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To address the urgent biodiversity crisis, it is crucial to understand the nature
of plant assemblages. The distribution of plant species is shaped not only by
their broad environmental requirements but also by micro-environmental

conditions, dispersal limitations, and direct and indirect species interactions.
While predicting species composition and habitat type is essential for
conservation and restoration purposes, it remains challenging. In this

study, we propose an approach inspired by advancesin large language
modelstolearnthe ‘syntax’ of abundance-ordered plant species sequences
incommunities. Our method, which captures latent associations between
species across diverse ecosystems, can be fine-tuned for diverse tasks.

In particular, we show that our methodology is able to outperform other
approachesto (1) predict species that might occur in an assemblage given the
other listed species, despite being originally missing in the species list (16.53%
higher accuracy inretrieving a plant species removed from an assemblage
than co-occurrence matrices and 6.56% higher than neural networks), and

(2) classify habitat types from species assemblages (5.54% higher accuracy
inassigning a habitat type to an assemblage than expert system classifiers
and 1.14% higher than tabular deep learning). The proposed application has a
vocabulary that covers over 10,000 plant species from Europe and adjacent
countries and provides a powerful methodology forimproving biodiversity
mapping, restoration and conservation biology. As ecologists begin to
explore the use of artificial intelligence, such approaches open opportunities
for rethinking how we model, monitor and understand nature.

Understanding vegetation patterns and plant assemblagesis central to
ecology, as co-occurring species ultimately determine the structure and
function of ecosystems'. Plant species rarely exist inisolation? instead,
they form complex assemblages influenced by biotic and abiotic con-
ditions®. These assemblages represent the emergent properties of
ecosystems, where each species contributestoandisinfluenced by the
broader assemblage®. Identifying and analysing these intricate patterns
is crucial for understanding the underlying mechanisms governing
biodiversity and ecosystem stability and dynamics’. Despite progress,
unravelling these patterns remains challenging, given the high dimen-
sionality and complexity of community assembly®. In this study, we
attempt to decode the ‘syntax’ of plant community structure, aiming
to provide insights on the composition of vegetation across diverse
ecosystems. In this context, ‘syntax’ refers to the implicit rules and

patterns that govern how plant species co-occur and interact to form
structured assemblages, similar to how syntaxin language defines the
arrangement of words to create meaningful sentences. Just aslanguage
syntax reveals relationships between words on the basis of their posi-
tionsandroles, the syntax of plant assemblages represents the hidden
shared environmental preferences, direct and indirectinteractions, and
organizationunderlying species assemblages (that is, just as the order-
ing of words in a sentence matters, the ranking of species namesin a
community matters as well). We focus particularly on how thisapproach
can be used to improve habitat type identification, offering insights
that could enhance ecological classification and conservation efforts.

The analysis of species communities is often done by leveraging
presence-absence matrices of species co-occurrences’, which record
how many times two different species were observed together in the
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same vegetation plot. This traditional approach allows for global analy-
ses of co-occurrence patterns in vegetation plots found in a dataset,
making it suitable for detecting broad patterns, such as clusters of spe-
cies with a high tendency of co-occurrence®. However, this method is
often biased towards common species’, as they have higher occurrence
frequencies across vegetation plots, leading to inflated co-occurrence
estimates. This can obscure the detection of rare or specialized species
interactions'®, which may play critical ecological roles but are under-
represented in presence-absence matrices.

Toaddress this limitation, alternative approaches such as fidelity
indices" quantify species’ specificity to particular habitat types rather
thanrelyingsolely ontheir co-occurrence frequencies, making these
approaches particularly useful for distinguishing diagnostic spe-
cies from widely distributed ones. While such methods might offer
an improvement over raw co-occurrence counts, they remain con-
strained by predefined habitat classifications and do not fully capture
the hierarchical and context-dependent nature of species associa-
tions. In addition, most co-occurrence matrices only account for
species presence or absencein the assemblage, but the relative abun-
dance of species within plant assemblages, which is often important
for habitat and vegetation classification®, is not taken into account.
Statisticalinterdependencies, whichreflect biotic interactions, often
exhibit asymmetric, transitive and hierarchical patterns” that are
beyond the scope of classical co-occurrence approaches but can be
captured by morerecentand sophisticated Al-based abundance-order
language models. These models use a transformer-type deep learn-
ing architecture based on self-attention mechanisms (which allow
the model to weight the importance of each species in relation to
all others in a given assemblage, much like how one might focus on
keywordsin asentence to understand its meaning). This allows such
amodel to account for bidirectional dependencies in a statistical
sense (that is, in the extent to which the presence or abundance of
one or several species helps predict others), not necessarily reflect-
ing ecological causality. These patternsinclude asymmetries (thatis,
if species A statistically influences species B but species B does not
necessarily statistically influence species A), indirect relationships
such as transitivities (that is, if species A statistically influences spe-
cies B and species B statistically influences species C, then species
A statistically influences species C) and hierarchical patterns in the
assemblage (for example, abundant species that tend to co-occur
with other less abundant species).

A concrete application of the model evaluated in our study is the
classification of European habitat types based on ordered species
assemblages. Europe hosts a rich diversity of vascular plant species,
contributing to a great number of unique habitats' shaped by both
biotic and abiotic factors and protected by the European Habitats
Directive. However, this biodiversity faces many threats, including the
effects of various kinds of agricultural activities (for example, intensi-
fication for more productive farming and abandonment of traditional
land use) and modifications of natural systems (for example, dredging
and sea defence works), among others”. All habitats protected by
the Habitat Directive are listed in Annex I of this directive'®, and with
the new European Union restoration law, a large proportion of these
habitats have to be in a favourable state in the near future”. A major
challenge is that in many European Union countries, only a fraction
of these habitats have been mapped, making it difficult to monitor
their development and condition. Moreover, even when mapped,
their ecological quality often remains unknown, further complicat-
ing conservation and management efforts. Here we try to patch this
major knowledge gap.

For the purpose of this study, habitats were defined as terres-
trial, freshwater or marine areas characterized by geographic, abiotic
and biotic features'®. We leveraged the European Nature Information
System (EUNIS)" maintained by the European Environment Agency.
This hierarchical classification system covers all types of habitats and

contains at least five levels of complexity. We focused our analysis on
thefirst three levels: broad habitat groups (level one), habitat groups
(level two) and habitat types (level three). Specifically, our experi-
ments concentrated on predicting habitat types that are within eight
broad habitat groups. It is important to note that habitat types, such
asthose defined by the EUNIS typology, are human-constructed cate-
gories thatimpose structure on a continuum of vegetation patterns.

Habitat distribution modelling typically involves linking informa-
tion on plant species composition (such as a full list of vascular plant
species with estimates of cover abundance) and environmental covari-
ates (such as whether a community is located on a coastal dune® or
within a specific terrestrial ecoregion®) to habitat type occurrences.
Thisapproach helpsidentify the habitat type of vegetation plots. There
aretwo basic types of methodologies used for vegetation classification
based on species composition’: expert systems” and machine learn-
ing®*. The former leverage explicitly defined logical rules and emulate
the process of expert classification done by humans, whereas the latter
are tools for induction of the independent knowledge base.

Expert systems, even though they are still the most used tools to
assign plotsto vegetation types, do not consistently align with the basic
requirements for vegetation classification™:

« Theytend tooverfit by learning the detail in the training data too
well. Thus, minor changes in a vegetation plot (for example, a
small differencein the cover of anindividual species) can consider-
ably alter the result of the classification procedure, making those
expert systems not robust.

« Some of theminvolve sets of external criteria (for example, envi-
ronmental or geographical attributes of vegetation plots in addi-
tion to species composition) to classify some vegetation types,
making those expert systems not simple.

« Theyareoften based ononespecificnomenclaturaland taxonomic
dataset, but using vegetation plots from different origins might
result in different names for the same entity or identical names
for different entities (depending on the taxonomic concepts and
determination literature used in a particular region or period),
making those expert systems not consistent.

Moderndeep learning techniques have great potential for model-
ling habitat distributions™. In particular, experiments with feedforward
neural networks have shown that they have the ability to capture com-
plex information about the plant species composition of vegetation
plots to classify plant communities”. One limitation of such models,
however, is that their architecture induces an intrinsic inductive bias
inthe sensethat they process each plant species as if it is equally differ-
entfromall the others®. Thus, they cannot accurately model complex
relationships between plant species. They are therefore not really
suitable for modelling ecological systems and identifying habitat
types where the interdependencies between plant species are com-
plex”. Classical approaches offer interpretable and mathematically
grounded methods for ecological modelling®. However, they may
lack the capacity tolearnlatent patterns from high-dimensional data,
such as subtle co-occurrence relationships between plant species,
hierarchical community structures or environmental gradients that
shape species assemblages.

Incontrast, transformers®, adifferent kind of deep learning model,
go beyond local processing and exploit global attention mechanisms
for increased performance. Although transformers have been lever-
aged in various fields of biology (for example, the extraction of mor-
phological traits® or the prediction of protein structures®), their use in
vegetation classificationis still largely unexplored. Such models should
allow the segmenting of habitatsin amuch more efficient manner than
current methods. In particular, large language models (LLMs) have
notyet been embraced by the global community of ecologists despite
their ability to find patterns and correlations in noisy biological data®.
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Fig.1| The proposed approach leverages LLMs to capture the latent
dependencies between plant species in diverse ecosystems. By training on over
1.4 million vegetation plots, 29 million species occurrences and 14,000 species
from Europe and adjacent regions, the model learns the ‘syntax’ of sentences

vegetation plots is to assign a EUNIS

habitat type to the
species assemblage

formed by abundance-ordered plant species sequences, allowing it to predict
missing (thatis, [MASK]) taxa in sequences of species. The resulting foundation

model canbe further fine-tuned to assign EUNIS habitat types to vegetation
plots, outperforming traditional methods on both tasks.

The goal of this work is to enhance the understanding of species
assemblages and facilitate habitatidentificationin Europe through the
use of LLMs (Fig.1). To achieve this goal, we introduce a computational
pipeline centred on PI@ntBERT*, a model based on BERT** (that is,
Bidirectional Encoder Representations from Transformers, a deep
learning model originally designed for natural language under-
standing). This means that without any further adaptation (that is,
fine-tuning), Pl@ntBERT would be pretrained only ina self-supervised
manner on very large volumes of common text data unrelated to
vegetation (that is, BookCorpus and English Wikipedia) and would
be a Swiss army knife solution (that is, this model would work for the
most common language tasks, such as sentiment analysis or named
entity recognition, as long as they did not require a deep knowledge
of the domain). However, to make it ecologically meaningful, we
pretrain it (that is, we make the model learn the general structure in
the data) on an in-domain dataset named the European Vegetation
Archive (EVA)¥, anintegrated database of European vegetation plots.
This adaptation allows Pl@ntBERT to develop a statistical representa-
tion of the vegetation assemblages, capturing implicit relationships
between species that commonly co-occur, and boost the performance
of the downstream task (for example, keeping the learned features
but replacing the final layer improves habitat type identification).

The next stepis to train the model for a supervised classification
task: assigning habitat types to species assemblages. We use the EUNIS
classificationsystem, awidely used Europeanframework that organizes
vegetationinto hierarchical habitat types based primarily on dominant
species composition, ecological structure and environmental condi-
tions. The EUNIS typology provides astandardized way to classify and
compare habitats across Europe, making it akey reference for conserva-
tionand land management. However, as EUNIS is ahuman-constructed
typology, it has to be noted that sometimes, the habitat type labels
that were assigned to vegetation plots by the vegetation scientists
that collected the data may be ambiguous or uncertain. Unlike tradi-
tional expert systems, which rely on manually defined classification
rules, or classical machine learning approaches, which process species
independently without considering their ecological interdepend-
encies, PI@ntBERT learns to infer habitat types by recognizing
patterns in species composition and their statistical relationships.
This approach enhances classification accuracy, mitigates inconsist-
encies in taxonomic nomenclature (by accommodating variation in
species names such as synonyms) and provides a scalable solution for
habitatidentification, including for habitats under threat of collapse.

Results

The syntax of species assemblages

Understanding the structure of species assemblages requires capturing
both direct and indirect relationships between co-occurring species.
To measure PI@ntBERT’s ability to capture these complex relation-
ships from abundance-ordered species communities, we evaluated it
on a so-called masking or fill-mask task (that is, a species is removed
from the assemblage, and the accuracy of the model in recovering
the right species is measured). This approach is conceptually related
to the notion of dark diversity*®, as it aims to identify missing species
that, onthebasis of the ecological context, are expected to be present
but are absent in a given assemblage. For this evaluation, we tested
different versions of PI@ntBERT, which vary in how they tokenize
species names (refer to Methods for more details about these different
versions). Naturally, the models using atokenizer where species names
aresplitinto two tokens (one for the genus name and one for the species
epithet) tend to perform better in the masked token prediction task.
This result is expected, since each mask hides only half of the species
name rather than the entire binomial name. As aresult, it is easier for
these models to figure out what the other half of the binomial name
is (for example, ‘Thinopyrum junceum, [MASK] marina, Pancratium
maritimum’). In contrast, the models using a tokenizer where species
names are considered as one single token have to choose between over
14,000 different species to replace the mask, which completely hidesa
species name (for example, ‘Thinopyrumjunceum, [MASK], Pancratium
maritimum’), making the task harder.

To assess how well PI@ntBERT captures species relationships
beyond simple co-occurrences, we conducted a comparative evalu-
ation against two alternative approaches: (1) a naive Bayes model®
using only the species co-occurrence matrix and (2) a classical deep
learning model*’ based on a feedforward neural network (Fig. 2). This
comparison allowed us to determine whether PI@ntBERT’s ability to
encode species assemblages translates into improved predictive power
when identifying missing species in vegetation plots. PI@ntBERT
clearly outperformsthe co-occurrence matrix at every rank—thatis, at
every position that species can occupy in the vegetation plot when they
aresorted by cover abundance (Fig. 2b). Moreover, the co-occurrence
matrix tends to performworse when the speciesis less abundant. The
neural network is very good for the most dominant species, even out-
performing the Pl@ntBERT model on the first ranks. However, when
the speciesbecome less abundant, it quickly losesits predictive power.
In contrast, the Pl@ntBERT model tends to perform better for scarce
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Fig. 2| Overall masking accuracy (micro-averaged over the ten cross-
validation folds) of the three methods and breakdown of the rank accuracy.
a, Overall accuracy (mean values). b, Rank accuracy (mean values along with
standard deviations). Only the labelled vegetation plots for which over ten

species were recorded were kept in the test set. For each remaining vegetation
plot (n=705,479), the ten most abundant species were masked one by one, and
the accuracy corresponding to each species rank was computed.

species than for abundant species. Indeed, the accuracy of its predic-
tions drops sharply when the first ranked species (most abundant) are
masked (from around 22% to around 16% for species ranked second to
third) but thenslowly increases for species ranked after (and stabilizes
around 18% for species ranked tenth). This indicates that, as the first
species is the one contributing the most to the assemblage structure
and identity, it is more likely for our model to find it if it has complete
knowledge of the assemblages (that is, all other species), especially
the second and third species. Moreover, it shows that the presence
of abundant species is essential but not sufficient to determine the
assemblage. However, the assemblage of the first three species (and
also the assemblage of only the second and third species) is often suf-
ficient to determine the ecosystem. This emphasizes the critical role
that species abundance playsin accurately predicting missing species
inanassemblage. Asitis often therarer and less abundant species that
are missing from vegetation-plot records, this experiment highlights
the importance of using models like PI@ntBERT to capture nuanced
relationships between species. See appendix 36 in the Supplementary
Information for amore in-depth overview of each method’s result.

The task of finding missing species from highly diverse, incom-
plete plant assemblages benefits notably from the ability to capture
complexrelationships, leverage extensive textual data for contextual
understanding and learn rich, abstract data representations. A com-
parison between the results obtained by the Pl@ntBERT model, the
co-occurrence matrix and the neural network (Supplementary Fig.12)
shows that the LLM clearly outperforms the other two approaches
in this regard. LLMs provide a holistic view that aids in recognizing
patterns and improving species identification. The co-occurrence
matrix relies on simple frequency counts of species pairs appearing
together in the training dataset*, and the neural network relies on
one-hot encoded assemblages of co-occurring species*?, which lack the
contextual understanding necessary to accurately predict the masked
tokensinacomplex and domain-specific dataset such as plant species
names. Whatever the broad habitat groups (for example, vegetated
man-made habitats, wetlands, forests and other wooded land), PI@
ntBERT consistently outperforms the co-occurrence matrix by afactor
of more than ten and, except for littoral biogenic habitats and coastal
habitats, the neural network by a factor of almost two (overall accuracy
0f17.49% for the PI@ntBERT model, 0.96% for the co-occurrence matrix
and 10.93% for the neural network; Fig. 2a).

Furthermore, we show that PI@ntBERT is able to perform better
than both the co-occurrence matrix and the neural network when
detecting species patterns (appendix 29 in the Supplementary Informa-
tion).Inscenarios where three species A, Band C occur together more

than 100 times in a vegetation plot but where species A and species
C never occur together without species B, PI@ntBERT is often able
to predict that the species B is required for the presence of the other
two species, unlike the other methods. In contrast, the co-occurrence
matrix and the neural network repeatedly predict common species
(forexample, Dactylisglomerata, whichis the most frequent speciesin
the dataset, or Phragmites australis), even in cases where they are not
plausible candidates, showing atendency to favour species that appear
many times in the dataset rather than recognizing specific ecological
patterns. PI@ntBERT’s success demonstratesits capacity to learn the
complex syntax of plant assemblages and correctly identify species
occurrence relationships, even in complicated ecological contexts.
Practically, PI@ntBERT can support vegetation surveys by suggesting
species thatare probably present but unrecorded. After conductingan
initial survey and recording a set of species, one can append [MASK]
tokens sequentially to the end of the observed species list. At each
iteration, the model outputs probabilities over all tokens, both species
tokens and special tokens—including the [SEP] token, which indicates
the end of the sentence (thatis, the end of the list). When [SEP] has the
highest probability, it indicates that the model considers the assem-
blage complete, hence providing anatural stopping criterion without
prior knowledge of total species richness. This capability can also help
flag potential omissions or inconsistenciesin specieslists. By offering
context-aware predictions, the model can act as a quality-control
tool that complements field observations and contributes to more
complete and reliable habitat assessments. Indeed, observer errors
(for example, overlooking errors and misidentification errors) may
result in species richness being artificially underestimated*. This
fill-mask task can thus support rapid floristic assessments, where only
dominantor easily identified species are observed, by predicting likely
missing species.

Thetask of finding amissing species in an assemblage isacomplex
problem, asthe hypothesisspaceis large. Indeed, when asked toreplace
a[MASK] token in a sentence describing a vegetation plot, the model
Pl@ntBERT must select from over 14,000 different vascular plant spe-
cies. However, the perplexity of the base modelindicates that it mostly
hesitates between around 12 species when it has to replace the mask.
More importantly, an experiment shown in Supplementary Fig. 15
indicates the following:

« When the PI@ntBERT model (the large-species version) does
notreplace the [MASK] token with the correct species, it actually
outputs a species coming from the same vegetation class** (that
is, a species belonging to the same broad unit in a hierarchical
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prunus padus, [MASK] and crataegus monogyna are constant
species of temperate hardwood riparian forests (T13).

BERT

l

Predictions like in the
pretraining dataset

l

Pl@ntBERT

Predictions like in the
fine-tuning dataset

l

>>> prunus padus, willow and crataegus monogyna are constant species of temperate hardwood
riparian forests (T13). (28%)

>>> prunus padus, acacia and crataegus monogyna are constant species of temperate hardwood
riparian forests (T13). (26%)

>>> prunus padus, eucalyptus and crataegus monogyna are constant species of temperate
hardwood riparian forests (T13). (20%)

>>> prunus padus, aspen and crataegus monogyna are constant species of temperate hardwood
riparian forests (T13). (15%)

>>> prunus padus, oak and crataegus monogyna are constant species of temperate hardwood
riparian forests (T13). (11%)

Fig. 3| Comparison of the top five predictions for the BERT (large-uncased
version) and PI@ntBERT (large-species version trained on folds 1-9) models
for our sample text of ‘prunus padus, [MASK] and crataegus monogyna

are constant species of temperate hardwood riparian forests (T13). The
percentages next to each predicted species represent the probabilities assigned
by the models for replacing the [MASK] token, normalized so that the top five

>>> prunus padus, acer campestre and crataegus monogyna are constant species of temperate
hardwood riparian forests (T13). (44%)

>>> prunus padus, sorbus aucuparia and crataegus monogyna are constant species of temperate
hardwood riparian forests (T13). (17%)

>>> prunus padus, viburnum opulus and crataegus monogyna are constant species of temperate
hardwood riparian forests (T13). (17%)

>>> prunus padus, cornus sanguinea and crataegus monogyna are constant species of temperate
hardwood riparian forests (T13). (12%)

>>> prunus padus, euonymus europaeus and crataegus monogyna are constant species of
temperate hardwood riparian forests (T13). (10%)

predictions sum to100%. On the one hand, the candidates from BERT are all
trees, which shows that the model ‘understood’ we are in a forest. However, all
of them are common plant names (and not scientific names of taxa) and, except
for the oak, which s the last candidate, are not found within the T13 habitat type.
Onthe other hand, the candidates from PI@ntBERT are all scientific names of
constant species from the required habitat type.

classification system that groups plant communities on the basis
of shared floristic composition, ecological characteristics and
biogeography) over 39% of the time. For comparison, a random
approach (that is, predicting a random species to replace the
[MASK] token) would result in a species coming from the same
vegetation classaround 3.5% of the time. PI@ntBERT thus provides
a substantial improvement over chance, especially considering
there are over 100 vegetation classes in the classification system,
many of which share ecologically similar species that may co-occur
across different vegetation classes.

« Whenthe PI@ntBERT model (the large-species version) does not
replace the [MASK] tokenwith the correct species, itactually out-
puts aspecies that is characteristic of the habitat type (level 3) of
the vegetation plot 49% of the time, of the habitat group (level 2)
66% of the time and of the broad habitat group (level 1) 76% of the
time. For comparison, a random approach would result in a spe-
cies being characteristic of the habitat type of the vegetation plot
0.3% of the time, of the habitat group 2.3% of the time and of the
broad habitat group 7.0% of the time. Again, PI@ntBERT provides
a substantial improvement over chance, especially considering
there are hundreds of habitat types in the classification system,
many of which share ecologically similar species that may co-occur
across different habitat types.

A comparison of the vocabularies of different models can be
foundinappendix18inthe Supplementary Information. Forexample,
verticillatoinundata, aspecies epithet, isdivided into eight pieces ([ve,
#i#trti, ##ci, ##lla, ##to, ##in, ##unda, ##ta]) by BERT and into seven
pieces ([ver, ##tic, ##illa, ##to, ##in, ##und, ##ata]) by SCIBERT*
(thatis, aBERT model trained on scientific text). In contrast, this term
appears in the in-domain vocabulary of PI@ntBERT, as well as around
10,000 other genus names and species epithets. Species names are
specific, meaningful biological entities. Splitting them into multiple
smaller components (referred to as subwords in machine learning
terminology) blocks the model’s ability to recognize these tokens as
representing a unified biological entity. Instead of treating the entire
species name as asingle, coherent unit, the model seesitasacollection

of unrelated fragments, which reduces its ability to capture biologi-
cal relationships. An example of the benefits of domain adaptation is
shown in Fig. 3. It shows that PI@ntBERT (that is, a fine-tuned BERT),
compared with a vanilla BERT (that is, the standard, pretrained BERT
model not specialized for plant-related data), really ‘understands’ plant
species compositions. A visualization of the attention in PI@ntBERT
can be found in Supplementary Fig. 8. This makes the model more
accessible and shows at multiple scales which species in a vegetation
plot most influence the predictions.

Identifying habitat types
To optimize the hyperparameters (that s, learning rate and batch size)
andidentify the set of parameters yielding the most accurate model, we
first fine-tuned all versions of PI@ntBERT using the first fold as a test
set and the remaining nine folds as a training set. All results obtained
during this fine-tuning process can be found in Supplementary Table 4.
Table 1gives an overview of the results obtained in the text classifica-
tion task, and Supplementary Fig. 5 provides more details. Among all
tested models, PI@ntBERT-large-species appears as the clear winner
when it comes to identifying habitat types. It outperforms all other
models, whether it is on top-one accuracy (that is, the first candi-
date output by the model is the real habitat type, or level 3 habitat),
top-three accuracy (that is, among the three first candidates output
by the model is the real habitat type, or level 3 habitat), group accu-
racy (that s, the first candidate output by the model belongs to the
real habitat group, or level 2 habitat) or broad accuracy (that is, the
first candidate output by the model belongs to the real broad habitat
group, or level 1 habitat). It also outperforms models that, in addi-
tion to species composition, use the abiotic environment and geo-
graphiclocation as classification criteria. The different versions of the
expert system EUNIS-ESy and the different models of hdm-framework,
as statistical and general-purpose machine learning approaches, are
not capable of matching domain-adapted models such as Pl@ntBERT
for specialized tasks in vegetation classification.

PI@ntBERT (the large-species version) achieves an accuracy
of 92% when asked to classify a vegetation plot into one of the 227
habitat types present in the dataset. More details on how some
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Table 1| Comparison of Pl@ntBERT, the expert system EUNIS-ESy and the deep learning models from hdm-framework (with
the settings recommended by the authors) for habitat type classification

Framework Model Fine-tuning
Accuracy (%) Top-three accuracy (%) Group accuracy (%) Broad accuracy (%)

Predictors: species composition, abiotic environment and geographic location

EUNIS-ESy v.2020-06-08 82.68 - 84.34 90.72
v.2021-06-01 86.44 - 88.26 94.64

hdm-framework MLP”? 90.84 98.90 93.94 9579
RFC™® 80.37 95.73 87.85 9213
XGB™ 88.81 98.95 93.00 95.69
TNC™ 81.50 9213 871 90.70
FTT’® 88.84 97.28 92.65 94.92

Predictors: species composition

hdm-framework MLP 90.00 98.73 93.36 95.27
RFC 80.34 95.66 87.82 92.00
XGB 88.M 98.75 92.60 95.29
TNC 80.64 9173 86.40 89.98
FTT 87.92 97.06 92.08 94.40

Pl@ntBERT (ours) Large-species 91.98 9910 94.79 96.42

All models were evaluated using the same ten cross-validation folds. Predictions were made at level 3 of the EUNIS hierarchy, with group (level 2) and broad (level 1) accuracies derived from
the habitat types. EUNIS-ESy and hdm-framework”” used additional location covariates (for example, country, ecoregion and elevation), while PL@ntBERT used species composition only
(hdm-framework was also evaluated without location covariates). EUNIS-ESy uses the exact cover abundance of all species instead of their relative ranks. An en dash indicates that the cell is
not applicable or relevant for the corresponding model. Bold indicates the best-performing model per metric. See Supplementary Text 6 for metric definitions.

habitat groups are sometimes confused with other habitat groups
can be found in Supplementary Fig. 13. As shown in Fig. 4, when
assessing therisk of habitat collapse (after converting the predictions
from EUNIS habitat types to European Red List of Habitats categories),
PI@ntBERT achieves an overall micro-accuracy of 96.5%. Furthermore,
our transformer-based method outperforms all other approaches
(Table 4c) and shows very strong accuracy whenidentifying individual
conservation statuses (Fig. 4a) and broad habitat groups (Fig. 4b). Asa
result, PI@ntBERT canbe seen as a powerful tool to inform and catalyse
action for biodiversity conservation and policy change. More details
about the distribution of the European Red List of Habitats categories
across the dataset can be found in appendix 27 in the Supplementary
Information. We used this model to map all the unlabelled vegetation
plots from the dataset, and we compare the output with the map of
all labelled vegetation plots from the dataset in appendix 33 in the
Supplementary Information (with a further breakdown on each indi-
vidual broad habitat group from the fill-mask dataset in appendix 34
inthe Supplementary Information).

Some other experiments (shown in Supplementary Fig.17) dem-
onstrated that the most important species for identifying the habitat
type of avegetation plot are the first onesin the cover-abundance rank.
Indeed, over all the vegetation plots of the dataset containing ten spe-
ciesor more, Pl@ntBERT-large-species achieves anaccuracy of 92.2%.
When the first species (thatis, the most abundant) of each vegetation
plotis removed, the accuracy drops by 35 percentage points to 57.2%.
When the last species (that is, the least abundant) of each vegetation
plotisremoved, the accuracy almost stays the same and drops by only
0.43 percentage points (91.7%). When a random species from each
vegetation plotisremoved, the accuracy decreases by 3.0 percentage
points to 89.2%. This discrepancy probably arises because dominant
speciesshapethe ecological structure of habitats. These results high-
light the stronginfluence of dominant speciesin habitat typeidentifica-
tion, while rare species contribute minimally to the model’s predictive
performance. This could allow less well-trained botanists who know
only common and/or abundant species to conduct field surveys and
stillidentify the habitat of the area while speeding up data collection.

Openscience

Tofacilitate the reproducibility of our study and the reuse of codes and
models, we develop, share and maintain ageneric, free and open-source
deeplearning framework facilitating the training and evaluation of pre-
dictive models of habitats fromin situ observation dataandinference
on new and unseen vegetation-plot records. The framework, coded
in the programming language Python and powered by the parallel
computing platform CUDA for accelerated training and inference,
is accessible to various user profiles (including non-deep-learning
experts whowant to easily identify European habitat types) at https://
github.com/cesar-leblanc/plantbert. A user guide on how to install
the framework and run the basic tasks (that s, data curation, fill-mask
training, text classification training and inference) can be found in
Supplementary Text 20, and some examples of how the model works
canbe found Supplementary Text 23. If the user has only afew vegeta-
tion plots from which they want to find potentially missing species or
identify the habitat type, a quicker way to test the framework is to visit
the tool available at https://huggingface.co/spaces/CesarLeblanc/
plantbert_space. A demo can be found in Supplementary Fig. 19.

Discussion
The PI@ntBERT model has been created to offer insights into how
vegetation patterns can be encoded and classified, contributing to
advancements in plant ecology and conservation biology. It intro-
duces an innovative approach by leveraging natural language pro-
cessing techniques on top of abundance-ordered species lists from
specificsites aimed at capturing complex speciesrelationships such as
transitive or sequential dependencies. As a result, it can model the
species composition of hundreds of terrestrial, freshwater and marine
habitat types that contain plants, including most of the threatened,
vulnerable and endangered ecosystems found across Europe and adja-
centareas. Inaddition, this approach canbe expanded worldwide—for
example, by applying it to the global vegetation-plot database sPlot*°.
Themodel hasbeen primarily designed to predict missing species
inan assemblage (which can also be used for predicting species pools
of plant assemblages*’)—for example, in incomplete monitoring
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Fig. 4| Accuracy obtained by the PI@ntBERT-large-species model on different
typologies (results averaged over the ten cross-validation folds). a, Accuracy
results (in %, with the best accuracy in green and the worst accuracy inred) of
PI@ntBERT across the European Red List of Habitats categories (DD, data
deficient; LC, least concern; NT, near threatened; VU, vulnerable; EN,
endangered; CR, critical endangered). b, Accuracy results (in %, with the best
accuracyingreen and the worst accuracy in red) of PI@ntBERT across level 1

EUNIS habitat group

(thatis, broad habitat groups) of the EUNIS typology (MA2, marine; N, coastal;
Q, wetlands; R, grasslands; S, heathlands; T, forests; U, inland; V, man-made).

¢, Comparison of the accuracy (in %, best accuracy in bold) of the models
across grouped European Red List of Habitats statuses (data deficient, {DD};
not threatened, {LC + NT}; threatened, {VU + EN + CR}) and EUNIS broad habitat
groups (sparse, {MA2 + U}; vegetated, {R + N+ Q + S + T}; anthropogenic, {V}).

projects*, leveraging masked language modelling to infer statistically
probable species compositions, hence enhancing species complete-
ness and improving vegetation surveys. This capability is especially
relevant in cases where survey data may be incomplete or where
one or more species could be overlooked due to sampling limita-
tions or observer bias. By simulating the expected species pool, Pl@
ntBERT offers ameans toimprove the ecological relevance of data used
for habitat assessments, management and reporting. This predic-
tive function can support the identification of indicator species and
enhance the detection of key ecological patterns that may be other-
wise underrepresented. However, although PI@ntBERT can predict
missing species in incomplete assemblages, caution is needed when
interpreting these predictions. Insome cases, aspecies’ absence froma
vegetation plot might be due to observer bias or sampling limitations,
inwhich caseits predicted presence could be justified. But some absent
species belong to dark diversity (that is, species expected to occur
on the basis of ecological conditions but that are genuinely missing
due to dispersal limitations, competition or other constraints). In
such cases, attempting to ‘correct’ field surveys by adding model-
predicted species risks misrepresenting reality and creating fictional
plots, which could introduce more error thanit solves. Fromanethical
standpoint, modifying field datain this way might also be controversial,
as it could lead to unintended biases in conservation and manage-
ment decisions. Incomplete data are an inherent part of ecological
research, and rather than filling gaps artificially, it might sometimes be
preferable to acknowledge and work with these uncertainties.

The second key application of PI@ntBERT is its capacity to classify
plant species records into EUNIS habitat types. This ability addresses
anessential needin habitat identification and conservation planning,
where the ability to classify survey datais foundational for monitoring
biodiversity and guiding restoration efforts. Traditional methods have
largely relied on manual expertise or rigid algorithms that cannot cap-
ture the complex patterns and overlook associations that occurinlarge
ecological datasets. By leveraging transformer-based architectures
and fine-tuning them with domain-specific botanical datasets, Pl@
ntBERT offers a more refined and accurate approach. It is also worth
noting that some vegetation plots in the EVA database may represent
transitional or ecotonal habitats that do not fit neatly into a single
EUNIS type. Such casesintroduce ambiguity in classification and may
contribute to an underestimation of PI@ntBERT s true accuracy, as the
model, even though capable of assigning multiple habitat types to a
vegetation plot, is evaluated on the task of assigning only one, which
might be ecologically reasonable but could differ from the labelled

category (in this case, considering the top-three accuracy might be
wiser). Itisalsoimportantto consider potential regional biases due to
uneven plot densities in EVA. Some habitat types may be dispropor-
tionately represented in well-surveyed regions, leading the model to
learn patternsthat reflect data availability rather than true ecological
distributions. This could resultin higher accuracy for frequently sam-
pled habitats and reduced performance for underrepresented ones.
By learning the context to translate plant species intoamodelled
ecological process within an ecosystem, Pl@ntBERT is able toimprove
vegetation models for identifying habitat types. This domain adapta-
tion helps the model automatically understand that some species
occuronlyinvery specificassemblages, while others can tolerate and
thrive in a wide range of ecosystems. Predictions are therefore influ-
enced notonly by the actual occurrence of agiven species but also by
therelative probability of the presence of this species. However, some
habitat types, such as those listed in Annex|, are not defined solely by
vegetation but rather by geomorphological or geolocational param-
eters (forexample, springs, cliffs and dune slacks). These features are
unlikely to be predictable by Pl@ntBERT, as they do not necessarily cor-
relate with species composition alone. Similarly, certain species-poor
EUNIS habitat types present challenges for classification since their
low species richness limits the available signal for distinguishing
between communities. Moreover, in few cases, it isimpossible to dis-
tinguish some habitat types by plant species composition and relative
abundance alone, because their species composition can be the same
evenif they occur in different regions of the world. This is one of the
main reasons why attribute data (for example, coordinates, country
and elevation) were incorporated in expert-based systems such as
EUNIS-ESy, rather than relying purely on species presence.
Therelative positions of the species within a vegetation plot (that
is, their abundance compared to the other species) are key to habitat
type identification and fragmentary records completion (even more
than the exact cover-abundance information of each individual spe-
cies). When surveying plant species, it might be hard, whatever the
level of expertise, to accurately collect the exact abundance of plants
inavegetation plot. However, recording the relative abundance of the
mostabundant species is much easier and often sufficient. It has tobe
noted that we did not explicitly consider the spatial scale when select-
ing data for domain adaptation (the fill-mask task) and training (the
text classification task). Since plant species typically co-occur at small
spatial scales (afew metres), including plots from larger spatial scales
may introduce noise by grouping species that do not actually form a
coherent community. Forexample, afew metres’ differenceinelevation
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or soil moisture can lead to entirely different plant communities, yet
amodel trained on large-scale data may incorrectly associate species
thatdonot truly co-occur. Thelarger the spatial scale used, the messier
the ecological signal becomes. We did not account for this explicitly
because EVA contains alimited number of plots, and we aimed to retain
as many as possible, assuming that vegetation scientists conducted
relevés with spatial scale in mind. However, future work should inves-
tigate how different spatial resolutions impact model performance.

The use of LLMs for understanding vegetation patterns is par-
ticularly interesting because these models can learn and interpret
the syntax of plant species assemblages. As natural languages are
composed of words following grammatical rules, plant assemblages
can be thought of as following certain ecological ‘rules’ that dictate
how species co-occur and interact®. By leveraging the bidirectional
architecture of BERT, PI@ntBERT can effectively learn these intricate
patterns by capturing relationships between species in both forward
and backward directions, which provides amore comprehensive view
of assemblage composition. This allows the model to understand not
only direct associations but also higher-order dependencies within
complexassemblages™. Suchasyntacticapproach enables PI@ntBERT
torepresent ecologicalinterdependencies with alevel of detail thatis
challenging for traditional statistical methods, offering an alternative
way of encoding the relationships that define biodiversity. Through
this perspective, PI@ntBERT provides amore nuanced understanding
of the ‘grammar’ underlying ecosystem composition and dynamics,
which could support better conservation and habitat management
strategies, and possibly abetter fundamental understanding of nature.
However, as it is an LLM, PI@ntBERT can only learn from existing
datasets and cannot anticipate novel species assemblages that may
emerge in response to climate change, species invasions or land-use
changes. This is particularly relevant for neoecosystems, where new
combinations of native and non-native species form as environmental
conditions shift. Pl@ntBERT cannot infer future biodiversity patterns
beyond what is already recorded in datasets, meaning that ongoing
field surveys and expert input remain essential. Ecologists will need
to continuously document new assemblages and update training
data to keep the model relevant in a rapidly changing world. This
underscores that PI@ntBERT is not a replacement for field expertise
but rather a tool to assist researchers in making sense of complex
ecological patterns.

Whenit comesto vegetation classification, having agood under-
standing of how and why PI@ntBERT assigns a EUNIS habitat typetoa
givenvegetation plotis essential if we want researchers and practition-
erstotrust theresults™. Integrated gradients®, amethod to calculate
how important each input feature (that is, plant species) is to the
prediction (thatis, habitat types), were used to explain how positively
ornegatively aspecies contributes to the classification of a vegetation
plot. Amore detailed overview of species attributions on a vegetation
plot can be found in appendix 28 in the Supplementary Information.
Itis interesting to see how a change in diagnostic, constant or domi-
nant taxa can change the model behaviour. This study shows that the
most abundant species in a vegetation plot (that is, the first species
of the sentence) is often the one that contributes the most to the clas-
sification, which reflects the experience with probabilistic keys for
identifying vegetation types®. One of the advantages of this model
is that it brings vegetation science closer to awider circle of people.

Other experiences, whose details can be found in appendix 22 in
the Supplementary Information, corroborate these findings. When
the information on abundance is removed (that is, by forming sen-
tences with speciesinrandom order), the performance of PI@ntBERT
significantly drops. For example, the accuracy of the text classifica-
tion task decreased by 14% compared with the classical approach.
This drop was more substantial than when we kept the information
on abundance but removed 30% of the species by random selection,
meaning that capturing therelative abundance ismoreimportant than

recording all plant species. Similarly, when it comes to finding which
speciesis hiding behind amask in a vegetation plot, PI@ntBERT went
from assigning the correct species in over 17% of the cases when the
species were sorted to less than 7% of the cases when the species were
not sorted. This means that plant assemblages are defined not only
by the species present but also by their order of abundance because
abundance influences community structure, ecological interactions
and ecosystem functioning. Abundance also influences functional
diversity, whichis critical for ecosystem processes. Species with higher
abundance often have significant roles in ecosystem functioning due
to their traits and interactions with other species™.

While PI@ntBERT demonstrates promising resultsinidentifying
vegetation patterns and assigning habitat types on the basis of species
co-occurrence, one key limitation of the current model is that it does
notexplicitly account for the vertical structure of plant communities.
Some habitats are characterized not only by their species composi-
tion but also by their layering structure, which plays a crucial role in
defining their ecological identity. Thus, a possibleimprovement would
be to introduce explicit hierarchical encoding of vegetation stratain
Pl@ntBERT’s input data. This could be achieved by adopting a stand-
ardized syntax, such as: ‘Tree layer: Fagus sylvatica, Quercus robur;
Shrub layer: Carpinus betulus, Fagus sylvatica, Corylus avellana; Herb
layer: Anemone nemorosa, Hyacinthoides non-scripta, Mercurialis
perennis’. If layering informationisintegrated into PI@ntBERT s train-
ing, the model could better capture functional differences between
habitats (especially those that are defined as much by their structural
complexity as by species composition alone), improve classification
accuracy and potentially enhance its ability to predict missing spe-
cies withinspecific strata. This hierarchical representation could also
facilitate better interpretability, as users could analyse species asso-
ciations within distinct vertical layers rather than treating all species
as equally co-occurring in a single homogeneous space. Future work
should explore how to best format and standardize stratification data,
aswellaswhether habitat-specific differences inlayering (for example,
grasslands versus forests) require different encoding strategies. Incor-
porating structural information into PI@ntBERT could significantly
refineits ecological modelling capabilities, making it amore powerful
tool for vegetation science and conservation applications.

The study areas of the experiments done with PI@ntBERT were
Europe and adjacent areas (for example, Anatoliaand the Caucasus). A
key challenge for scaling the model beyond the studied regions lies in
its transferability to undersampled or floristically distinct areas. While
ourmodelwas trained onalarge and diverse corpus of vegetation plots
across Europe, applyingit to other biogeographic regions will require
retraining or fine-tuning onlocally relevant species assemblages. How-
ever, datascarcity insuch areas could limit the model’s performance.
One possible solution lies in leveraging transfer learning, where
PI@ntBERT could be adapted to new regions using smaller, region-
specific datasets (for example, the Tropical African Vegetation Archive,
whichisa continental dataaggregator, similarly to EVA) while retain-
ing general semantic knowledge from the broader model. Future
work could explore this idea by subsampling existing training data
or simulating low-data settings to evaluate performance degra-
dation and retraining requirements. Such studies are essential to
assess the robustness and practical deployment of LLMs for global
biodiversity monitoring.

Beyond habitat identification and assemblage completion tasks,
Pl@ntBERT may also provide insights into ecosystem condition by
detecting deviations from the expected species assemblages. For
instance, by comparing the real observed species lists to the mod-
el’s predicted co-occurrence patterns, it is possible to quantify how
‘natural’ a given community appears. Such deviations could reflect
ecological disturbances, including invasion by non-native species. In
particular, we foresee applications in early warning systems where the
increasing dominance of introduced species might signal ecosystem
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change. In this context, the likelihoods of the masked species output
by PI@ntBERT in given assemblages could serve as indicators of unex-
pected patterns, complementing traditional biodiversity indicators.
For instance, starting from an observed assemblage, masking each
species one by one would give the likelihood of the species belonging
tothe assemblage (thatis, the higher the value, the more expected the
species within the assemblage). As a result, counting the number of
speciesbelow agiventhreshold (thatis, through a statistical hypothesis
test) in an assemblage could give an insight on the habitat condition
(for example, by detecting the increasing dominance of non-native
species). Exploring such diagnostic capabilities represents a promising
direction for future research.

While the masked species prediction task was primarily designed
to evaluate the model’s understanding of species co-occurrence pat-
terns, we acknowledge that its direct use in field applications may
be limited. However, it opens up interesting possibilities for devel-
oping alternative field protocols. For example, one could imagine
adaptive sampling schemes where species discovery rates aretracked,
and sampling is stopped once a threshold is reached (for example,
around15species, more or less depending on the habitat type and plot
size). Amodel such as PI@ntBERT could then suggest additional likely,
but unobserved, species on the basis of the partial list, particularly
focusingonless abundant or harder-to-detect taxa.Such an approach
could accelerate vegetation surveys while incorporating the model’s
uncertainty. More broadly, we see this task as a conceptual bridge
towards expert-led and model-assisted field methods, where machine
learning can help (but not replace) vegetation experts.

As a perspective, one promising direction is to use PI@ntBERT
to complete partial species assemblages derived from species distri-
bution models (SDMs). While SDMs have long been used to predict
species occurrences on the basis of environmental conditions®,
recent deep-learning-based approaches, referred to as deep-SDMs,
have shown stronger performance for modelling vascular plant
species distribution®*~’, Typically, these models generate aranked list
of species predicted to occuratagiven location. PI@ntBERT could be
applied tosuchlists to infer plausible co-occurring species that might
have been missed or are underreported, especially in the context of
citizen science observations.

Citizen science platforms®”° now provide far more plant occur-
rence data than traditional vegetation-plot databases®’. However,
these data often lack completeness, as contributors tend to report only
common or iconic species and may miss rarer or harder-to-identify
taxa®>**. Here, PI@ntBERT could be particularly useful: by capturing
co-occurrence patterns learned fromexpert-labelled vegetation plots,
it can be used to fill in likely missing species and improve the quality
of predicted assemblages. Within citizen science platforms, such as
Pl@ntNet or iNaturalist, PI@ntBERT could help with automated spe-
cies identification by estimating which species are most likely on the
basis of those already observed in an area.

More broadly, a future pipeline could combine multiple deep
learning techniquesto build habitat distribution models. For instance,
image classification models (for example, convolutional neural net-
works®) could be used to extract environmental features from satellite
imagery and predict likely species occurrences. PI@ntBERT could then
apply a fill-mask strategy to reconstruct plausible assemblages from
these partial species lists. Finally, PI@ntBERT could againbe used, this
time to assign habitat types using text classification on the pre-
dicted assemblages. Such a multimodal and end-to-end approach®®
could bridge the gap between raw species occurrence data and
habitat type inference, contributing to finer-scale and more scalable
biodiversity monitoring.

60,61

Methods
A visualization of the methodology used in this paper is shown in
Fig. 1, amore complete overview is provided in appendix 26 in the

Supplementary Information and a detailed description of each step
is shown in Supplementary Figs. 9-11. An explanation of all acronyms
and terms can be found in Supplementary Texts 30 and 31.

Leveraging vegetation plots
The data used for training the PI@ntBERT model were extracted from
EVAY.EVA is a database of vegetation plots—that is, records of plant
taxon co-occurrence that have been collected by vegetation scientists
at particular sites and times. The EVA data were extracted on 22 May
2023.They contained all georeferenced plots from Europe and adjacent
areas (thatis, 1,731,055 vegetation plots and 36,670,535 observations
from 34,643 different taxa).

These vegetation plots were first splitinto two sets, depending on
the presence or absence of a habitat type label:

(1) Adataset containing unlabelled data—that is, vegetation plots
with a missing indication of EUNIS habitat type. This dataset
(henceforth “fill-mask dataset’) containing 572,231 vegetation
plots could be used only for training the masked language
model.

(2) A dataset containing labelled data—that is, vegetation plots
with an indication of EUNIS habitat type. This dataset (hence-
forth ‘text classification dataset’) containing 850,933 vegeta-
tion plots could be used for training both the masked language
model and the text classification model.

Toensure aclean dataset representing vegetation patterns well,
some additional pre-processing steps were conducted. We removed
the few species with a given cover percentage of 0, assuming these
were errors or scientists reporting absent species (which resulted in
31,813,043 observations remaining). We merged duplicated species
in the same vegetation plots (that is, species that appeared twice or
more in one vegetation plot because they were in different layers)
and summed their percentage covers (which resulted in 31,036,661
observations remaining). The taxon names were then standardized
using the API of the Global Biodiversity Information Facility (GBIF).
It relies on the GBIF Backbone Taxonomy as its nomenclatural source
for species taxon names and integrates and harmonizes taxonomic
data from multiple authoritative sources (for example, Catalogue of
Life, International Plant Names Index and World Flora Online). As EVA
is an aggregator of national and regional vegetation-plot databases,
this step ensured that the same species collected in two very distant
areas still shared the same name®”. If no direct match was found for
the species name (for example, the GBIF Backbone Taxonomy was not
able to provide a scientific name for the EVA species Carex cuprina),
then it was dropped. As we focused on the species taxonomic rank,
taxaidentified only to the genus level were dropped, and taxa identi-
fied at the subspecies level were lumped together at the species level
(for example, Hederawas dropped but both Hedera helix subsp. helix
and Hedera helix subsp. poetarum were merged into Hedera helix).
This resulted in 29,859,407 observations remaining. We removed
hybrid speciesand veryrare species (that s, species that appeared less
than ten times in the whole dataset), which resulted in 29,836,079
observations remaining. Vegetation plots that lost more than 25%
of their taxa or their most abundant taxon after the species name
matching were removed from the dataset, to ensure that the remain-
ing plots still provided reliable representations of vegetation pat-
terns (which resulted in the final number 0f 29,149,022 observations
remaining). Finally, vegetation plots belonging to very rare habitat
types (that is, habitat types that appeared less than ten times in the
whole dataset) were considered unlabelled data and added to the
fill-mask dataset.

The set of labelled vegetation plots was then strategically split.
To avoid overfitting, ideally part of the available labelled data must
be held out as a test set. However, the quantity of available full lists of
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plant species with estimates of cover abundance of each species and
habitat type assignment is not very high (that is, less than 1,000,000
vegetation plots for all of Europe, a relatively low number compared
with the vast amount of biodiversity data available). Partitioning the
available dataintoatraining set and atest set would reduce the number
of training samples to a level too low for effective model training. It is
therefore possible to use k-fold cross-validation to split the datasetinto
ksubsetsinstead. Then, foreach ofthe splits, the model can be trained
using k — 1 of the subsets for training and the latter one for validation.
However, cross-validation scores for the classification of vegetation
plots can be biased if the data are randomly split, because they are
commonly spatially autocorrelated (spatially closer data points have
similar values). One strategy to reduce the bias is splitting data along
spatial blocks®®. This procedure avoids fitting structural patterns and
allows the separation of near-duplicates. Such vegetation plots differ
fromeach otherinavery small portion of species (for example, if they
are close in space, two vegetation plots may exhibit identical plant
composition but feature species with slightly contrasting abundances).
The dataset was thus first split into spatial blocks of 6 arcmin (0.1°
on the World Geodetic System 1984 spheroid). The blocks were then
splitinto folds. Since the geographic distribution of vegetation plots
across Europe is unequal, each block can have a different number of
datapoints. The folds were thus balanced to have approximately equal
numbers of plots instead of assigning the same number of blocks to
each fold (which could have led to folds with very different numbers
of data points). This process was facilitated by the use of the research
software Verde.

With over 1,400,000 vegetation plots, 29,000,000 observations
and 14,000 species, the dataset used in this paper is one of the most
extensive datasets of vegetation plots ever analysed®. The entire
description of the dataset can be found in Supplementary Table 2,
and avisualization of the data can be foundin appendix 32 in the Sup-
plementary Information. An overview of the long-tail distribution
of species (that is, there is a strong class imbalance, meaning that a
few species are present in many of the vegetation plots) can be found
in Supplementary Fig. 14, and more taxonomic information on the
species (for example, class, order and family), mostly vascular plants
with some bryophytes and lichens, can be found inappendix16inthe
Supplementary Information.

The EUNIS habitat types' are referred by their codes instead of
their names, as they better reflect the classification hierarchy. The
coding systemis structured so that each broad habitat groupisrepre-
sented by one letter (except the broad habitat group littoral biogenic
habitats, which is designated by the code MA2). A new alphanumeric
character is then added for each subsequent level. For instance, the
habitat type Mediterranean, Macaronesian and Black Sea shifting
coastal dune is identified by the code N14, indicating its belonging
to the habitat group N1 (that is, coastal dunes and sandy shores), and
more generally to the broad habitatgroup N (thatis, coastal habitats).
Theentirelist of the 227 habitat types used in this work canbe foundin
appendix 24 in the Supplementary Information, but to exemplify the
habitat types included, we list the eight broad habitat groups used in
this paper below:

« Littoral biogenic habitats (code: MA2)—11 habitat types belong-
ing to littoral habitats formed by animals such as worms and
mussels or plants (salt marshes)

 Coastal habitats (code: N)—25 habitat types belonging to
habitats above the spring high tide limit (or above the mean
water level in non-tidal waters) occupying coastal features and
characterized by their proximity to the sea, including coastal
dunes and wooded coastal dunes, beaches and cliffs

« Wetlands (code: Q)—17 habitat types belonging to wetlands, with
the water table at or above ground level for at least half of the
year, dominated by herbaceous or ericoid vegetation

« Grasslands and lands dominated by forbs, mosses or lichens
(code: R)—52 habitat types belonging to non-coastal land that
is dry or only seasonally wet (with the water table at or above
ground level for less than half of the year) with greater than 30%
vegetation cover

 Heathlands, scrub and tundra (code: S)—42 habitat types
belonging to non-coastal land that is dry or only seasonally
inundated (with the water table at or above ground level for less
than half of the year), usually with greater than 30% vegetation
cover and with the development of soil

 Forests and other wooded land (code: T)—45 habitat types
belonging to land where the dominant vegetation is, or was until
very recently, trees with a canopy cover of at least 10%

« Inland habitats with no or little soil and mostly with sparse
vegetation (code: U)—23 habitat types belonging to non-coastal
habitats on substrates with no or little development of soil,
mostly with less than 30% vegetation cover, that are dry or only
seasonally wet (with the water table at or above ground level for
less than half of the year)

« Vegetated man-made habitats (code: V)—12 habitat types belong-
ing to anthropogenic habitats that are dominated by vegetation
and usually subject to regular management but also arising from
recent abandonment of previously cultivated ground

The final dataset created solely for the fill-mask task (that is, the
fill-mask dataset) contained a total of 572,231 vegetation plots covering
14,069 different species. This dataset of 10,853,856 species observa-
tions (onaverage 19 species per plot) was used only for fine-tuning the
masked language model, as each sample was unlabelled (the vegetation
plotsinthis set were not classified to a habitat type). Each sample was
used for the fill-mask task during each split in the training set, along
witharound 90% of the text classification dataset.

The text classification dataset, which was created for both the
fill-mask task and the text classification task, contained a total of
850,933 vegetation plots covering 13,727 different species. This dataset
0f18,295,166 species observations (on average around 22 species per
plot) was used for fine-tuning the masked language model and for train-
ingthe classifier head (thatis, the module added on top of the masked
language model to transform its outputs into predictions for assign-
ing habitat types to vegetation plots), as each sample was labelled
(the vegetation plotsin this set were classified to a habitat type). Each
sample was used nine times in the training set and once in the test set.

Pl@ntBERT fill-mask model training

Every plant species has specificenvironmental preferences that shape
its presence. The task of masking some of the species in a vegeta-
tion plot and predicting which species should replace those masks
can therefore help get a good contextual understanding of an entire
ecosystem. This process is known as fill-mask. A detailed description
ofthe hardware used to train the models can be found in Supplemen-
tary Text 3.

PI@ntBERT is based on the vanilla transformer model BERT*.
Hence, to predict amasked species ina vegetation plot, the model can
consider (thatis, focus on and process information using the attention
mechanism inthe transformer architecture) all species bidirectionally.
This means that the model, when looking at a specific species, has full
access to the species on the left (that is, more abundant species) and
right (that is, less abundant species). The two original BERT models
(that is, base and large) were leveraged for this study. BERT-base has
12 transformer layers (that is, transformer blocks) and 110,000,000
parameters (thatis, learnable variables), and BERT-large has 24 trans-
formerlayersand 340,000,000 parameters. A detailed description of
thearchitecture of the two sizes can be found in Supplementary Table 1.
Moreover, the uncased version of BERT was leveraged to train Pl@
ntBERT. This version does not distinguish between ‘hedera’ and ‘Hedera'.
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Hence, as all outputs from Pl@ntBERT would be inlowercase, allinputs
(abundance-ordered plant species sequences) were also lowercased to
ensure consistency. For these two reasons, each sentence fed into the
model was formed by listing all the species in descending abundance
order, in lowercase and separated by commas. When species had the
same cover (which is frequent as most EVA data come from ordinal
scales with afew steps only), they were randomly ordered.

For many natural language processing applications involving
transformer models, itis possible to simply take a pretrained model and
fine-tuneit directly on some datafor the task at hand. Provided that the
dataset used for pretraining is not too different from the dataset used
for fine-tuning, transfer learning will usually produce good results. The
predictions depend on the dataset the model was trained on, since it
learns to pick up the statistical patterns presentin the data. However,
our dataset contains binomial names (thatis, the scientific names given
tospecies and used in biological classification, which consist of agenus
name followed by aspecies epithet). Because it hasbeen pretrained on
the English Wikipediaand BookCorpus datasets, the predictions of the
vanillatransformer model BERT for the masked tokens will reflect these
domains. BERT will typically treat the species names in the dataset as
raretokens, and the resulting performance will be less than satisfactory.
By fine-tuning the language model on in-domain data, we can boost
the performance of the downstream task. This process of fine-tuning
apretrained language model onin-domain datais called domainadap-
tation. Vegetation-plot records from EVA that were not assigned to a
habitat type were used for this task. The sentences were created by
orderingeach species withinaplotin descending order of abundance,
separating them by commas. Two different ways were used to tokenize
(thatis, prepare the inputs for the models) the names of the species:

(1) The ‘term’way: a species name is divided into two tokens, one
for the genus name and one for the species epithet.

(2) The ‘species’ way: a whole binomial name is equivalenttoa
token.

Moreinformation about the versions of PI@ntBERT can be found
in Supplementary Table 7. For each approach, two model sizes were
leveraged: base and large.

Unlike other natural language processing tasks, such as token
classification or question answering, where alabelled dataset to train
onis given, there are not any explicit labels in masked language mod-
elling. A good language model is one that assigns high probabilities
to sentences that are grammatically correct and low probabilities to
nonsense sentences. Assuming our test dataset consists of sentences
that are coherent plant assemblages, one way to measure the quality
of our language modelis to calculate the probabilities it assigns to the
masked species in all the sequences of the test set. High probabilities
indicate that the modelis not ‘surprised’ or ‘perplexed’ by the unseen
examples (that is, describing the model’s uncertainty or difficulty in
predicting masked elements, hence reflecting how well it has learned
the underlying structure of the data) and suggests it has learned the
basic patterns of grammar in the language (in the case of PI@ntBERT,
thelanguage being ‘floristic composition’). As aresult, the perplexity,
whichis defined as the exponential of the cross-entropy loss, is one of
the most common metrics to measure the performance of language
models (the smaller its value, the better its performance). It was used
in our experiments to evaluate the model in addition to the species
masking accuracy.

Except for commas, the classify tokens [CLS] (which represent
entire input sequences) and the separate tokens [SEP] (which mark
the separation between different input sequences), 15% of the tokens
were ‘masked’ during the experiments. These tokens consisted of full
species names in the case of Pl@ntBERT-species and of genus names
or species epithets in the case of PI@ntBERT-term. We followed the
same procedure used in the original BERT paper®: each selected token

was replaced by (1) the [MASK] token 80% of the time, (2) arandom
species 10% of the time or (3) the same species 10% of the time. Each
model was trained for five epochs (that is, five complete passes of the
training dataset through the model). This process was facilitated by
the use of the deep learning package Pytorch” and the open-source
library HuggingFace’".

To compare how PI@ntBERT models species assemblages com-
paredto traditional approaches, we also implemented three alternative
baseline methods solely based on species co-occurrence information.
The first one is a version of PI@ntBERT for which species are given as
input in random order rather than abundance-ordered. This makes
it possible to remove the information linked to the order of species
so that most of the syntax rules cannot be learned anymore apart
from co-occurrence patterns. The second baseline method is a naive
Bayes predictor based on the species co-occurrence matrix. Ten dif-
ferent co-occurrence matrices were built, each time leveraging all the
dataset minus one fold (to always keep the ground truth hidden). As
aresult, each matrix indicates how many times species of each pair
co-occur in the same vegetation plots in the nine training folds. From
the co-occurrence matrix, we can derive the probability of each species
conditionally to an observed species assemblage. More details about
how this naive Bayes predictor is constructed can be found in Supple-
mentary Equation (25). The last baseline method is a neural network
optimizing the log-loss function using stochastic gradient descent.
It was trained on incomplete species assemblages (that is, for every
vegetation plot of the training set, a species was randomly masked,
and the goal of the model was to retrieve it). More details about how
the multilayer perceptron is implemented can be found in appendix
21inthe Supplementary Information.

Identifying habitat types

The cclassification of vegetation provides a useful way of summarizing
our knowledge of vegetation patterns. The task of assigning a habitat
type to sentences describing floristic compositions therefore serves
to describe many facets of ecological processes. This process is called
text classification.

Pl@ntBERT is based on the fine-tuned version of BERT, meaning
it has already adapted its weights to predict species that are more
strongly associated with the plants from the sentence. It provides a
better foundation for learning task-specific models, such as a text
classificationmodel. To create a state-of-the-art model for vegetation
classification, we added one additional output layer (that is, a fully
connected layer that matched the number of habitat types) on top of
the pooled output.

Vegetation-plotrecords from EVA that were assigned to a habitat
type were used for this task. The habitat labels were generated using
the expert system EUNIS-ESy v.2021-06-01 (ref. 19) directly by the
coordinators of the EVA database using the JUICE program. This means
that using EUNIS-ESy to identify the habitat types of the raw data from
EVA (without the pre-processing steps such as harmonizing the taxon
names) should lead to an accuracy of 100%. Each model was trained
for five epochs.

To evaluate the classification performance, we computed accu-
racy, precision, recall and F1-score on the test set. Given the class
imbalance in habitat labels (for example, the habitat type R22 (that is,
low and medium altitude hay meadow) is present 69,533 times in the
text classification dataset, and the habitat type U35 (that is, boreal
and arctic base-rich inland cliff) is present 12 times in the text clas-
sification dataset), the F1-score was particularly useful in assessing
how well the model performed across different habitat types. We also
compared PI@ntBERT’s performance against a standard BERT model
trained from scratch on the same dataset to assess the benefits of
domain adaptation. Finally, we compared the results with EUNIS-ESy
and hdm-framework, respectively a classification expert system and
adeep-learning framework.
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Pl@ntBERT

1. Check

Confirms that the
framework is correctly
installed

2. Dataset

Curates a database of
vegetation plots and
creates input data

3. Masking

Learns to pick up the
statistical patterns
in the data

4. Classification

Learns to assign a
EUNIS habitat type to
vegetation plots

5. Inference
Predicts the habitat and
missing species of new
unseen vegetation plots

Fig. 5| Overview of the framework. The sequence of tasks performed during each of the five main stages (installation check, dataset curation, masking training,

classification training and outcome prediction).

Inclusionand ethics

This study is based on vegetation-plot data sourced from EVA, a col-
laborative effort that aggregates vegetation data from across Europe
and neighbouring regions. The data used in this study come from 110
EVA member databases, with permissions granted by individual data
custodians (listed in appendix 35in the Supplementary Information).

 Local collaboration and roles: The data used in this study were
collected and curated by a wide network of local research-
ers. Each dataset included was used with explicit permission
fromits respective custodian, who retains data ownership.
Co-authorship was offered to at least one representative of
each database who was interested in the project and willing to
intellectually contribute to the study, hence including local
researchers in this process.

 Localrelevance and co-design: The research aims to under-
stand large-scale patterns in plant biodiversity and vegetation
structure, which is directly relevant for regional and continental
conservation planning, habitat classification and biodiversity
monitoring. Including local partners in the design of the
specific research questions and using their datasets represent-
ing decades of local ecological research was foundational to the
project.

- Ethical review and approvals: Since the study involves second-
ary analysis of existing vegetation data, no local or institutional
ethics board approval was required. The EVA data policy governs
the ethical use of contributed data, and no sensitive or identifi-
able information is included.

« Compliance with local regulations and standards: All original
data collection followed the environmental, legal and ethical
standards of the respective countries where plots were sampled.
The study complies with the EVA framework, which ensures that
data use respects both the legal and ecological context of data
origin.

« Risk and harm considerations: The research does not involve
human or animal subjects and poses no risk of stigmatization,
incrimination or discrimination. There are no safety risks to
researchers or participants, and no biological materials, cultural
artefacts or associated traditional knowledge were transferred.

 Benefit sharing and capacity building: While the study does
not involve new biological sample collection, all results will be
shared publicly through this scientific publication and with the
EVA data custodians. The project supports the visibility of local

contributions by highlighting the role of regional databases and
cites local and regional literature where relevant.

- Citations and recognition: The study references and builds on
local ecological knowledge that is contained in the EVA datasets,
and acknowledges the scientific and curatorial work of local data
contributors.

Artificial intelligence tools such as ChatGPT (OpenAl) and Copilot
(GitHub) were used to assist in writing the manuscript and coding the
framework (Fig. 5), respectively. All outputs were critically reviewed
and edited by the authors. See Supplementary Text 37 for a more
in-depth explanation.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability

Thedatathatsupportthe findings of this study are available from EVA,
butrestrictions apply to the availability of these data, which were used
under licence for the current study and so are not publicly available. The
dataare, however, available from the authors or EVA custodiansupon
reasonable request and with the permission of EVA. The DOl of the EVA
dataselection for this projectis https://doi.org/10.58060/QR4B-G979.

Code availability

The generic, free and open-source framework that supports the
findings of this study is available via GitHub at https://github.com/
cesar-leblanc/plantbert. See Fig. 5 for an overview of the list of tasks
that PI@ntBERT can achieve.
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Estimates of effect sizes (e.g. Cohen's d, Pearson's r), indicating how they were calculated
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Data collection No software was used for data collection.

Data analysis PI@ntBERT (our own software created for this study available here: https://github.com/cesar-leblanc/PlantBERT) was used for data analysis.

For manuscripts utilizing custom algorithms or software that are central to the research but not yet described in published literature, software must be made available to editors and
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Ecological, evolutionary & environmental sciences study design

All studies must disclose on these points even when the disclosure is negative.

Study description We studied the communities and habitat types (EUNIS typology) of 1,423,164 vegetation plots (covering 29,149,022 observations of
14,189 different plant species). There were two different goals:
- identifying likely missing species of the vegetation plots and
- identifying the habitat type of the vegetation plots.

Research sample This study covers most of European flora. The biggest study group (i.e., phylum) was Tracheophyta, with 12,546 different species.
The dataset represents pretty well the vegetation of Europe.

Sampling strategy The data comes from the European Vegetation Archive, where different networks of experts did in-situ vegetation sampling.

Data collection Vegetation-plot data for this study were provided by Sylvain Abdulhak, Alicia Acosta, Emiliano Agrillo, Pierangela Angelini, Iva
Apostolova, Olivier Argagnon, Fabio Attorre, Svetlana Aci¢, Christian Berg, Ariel Bergamini, Erwin Bergmeier, Idoia Biurrun, Maxim
Bobrovsky, Steffen Boch, Gianmaria Bonari, Anne Bonis, Zoltan Botta-Dukat, Jan-Bernard Bouzillé, Helge Bruelheide, Vanessa
Bruzzaniti, Juan Antonio Campos, Andraz Carni, Maria Laura Carranza, Laura Casella, Alessandro Chiarucci, Andrei Chuvashov, Milan
Chytry, Janos Csiky, Mirjana Krstivojevi¢ Cuk, Renata Custerevska, Olga Demina, Jirgen Dengler, Panayotis Dimopoulos, Dmytro
Dubyna, Tetiana Dziuba, Alexei Egorov, Rasmus Ejrnees, Franz Essl, J6rg Ewald, Giuliano Fanelli, Federico Fernandez-Gonzalez, Una
FitzPatrick, Xavier Font, Gianpietro Giusso del Galdo, Emmanuel Garbolino, Itziar Garcia-Mijangos, Rosario G. Gavilan, Jean-Michel
Genis, Michael Glaser, Valentin Golub, Friedemann Goral, Jean-Claude Gégout, Behlil Giiler, Rense Haveman, Stephan Hennekens,
Adrian Indreica, Maike Isermann, Ute Jandt, Florian Jansen, Jan Jansen, John Janssen, Anni Kanerva Jaskova, Borja Jiménez-Alfaro,
Martin Jirousek, Veronika Kalnikova, Ali Kavgaci, Larisa Khanina, llona Knollova, Vitaliy Kolomiychuk, tukasz Kozub, Daniel Krstonosic,
Helmut Kudrnovsky, Anna Kuzemko, Filip Kiizmi¢, Zygmunt Kacki, Flavia Landucci, Igor Lavrinenko, Mariya Lebedeva, Jonathan Lenoir,
Armin Macanovi¢, Corrado Marceno, Aleksander Marinsek, Marco Massimi, Ruth Mitchell, Jesper Erenskjold Moeslund, Pavel Novak,
Vladimir Onipchenko, Viktor Onyshchenko, Robin Pakeman, Hristo Pedashenko, Tomas Peterka, Remigiusz Pielech, Vadim Prokhorov,
Ricarda Patsch, Aaron Pérez-Haase, Valerijus RaSomavicius, Maria Pilar Rodriguez-Rojo, John S. Rodwell, Iris de Ronde, Eszter
Ruprecht, Solvita Risina, Michele De Sanctis, Joop Schaminée, Joachim Schrautzer, Ingrid Seynave, Jozef Sibik, Urban Silc, Zeljko
Skvorc, Desislava Sopotlieva, Angela Stanisci, Milica Stani$i¢-Vujaci¢, Zvjezdana Standi¢, Zora Daji¢ Stevanovié, Danijela Stedevié, Jens-
Christian Svenning, Grzegorz Swacha, Irina Tatarenko, loannis Tsiripidis, Ruslan Tsvirko, Pavel Dan Turtureanu, Domas Uogintas, Emin
Ugurlu, Milan Valachovi¢, Kiril Vassilev, Roberto Venanzoni, Sophie Vermeersch, Risto Virtanen, Denys Vynokurov, Lynda Weekes,
Wolfgang Willner, Thomas Wohlgemuth, Sergey Yamalov, Svitlana Yemelianova, and Dominik Zukal. The cover of individual species
was, in most vegetation plots, recorded using a cover-abundance scale (in most cases, using the Braun-Blanquet scale). The
vegetation plots are usually between 10 and 400 square meters.

Timing and spatial scale | Vegetation plots used in this study were collected between 1873 and 2022 in Europe and adjacent countries.

Data exclusions The data comes from the European Vegetation Archive. Vegetation plots outside of Europe and adjacent areas were excluded.
Vegetation plots which were not georeferenced were excluded. Species with a given cover percentage of O were excluded, assuming
these were errors or scientists reporting absent species. Species which we could not harmonize using the GBIF Backbone Taxonomy
were excluded. Taxa identified only to the genus level were dropped, and taxa identified at the subspecies level were lumped
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together at the species level (e.g., Hedera was dropped but both Hedera helix subsp. helix and Hedera helix subsp. poetarum were
merged into Hedera helix). Hybrid species and very rare species (i.e., species that appeared less than ten times in the whole dataset)
were excluded. Vegetation plots that lost more than 25% of their taxa or their most abundant taxon after the species names
matching were removed from the dataset to ensure that the remaining plots still provided reliable representations of vegetation

patterns.

Reproducibility The used seeds for Python, NumPy, and PyTorch are provided in the source code (as the default seeds). The DOI of the dataset is
provided in the paper. Running the code with these seeds and with the same data extraction will result in the same experimental
findings.

Randomization The set of labeled vegetation plots was strategically split. As the quantity of available full lists of plant species with estimates of

cover-abundance of each species and habitat type assignment is not very high (i.e., less than 1M vegetation plots for all of Europe, a
relatively low number compared to the vast amount of biodiversity data available), partitioning the available data into a training set
and a test set would reduce the number of training samples to a level too low for effective model training. As a result, we instead
used k-fold cross-validation (CV) to split the dataset into 10 subsets. Then, for each of the splits, the models were trained using 9 of
the subsets for training and the latter one for validation. However, cross-validation scores for the classification of vegetation plots are
biased if the data is randomly split, because they are commonly spatially autocorrelated (spatially closer data points have similar
values). To reduce the bias, we split data along spatial blocks. This procedure avoids fitting structural patterns and allows the
separation of near-duplicates. Such vegetation plots differ from each other in a very small portion of species (e.g., if they are close in
space, two vegetation plots may exhibit identical plant composition but feature species with slightly contrasting abundances). The
data set was thus first split into spatial blocks of 6 arc-minutes (0.1 degree on the World Geodetic System 1984, or WGS 84,
spheroid). Then, the blocks were split into folds. Since the geographic distribution of vegetation plots across Europe is unequal, each
block can have a different number of data points. The folds were thus balanced to have approximately equal number of plots instead
of assigning the same number of blocks to each fold (which could have led to folds with very different numbers of data points).

Blinding During the first fine-tuning phase of our workflow, we trained the models by following a fill-mask task. In each vegetation plot, we
masked 15% of the tokens (except for commas, the classify tokens [CLS], which represent entire input sequences, and the separate
tokens [SEP], which mark the separation between different input sequences). These masked tokens consisted of full species names in
the case of PI@ntBERT-species and of genus names or species epithets in the case of PI@ntBERT-term. We followed the same
procedure used in the original BERT paper: each selected token was replaced by (i) the [MASK] token 80% of the time, (ii) a random
species in the case of PI@ntBERT-species or a random genus name or species epithet in the case of PI@ntBERT-term 10% of the
time, or (iii) the same species 10% of the time.

Did the study involve field work? |:| Yes |Z| No

Reporting for specific materials, systems and methods

We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material,
system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response.

Materials & experimental systems Methods
Involved in the study n/a | Involved in the study
Antibodies IZ |:| ChlP-seq
Eukaryotic cell lines IZ |:| Flow cytometry
Palaeontology and archaeology IZ |:| MRI-based neuroimaging

Animals and other organisms
Clinical data

Dual use research of concern
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Plants

Plants

Seed stocks This field doesn't apply to our study as we didn't use any seed stock.

Novel plant genotypes This field doesn't apply to our study as we didn't produce any novel plant genotype.

Authentication This field doesn't apply to our study as we didn't generate any seed stock or novel plant genotype.
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