-
fied at the subspecies level were lumped together at the species level 
(for example, Hedera was dropped but both Hedera helix subsp. helix 
and Hedera helix subsp. poetarum were merged into Hedera helix). 
This resulted in 29,859,407 observations remaining. We removed 
hybrid species and very rare species (that is, species that appeared less  
than ten times in the whole dataset), which resulted in 29,836,079 
observations remaining. Vegetation plots that lost more than 25%  
of their taxa or their most abundant taxon after the species name 
matching were removed from the dataset, to ensure that the remain-
ing plots still provided reliable representations of vegetation pat-
terns (which resulted in the final number of 29,149,022 observations  
remaining). Finally, vegetation plots belonging to very rare habitat 
types (that is, habitat types that appeared less than ten times in the 
whole dataset) were considered unlabelled data and added to the 
fill-mask dataset.

The set of labelled vegetation plots was then strategically split. 
To avoid overfitting, ideally part of the available labelled data must 
be held out as a test set. However, the quantity of available full lists of 
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plant species with estimates of cover abundance of each species and 
habitat type assignment is not very high (that is, less than 1,000,000 
vegetation plots for all of Europe, a relatively low number compared 
with the vast amount of biodiversity data available). Partitioning the 
available data into a training set and a test set would reduce the number 
of training samples to a level too low for effective model training. It is 
therefore possible to use k-fold cross-validation to split the dataset into 
k subsets instead. Then, for each of the splits, the model can be trained 
using k − 1 of the subsets for training and the latter one for validation. 
However, cross-validation scores for the classification of vegetation 
plots can be biased if the data are randomly split, because they are 
commonly spatially autocorrelated (spatially closer data points have 
similar values). One strategy to reduce the bias is splitting data along 
spatial blocks68. This procedure avoids fitting structural patterns and 
allows the separation of near-duplicates. Such vegetation plots differ 
from each other in a very small portion of species (for example, if they 
are close in space, two vegetation plots may exhibit identical plant 
composition but feature species with slightly contrasting abundances). 
The dataset was thus first split into spatial blocks of 6 arcmin (0.1° 
on the World Geodetic System 1984 spheroid). The blocks were then 
split into folds. Since the geographic distribution of vegetation plots 
across Europe is unequal, each block can have a different number of 
data points. The folds were thus balanced to have approximately equal 
numbers of plots instead of assigning the same number of blocks to 
each fold (which could have led to folds with very different numbers 
of data points). This process was facilitated by the use of the research 
software Verde.

With over 1,400,000 vegetation plots, 29,000,000 observations 
and 14,000 species, the dataset used in this paper is one of the most 
extensive datasets of vegetation plots ever analysed69. The entire 
description of the dataset can be found in Supplementary Table 2, 
and a visualization of the data can be found in appendix 32 in the Sup-
plementary Information. An overview of the long-tail distribution 
of species (that is, there is a strong class imbalance, meaning that a 
few species are present in many of the vegetation plots) can be found 
in Supplementary Fig. 14, and more taxonomic information on the 
species (for example, class, order and family), mostly vascular plants 
with some bryophytes and lichens, can be found in appendix 16 in the 
Supplementary Information.

The EUNIS habitat types18 are referred by their codes instead of 
their names, as they better reflect the classification hierarchy. The 
coding system is structured so that each broad habitat group is repre-
sented by one letter (except the broad habitat group littoral biogenic 
habitats, which is designated by the code MA2). A new alphanumeric 
character is then added for each subsequent level. For instance, the 
habitat type Mediterranean, Macaronesian and Black Sea shifting 
coastal dune is identified by the code N14, indicating its belonging 
to the habitat group N1 (that is, coastal dunes and sandy shores), and 
more generally to the broad habitat group N (that is, coastal habitats). 
The entire list of the 227 habitat types used in this work can be found in 
appendix 24 in the Supplementary Information, but to exemplify the 
habitat types included, we list the eight broad habitat groups used in 
this paper below:

•	 Littoral biogenic habitats (code: MA2)—11 habitat types belong-
ing to littoral habitats formed by animals such as worms and 
mussels or plants (salt marshes)

•	 Coastal habitats (code: N)—25 habitat types belonging to  
habitats above the spring high tide limit (or above the mean 
water level in non-tidal waters) occupying coastal features and 
characterized by their proximity to the sea, including coastal 
dunes and wooded coastal dunes, beaches and cliffs

•	 Wetlands (code: Q)—17 habitat types belonging to wetlands, with 
the water table at or above ground level for at least half of the 
year, dominated by herbaceous or ericoid vegetation

•	 Grasslands and lands dominated by forbs, mosses or lichens 
(code: R)—52 habitat types belonging to non-coastal land that 
is dry or only seasonally wet (with the water table at or above 
ground level for less than half of the year) with greater than 30% 
vegetation cover

•	 Heathlands, scrub and tundra (code: S)—42 habitat types 
belonging to non-coastal land that is dry or only seasonally  
inundated (with the water table at or above ground level for less 
than half of the year), usually with greater than 30% vegetation 
cover and with the development of soil

•	 Forests and other wooded land (code: T)—45 habitat types 
belonging to land where the dominant vegetation is, or was until 
very recently, trees with a canopy cover of at least 10%

•	 Inland habitats with no or little soil and mostly with sparse 
vegetation (code: U)—23 habitat types belonging to non-coastal 
habitats on substrates with no or little development of soil, 
mostly with less than 30% vegetation cover, that are dry or only 
seasonally wet (with the water table at or above ground level for 
less than half of the year)

•	 Vegetated man-made habitats (code: V)—12 habitat types belong-
ing to anthropogenic habitats that are dominated by vegetation 
and usually subject to regular management but also arising from 
recent abandonment of previously cultivated ground

The final dataset created solely for the fill-mask task (that is, the 
fill-mask dataset) contained a total of 572,231 vegetation plots covering 
14,069 different species. This dataset of 10,853,856 species observa-
tions (on average 19 species per plot) was used only for fine-tuning the 
masked language model, as each sample was unlabelled (the vegetation 
plots in this set were not classified to a habitat type). Each sample was 
used for the fill-mask task during each split in the training set, along 
with around 90% of the text classification dataset.

The text classification dataset, which was created for both the 
fill-mask task and the text classification task, contained a total of 
850,933 vegetation plots covering 13,727 different species. This dataset 
of 18,295,166 species observations (on average around 22 species per 
plot) was used for fine-tuning the masked language model and for train-
ing the classifier head (that is, the module added on top of the masked 
language model to transform its outputs into predictions for assign-
ing habitat types to vegetation plots), as each sample was labelled 
(the vegetation plots in this set were classified to a habitat type). Each 
sample was used nine times in the training set and once in the test set.

Pl@ntBERT fill-mask model training
Every plant species has specific environmental preferences that shape 
its presence. The task of masking some of the species in a vegeta-
tion plot and predicting which species should replace those masks  
can therefore help get a good contextual understanding of an entire 
ecosystem. This process is known as fill-mask. A detailed description 
of the hardware used to train the models can be found in Supplemen-
tary Text 3.

Pl@ntBERT is based on the vanilla transformer model BERT36. 
Hence, to predict a masked species in a vegetation plot, the model can 
consider (that is, focus on and process information using the attention 
mechanism in the transformer architecture) all species bidirectionally. 
This means that the model, when looking at a specific species, has full 
access to the species on the left (that is, more abundant species) and 
right (that is, less abundant species). The two original BERT models 
(that is, base and large) were leveraged for this study. BERT-base has 
12 transformer layers (that is, transformer blocks) and 110,000,000 
parameters (that is, learnable variables), and BERT-large has 24 trans-
former layers and 340,000,000 parameters. A detailed description of 
the architecture of the two sizes can be found in Supplementary Table 1. 
Moreover, the uncased version of BERT was leveraged to train Pl@
ntBERT. This version does not distinguish between ‘hedera’ and ‘Hedera’. 
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Hence, as all outputs from Pl@ntBERT would be in lowercase, all inputs 
(abundance-ordered plant species sequences) were also lowercased to 
ensure consistency. For these two reasons, each sentence fed into the 
model was formed by listing all the species in descending abundance 
order, in lowercase and separated by commas. When species had the 
same cover (which is frequent as most EVA data come from ordinal 
scales with a few steps only), they were randomly ordered.

For many natural language processing applications involving 
transformer models, it is possible to simply take a pretrained model and 
fine-tune it directly on some data for the task at hand. Provided that the 
dataset used for pretraining is not too different from the dataset used 
for fine-tuning, transfer learning will usually produce good results. The 
predictions depend on the dataset the model was trained on, since it 
learns to pick up the statistical patterns present in the data. However, 
our dataset contains binomial names (that is, the scientific names given 
to species and used in biological classification, which consist of a genus 
name followed by a species epithet). Because it has been pretrained on 
the English Wikipedia and BookCorpus datasets, the predictions of the 
vanilla transformer model BERT for the masked tokens will reflect these 
domains. BERT will typically treat the species names in the dataset as 
rare tokens, and the resulting performance will be less than satisfactory. 
By fine-tuning the language model on in-domain data, we can boost 
the performance of the downstream task. This process of fine-tuning 
a pretrained language model on in-domain data is called domain adap-
tation. Vegetation-plot records from EVA that were not assigned to a 
habitat type were used for this task. The sentences were created by 
ordering each species within a plot in descending order of abundance, 
separating them by commas. Two different ways were used to tokenize 
(that is, prepare the inputs for the models) the names of the species:

	 (1)	 The ‘term’ way: a species name is divided into two tokens, one 
for the genus name and one for the species epithet.

	 (2)	 The ‘species’ way: a whole binomial name is equivalent to a 
token.

More information about the versions of Pl@ntBERT can be found 
in Supplementary Table 7. For each approach, two model sizes were 
leveraged: base and large.

Unlike other natural language processing tasks, such as token 
classification or question answering, where a labelled dataset to train 
on is given, there are not any explicit labels in masked language mod-
elling. A good language model is one that assigns high probabilities 
to sentences that are grammatically correct and low probabilities to 
nonsense sentences. Assuming our test dataset consists of sentences 
that are coherent plant assemblages, one way to measure the quality 
of our language model is to calculate the probabilities it assigns to the 
masked species in all the sequences of the test set. High probabilities 
indicate that the model is not ‘surprised’ or ‘perplexed’ by the unseen 
examples (that is, describing the model’s uncertainty or difficulty in 
predicting masked elements, hence reflecting how well it has learned 
the underlying structure of the data) and suggests it has learned the 
basic patterns of grammar in the language (in the case of Pl@ntBERT, 
the language being ‘floristic composition’). As a result, the perplexity, 
which is defined as the exponential of the cross-entropy loss, is one of 
the most common metrics to measure the performance of language 
models (the smaller its value, the better its performance). It was used 
in our experiments to evaluate the model in addition to the species 
masking accuracy.

Except for commas, the classify tokens [CLS] (which represent 
entire input sequences) and the separate tokens [SEP] (which mark 
the separation between different input sequences), 15% of the tokens 
were ‘masked’ during the experiments. These tokens consisted of full 
species names in the case of Pl@ntBERT-species and of genus names 
or species epithets in the case of Pl@ntBERT-term. We followed the 
same procedure used in the original BERT paper36: each selected token 

was replaced by (1) the [MASK] token 80% of the time, (2) a random 
species 10% of the time or (3) the same species 10% of the time. Each 
model was trained for five epochs (that is, five complete passes of the 
training dataset through the model). This process was facilitated by 
the use of the deep learning package Pytorch70 and the open-source 
library HuggingFace71.

To compare how Pl@ntBERT models species assemblages com-
pared to traditional approaches, we also implemented three alternative 
baseline methods solely based on species co-occurrence information. 
The first one is a version of Pl@ntBERT for which species are given as 
input in random order rather than abundance-ordered. This makes 
it possible to remove the information linked to the order of species 
so that most of the syntax rules cannot be learned anymore apart 
from co-occurrence patterns. The second baseline method is a naive 
Bayes predictor based on the species co-occurrence matrix. Ten dif-
ferent co-occurrence matrices were built, each time leveraging all the 
dataset minus one fold (to always keep the ground truth hidden). As 
a result, each matrix indicates how many times species of each pair 
co-occur in the same vegetation plots in the nine training folds. From 
the co-occurrence matrix, we can derive the probability of each species 
conditionally to an observed species assemblage. More details about 
how this naive Bayes predictor is constructed can be found in Supple-
mentary Equation (25). The last baseline method is a neural network 
optimizing the log-loss function using stochastic gradient descent. 
It was trained on incomplete species assemblages (that is, for every 
vegetation plot of the training set, a species was randomly masked, 
and the goal of the model was to retrieve it). More details about how 
the multilayer perceptron is implemented can be found in appendix 
21 in the Supplementary Information.

Identifying habitat types
The classification of vegetation provides a useful way of summarizing 
our knowledge of vegetation patterns. The task of assigning a habitat 
type to sentences describing floristic compositions therefore serves 
to describe many facets of ecological processes. This process is called 
text classification.

Pl@ntBERT is based on the fine-tuned version of BERT, meaning 
it has already adapted its weights to predict species that are more 
strongly associated with the plants from the sentence. It provides a 
better foundation for learning task-specific models, such as a text 
classification model. To create a state-of-the-art model for vegetation 
classification, we added one additional output layer (that is, a fully 
connected layer that matched the number of habitat types) on top of 
the pooled output.

Vegetation-plot records from EVA that were assigned to a habitat 
type were used for this task. The habitat labels were generated using 
the expert system EUNIS-ESy v.2021-06-01 (ref. 19) directly by the 
coordinators of the EVA database using the JUICE program. This means 
that using EUNIS-ESy to identify the habitat types of the raw data from 
EVA (without the pre-processing steps such as harmonizing the taxon 
names) should lead to an accuracy of 100%. Each model was trained 
for five epochs.

To evaluate the classification performance, we computed accu-
racy, precision, recall and F1-score on the test set. Given the class 
imbalance in habitat labels (for example, the habitat type R22 (that is, 
low and medium altitude hay meadow) is present 69,533 times in the 
text classification dataset, and the habitat type U35 (that is, boreal 
and arctic base-rich inland cliff) is present 12 times in the text clas-
sification dataset), the F1-score was particularly useful in assessing 
how well the model performed across different habitat types. We also 
compared Pl@ntBERT’s performance against a standard BERT model 
trained from scratch on the same dataset to assess the benefits of 
domain adaptation. Finally, we compared the results with EUNIS-ESy 
and hdm-framework, respectively a classification expert system and 
a deep-learning framework.
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Inclusion and ethics
This study is based on vegetation-plot data sourced from EVA, a col-
laborative effort that aggregates vegetation data from across Europe 
and neighbouring regions. The data used in this study come from 110 
EVA member databases, with permissions granted by individual data 
custodians (listed in appendix 35 in the Supplementary Information).

•	 Local collaboration and roles: The data used in this study were 
collected and curated by a wide network of local research-
ers. Each dataset included was used with explicit permission 
from its respective custodian, who retains data ownership. 
Co-authorship was offered to at least one representative of  
each database who was interested in the project and willing to 
intellectually contribute to the study, hence including local 
researchers in this process.

•	 Local relevance and co-design: The research aims to under-
stand large-scale patterns in plant biodiversity and vegetation 
structure, which is directly relevant for regional and continental 
conservation planning, habitat classification and biodiversity 
monitoring. Including local partners in the design of the  
specific research questions and using their datasets represent-
ing decades of local ecological research was foundational to the 
project.

•	 Ethical review and approvals: Since the study involves second-
ary analysis of existing vegetation data, no local or institutional 
ethics board approval was required. The EVA data policy governs 
the ethical use of contributed data, and no sensitive or identifi-
able information is included.

•	 Compliance with local regulations and standards: All original 
data collection followed the environmental, legal and ethical 
standards of the respective countries where plots were sampled. 
The study complies with the EVA framework, which ensures that 
data use respects both the legal and ecological context of data 
origin.

•	 Risk and harm considerations: The research does not involve 
human or animal subjects and poses no risk of stigmatization, 
incrimination or discrimination. There are no safety risks to 
researchers or participants, and no biological materials, cultural 
artefacts or associated traditional knowledge were transferred.

•	 Benefit sharing and capacity building: While the study does 
not involve new biological sample collection, all results will be 
shared publicly through this scientific publication and with the 
EVA data custodians. The project supports the visibility of local 

contributions by highlighting the role of regional databases and 
cites local and regional literature where relevant.

•	 Citations and recognition: The study references and builds on 
local ecological knowledge that is contained in the EVA datasets, 
and acknowledges the scientific and curatorial work of local data 
contributors.

Artificial intelligence tools such as ChatGPT (OpenAI) and Copilot 
(GitHub) were used to assist in writing the manuscript and coding the 
framework (Fig. 5), respectively. All outputs were critically reviewed 
and edited by the authors. See Supplementary Text 37 for a more 
in-depth explanation.

Reporting summary
Further information on research design is available in the Nature 
Portfolio Reporting Summary linked to this article.

Data availability
The data that support the findings of this study are available from EVA, 
but restrictions apply to the availability of these data, which were used 
under licence for the current study and so are not publicly available. The 
data are, however, available from the authors or EVA custodians upon 
reasonable request and with the permission of EVA. The DOI of the EVA 
data selection for this project is https://doi.org/10.58060/QR4B-G979.

Code availability
The generic, free and open-source framework that supports the 
findings of this study is available via GitHub at https://github.com/
cesar-leblanc/plantbert. See Fig. 5 for an overview of the list of tasks 
that Pl@ntBERT can achieve.
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