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We extend the Hamilton-Jacobi formulation to constrained dynamical systems. The discussion 
covers both the case of first-class constraints alone and that of first- and second-class constraints 
combined. The Hamilton-Dirac equations are recovered as characteristic of the system of partial 
differential equations satisfied by the Hamilton-Jacobi function. 
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I. INTRODUCTION 

In recent years the old problem of a consistent formula­
tion of relativistic Hamiltonian dynamics, for a system of 
particles in direct interaction, has received new interest. 1,2 It 
is now widely recognized that, in order to establish manifest 
covariance, it is convenient to look for a formulation in terms 
of constrained dynamics, where the constraints on the 
phase-space variables guarantee the correct number of phys­
ical degrees offreedom, and essentially contain the dynamics 
of the system under consideration. 

From this point of view, relativistic Hamiltonian dy­
namics can be seen as a theory of systems constrained in 
phase space. Such a theory was developed by Dirac3 and 
reformulated in various respects by others,4 so by now it 
seems to be a well-developed subject. 

The corresponding Hamilton-Jacobi theory has been 
the subject of various papers, mainly with regard to theoreti­
cal field applications.5 What seems to be lacking in the litera­
ture on this subject, in the opinion of the present authors, is a 
unified systematic approach to the Hamilton-Jacobi theory 
for a system of particles, especially with regard to the possi­
ble applications in the presence of second-class constraints. 

For this reason, the present work reviews the Hamil­
ton-Jacobi method in a systematic and almost didactic way, 
presenting in some detail even those topics which are well 
known from the mathematical literature on systems of par­
tial differential equations. 

In order to give a unified approach for both first- and 
second-class constraints, the concept of (Cauchy) character­
istic vectors will be used, so that in both cases the equations 
of motion will appear as characteristic equations. In this way 
Dirac's bracket structure will emerge naturally, and the inte­
grability conditions of the characteristic system will be expli­
citly verified by using the properly generalized Jacobi identi­
ty. 

With regard to this last point, the Mayer identity (that 
is, the generalization of the Jacobi identity to nonhomogen­
eous Poisson brackets) appears to hold for Dirac's brackets 
also, as has been verified by explicit calculation. 

The analysis of the characteristic equations of the given 
set of constraints, though interesting by itself, is only pre­
liminary to a Hamilton-Jacobi approach. The latter will be 

given, in the first-class case, by a review of Jacobi's method 
of integration. 

In the second-class case the integrability conditions for 
the existence of the Hamilton-Jacobi function are not satis­
fied, so this function, as a function on all phase-space space, 
does not exist. Nevertheless, as we shall show in Sec. V. in a 
number of interesting cases, to which, in principle, the prob­
lem may always be reduced, the Hamilton-Jacobi method 
can be used fruitfully to get the solution of the equations of 
motion. 

Since the authors were especially interested in this case, 
Sec. V is to be considered the central section of this paper. In 
that section two possible methods are discussed. 

The concept of weak equality, first introduced by 
Dirac,3 is used throughout this paper. A careful discussion of 
its extension to vector fields and differential forms is present­
ed in Appendices A and B. 

No applications are discussed in the present work, but 
the method is best suited for the formulation given by To­
dorov6 and Komar 7 of the dynamics of a system of particles, 
and an application can be found in Ref. 8, where the Hamil­
ton-Jacobi function is calculated for a two-body system. An 
interesting topic which has not been discussed here, but 
which deserves further investigation, is the study ofsymme­
tries from this point of view. 

The paper is organized as follows: In Sec. II we make a 
general discussion of the extension of the Hamilton-Jacobi 
theory to constrained systems. Section III is devoted to the 
study of the first-class constraints systems and Secs. IV and 
V to the case where second-class constraints are also present. 
In Sec. VI we show how we can recover the Hamilton-Dirac 
equations. 3 In Appendix A the problem of classification of 
constraints into first- and second-class constraints is studied. 
Finally in Appendices Band C we prove some useful geo­
metric results for our discussion. In Appendix D the trans­
formation properties of the Hamilton-Jacobi function under 
canonical transformations are briefly reviewed. 

II. A GENERAL DISCUSSION OF THE HAMILTON­
JACOBI THEORY FOR CONSTRAINED SYSTEMS 

Let us assume that a dynamical system is described in 
terms of a canonical Hamiltonian He (Xi, Pi)' where the set 
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(Xi, Pi), i = 1, ... ,n, denotes the phase-space variables, with 
the following Poisson brackets: 

(2.1) 

and a set of constraints ¢p (Xi, Pi) = O,p = l, ... ,m<n, which 
in general will be of both first and second class, in the sense 
used by Dirac.3 

If a Lagrangian exists, the canonical Hamiltonian He is 
known and the functions ¢p will be a consequence of the 
analysis of the Lagrangian equations ofmotion,4 but more 
generally we may assume that the dynamical system is given 
in terms of the set of functions He and ¢ p' 

9 

The Hamilton-Jacobi equations for the given system 
are expected to be in the form 

as . 
axo + He(x',pj) =0 

¢p (Xi, Pj) = ° 
where 

as 
Pi = axi' 

(q= I, ... ,m), 

and S = S (Xi) is the Hamilton-Jacobi function. 

(2.2) 

(2.3) 

In the next part of this section we will analyze the set of 
Eqs. (2.2) from the point of view of the general theory of 
partial differential equations (PDE) (of first order). 

Let us write Eqs. (2.2) in a more compact notation. To 
this end, it is more convenient to work in an enlarged phase 
space (XU,pp), a,/3 = O,I, ... ,n, where 

and 

as 
Po = axo 

Ixo,Pol = I, 

and we will write the set of Eqs. (2.2) as 

¢p(XU,PU) =0 

(a = O,l, ... ,n, p = O,I, ... ,m), 

where 

and 

as 
Pu = axu ' 

(2.4) 

(2.5) 

(2.6) 

(2.7) 

(2.8) 

So the set of equations we want to study is the set (2.6). 
The choice (2.7) for ¢o will be reserved for the cases where the 
canonical Hamiltonian He is different from zero. It is neces­
sary to put some restriction on the functions (2.6), in order to 
develop the subsequent theory. We make the following as­
sumption about the rank lO

: 

rank -- , -- = m + 1. II a¢p a¢p II 
axu apu 

(2.9) 

It is well known from the theory ofPDEI2 that if S (x) is 
a solution of Eqs. (2.6), it must also be a solution of the equa-
tions 

I ¢p(x,P)'¢a(x,p)1 = ° (p,(T = O,l, ... ,m). (2.10) 
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When ¢ p are a set of first-class constraints, Eqs. (2.10) 
are satisfied by virtue ofEq. (2.6), but when ¢p include sec­
ond-class constraints, this is no longer true. In this last case 
we have to add the lhs of Eq. (2.10) as new equations, and 
continue the procedure until we get a complete system of 
PDEI2 or a set of equations which are inconsistent. (A typi­
cal case of this last situation is when the Poisson bracket of 
two ¢p is a constant.) 

If we get a complete system, the Hamilton-Jacobi func­
tion for this new set will describe a dynamical system differ­
ent from the original one which was required to satisfy Eq. 
(2.6) only. The new system will have more constraints, and 
will describe a completely different physical situation. 

As a consequence, when second-class constraints are 
present, we cannot consider the set (2.6) as a set of Hamilton­
Jacobi equations. Nevertheless, it is known that the charac­
teristic system exists, is completely integrable, and gives the 
usual Hamilton-Dirac equations of motion3 for the system. 

In order to construct the characteristic system, we can 
substitute Eqs. (2.6) with the following exterior differential 
system A: 

(2.11) 

defined in the space ]R2(n + I) + I of (2(n + 1) + 1 )-tuples 

(Sa; a = 1, ... ,2n + 3)=(xO,x l
, ... ,xn,S,PO,PI, ... ,Pn)' 

According to the usual procedure, 13 we consider the 
closure of A, A: 

A= 

¢p = 0, d¢p = (;~: + Pu a:; ) dx
U 

a¢p + -dpu =0, 
apu 

B = 0, dB = - dpu I\dxU = 0. 

(2.12) 

The characteristic system C of A is the associated Pfaff 
system of the set I B = 0, dB = 0, d¢p = 01 and the equa­
tions ¢p = 0. 

As is shown in Appendix C, for the study of this charac­
teristic system it is convenient to consider the space Q of the 
vector fields satisfying 

iJA r:;.fA, (2.13) 

where fA is the ideal generated by the differential forms 

I B dB dA. 1 13 and where the notation C means weak inclu-, ''f'p' -

sion as defined in Appendix C. 
By considering Eqs. (2.12) for each of the forms dB, B, 

and d¢ p' we get the following results: 

iv dB'Z4 Pd¢p + f1B, 

iv B'ZO, 

(2.14a) 

(2.14b) 

(2.14c) 

where the notation 'Z means weak equality as defined in 
Appendix B. 

Using the representation of the vector field in the local 
coordinates Sa, 

a a a a v=va_- =vU
_ + vn + l

_ + U u -- (2.15) 
as a axu as apu 
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in Eq. (2. 14a), we get 
m 

vadPa -ua dxaz I A P(t)d¢p(t) (2.16) 
p~O 

and 

/lzO, 

due to the fact that the lhs ofEq. (2.14a) does not contain dS. 
Taking into account the explicit expression of d¢p [Eq. 

(2.12)], we have l4 

ua = A p a¢p, U
a 

= _ A p a¢p . 
aPa axa 

Equations (2. 14b) and (2.14c) give the conditions 

a¢ a¢ 
va -p- + Ua -p- zO, 

axa aPa 

(2.17) 

(2.18) 

(2.19) 

which, together with Eq. (2.17), determine the components 
of the characteristic vector fields. Using Eq. (2.17) in Eq. 
(2.19), we get 

m 

I AO"I¢p,¢O"lzO, (2.20) 
u=o 

which is a necessary and sufficient condition for the exis­
tence of characteristic vector fields. 

Let us then discuss Eq. (2.20). We have to consider three 
different cases corresponding to the value of the rank 

r = rank II I ¢p '¢O" III (p,(J" = O, ... ,m) 

calculated on the manifold defined by Eqs. (2.6): 

(I) r = 0: A o, ... ,A m arbitrary; 

(II) O<r<m + I: (m + 1 - r) A p arbitrary 

(p = O,I, ... ,m - r); 

(2.21) 

(III) r = m + 1: A ° = ... = A m = ° (m + 1 even). 

Let us recall that r must be even, being the rank of an 
antisymmetric matrix. 

According to the Dirac terminology, case (I) corre­
sponds to a set of first-class constraints, case (II) to a set of 
first- and second-class constraints, and case (III) to second­
class constraints. 

With regard to case (II), the problem arises as to the 
classification of ¢p in first- and second-class constraints. 
This problem is solved in Appendix A. 

In order to construct the characteristic system, it is nec­
essary to consider the space Q • of I-forms weakly incident to 
Q, i.e., 

(2.22) 

It is obvious that dim Q • = 2n + 3 - (m + 1 - r). 
As suggested in Ref. 13, if the characteristic vectors are 

defined by a system of equations of the form 

uab: = O(a,b = 1, ... ,2n + 3) 

for some b :, then the I-forms 

eG=dxbb b
a 

(2.23) 

(2.24) 

satisfy Eqs. (2.22). Let us observe that the forms (2.24) will 
not an be independent, as we will verify in the following. 
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Nevertheless, using Eqs. (2.24) we will get, with a proper 
choice, a basis for Q •. 

III. THE CHARACTERISTIC SYSTEM AND THE 
HAMILTON-JACOBI FUNCTION FOR A SET OF FIRST­
CLASS CONSTRAINTS 

In this case, corresponding to r = 0, an the A 's being 
arbitrary, a basis for the space of the characteristic vectors Q 
is given by 

a¢p ( a a ) a¢p a 
up = apa axa + Pa as - axa aPa 

(3.1) 

(p=O, ... ,m), 

which are linearly independent due to the hypothesis (2.9) on 
the rank of the matrix of the components of up. 

By using the nonhomogeneous Poisson bracket l5 

(al al) ag 
[J,glnh = axa +Pa as apa 

al (ag ag ) 
- apa axa + Pa as ' (3.2) 

we can write the characteristic vectors [Eq. (3.1)] as 

up = - [¢p,.lnh' (3.3) 

It is now possible to reduce the search for a solution of 
the system of nonlinear POE (2.6) to a system oflinear ho­
mogeneous POE. In fact, if we consider the system 

vp(g) = - [¢p,glnh = 0, (3.4) 

where g:R 2n + 3 _R, this is a system of linear homogeneous 
equations which is completely integrable. In fact, using the 
Mayer identity (Ref. 16, p. 172): 

(II' [/2,/31 nh }nh + cyclic 

(3.5) 

we have 

) a¢p ) 
[up'VO" ](g)z - (g,[¢p'¢O" ndnh - as [¢a,g nh 

a¢O" ag 
- as Ig,¢p) nh - as I ¢p,¢a) nh, (#.6) 

and using the fact that ¢p are independent of Sand that they 
are a set of first-class constraints: 

(3.7) 

we finally get 

[up,va ] zCparvr (p,(J",7 = O, ... ,m), (3.8) 

and, using the results of Appendix C, the system (3.4) is com­
pletely integrable over the surface of the constraints. 

Thus the system (3.4) has (2n + 3) - (m + 1) indepen­
dent solutions depending on x,p, and S; m + I of these solu­
tions are nothing but the ¢P's, which are functions only of x 
andp. 

Among the solutions of the system (3.4), we can choose 
one, which we will call GI(x, p,S), independent of ¢p. Then 
we can add to the set ¢p = ° the new equations G I = C I , 

where C, is an arbitrary constant, and consider the new set 
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Vp(g) = 0, vG, (g) = 0. (3.9) 

We can proceed in this way until we have extended the origi­
nal set of m + 1 equations to the new set 

Vp(g) =0, VG,(g) =0, ... , VGn_m(g) =0, (3.10) 

which is completely integrable and has 
2n + 3 - (m + 1 + n - m) = n + 2 independent solutions, 
of which n + 1 are already known: <po, ... ,<Pm' G1,.·.,Gn _ m. So 
the system (3.10) still has one new solution, Gn _ m + I. In this 
way we get an involutory system r/JO,. .. ,<Pm' 
G1 - C1,···,Gn_ m + 1 - Cn_ m + 1 ofn + 2 functions 
(<p = <pp(xa,Pa)' G" = Gk/xu

, Pa,S),p = O, ... ,m, k: 1, ... ,n - m + 1), where CIt are n - m + 1 arbitrary 
constants. 

At this point we can go no further, since if we consider 
the new set of equations 

(3.11) 

we should conclude that it has just n + 1 independent solu­
tions [2n + 3 - (m + 1 + n - m + 1)], whereas we already 
know n + 2 solutions in involution among themselves! This 
conclusion is wrong, since one of Eqs. (3.11) is not indepen­
dent, as an equation, from the others, as we will verify at the 
end of the discussion. 

Jacobi's method of integration now involves consider­
ing in place of the original set of constraint equations the new 
set 

<pp = Gp(x,p) = ° (p = O, ... ,m), 

G;.:(x,p,S) - ek = ° (k = 1, ... ,n - m + 1), (3.12) 

from which a solution can be obtained algebraically. 
In order to show this, we will follow the usual proce­

dure, 17 here adapted to the use of nonhomogeneous Poisson 
brackets. 

Taking into account Eq. (2.9) and the procedure we 
have followed, we have the functions Gi (i = O,I, ... ,n + 1) 
independent by construction, so we may assume 

(3.13) 

apart from a possible reordering of the canonical variables 
(x, p); in any case it is essential for at least one of the Gi to 
have the derivative with respect to S different from zero. 

It follows that we may solve the equations 

G;(x,p,S) - Ci = ° (3.14) 

(where Cp = O,p = O,I, ... ,m) inpa andS: 

Pi Pi - .t:(x,e) = 0, (3.15) 

where Pn + 1 = S. 
The functions Pi are in involution with respect to the 

nonhomogeneous Poisson brackets, 

! Pi> Pj Jnh ;::;;0. (3.16) 

In fact, using (3.12) and (3.15), we have identically with re­
spect to x a 

Gi(xa,pu =la(x,e),S =In+ 1 (x,e)) - C i = 0, (3.17) 

and, differentiating in xu, 
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or 

aGj aGj app aGj apn+ 1 --;::;;---- + ------
axa a P 13 axu as axa (3.19) 

where the weak equality means that the derivatives of Gj 

with respect to Pp and S must be evaluated on the surface 
(3.15). 

Besides (3.19) we have identically 

aGj aGj aPk 
a Pj = a Ph a Pj , 

(3.20) 

wherej, k = 0, 1, ... ,n + 1, Pn + 1 = S. 
With (3.19) and (3.20) we have 

aGi aGj I' )J 1 Gj,Gj Inh;::;; ----I Pk - Idx,e),Ph - Jh(x,e nh' 
a Ph aph 

(3.21) 

as can easily be verified. Using (3.13), we conclude that 

[Pk,Phlnh;::;;O, (3.16) 

[Pa -Ia(x,e),pp -lp(x,e)lnh;::;;O, (3.22) 

[pp - 113 (x,c),S - In + I (x,e) 1 nh ;::;;0, 

from which we get 

ala (x,e) alp (x,e) 
;::;; 

ax P axa 

(3.23) 

(3.24) 

since in (3.22) the bracket reduces to an ordinary Poisson 
bracket, and 

a 
-In + I (x,e) - Pa ;::;;0. 
axu 

(3.25) 

This last result shows thatln + 1 (x,e) is determined by I a (x,e), 
since the weak equality holds whenpa = la(x,e) and 
S = In + I (x,e), that is, we can take 

or 

aln + I (x,e) 
---'--- =Ia(x,e) 

axa 

dS = la (x,e) dxa. (3.26) 

On the other hand, in (3.24)Pa does not appear, so it 
holds identically and not only whenpa = la(x,e); thus 

ala alp 
-- = --, 
ax p axa (3.27) 

which is consistent with dS being an exact form. 
For practical purposes it is easier to work with homo­

geneous (usual) Poisson brackets. In this case we would have 
to integrate Eq. (3.26) in order to get S; this is the way in 
which this point is usually presented. 

Now we may understand the observation made after 
(3.11). The set offunctions <P p' Gk (k = 1,2, ... ,n - m + 1) are 
in involution, but the set of equations (3.11) are not indepen­
dent since, in the new form, 

[ Pj,glnh;::;;O (3.28) 

[where;::;; still means an equality on the surface (3.15)]; when 
i = n + 1, it reads 
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or 

(
I' ( ) _ J In + 1 (X,C)) Jg -0 

Ja X,C J -, 
JXa Pa 

(3.29) 

which shows that the last ofEqs. (3.28) is already satisfied. So 
the real number of independent equations is again n + 1, 
with 2n + 3 - (n + 1) = n + 2 solutions given by tPp , Gk , or 
Pi' i = O,I, ... ,n + 1. 

Summing up, in the hypothesis that the set of con­
straints tPp is first class, a function 

S=S(x,c) 

exists, which is the solution of Eqs. (2.6). This function is 
defined apart from an additive constant. Neglecting this con­
stant, S will in general contain (n + 1) - (m + 1) constants 
of integration, and so it is a complete integral. It is known 
from the theory of systems of PDE that from a complete 
integral it is possible to get all other integrals by means of 
differentiations and eliminations only. So the Jacobi method 
of integration gives a general kind of solution. 

The constraints (2.6) are contained implicitly in the set 
of equations (3.15). Indeed, by eliminating (n + 1) - (m + 1) 
constants Ck , we again obtain the constraints (2.6). Finally, 
let us observe that the transformation 

Qa =xa, 
(3.30) 

is a canonical transformation due to Eqs. (3.27). It is a phase 
transformation generated by the function S (x,c): 

(3.31) 

where the operation. is defined by 

~.B =B + IA,B l + HA,IA,B l} + .... (3.32) 

Let us now continue the discussion on the construction 
of the characteristic system. As anticipated in Sec. II, the 1-
forms belonging to the space Q • can be written using Eqs. 
(2.24), if Eqs. (2.17), (2.18), and (2.19) can be rewritten in the 
form (2.23). In the hypothesis 

I JtPp 1:f0 (3.33) 
Jp" 

by eliminating the functions A. p in Eqs. (2.17), (2.18), and 
(2.19), we get 

A. p = verlA -I);;" 

(3.34) 

and 

(3.35) 
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which are in the form (2.23). By the formal substitution 
va-+dxa, ua-+d Pa' vn + I-+dS, we get the set of I-forms: 

a dad "(A -I).p JifJp 1]=x-x ,,--, 
JPa 

r = dp + dx"(A -I).p JtPp 
- ~a a U Jxa ' {oal= (3.36) 

0= dS - Pu dxu, 

dt/J = dxu JtPp + d Pu JtPp . 
p Jxu JPa 

It is easily verified that only (2n + 3) - (m + 1) of these 
forms are independent and hence can be chosen as a basis for 
Q •. The associated Pfaff system will be given by the exterior 
differential equations 

dxu = dx"(A -1);;,{xu,tPp ), 

dpu =dx"(A -l);;'{Pa,tPpl, (3.37) 

dS = Pa dx"(A -l);;,{xu,tPp l 
[where for a = <7 the first set of equations are identities; see 
Eqs. (3.34)], to which it is necessary to add the equations 

tPp(x,p) = 0, (3.38) 

in order to get the characteristic system C of our original 
exterior differential system A [Eqs. (2.11 )]. 

Therefore, since the number of integration constants in 
(3.30) is (2n + 3) - (m + 1) and they must satisfy (3.38), we 
conclude that the characteristic manifold is parametrized by 
2(n - m) + 1 constants. 

Observe that the equations dtPp = 0 are satisfied owing 
to (3.37) and (3.7): 

dtPp =dx"(A -1);{tPr,tPpl (p,<7,r=O, ... ,m). 

We may put Eqs. (3.37) in a more explicit form. Under 
the hypothesis (3.33), Eqs. (3.38) can be solved in terms ofpp 
(p = O,I, ... ,m): 

Pp - if;p{pp.,xa) = 0 (pi = m + 1, ... ,n), (3.39) 

so that the equations 

tPp(xa,pp"pp = if;p(pp' ,XU)) = 0 

are identities in XU and P p' On the basis of the same argument 
applied to Eq. (3.17), we get the following weak equations: 

{

JtPP :::; -A;{Pu,p,,-if;,,)' 
Jxu 

JtPp A '''1 a .1. l --:::; p{x'P"-'f/,, , 
Jpu 

so that the characteristic system (3.37) can be rewritten as 

dxa = {xa,pp - if;p l dx P, 

dPa = {Pa'Pp -if;pl dx P
, 

dS=Pa{xa,pp -if;pl dx P, 

tPp =0. 
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We already know from Eqs. (3.8) that this system is 
integrable. This can easily be checked with the use of the 
Jacobi identity (here we are speaking of local integrability) 
and remembering that the constraints in the form 
Pp - t(;p = 0 are in involution among themselves. 

The equation for S, after integration of the characteris­
tic equations, will give the Hamilton-Jacobi function evalu­
ated along the characteristic surfaces (which are m + 1 di­
mensional). From this it is possible (even when second-class 
constraints are absent) to recover the function S = S (x) by 
eliminating half of the integration constants in favor of an 
equal number of coordinates. We will not discuss this point 
but rather the inverse procedure which consists of finding 
from S the solutions of the equations of motion (characteris­
tic equations). 

Indeed the knowledge of a complete integral of the 
Hamilton-Jacobi equations S = <P (xa,ck) + c gives a solu­
tion of the equations of motion (3.40) (characteristic mani­
fold). As is well known from analytical mechanics, a com­
plete integral can be used in the following way: from 

S - <p (xa,ck ) - C = 0 (k = m + 1, ... ,n), (3.41) 

J<p(Xah) h 
~-~ - b = 0 (h = m + 1, ... ,n), (3.41') 

JCh 

whereb h are new n - m constants, and adding Eqs. (3.15) to 
these, 

Pa - fa (x 13,cd = 0, (3.41 ") 

wherefa (x,c) = J<p (x,c)/Jxa, we get a submanifold of R 2n + 3 

with dimension equal to m + 1 for any given value of the 
2(n - m) + 1 constantsck,b k, andc. If we can show that the 
characteristic vector fields (3.3) are tangent to each of these 
manifolds, that is, for any choice of the constants c k, b k, and 
c, we will have demonstrated that these are the characteristic 
manifolds. 

This is easily checked. In fact we have 

vp(S-<p(x,c)-c)= - t<pp,S-<p(x,C)-CJnh 

= J<pp ( _ J<P) = 0 
J Pa a a ' Pa X 

vp( J<p (X,C) _ b h) = _ J<pp ~ 
JCh J Pa JChJxa 

- ~ <pp(Xa,Pa = fa (x,c)) = 0, 
JCh 

since the equations <Pp = 0 are satisfied identically by 
Pa = fa (x,c), and finally 

( 
J<P) (J<PP J<pp J

2
<P) 

Vp Pa - Jxa = - Jxa + J P 13 Jx 13JxU 

= - ~<pp(xa,Pa =fa(x,c)) = 0 
Jxa 

with the same argument. 
Let us observe that the argument is the same as in stan­

dard Hamilton-Jacobi theory. This can be understood by 
observing that a constrained system is nothing more than a 
particular case of a classical system where a certain number 
of constants of motion, the constants cp of Eg. (3.14), are 
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required to be zero, instead of being arbitrary constants. For 
this reason, the dimension of the characteristic manifold is 
not 2(n + 1) - 1, but 2(n + 1) - (m + 1). 

IV. THE CHARACTERISTIC SYSTEM FOR THE CASE 
R#O 

When r# 0, due to condition (2.10), the set of con­
straints cannot be interpreted as a set of PDE in the un­
known S. Strictly speaking, as we pointed out in Sec. II, a 
Hamilton-Jacobi function does not exist (it can, however, 
exist in some reduced space; see below). 

Nevertheless, the characteristic system exists and is in­
tegrable, as we will see in this section. Moreover, some use 
can again be made of the Hamilton-Jacobi approach devel­
oped in the last section. 

Let us first discuss the characteristic system, which 
should be constructed by starting from the same equations 
(2.17), (2.18), and (2.19), and the condition (2.20). 

Since the rank of the matrix II [ <p p,<p" J II is now r # 0, 
there will exist a minor of rank r different from zero, which 
we will assume to be formed with the last r rows and columns 

of II [<pp,<p" J II: 
[<p /L' ,<Pv' J = C/L'V' (Il',v' = m - r + l,oo.,m), (4.1) 

with 

IC/L'v,1 #0, (4.2) 

where r must be even, due to the antisymmetry of the matrix 

II [<pp'<P" J II; we will put r = 2s. 
In the case r < m + 1, Eqs. (2.20) will give r of A. " in 

terms of the remaining m - r + 1: 

or 

A. /L' 0;:::; - (C -lr'v' [<Pv' '<P/L JA. /L 
(Il'v' = m - r + l,oo.,m, Il,v = O,oo.,m - r = f) 

A. Po;:::; (0:; - o:;'(C-I)/L'V'[<Pv"<P/L J)A. /L (p = O,oo.,m), 
(4.3) 

which for p = v is an identity. 
The case r = m + 1, which is possible only when m + 1 

is even, will be discussed at the end of this section. 
If we substitute in Eqs. (2.17), we get 

va = A. /L(o:; - 0:;' (C -I) /L'V' [<Pv' '<P/L J)[ xa,<pp J, 
(4.4) 

Ua = A. 11(0:; - 0:;' (C -I) /L'V' [<Pv,,<p /L J)[ Pa ,<Pp J, 

which besides Eqs. (2.18) give the new set of characteristic 
vector fields: 

(4.5) 

where we have defined the nonhomogeneous Dirac bracket: 

[f,gJ~h = [f,gJnh - [f,<P/L' Jnh(C- I)/L'V'[<p,o',gJnh·(4.6) 

The dimension of the space Q is now m - r + 1, 
The system of equations 

(4.7) 

associated with the set of characteristic vector fields (4.5), is 
completely integrable on the surface (2.6). This can be veri­
fied, as in Sec. III, by using a generalization of the Mayer 
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identity to Dirac brackets. By a very long computation it can 
be verified that 

(fl,!f2,;;I~h}:h + a;; [f2,f31~h + cyclic =0. (4.8) 

Let us observe that the characteristic vectors (4.5) can 
be rewritten in an equivalent way as 

vI' = - [<P!,.lnh' (4.9) 

where <p! are the "starred" variables defined in (AI). They 
are first class and satisfy 

[<p!,<p ~ I =0 (<p!) + 0 (<p;,) 

(A, f.l,v = O, ... ,m - r, f.l',v' = m - r + 1, ... ,m), (4.10) 

At this point we could try to look for an involutory 
system starting from the set <p !, in analogy to the method 
followed in Sec. III. But it is easily realized that, in the pres­
ence of second-class constraints, one cannot get an analo­
gous set of n + 1 functions (or better n + 2, taking into ac­
count the function S as we did in Sec. III). Indeed, the system 
(4.7) with vI' in the form (4.9) has2n + 3 - (f + l)solutions, 
ofwhichf + 1 + 2s are already known [the 2s second-class 
functions <PI" satisfy by construction the system (4.7)]. There­
fore, by selecting from among these solutions a set of func­
tionstobeadded to<p!,: G1(x,p,S), G2(x,p,S), ... ,wecanform 
from these the corresponding starred quantities, G T ,GT ,", 
in order to preserve the solutions we already know. 

In this way we get the maximum set 

GT,G T,···,G ~ + 1 -I/+s) 

offunctions in weak involution with respect to the nonho­
mogeneous Poisson bracket. 

The characteristic system can now be constructed start­
ing from this definition of the characteristic vector fields, by 
eliminating A I' from the following expression of the compo­
nents of a general characteristic vector field: 

XU = A I'[xu,<p! J, 

U d =..1. I'!Pu,<p!J, (4.11) 

If we put 

A;'= [xv,<p!l (4.12) 

and if we make the usual assumption that 

I 
a<p! I #0, 
apv 

we get 

V
U - vV(A -1):!XU,<p! I = 0, 

vIA - 1 )'1' f A. * I - 0 Ua - V v lPa'''' I' - , (4.13) 

vn + 1 - Pu va = O. 

With the substitutions va_dxu, uu-dPa, and 
vn 

+ I-dS in (4.13), we get the following differential forms: 

2445 

TJa = dxa - dxV(A -1):[ xa,<p! I, 
Sa =dPa -dxV(A -1):[Pa,¢!J, 

() = dS - Padxu, 
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(4.14) 

and besides 

(4.15) 

The characteristic equations are now obtained by weak­
ly putting these forms to zero; however, it is easily recog­
nized that the last two forms, d¢ : and d<PI'" are not indepen­
dent from the others. Indeed we have 

aA. * 
d¢*= _"'_I' (TJa+dxv(A -l):!xa.<p!J) 

I' axa 

:::; a<p: TJu + a¢: Su' 
axu aPa 

In conclusion we have a set of(2n + 3) - (m - 2s + 1) 
independent differential forms 
[dim Q * = (2n + 3) - (m - 2s + 1)], and the characteristic 
system is given by 

dxu = dxV(A -1):[XU,<p: J, 

dPa =dxV(A -1):[pu'<P:J, 

dS=pu dxu, 

¢ : = 0, ¢ 1" = O. 

(4.16) 

Following the same discussion as in Sec. III, we have 
the characteristic manifold parametrized by 
2(n - m + s) + 1 arbitrary constants, where one of these is 
an unessential additive constant for S. 

We can put the characteristic equations in a form analo­
gous to that ofEqs. (3.40), if we solve theequations<p: = Oin 
terms of PI" 

PI' = ¢I' (xa, PI") (4.17) 

(f.l = O,I, ... ,m - 2s,f.l' = m - 2s + 1, ... ,n). 
Following the same arguments, we now get 

(PI' -¢I"PV -¢vl =O(<p;,), (4.18) 

where we have used Eq. (4.10), whereas, in the case of first­
class constraints only, we would have gotten zero. It is easily 
verified that 

a<p : 
+A ;{x«,pv - ¢v J 

apu 

(4.19) 

when (4.17) holds; so we can write the characteristic system 
in the following form: 

dxa = dxV[xU,pv - ¢v), 

(4.20) 
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dS= Pu dxu, 

¢: = 0, ¢", = 0. 

(4.21) 

(4.22) 

In the form (4.20) we can more easily verify that the 
integrability conditions are satisfied, due to the property 
(4.18), using the Jacobi identity. As regards Eqs. (4.21), the 
same comment we made in Sec. III applies here as well. The 
point is rather that knowledge of the functions S evaluated 
along the characteristics is not enough to recover a function 
S of the coordinates XU since, as we already know, such a 
function does not exist when second-class constraints are 
present. 

When m + 1 is even and r = m + 1, by repeating the 
discussion we find dim Q = ° and the associated space Q * 
will have dimension 2n + 3. So it will be spanned by any 
(2n + 3)-dimensional basis, which can be chosen 
(dxU,dS,dpu ). 

As a result the associated Pfaff system will be 

dxu =0, 

dpu = 0, ¢p(x,p) = 0, (4.23) 

dS=O, 

which agrees with Eqs. (4.16) when no first-class contraints 
exist. As in the previous case the Hamilton-Jacobi function 
S = S (XU) does not exist. 

v. THE HAMILTON-JACOBI FUNCTION 

In the last section we saw how to get a characteristic 
system when second-class constraints are present, and we 
stressed that in such a case a function S satisfying only the 
constraint equations (if we think of them as PDE in S) does 
not exist. 18 So we cannot really speak of a Hamilton-Jacobi 
method in such cases. Nevertheless, as we will see in the 
present section, the theory developed in Sec. III can again be 
useful. 

We will consider two situations: the first is when the 
first-class constraints form a first-class subset, that is, when 
the Poisson bracket between any two of them is a first-class 
constraint. In such a case we will say that they are in weak 
involution among themselves. This can always be achieved 
as an application of general theorems. 16 

In this situation let us consider this set as defining our 
dynamical system, neglecting for the moment the second­
class constraints. This set 

¢,,(x,p) = ° (f.L = 0, ... ./) (5.1) 

can be considered as a system ofPDE in S = S (x), following 
the theory developed in Sec. III. 

Let us suppose that we have found a complete integral 
of the system (5.1), 

S = ¢ (xU,cd + c (a = O, ... ,n, k = f + 1, ... ,n), (5.2) 

where Ck and care n - f + 1 arbitrary constants. 
In order to find the solutions of the characteristic equa­

tions, we put, as in Eqs. (3.41'), 

2446 

J¢ (x,c) _ b h = 0, 
JCh 
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(5.3) 

where b h are new n - fconstants. By adding to Eqs. (5.3) 
Eqs. (5.2) and 

Pu - fu(x,c) = 0, (5.4) 

where 

(5.5) 

we get 2n + 3 - (f + 1) equations for xu, p u' and S, which 
can be solved for Pu and n - fxu, regardingf + 1 of the 
coordinates XU as parameters. We thus obtain an integral 
manifold for any given value ofthe 2(n - f) + 1 constantsck , 

b \ and c, as in Sec. III (the substitution offin place of m 
must be performed). 

The solution of the original characteristic system (4.16) 
can be derived from this solution by adding to the solution 
just found the second-class constraints ¢", (x, p) = 0, which 
turn out to be constant and so have the meaning of some re­
striction on the constants Ck and b k. The final number of the 
constants will be 2(n - f) + 1 - 2s. 

In order to show this, let us write the characteristic 
vectors of the exterior differential system (5.1). These are, 
according to Sec. III [see Eq. (3.3)]: 

v" = -!¢",.lnh' (5.6) 
The hypothesis made on ¢" now has the important con­

sequence that v" are weakly equal to the characteristic vec­
tors of our original system, Eq. (4.5), i.e., when they are cal­
culated on the submanifold defined by all the constraints ¢" 
and¢",: 

v" = -!¢",.lnh;:::;: -!¢",.l~h· (5.7) 

In fact, using the explicit expression of the Dirac brack­
ets [see Eq. (4.6)], we have 

!¢""l~h = !¢",.lnh -!¢",¢,,' lnh(C-1)"'V'!¢v,,.lnh' 

where the last term on the rhs is weakly zero when ¢" = ° 
and ¢,,' = 0. This is because ¢" are assumed to be first class. 

This fact has the consequence that, when all the con­
straints are satisfied, we have 

(5.8) 

that is, the characteristic vectors of the integral manifold we 
have found are also tangent to our original submanifold de­
fined by the equations ¢" = ° and ¢,,' = 0. 

This demonstrates that the restrictions imposed on the 
solution (5.3), (5.4) by ¢,,' (x,p) = ° are indeed restrictions on 
theconstantsck and b k, and that in this way a solution of the 
original system can be found. 

Another situation that may occur is when the con­
straints ¢" and ¢,,' admit a maximal subset of first-class con­
straints (among themselves). We know from a general 
theorem that this always takes place, at least locally. Indeed 
we know that it is always possible to locally substitute the set 
¢ and ¢ ,,' with a new set such thatf + s + 1 of them are first 
class among themselves and the remaining s are all second 
class. 16 

In general it is very difficult to find such a maximal 
subset, and doing so could be equivalent in almost all cases to 
completely solving the dynamics. 

Nevertheless, it may turn out to be possible, or the con-
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straints may already satisfy this condition. 
If this is the case, let us call this subset 

tP;. (x, p) = ° (A = 0,1, ... ,/ + s). (5.9) 

The tP;. include rpl" I" = 0,1, ... ,J, and half of rpl'" Equations 
(5.9) alone define a Hamilton-Jacobi function S (xa

). So let us 
for the moment put aside the remaining constraints rpl'" 
1'" = I + s + 1, ... ,/+ 2s + 1, which we will call 

rpl"(x,p) = rpf+s+ I(X,P) 

(I'" = 1+ s + 1, ... ,/ + 2s, 1= 1, ... ,s). (5.10) 

Let us suppose we have found a complete integral for 
the set of first-class (5.9): 

S = I/I(x,ck ) + c[k = l,.,.,n - (f + s)], (5.11) 

where Ck and care n -1- s + 1 arbitrary constants. 
We want to show that a solution of our original system 

(4.16) can be obtained by imposing the conditions (5.10) on 
the characteristic surface obtained from (5.11) by means of 
the equations 

JI/I (x,c) _ b h = 0, (5,12) 
JCh 

where b h are new n - I - s constants, and 

(5.13) 

with 

I' ({3 ) _ JI/I (x,c) 
Ja X ,Ck - . 

Jxu 

The solution given by these 2n + 3 - (f + s + 1) equa­
tions can be expressed by solvingpa and n -If + s) of XU in 
terms of the remaining I + s + 1 coordinates regarded as 
parameters and the constants Ck and b k. The integral mani­
fold so obtained has dimensionl + s + 1 for any given value 
of the 2(n - 1- s) + 1 constants Ck' b \ and C in ]R2n + 3. 

In order to show this, let us write the characteristic 
vectors of the system (5.9), which are now 

V;. = - ItP;"'Jnh (A =O, ... ,/+s). (5.14) 

The situation is now quite different from the previous 
case. The analogous equation (5.7) does not hold any more. 

Ifwe require the integral manifold we have found to be 
an integral manifold of the system rpf+s+ I(X,P) = ° as well, 
its dimensions will diminish froml + s + 1 tol + 1. In order 
to get this result, we must require that the characteristic 
space spanned by the vectors V;. ofEq. (5.14) be restricted by 
the requirement 

V(rpf+s+/)::::::O (/= 1, ... ,s), 

where V is a generic vector given by 

v = A ;'v;. (A = 0, ... ,/ + s). 

Equations (5.15) will give 

(5.15) 

(5.16) 

A;'V;.(rpf+s+/) = -A;' [tP;.,rpf+s+/J =0. (5.17) 

Since the rank of the matrix II 1 tP;. ,rpf + s + I J II is s (in a 
weak sense), we can solve Eqs. (5.17) for s of A;' in terms of 
the remaining I + 1: 

A f+ I' = - A 1'1 rpl',rpf+ s+ tl (C -IVm 

(I,m = 1, ... ,s, fJ. = 0, ... ,/), (5.18) 
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where 

Clm = Irpf+s+l,rpf+m J. 
In Eqs. (5.18) we have used the notation of Sec. IV regarding 
the labelling of the indices. 

By substituting (5.18) in (5.16) we get 

v =A I'[vl' - Irpl',rpf+s+tl(C-I)/mvm ] 

= -A l'[!rpl',·Jnh - [rpl',rpf+s+tl(C-I)/mlrpf+m"Jnh]' 
(5.19) 

(The nonhomogeneous Poisson bracket between two con­
straints coincides with the usual Poisson bracket, since they 
do not depend on S.) 

By adding to the Ihs side ofEq. (5.19) terms which are 
zero when all the constraints are satisfied, we get 

v:::::: - A I' [! rpl" J nh - 1 rpl',rpf+ s+ tl nh (C -1)/ml rpf+ m' J nh 

+ 1 rpl',rpf + Il nh(C -1)/"'1 rpf + s+ m ,j nh 

- 1 rpl' ,rpf+ tl nh(C -IV"'I rpf+ s+ m,rpf+ s+ n 1 nh 

X (C -1)npI rpf+p" J nh ] 

(l,m,n,p = 1, ... ,s), where elm = Cml . Werecognizethestruc­
ture of the Dirac brackets: 

(5.20) 

In this way we recover the characteristic vectors (4.5): 

(5.21) 

In practice, to get this result when working on the solu­
tion (5.12), (5.13), it is only necessary to impose on this solu­
tion the restriction 

(5.22) 

where now, contrary to the first case considered in this sec­
tion, Eq. (5.22) has the meaning of a restriction on the coordi­
nates [which in the number of! + s + 1 can be used to para­
metrize the solution (5.12) and (5.13)] and not on the 
constants C k, b k, which in this case are in the correct number 
right from the start. 

The two situations described are two examples of the 
use of the Hamilton-Jacobi approach when second-class 
constraints are present. The method could be extended to 
intermediate cases where a number of constraints between 
1+ 1 andl + s + 1 are known to be a first-class subset 
(among themselves). 

VI. PARAMETRIC FORMS OF THE CHARACTERISTIC 
SYSTEM 

U ntiI now we have discussed a parameter-free approach 
which in our opinion is the main feature of the HamiIton­
Jacobi theory. We wish to mention here the possibility ofa 
multiparameter approach. We can try to reformulate Eqs. 
(3.37) by defining m + 1 parameters m P by the equations 

dm P = dxU(A -I);;, (p,O' = O, ... ,m). (6.1) 

If this is possible the characteristic equations (3.37) become 

dxa = Ixu,rppJ dm P, 

dpu = 1 Pa,rpp J dm P
, rpp = O. (6.2) 

dS=Palxu,rpp] dm P, 
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If we check the integrability conditions of the Mayer 
system deduced from Eqs. (6.2) using the Jacobi identity, we 
find that these conditions boil down to requiring 

{tPp'tPu I = 0 (tP 2). (6.3) 

Thus a multiparametric formulation such as (6.2) is possible 
only if the constraints tPp (p = O, ... ,m) satisfy the condition 
(6.3). The same remains true also for the characteristic sys­
tem for a set of first- and second-class constraints [Eqs. 
(4.16)]: the system 

dxa = {xa,tP! ldml<, 

dPa = {p, .. tP!ldml<, 

dS = Pa {xa,tP! ldml<, 

tP ! = 0, tP 1<' = 0, 

is integrable only if 

{tP ! ,tP ~ I = 0 (tP 2). 

(6.4) 

(6.5) 

Besides (6.3) there is another case where one can use a 
multiparametric formulation. Namely, if the constraints tPp 

(or tP I< ) form a closed Lie algebra under the Poisson (or Dirac) 
brackets, i.e., 

(6.6) 

where C;u denote the structure constants, then the equa­
tions 

dxa = {xa,~p J drP, 

(6.7) 

with 

~p = B ; (r)tPa , (6.8) 

where the functions B ;(r) satisfy 

.i.. B u _ ~Bu =BtB'ICu 
arr p ar P r r P ''I' (6.9) 

are integrable. The functions B ;(r) are determined entirely 
by the structure constants [see Ref. 19]. In fact it turns out 
that 

= - B;B ~C~t {tPr,xaJ 

(
aBr aBr) + {xa,tPrJ _P - _u =0 
a~ arP 

and analogously for P a . The calculation goes in the same way 
even when second-class constraints are present. 

Finally, let us consider a one-parameter formulation, by 
recovering the equations of motion derived by Dirac. This 
can be achieved by choosing a particular vector field of the 
characteristic "manifold" 

V= -AI<{tPl<,J* (p=O, ... ,m-r). (6.10) 

The corresponding Pfaff system is given by 

dxa =..1. I< {xa,tPl< l*dr, 
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dPa =,1, I<{ Pa,tPl< l*dr, (6.11) 

(a = O, ... ,n, p = O, ... ,m - r), 

and 

dS = A I< Pa {xa,tPl< J *dr, tP! = 0, tPl<' = 0, (6.12) 

where [ , I * is the usual Dirac bracket. 
Let us conclude this section by considering the particu­

lar case where 

tPl< = {tPo = Po + Hi (Xi, Pi)' 
tPA =tPA(X',Pi)' 

(i = 1, ... ,n, A = 1, ... ,m - r); 

(6.13) 

Eqs. (6.11) become the equations of motion for a constrained 
system with a non vanishing canonical Hamiltonian (for sim­
plicity we will choose ,1,0 = 1): 

dxi = {xi,He + A AtPA 1* dr, 

dpi = [Pi,He + A AtPA I * dr, 

dxo = dr, tPA = 0, 

dpo = 0, tPl<' = 0, 

(6.14) 

where we made use of the fact that <P A and the second-class 
constraints <PI<' do not depend on XO and Po· 

APPENDIX A 

When first- and second-class constraints are present, 
that is, when the rank r introduced in Sec. II is different from 
zero and < m + 1, the problem of classifying the constraints 
tPp into first class and second class can be solved in the fol­
lowing way. 

We can start with the choice of a minor of maximum 
rank in the matrix II {tPp,tPu III. Since it is always possible to 
choose such a minor as a principal-hence antisymmetric­
minor, let us suppose it to be II! tPl<' ,<Pv' III, where pi, 
Vi = m - r + 1,.,.,m. The remaining functions tPl< 
(p = 0, l, ... ,m - r) are in general not first class, but from 
them we can construct a set of first-class constraints. To this 
end, we can observe that any row of the matrix II ! <P P ,<p u III 
not belonging to the chosen minor must be a linear combina­
tion of the last r rows. Explicitly this means 

{ <PI' ,tP 1<' I ;:;;;;A 1'1" { tP t/ ,tP /" j, 
which can be equivalently written 

{<PI' - AI't/¢1" '¢I',j ;:;;;;0. 

From this we see that we can define3 

<p! = tPl' - {¢I' '<PI<' j(C -1)I<'V'tPv" 

which have the property {<p !,tPl" I ;:;;;;0, with 

CI"v' = I <PI" ,tPv' I· 

(AI) 

(A2) 

We may now show that <p! are first-class objects. In­
deed let us choose <p! and tPl<' as a new set of constraints. 

We can verify that, by doing so, the rank r does not 
change. In fact, if we put 

<P~ =¢!, <p~, = <PI<" (A3) 

we have 
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(A4) 

where the matrix B has rank = m + 1, since det B = 1. 
Owing to this, the rank of the matrix 

{tP; ,tP ~ J ::::BpABcrr {tPA ,tPT J (A5) 

is again r. Then we necessarily have {tP ! ,tP ~ J :::: 0. 

APPENDIXB 

Under the hypotheses already postulated in Sec. II, that 
is, that the functions tPp are differentiable and that the rank 
ofx-+{tPo(x), ... ,tPm(x)) is equalto m + 1 for every x belonging 
to the subset V of the manifold X (in our case X = H2n + 3), 
defined by tPp(x) = 0, the subset Vis a submanifold of X of 
dimension N - m (N = dim X) (Ref. 13, p. 228). 

Ifj denotes the inclusion mapping 

j: V-X, (Bl) 

then the pullbackj· and the differential mappingj. allow us 
to relate structures defined on Vand on X. For instance, iffis 
a functionf X_H, then 

j.f V-R, (B2) 

where 

V·f)(x) =f(x), VXEV. (B3) 

It is convenient to introduce the following notation: If 

fIx) = 0, Wx = 0, VXEV, (B4) 

where Wx is a differential form on X, we will write 

f::::O, w::::O, (B5) 

and we will say thatf, ware weakly equal to zero. 
Note thatf::::O is equivalent toj·f= 0, whenfis a 0-

form, but this is no longer true for a form of arbitrary degree. 
In fact, it is possible to prove that if aEA (T·(X)) is a 

differential form of degree r, ° < r<N, such that 

j·a = 0, 

then 

p 

where a p is a differential form of degree r - 1. 

(B6) 

(B7) 

The proof of the previous statement lies in the follow­
ing. Let tPp (p = 1, ... ,m), Ih (k = m + 1,. .. ) be a set oflocal 
coordinates for the manifold X, as is always possible under 
the stated hypotheses. A differential form of degree r can be 
written as 

r 

a = ~ wP""p.k. , ... k dtPp A ... A dtPp 1\ dtPk ,A ... A dtPk , ~ ,,+,. I I 1+ r 
Ip)lk) 
;=0 

then 

j·a=O 

implies 

j·Wk, ... k, = ° ¢} Wk, ... k, ::::0, 

(BS) 

(B9) 

(BlO) 

where use is made of the fact thatj· is an algebra homomor­
phism and 

j. dtP p = ° (B 11) 
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due toj·tPp = 0. 
In conclusion, using Eqs. (B8) and (B 11), we get 

p 

where a P is an (r - 1) form. 
The converse statement, that Eq. (B7) implies Eq. (B6), 

can be easily proved. 

APPENDIXC 

In this appendix we want to analyze the problem posed 
by the presence of the O-forms tPp in the exterior differential 
systemA. 

Stated more precisely, let us consider an exterior differ­
ential system A in the manifold X (in our case R2n + 3): 

{
tPp = ° (p = O, ... ,m), 

A= 
wa = ° (a = 1, ... ,a), 

(CI) 

where w a are differential forms of degree greater than zero. 
An integral manifold of A is a pair (M,f), where M is a 

submanifold X and fa differentiable mapping, 

fM-X, 

such that 

{
f·tPp = 0, 

f·w a = 0. 

Let g be the mapping 

g:M-V 

and j be the inclusion mapping (B I) 

j:V_X 

so that 

f= jog. 

(C2) 

(C3) 

We know that g too is a differentiable mapping. 20 

Now, finding an integral manifold (M,f) of A is equiva­
lent to finding an integral manifold (M,g) of the following 
system in V: 

(C4) 

Indeed, if (M,f) is an integral manifold of A in X, from 
(C2), (C3) we get 

f·wa = g·U·wa
) = 0, 

so (M,g) is an integral manifold of B. Conversely, if(M,g) is an 
integral manifold of B, this means 

g·U·wa
) = 0, 

that is,f·wa = 0. So the second set ofEqs. (C2) is satisfied. 
On the other hand, from the definition of V we get 

j·tPp = 0, which impliesg·U·tPp ) =f·(tPp) = 0, so the sys­
tem (C2) is satisfied, and the pair (M,jog) is an integral mani­
fold of A in X. 

As a first application of this result, let us now consider 
the problem of determining the characteristic vectors when 
O-forms are present. If A, 

- {tPp =0, A= 
wa = 0, 

(C5) 

andB, 
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(C6) 

are the closures of A and B, then the differential part of A: 
d<pp' of, dwa, generates the ideal IA, 

IA = {w = I Sa /\wa + I 17a /\dwa + I; p /\d<Pp}, 
a a p 

(C7) 

while B generates the ideal I B' 

IB = {w = ~ ~a /\ j*wa + ~ fia /\ j*dwa}, (CS) 

where Sa , 17a' and;P are arbitrary forms onX and~a' fia are 
arbitrary forms on V. 

From (C7) and (CS) we have 

IB=j*IA. (C9) 

Let us observe that Eq. (C9) implies that the pullback of 
a form of I A belongs to I B; we may ask whether other forms a 
belonging to /\ (T *(X)) exist such thatj*aEl B' We may in fact 
prove the following statement: 

j*aElB¢?asIA' 

where the notation 

(ClO) 

asIA (CII) 

meanswxE(IA)x for any XEV (we will say that the differential 
form a on X weakly belongs to IA ). 

In fact, ifj*aElB' using Eq. (C9), which tells us that a 
form belonging to I B can be written as the pullback of some 
form of I A , we may write 

j*a = j*( ~ Sa /\wa + ~ 17a /\dwa + ~; p /\d<Pp). 

(CI2) 

where the term in brackets is an element of I A • Using the fact 
thatj is an algebra homomorphism, we have 

(CI3) 
a a 

from which we get 

j*(a- ~Sa/\wa- ~17a/\dwa)=o. (CI4) 

Thus, using (B7), we have 

a::::: I Sa /\wa + I 17a /\dwa + I; p /\d<pp' (CI5) 
a a p 

that is asIA' The converse is easily proved in an analogous 
way. 

From the results (ClO) we see that we can work in the 
space X by considering forms which weakly belong to the 
ideal I A • 

The characteristic system is constructed by starting 
from the set of characteristic vector fields, which should be 
obtained from the condition 

(CI6) 

We now want to demonstrate that this is equivalent to 
analyzing the consequences of the condition 

(CI7) 
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Indeed, if v is a characteristic vector field of B, i.e., such 
that iv(IB )CIB, since IB = j*IA> this means 

iv U* IA) C j* IA 

or 

(CIS) 

Let us consider an extension v and v, that is a vector 
field on X such that vx = U* v)x for every xEjV; thus v will 
satisfy 

iv d<pp = O. 

From Eq. (CIS) we get 

j*iv(IA )CIB, 

and finally using Eq. (CII), we can write 

iv(IAK-IA' 

which is the result (CI7). 

(CI9) 

Let us observe that this result guarantees that v is actu­
ally an extension of v, since by applying it to the l-formsd<pp 
of IA we get 

iv(d<Pp):::::O 

inasmuch as no O-forms are present in I A , and this is exactly 
the definition of v. 

As a second application let us study how the Frobenius 
theorem about the integrability of Pfaff systems must be stat­
ed, when zero forms are present. 

Let us consider the system A in the case where OJ" are 
independent I-forms 0 a: 

{
<PP = 0 (p = O, ... ,m), 

A= 
oa = 0 (a = l, ... ,a). 

(C20) 

We already know that this system has the same solu­
tions as the system 

B= u*oa=OJ. 

The Frobenius theorem states that the necessary and 
sufficient condition for the integrability of the system B is 

(C21) 

for any a. From this, using the properties of the pullback, we 
get 

j*(dO a /\ 0 1 /\ ••• /\ 0 a) = 0 

and from the result (B7) we get 

dO"/\OI/\ ... /\ou::::: IA Pd<pp' 
p 

or 

doa/\OIA· .. AoaAd<poA···Ad<Pm:::::O, (C22) 

which is the integrability condition we were looking for. 
The dual version of (C22) can likewise be easily ob­

tained. Indeed the dual form of the system B is given by the 
system of vector fields 

(C23) 

where A = a + 1, ... ,n, if n is the dimension of the manifold, 
and v A are defined by 

(C24) 
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for all values of A and a. The dual form of the Frobenius 
theorem requires for v A : 

(C25) 

Equation (C23) suggests the following form for the dual 
of the system A: 

A'= A {
V 

¢p =0, 
(C26) 

V A being an extension of v A to T (X). It is obvious from the 
definition (C26) that A ' has the same solutions as A. 

Let us observe that A ' is constructed by simply requir­
ing the vectors VA to be weakly incident to the forms () a and 
d¢ p' Indeed we have 

(v(j*f))(p) = vp(j*f) = (j*v)jp(f) 

= vj)f) = (j*(v(f)))( p), (C27) 

that is 

j*(v(f)) = v(j*() ), (C28) 

for any functionf on X. This can be extended to any I-form: 

j*(iv () ) = iv (j*() ). 

Applying this result to VA' we get 

j*(VA () a) = iv, (j*() a), 

and furthermore we have 

j*(vA¢p) = VA (j*¢p) 

due to the definition of V. 

(C29) 

(C30) 

(C31) 

Using the result of Appendix B, we may write (C30) and 
(C31) as 

(C32) 

iv,d¢p ;::::0. 

In order to find the integrability condition for the sys­
tem A ',from (C25) and using the property (C28) we get 

[VA ,VeT] (j*f) = cAeTrvr(j*f) 

or 

j*( [VA ,VeT] (f)) = j* (CAeTr Vr (f)), 

where 

that is, 

(C33) 

Equation (C3 3) is the integrability condition, that is, the Fro­
benius theorem, for the system A'. 

APPENDIX 0 

The transformation properties of the Hamilton-Jacobi 
function S (x) under canonical transformations are known21; 
in the case of an infinitesimal transformation they have been 
given in particular by Bergmann. 22 

Here we only recall the results. 
Let us consider the situation described in Sec. III. Ifwe 

know a complete integral of system ¢ I-' (x, p) = 0 given by 
(3.37): 
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Six) = ¢ (Xah) + C 

(a = O,l,oo.,n, k = m + 1,oo.,n), 

we may ask what is the function 

S '(x') = ¢ (X'a,Ck) + c' 

(DI) 

(D2) 

when we submit the system to the finite canonical transfor­
mation generated by the function w(x, p), via the equations 

p~ = ew(x,p)* Pa' 

(D3) 

where the * operation is defined in Eq. (3.32). 
More generally, we may consider the one-parameter ca­

nonical transformation 

X'a(7) = erw(x, p)*xa. (D4) 

The answer is given by the solution of the Hamilton­
Jacobi equation: 

as'(X',7) + (' as'(X',7)) _ 0 w x, - , 
a7 ax' 

with the boundary condition 

S '(x',O) = S (x). 

(D5) 

(D6) 

In the case of an infinitesimal canonical transforma­
tion, by neglecting higher orders of 7, we get2J 

8S (x) = 7W( x, ~~). (D7) 

Equation (D7) shows in particular that, when the ca­
nonical transformation is generated by the constraints ¢/-l' 
that is, for w a given linear combination of ¢ I-' ' the function S 
is invariant. 

As stressed by Bergmann,22 this has the consequence 
that S is form-invariant under the invariance group (group 
generated by the constraints). In particular, the Hamilton­
Jacobi theory does not require the setting of gauge condi­
tions, which is, by the way, one of the main reasons for the 
relevance ascribed by the authors to a Hamilton-Jacobi ap­
proach to constrained systems in particle dynamics. 
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