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1. Introduction

Optical activity is a property of materials related
to different refractive indices for right- and left-
circularly polarized light. Mathematically, optical ac-
tivity is expressed as a complex frequency-dependent
function, where the real dispersive part and the
imaginary absorptive part are related through the
Kramers–Kronig relation. The dispersive part is re-
ferred to as circular birefringence (CB), optical rota-
tory power (ORP), or optical rotatory dispersion
(ORD), whereas the absorptive part is referred to
as circular dichroism (CD).
The optical activity may be derived from a chiral

packing arrangement of the constituent molecules
or from the chirality of the individual molecules.
In solid crystals the optical activity is normally asso-
ciated with the absence of a center of symmetry in
the crystal structure, because the constituent mole-
cules or atoms of crystals are not generally chiral.
However, the optical activity in liquids is usually

due to the chirality of the individual molecules. As
a result, solid crystals tend to show much higher
CB than liquids.

Optical activity was first observed by Arago [1] and
Biot [2] in the early 1800s. The determination of CB
has been subject of extensive experimental study,
particularly for many crystals. Alpha-quartz (SiO2)
is probably the most studied, where the parameters
of optical activity are known with great accuracy
[3,4], as well as the variations with temperature and
pressure [5,6]. As a result, quartz plates are routi-
nely used as a standard of calibration for commercial
polarimeters. Most of the current measurements of
CB are performed along the unique direction in the
crystal (the c axis for quartz), which has no linear bi-
refringence, isolating the CB. Therefore, most of the
commercial quartz crystals are cut perpendicular to
the c axis.

Although both linear birefringence and optical ac-
tivity have been separately studied using a variety of
techniques, very few attempts have been made to
quantify the optical activity in the presence of linear
birefringence. For transparent materials, an accu-
rate measurement of CB cannot be made without
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a full account of the related linear birefringence; for
absorbent materials, the linear dichroism and CD
must also be taken into account. In nature, circular
and linear birefringent effects often appear together,
so a method to measure CB in the presence of linear
birefringence is highly desirable. One such mea-
surement technique is the high-accuracy universal
polarimeter (HAUP) [7–11]. This technique is a var-
iation of the old technique of crossed polarizers, and
it involves making measurements at slightly de-
viated angles from the position of maximum extinc-
tion of the polarizers. Typically, a monochromatic
light source is used and the values of the optical
activity are determined from the evolution of the de-
tected waveform as a function of the angle of rotation
of the polarizers.
The experimental approach we present is based on

the use of photoelastic modulators (PEMs). For
years, accurate measurements of birefringence have
been made by using PEMs that dynamically ellipti-
cally polarize the input light [12,13]. PEMs are also
employed in CD spectrometers [14,15]. However,
most of the reported techniques that use PEMs, al-
though very accurate, only measure a few elements
of the sample Mueller matrix (in some cases, only
one). One technique that can be used to measure
the complete sample Mueller matrix is the two-
modulator generalized ellipsometer (2-MGE) [16,17].
This powerful instrument uses two PEMs to comple-
tely measure the polarization-dependent optical
properties of any sample in reflection or transmis-
sion, and has already been used to study the optical
activity of organic materials [18].
In this paper, we present a method to measure the

optical activity of crystals using the 2-MGE techni-
que. Using this technique, it is possible to perform
measurements in directions other than along the op-
tic axis of the crystal, where the magnitude of the lin-
ear birefringence is significantly larger than the
magnitude of the optical activity. As an application
of this method we have measured the components
of the gyration tensor of a right-handed (RH) and
a left-handed (LH) quartz crystal.

2. Experimental

The 2-MGE was introduced by Jellison and Modine
in 1997 [16,17]. In subsequent years the technique
was used in transmission [19] and normal-incidence
reflection configurations [20], both of which can be
used to obtain x-y plots of the relevant parameters.
The measurements presented herein were made
with a spectroscopic 2-MGE with a variable angle
of incidence that is also capable of operating in
transmission.
The 2-MGE is composed of two polarizer–PEM

pairs, each of the PEMs operating at a different
resonant frequency (50 and 60kHz in this case),
which is essential for frequency analysis. The first
polarizer–PEM pair is used as the polarization state
generator (PSG) on the input arm of the ellipsometer,
while the second is used as the polarization state

analyzer (PSA) on the detection arm of the ellips-
ometer. A PEM is a resonant device that is cut to os-
cillate at a determinate frequency and acts as an
optical element with a time-dependent retardation.
Both the operating frequency and the amplitude of
modulation are very stable but, while the amplitude
of modulation can be easily controlled (usually with
an external dc voltage), the frequency of oscillation
(typically at 20–80kHz) is given by the geometry
of the resonant bar.

A schematic of the optical train of the experimental
setup is given in Fig. 1. The light source is a 75W
xenon arc lamp (Oriel) that is focused onto a quartz
optical fiber with a 1000 μm core. The end of the op-
tical fiber is connected to amirror-based focusing sys-
tem (Jobin-Yvon), resulting in a spot size from 2mm
to 100 μm at the sample. The PSG is comprised of a
Rochon MgF2 polarizer and a PEM (Hinds Instru-
ments) oscillating at 50kHz. The linear polarizer
is attached to the PEM using a precision manual ro-
tator and is oriented at 45° with respect to the PEM
orientation. The PSG is attached to a stepper rota-
tion stage (National Instruments UE31PP) so that
different incoming polarization states can be inci-
dent upon the sample.

The PSA has the same components as the PSG ex-
cept for the operation frequency of the PEM, which,
in this case, has a nominal frequency of 60kHz. The
PSA is also mounted on an automated rotator so that
different polarization states coming from the sample
can be analyzed.

The light beam passing through the PSA is focused
onto a circular-to-rectangular quartz fiber bundle,
which guides the light to the double grating mono-
chromator (Jobin-Yvon DH10). The rectangular
(200 μm × 6mm) end of the fiber acts as entrance slit
of the monochromator. The light intensity is detected
at the output slit of the monochromator by using a
photomultiplier tube (PMT) (Hamamatsu R3896).
The signal from the PMT is in the form of a photo-
current and is converted to a voltage by using a
current-mode preamplifier (Hamamatsu C7319).
The voltage waveform from the preamplifier is cap-
tured by using a computer digitizer board (Spectrum
MI 3130) which is configured to capture 16,384 sam-
ples in 8ms. As there are two modulators running
free, each of them with its own phase, there is a trig-
ger circuit that initializes the data capture when the

Fig. 1. Diagram of the experimental setup: 1, focusing system;
2, polarizer; 3, PEM 0 (50kHz); 4, sample (tilted quartz plate);
5, PEM 1 (60kHz); 6, analyzer; 7, lens. Light collected in 7 is
guided by an optical fiber to a monochromator.
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two modulators are in phase. The computer board in-
cludes programmable analog outputs that are used
to control the modulation amplitude of the PEMs,
which is kept at A0 ¼ A1 ¼ 2:4048 rad [so that
J0ðA0Þ≃ J0ðA1Þ≃ 0], and the gain introduced by
the PMT, so that the dc component of the signal is
kept constant during measurement.
The 2-MGE technique preserves the benefits of

conventional phase-modulated ellipsometry with the
advantage that is capable of measuring eight nor-
malized Mueller matrix elements simultaneously.
In contrast, the ellipsometers with only one photo-
elastic modulator are limited to measuring only two
elements simultaneously. However, the interpreta-
tion of the 2-MGE waveform is more complicated, be-
cause at least eight frequency components have to be
determined by Fourier analysis in one single mea-
surement. For this work, the magnitude and phase
of 12 frequency components are determined in one
single measurement, resulting in four of the eight
parameters being measured twice. A detailed de-
scription of the Fourier integral analysis of the
time-dependent detected intensity is given in [16].
For most situations in which there is no depolari-

zation, a single measurement of 2-MGE is sufficient
to completely determine the polarization-dependent
optical properties of a sample that could be described
with a Mueller–Jones matrix. For a depolarizing
sample, all the elements of the normalized Mueller
matrix can be determined with four measurements
at different orientations of the azimuthal angles of
the PSG and the PSA. Namely, these four configura-
tions (PSG, PSA) are (0°, 0°), (0°, 45°), (45°, 0°), and
(45°, 45°). In each one of these configurations, eight
elements of the normalizedMueller matrix are deter-
mined; therefore, some of the elements are overdeter-
mined (for example, the elements m03, m30, and m33
are measured four times) and, when this happens,
the final values for these particular elements are the
averaged values.
The geometry of the problem is shown in Fig. 2,

where the sample is quartz crystal with the c axis
perpendicular to the optical faces of the sample. A
light beam is incident upon the crystal at an angle

of incidence ϕ with respect to its c axis. l, d, and θ
are, respectively, the light path through the crystal,
the sample thickness, and the angle with respect to
the c axis of the wave normal for the wave propagat-
ing through the crystal. If d and ϕ are known, the
light path l can be found by taking the approximation
that the wave normal (given by Snell’s law) in the
crystal coincides with the direction of propagation:

l ¼ d
cos θ ; θ ¼ arcsin

�
sinϕ
�n

�
; ð1Þ

where �n is the mean refractive index, which depends
on θ and will be defined in Section 3. The sample was
tilted in order to perform measurements at different
values for ϕ (which also means different values for θ).
The rotation was around the y axis defined by the
modulation axis of the PEMs when PSG and PSA
are orientated at 0. A general scheme of the sample
positioning in the instrument is also shown in Fig. 1.

The various birefringence parameters are defined
as follows:

LB ¼ 2π
λ ðnx − nyÞl;

LB0 ¼ 2π
λ ðn45 − n135Þl

CB ¼ 2π
λ ðn− − nþÞl;

ð2Þ

where λ is the wavelength of light and the subscripts
specify the polarization of light as x, y, 45° to the x
axis, 135° to the x axis, circular right þ, or left −.
The circular birefringence is twice the optical rota-
tion. The x-y linear birefringence LB is very sensitive
to sample tilt around the y axis, and so will be much
more sensitive than the 45° LB0, which is expected to
be small.

The samples studied in this paper consist of two z-
cut (c axis perpendicular to sample surface) quartz
crystals (SiO2) with opposite handedness. Crystal-
line quartz (point group 32) is enantiomorphous, in
that it may occur as either right- or left-handed. In
order to be enantiomorphous, a crystal must have
no element of symmetry that changes the handed-
ness. For quartz, the atomic arrangement provides
a screw axis that produces a helical distribution of
atoms, and the optical activity of the two types of
handedness has opposite signs. We will present re-
sults separately for the LH plate and for the RH
plate. The measured thickness of the LH plate is
1:02� 0:01mm, while the thickness of the RH plate
is 1:06� 0:01mm.

In the case of quartz crystal, the CB is known to be
nonzero in a wide frequency region that includes the
whole studied spectrum (220 to 800nm) [21]. In this
region quartz is not absorbent [22] and, therefore, all
parameters related to the absorptive nature of the
crystal (including the CD) are zero.

3. Theory

The theory of light propagation in general anisotro-
pic media often results in complicated equations. For

Fig. 2. Geometry of the off-normal-incidence measurement of cir-
cular and linear birefringence.
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optical active crystals where the direction of light
propagation is along the optical axis, the problem
can be treated with the phenomenological equations
that are analogous to those used in isotropic systems,
resulting in significant simplification. However, the
more general case of oblique incidence requires
solving the Maxwell equations with modified con-
stitutive equations, significantly complicating the
mathematics. To do so, several authors use the Ber-
reman 4 × 4 matrix formulation of Maxwell equa-
tions, but, even so, different approaches appear in
the literature since the choice of the constitutive re-
lations is not unique [23]. We will use the propaga-
tion description first given by [24], which uses the
constitutive equations given by Born [25]. This model
is widely used in the literature [23,26–28], particu-
larly in experimental work, and gives the possible
values of the refractive index n, for a given direction
of the wave normal. Although this approach is only
approximate, it has been shown to be accurate as
long as the birefringence of the investigated crystal
is not huge [29], as this model describes the phenom-
enon of optical activity within an accuracy of the pro-
duct of the linear birefringence in the direction of
observation by the gyrotropy parameters [28]. In this
context, the two possible refractive indices are given
by the positive roots of the equation [27,28]

ðn2 − n2
01Þðn2 − n2

02Þ ¼ G2; ð3Þ

where n01 and n02 are the refractive indices of the ei-
genwaves in the absence of optical activity. G is the
scalar gyration parameter and is a measure of the
optical activity for the direction in question. G as a
function of direction is given by

G ¼ gijlilj; ð4Þ

in which the convention of summing over repeated
indices is used. li and lj are the direction cosines of
the normal wave and gij are the components of the
gyration tensor that describe the optical activity of
the crystal. In uniaxial crystals (g11 ¼ g22 ≠ g33) G
takes the form [23]

G ¼ g11sin2θ þ g33cos2θ; ð5Þ

where θ is defined in Eq. (1).
The solutions of Eq. (3) are [23]

n2
1;2 ¼ ½n2

01 þ n2
02∓½ðn2

02 − n2
01Þ2 þ 4G2�1=2�=2; ð6Þ

and, for a uniaxial crystal (ε11 ¼ ε22 ≠ ε33),

n2
01 ¼ ε11; n2

02 ¼ ε11ε33
ðε11sin2θ þ ε33cos2θÞ

; ð7Þ

where ε11 ¼ εo ¼ n2
o and ε33 ¼ εe ¼ n2

e . The refractive
indices no and ne of quartz are well known and are
given by the five-parameter dispersion relation cal-
culated in [30].

The total birefringence (TR) of the system is a com-
bination of linear (LB and LB0) and circular (CB) bi-
refringences:

T2
R ¼ LB2 þ LB02 þ CB2; ð8Þ

with

TR ¼ 2π
λ ðn2 − n1Þl; ð9Þ

and LB, LB0, and CB as defined in Eq. (2). According
to Eq. (6) and assuming that G2 ≪ n2

01n
2
02, T

2
R can be

approximated by

T2
R ≃

4π2
λ2

�
ðn02 − n01Þ2 þ

G2

n01n02

�
l2: ð10Þ

Because of the geometry of our oblique incidence
experiment (see Fig. 2), the sample tilting does not
cause birefringence in direction 45° to the x axis
(LB0 ≃ 0) and LB itself can be considered as a mea-
sure of the total linear birefringence. Therefore,
Eq. (8) can be simplified to

T2
R ≃ LB2 þ CB2: ð11Þ

Comparing Eq. (11) to Eqs. (10) and (8), we can make
the following identifications,

LB ¼ 2π
λ ðn02 − n01Þl; ð12Þ

CB ¼ 2πGl
λ �n ; ð13Þ

where �n stands for a mean refractive index
�n ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

n01n02
p

.
In the special case of propagation along the optic

axis (θ ¼ 0°) CB is proportional to the g33 component
of the gyration tensor:

g33 ¼ CBθ¼0°λno

2πl : ð14Þ

For light propagation along the optical axis in an
optically active uniaxial crystal or for light propaga-
tion in any direction in an optically active isotropic
medium, the eigenmodes of optical propagation
through the material are left and right circularly po-
larized modes, each of which has its own refractive
index. In contrast, the eigenmodes in a uniaxial ma-
terial without optical activity are linearly polarized
modes that are mutually orthogonal. As a result,
in a random direction in an optically active uniaxial
crystal, the eigenmodes are left and right elliptical
polarization modes with major axes that coincide
with the directions of the linearly polarized

5310 APPLIED OPTICS / Vol. 48, No. 28 / 1 October 2009



eigenmodes that would be present in the absence of
optical activity.
The ellipticity k is the ratio of the minor axis to the

major axis of the ellipse of polarization, and it can be
used to define the waves that travel through the crys-
tal unchanged in form. Along the optic axis, k ¼ 1,
which indicates that the eigenmodes are circularly
polarized light. The quantity k can be calculated
as follows [27]:

k ¼ tan
�γ
2

�
; ð15Þ

where γ is an angle defined by the ratio between the
circular and linear birefringences:

tan γ ¼ CB
LB

: ð16Þ

With the relations of Eqs. (12) and (13), this ratio can
be written as

CB
LB

¼ G
�nðn02 − n01Þ

; ð17Þ

and, by substituting Eq. (5) here, we can derive an
expression to calculate g11 from experimental mea-
surements of the ratio CB=LB:

g11 ¼ 1

sin2θ

�
�nðn02 − n01Þ

CB
LB

− g33cos2θ
�
: ð18Þ

A. Model for the Dispersion of the Gyration Tensor
Components

The first phenomenological models to describe the
optical activity appeared early in the 20th century
[3,31], where the first tenuous connections were
made between optical rotation and the inter-
action between atoms. One of the more successful ap-

proaches was carried out by Chandrasekhar using
classical theory to study the optical rotation of quartz
[21,32]. In this model there are two coupled oscilla-
tors that represent the smallest unit of the optically
active crystal. The oscillators are assumed to be iden-
tical and undamped (that is, the crystal is non-
absorbing). This coupled-oscillator model can also be
treated quantum mechanically and describes the op-
tical rotation ρ of quartz in a wide frequency region:

ρ ¼ kλ2
ðλ2 − λ20Þ2

: ð19Þ

The optical rotation ρ is related to CB by ρ ¼ 1=2CB,
and k and λ0 are the two unique parameters of
the model.

To measure the components of the gyration tensor
G, we propose to use this dispersion model to para-
meterize g11 and g33:

gii ¼
Aiλ3

ðλ2 − B2
i Þ2

; ð20Þ

where Ai and Bi are the parameters to be deter-
mined. Note that this model can be straightforwardly
derived from Eq. (19) if we consider that G ¼ λ�nρ=πl
[see Eq. (13)] and we use the approximation that �n is
constant. We have found that Eq. (20) is a good fit for
our experimental g11 and g33 data. It is interesting to
note that, while for quartz, CB (∝ ðn− − nþÞ) varies by
more than 1 order of magnitude in the interval range
from 200 to 800nm, the variation of the mean refrac-
tive index �nð∝ ðn− þ nþÞÞ) in this same interval is
only around 7%. Thus, it is not strange that, if
Eq. (19) constitutes a good fit for CB, Eq. (20) can be
used to fit the gyration tensor with success.

4. Data Analysis for the Mueller Matrix of Quartz

The spectroscopic Mueller matrices measured at dif-
ferent small incident angles for RH and LH plates
are, respectively, presented in Figs. 3 and 4. In both
cases, and for all the orientations of the plates, Muel-
ler matrix elementsm01,m02,m03,m10,m20, andm30
are approximately zero in all the studied spectral
range (note that these elements have beenmultiplied
by a factor 10). This indicates that, at this wave-
length range and for these small angles of incidence,
there is not significant diattenuation and the Muel-
ler matrices of the quartz plates basically take the
form of a general retarder [33]:

MR ¼

0
BB@

1 0 0 0
0 cosTR þ LB2α LBLB0αþ CBβ −LBCBαþ LB0β
0 LBLB0α − CBβ cosTR þ LB02α −LB0CBα − LBβ
0 −LBCBα − LB0β −LB0CBαþ LBβ cosTR þ CB2α

1
CCA; ð21Þ

with α ¼ ð1 − cosTRÞ=T2
R, β ¼ sinTR=TR, and

TR ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
LB2 þ LB02 þ CB2

p
.

However, a crystal with retardation properties
that vary rapidly with wavelength may induce depo-
larization if the system collects a band of wave-
lengths rather than a single wavelength. Since the
retardation is proportional to the inverse of the
wavelength, a band of wavelengths will result in a
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different retardation for each wavelength, resulting
in partially polarized light [34]. To minimize this de-
polarization, themonochromator slit width can be re-
duced and/or a smaller core optical fiber can be used
at the input of the monochromator [19]. The fraction
of polarized light β in the light beam can be calcu-
lated from the Mueller matrix as follows [35]:

β ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðPij m

2
ijÞ −m2

00

q
ffiffiffi
3

p
m00

; ð22Þ

where β ¼ 1 for totally polarized light and β ¼ 0 for a
completely unpolarized beam. Figure 5 depicts a
comparison between the fraction of polarized at
normal incidence and at 60° incidence. As can be seen
in the figure, the depolarization becomes particularly
significant for big angles of incidence, where the ob-
served retardation has an important variation with
wavelength, and it needs to be considered.
To consider the depolarization of the measured

Mueller matrices, we have factorized them according
to the polar decomposition [36]. Briefly, this decom-
position states that a Mueller matrix M can be fac-
tored into three matrices:

M ¼ MΔMRMD; ð23Þ

whereMD is a diattenuator,MR is a retarder, andMΔ
is a depolarizer. This factorization allows the separa-
tion of the depolarization properties from the retar-
dation and dichroic properties. For a uniaxial crystal,
the Mueller matrices MR and MD commute [33], so
the polar decomposition can be used to factor the
experimental Mueller matrix. Once the retardation
matrix MR has been calculated, the values of lin-
ear and circular birefringence can be extracted as
follows:

TR ¼ arccosðtrðMRÞ=2 − 1Þ;
LB ¼ ðmR32

−mR23
Þ TR
2 sinTR

;

LB0 ¼ ðmR13
−mR31

Þ TR
2 sinTR

;

CB ¼ ðmR12
−mR21

Þ TR
2 sinTR

;

ð24Þ

where the termmRij
indicates matrix elements of the

ith row and the jth column of MR.
When dealing with samples that introduce

significant retardations, such as crystals, the

Fig. 3. (Color online) Spectroscopic Mueller matrix for a RH plate of quartz at small incidence angles (ϕ).
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determination of the sample Mueller matrix may not
be sufficient to determine all its birefringent charac-
teristics. In Eq. (21), it can be seen that many of the
Mueller matrix elements contain trigonometric func-
tions. Furthermore, the arccosine, which is multiva-
lued, is required to determine the total birefringence
[see Eq. (24)]. For systems with small retardations,

this does not constitute a problem since the total re-
tardation must fall in the ½0; π� interval. However, for
systems with big retardances (e.g., some crystals),
this problem prevents us from determining the bire-
fringences unless we know their order. For example,
at 252nm, the Mueller matrix of the LH plate
of quartz with an angle of incidence of 9° is the
following:

M ¼

2
664

1 0:002 0:003 0:006
0:005 1:002 0:009 0:010
0:001 0:011 1:000 0:002
0:000 0:010 −0:006 0:988

3
775 ð25Þ

This matrix is nearly the same as the identity Muel-
ler matrix, which one would obtain in transmission
for an isotropic medium. Of course, the sample is
not isotropic, although its Mueller matrix appears
to be that of an isotropic medium at this wavelength.
The importance of the order must always be consid-
ered when analyzing these results, since a single
Mueller matrix is not always sufficient to provide
the characterization of a polarization element.

Fig. 4. (Color online) Spectroscopic Mueller matrix for a LH plate of quartz at small incidence angles (ϕ).

Fig. 5. (Color online) Fraction β of polarized light for normal and
oblique incidence. For the same conditions, the RH plate is a bit
more depolarizing because it is a slightly thicker than the LH
plate.
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For large angles of incidence, a significant linear
diattenuation appears in the measured Mueller ma-
trices as they no longer have all the vanishing ele-
ments shown in Eq. (21). In this case, the linear
diattenuation is not due to an anisotropic absorbance
in quartz, but rather is caused by the different re-
flectivities of s- and p-polarized light [13]. The polar
decomposition allows us to obtain the linear diatte-
nuation of the sample from the matrix factorMD [36].
Figure 6(a) displays the linear diattenuation for a
quartz plate at an angle of incidence of 60°.
Figure 6(b) shows the total retardance TR as deter-

mined using the last equation of Eqs. (24) for the RH
quartz plate with an incidence angle of 60°. At this
large incident angle, the linear birefringence of
quartz is big compared to π, and the total retardance
goes through several oscillations between 0 and π as
a function of wavelength. To determine the real TR,
we should also know their order to unfold the “folded”
spectrum of Fig. 6. Fortunately, we do not need to
know the order of the birefringence to determine the
ellipticity and the gyration tensor of quartz. Equa-
tions (16) and (18) show that it is only necessary
to determine the ratio of CB to LB, rather than de-
termining LB and CB separately. That is, we do not
have to determineTR. In terms ofMueller matrix ele-
ments, the ratio CB=LB is given by

CB
LB

¼ mR12
−mR21

mR32
−mR23

: ð26Þ

Therefore, the ratio CB=LB can be straightforwardly
determined once the matrix MR is known. Although

Eq. (26) is a significant simplification, each of the
Mueller matrix elements must be measured accu-
rately. Obviously, a large error occurs when the de-
nominator (mR32

−mR23
) approaches to zero, which

occurs at several wavelengths for these samples. For-
tunately, as will be discussed in Section 5, these
points can be easily identified and can be removed
from the calculation. Another experimental issue is
that the retardation oscillation frequency increases
at small wavelengths (see Fig. 6(b)), and the conse-
cutive maxima and minima may be separated
only by a few nanometers. Thus, a good spectral
resolution as determined by the monochromator

Fig. 6. (a) Linear diattenuation and (b) “folded” total retardation
TR induced by a 1mm thick, z-cut RH quartz plate at an incidence
angle of 60°.

Fig. 7. (Color online) Spectroscopic evolution of the ellipticity k
for small angles of incidence.

Fig. 8. (Color online) Measured components of the gyration ten-
sor (∘) and fitted dispersion relation (solid line) for the RH plate.
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must be sufficient to resolve these oscillations. Thin-
ner samples would also reduce the total retardation
and, therefore, avoid this problem.

5. Results

We have examined the retarding properties of the
quartz plates at angles slightly deviated from the po-
sition of normal incidence by measuring their Muel-
ler matrices. These measurements show the decrease
on the ellipticity k as we deviate from the optic axis.
Figures 3 and 4, respectively, show the normalized
Mueller matrix for a RH and a LH plate of quartz
at small angles of incidence. Small deviations from
the condition of normal incidence translate in ob-
vious differences in the matrices, which indicate
that, even for situations close to the propagation
along the optical axis, the LB becomes comparable
to CB. Qualitatively, these matrices resemble the
matrix for a general retarder given in Eq. (21), where
the different handedness is denoted by the opposite
signs that Mueller matrix elements m12, m21, m13,
and m31 take in Figs. 3 and 4. Elements m23 and
m32 do not change in sign, but this is due to the geo-
metry of our oblique incidence measurements. The
only elements that are not sensitive to the handed-
ness of quartz, no matter the orientation of the
plates, are the diagonal elements.
Figure 7 shows the ellipticity k for the RH and LH

plates of quartz calculated from the values of LB and

CB according to Eq. (15). The ellipticity describes the
polarization state of the waves that propagate
unchanged through the crystal. As expected, at nor-
mal incidence, the ellipticity is 1 for the RH and −1
for the LH, and it quickly diminishes as the angle of
incidence becomes more oblique. The points missing
in Fig. 7 are points placed at wavelengths at which
the total retardance TR is close to 2π, where accurate
measurement of the ellipticity is not possible.

The measurement of the two independent compo-
nents of the gyration tensor of quartz requires the
orientation of the samples in two different configura-
tions. The first measurement is made at normal in-
cidence (θ ¼ ϕ ¼ 0°), where g33 is calculated using
Eq. (14). This is the usual measurement configura-
tion when the sample does not show LB, so the deter-
mination is straightforward. The determination of
g11 is obtained using Eq. (18) and requires that
the measurements be taken at a large incidence an-
gle to avoid small values for the sin θ that would
translate into large errors in g11. We have chosen ϕ ¼
60° (θ ∼ 33°), which is close to the maximum inci-
dence angle for which we can guarantee that both the
extraordinary and ordinary rays are collected by the
detector.

The experimental values and the fitted curves for
the g11 and g33 components of the RH and the LH
quartz plates are shown in Figs. 8 and 9. The fitting
to the model of Eq. (20) has been performed with a
weighted Levenberg–Marquadt nonlinear minimiza-
tion procedure using the reduced χ2 as a figure of
merit. Not all the experimental points have been
used for the fitting (see Figs. 8(b) and 9(b)), since we
have only used those points that correspond to wave-
lengths for which the ratio CB=LB can be measured

Fig. 9. (Color online) Measured components of the gyration
tensor (∘) and fitted dispersion relation (solid line) for the LH
plate.

Table 1. Fitted Parameters for the Model in Eq. (20) with λ
Expressed in Nanometers

Component LH RH

g11 A1 ¼ 0:0277� 0:0017 A1 ¼ −0:0298� 0:0015
B1 ¼ 105:6� 5:7 B1 ¼ 91:1� 4:2
χ2 ¼ 0:82 χ2 ¼ 0:59

g33 A3 ¼ −0:0609� 0:0002 A3 ¼ 0:0604� 0:0005
B3 ¼ 97:54� 0:05 B3 ¼ 97:33� 0:05
χ2 ¼ 1:33 χ2 ¼ 0:94

Table 2. Comparison of Data for the Components of the Gyration
Tensor of Quartz at Room Temperature Determined from
this Study and from Selected Values in the Literature

Wavelength (nm) Reference jg33j × 10−5 jg11j × 10−5

632.8 [11] 10:1� 0:2 5:9� 0:4
[10] 10.11 6.11
[37] 13:6� 0:5 5:7� 0:5
[39] 10.528 5.39
[8] - ∼5:2

This worka 10:06� 0:07 4:8� 0:5
510 [24] 12:96� 0:2 5:82� 0:4

[8] - ∼6:5
This worka 12:81� 0:08 6:1� 0:6

aValues obtained from the average of RH and LH results.
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with highest accuracy. In particular we have only
considered points for which jmR32

−mR23
j=2 ≥ 0:98,

i.e., points for which the absolute value of the de-
nominator of Eq. (26) is near its maximum value.
Table 1 summarizes the fitting parameters for the

four fits presented in Figs. 8 and 9. In all cases, the
dispersion relation given in Eq. (20) constitutes a
good fit for experimental g33 and g11 data. Although
the accuracy of g11 is considerably lower than g33, it is
clear that the shape of the dispersion curves for both
components are fairly similar.
A comparison between our data and some of the

previously published data is presented in Table 2,
at two wavelengths. There are few experimental
measurements of g11 of quartz available in the litera-
ture and most of them are restricted to a single wa-
velength. With the exception of Ref. [37], our results
agree with literature values for g33 within the stated
error limits, and the agreement for g11 is within 2
standard deviations with all the literature values.
We also calculated the experimental ratio of the

two gyration tensor components g11=g33. In the non-
absorptive wavelength regime, this ratio should be
−0:5 due to a symmetry argument that applies to
the tetrahedron building units of crystalline quartz
[38]. Figure 10 shows our spectroscopic experimental
results for the g11=g33 ratio. They are consistent with
the symmetry argument as most points are within
5% of the theoretical ideal value, and the calculated
mean value is −0:486� 0:028. By using this value in
Eq. (5), we can deduce that there is no optical rota-
tion (G ¼ 0), that is, there exists an isotropic point for
the optical activity that is cylindrically symmetric
around the optic axis, for propagation directed
∼55° from the optic axis.

6. Conclusion

We have presented a technique for measuring the op-
tical activity in uniaxial crystals in situations where
both linear birefringence and circular birefringent ef-
fects are present. Hence, this technique allows one to
measure the CB of optically active crystals in direc-
tions different from the optical axis. This technique
has been applied to the measurement of the two in-

dependent components of the gyration tensor of RH
and LH crystalline quartz. The basis of the technique
is the measurement of the ellipticity for the waves
that transmit unchanged in their state of polariza-
tion through the crystal. For directions out of the op-
tical axis, the ellipticity of these waves is very small
and precise measurements require a highly sensitive
experimental approach, such as provided by a trans-
mission 2-MGE experiment. To our knowledge, this
is the first description of a systematic methodology to
obtain spectroscopic measurements of the optical ac-
tivity in crystals for direction out of the optic axis.

The presented results show the ability of the 2-
MGE to deal with the phenomenon of optical activity
in the presence of LB. Although the 2-MGE is a sui-
table instrument for this kind of measurement, we
have presented a general approach to the measure-
ment procedure for any instrument capable of mea-
suring a sample Mueller matrix. We start from the
basis that the Mueller matrix of the crystal can be
measured, and we demonstrate how effects inherent
to the optical activity can be extracted from the ma-
trix even when much higher linear birefringence is
present. Today there exist several different instru-
ments that are capable of determining the Mueller
matrix of a sample, so this method could be applied
in several laboratories.

Another advantage of this technique is that differ-
ent components of the gyration tensor of the crystal
can be determined without having to use samples cut
according to several different crystallographic
planes. This is because we do not exclusively analyze
light transmitted in directions perpendicular to
these planes; besides, we also use a more general ob-
lique incidence configuration in which more than one
component of the gyration tensor is contributing to
the observed optical activity. As an example, we have
measured the g11 and g33 components of quartz using
only a z-cut crystal with light incident at 60° from the
optic axis. In this configuration, both components g11
and g33 contribute to the optical activity, but, as g33
can be well determined from normal incidence mea-
surements, the only remaining incognita is g11.

We envision that a similar approach to the one pre-
sented here can be used for several other crystals
with point groups 3, 4, 6, 32, 422, and 622 (interna-
tional notation), which are optically active and have
LB. Moreover, this technique may also be useful for
crystals with point groups �4 and �42m, which do not
show optical activity for light propagating along the
optic axis, but do show optical rotation in directions
where there is also birefringence.
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