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We develop a theory of canonical transformations for presymplectic systems, reducing this
concept to that of canonical transformations for regular coisotropic canonical systems. In this
way we can also link these with the usual canonical transformations for the symplectic reduced
phase space. Furthermore, the concept of a generating function arises in a natural way as well as

that of gauge group.

I. INTRODUCTION

Since the well-known Dirac’s pioneer work' on con-
strained Hamiltonian systems, the interest in such theory
has been growing because it provides an appropriate frame-
work to deal with many physical theories either for finite-
dimensional systems as time-dependent [or more generally
{(n-parameter)-dependent] systems, mechanical systems de-
fined by singular Lagrangians, etc., or infinite-dimensional
systems exhibiting gauge invariance. A good test of the rel-
evance of these systems is the amount of papers trying to
develop the mathematical framework for these systems,
which has been shown to be that of presymplectic geometry,
which has been possible thanks to the papers by Gotay,’
Lichnerowicz,? Sniatycki,* and others, to whom we apolo-
gize for omitting their names. For a recent review see, €.g.,
Ref. 5.

The essential characteristic of these systems is the exis-
tence of contraint functions, limiting the possible values of
the dynamical variables that Dirac classified in first and sec-
ond class according to the vanishing or not of their mutual
Poisson brackets. This classification was motivated because
the second-class constraints may be eliminated from the the-
ory up to a redefinition of Poisson brackets becoming now
the so-called Dirac’s brackets, and they may be considered
as corresponding to spurious degrees of freedom. This aspect
is really clarified when using appropriate coordinates as in-
dicated by Shanmugadhasan.®

On the other hand, the invariance of the Poincaré—Car-
tan integral has also been proved to be a sound principle for
the study of nondegenerate systems and it has motivated a
recent paper’-® devoted to the study of the Hamilton-Jacobi
method for degenerate systems. OQur experience with regular
systems suggests for us to look for a concept generalizing
that of canonical transformation, and it has been carried out®
for regular canonical systems by making use of a generaliza-
tion of the Hwa-Chung theorem.'® We aim in this paper to
give a general concept of canonical transformation for any
presymplectic system, as well as attempt to go deep in the
analysis of this concept in order to characterize such trans-
formations, studying the group structure of such a set of
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canonical transformations, some remarkable subgroups (in
particular, the subgroup of gauge transformations), and the
theory of the corresponding generating functions, which fol-
lows the track of Weinstein’s theory for symplectic sys-
tems.'!

The paper is organized as follows: Section II is devoted
to analyzing the structure of locally Hamiltonian presym-
plectic systems, and the main result of this section, given in
Theorem 3, is that the study of the locally Hamiltonian pre-
symplectic systems can be done by means of its local struc-
ture coisotropic germ. The concept of canonical transforma-
tion for presymplectic systems is given in Sec. IIl and after a
deep analysis it is shown that it is enough to consider the case
of canonical regular systems because any other can be re-
duced to it. Section IV contains a study of the group struc-
ture of the set of canonical transformations. When the pro-
cess of reduction of the presymplectic system is carried out,
the canonical transformations pass to the quotient and it
singularizes the subgroup of canonical transformations, in-
ducing the identity in the quotient, called the gauge group.
The concept of a generating function is introduced in Sec. V
and Sec. VI is devoted to showing some interesting proper-
ties of the generating functions, which will be of interest to
manage with in local coordinates.

Il. THE STRUCTURE OF PRESYMPLECTIC SYSTEMS

The mathematical framework for a geometrical de-
scription of the Dirac’s theory of constrained systems"'*'?
has been shown to be that of presymplectic dynamical sys-
tems.?~*1415 In this section we will analyze the local struc-
ture of such systems and it will be shown how it is possible to
imbed a presymplectic manifold as a coisotropic submani-
fold of a symplectic manifold in which a family of locally
Hamiltonian vector fields extending the dynamics of the
original system can be constructed. This result is based on
some theorems by Sniatycki* and Gotay,!® which will be
restated in order to make this paper more self-contained.

Definition 1: A presymplectic manifold is a pair (M,w)
where o is a closed two-form of constant rank on the differ-
entiable manifold M. If «a is a closed one-form on M, the
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triplet (M,w,a) is said to be a locally Hamiltonian presym-
plectic dynamical system.

The Dirac-Bergmann theory of constrained systems
corresponds totakingM = D . (T *Q)and @, the pullback to
M, of the canonical two-form w, on T *Q. Here D .. denotes
the Legendre map D .. :TQ—T *Q, with @ the configuration
space and .¥ the Lagrangian function which is assumed to
be singular; that is, D . is not a local diffeomorphism. Alter-
natively, we can consider in this case another presymplectic
manifold (M = TQw ,» = D* w,).

There are a lot of other relevant presymplectic mani-
folds arising in physics. For instance, we can mention pa-
rameter-dependent systems where the mainfold M is P XA
with (P,£2 ) a symplectic manifoldand A the parameter space.
The closed two-form @ is given by @ = 7*w, where 7 denotes
the natural projection on the first factor 7: P X A—P. This is
the case of the usual way of dealing with time-dependent
systems, '’

Given a locally Hamiltonian presymplectic dynamical
system, the constraint algorithm, developed by Gotay et
al.,»'*1%18 provides a method for obtaining a maximal sub-
manifold C, called the final constraint submanifold, for
which the equation

UM, =a, (2.1)

is meaningful, and it is possible to endow a with a dynamical
sense. The vector field I" is not uniquely defined and this
ambiguity corresponds to what is usually called gauge free-
dom.*'?

When dealing with Dirac’s constrained Hamiltonian
systems, the functions locally defining this final constraint
submanifold are both the primary constraints defining
MCT*Q and the secondary constraints. But Dirac gave a
new classification of constraints in first and second class de-
pending on the possibility of eliminating the ambiguity in the
corresponding multiplier in the expression of the total Ha-
miltonian. In the general case constraints of both classes can
appear, but Sniatycki proved* that it is possible to imbed
coisotropically the final constraint submanifold C in a sym-
plectic manifold, in the very general case of C defining a
regular canonical system, and the second-class constraints
are eliminated.

Definition 2: Let (P2 ) be a symplectic manifold and j:
C+»Pasubmanifold of P. Then (P,C,{2 ) is said to be a regular
canonical system if ker j*2nTC is a subbundle of the tangent
bundle TC.

Theorem 1°*: Let (P,C,42 ) be a regular canonical system.
If C is a closed submanifold of P, there exist a symplectic
submanifold of (P,12 ), k: (P,f) )<=(P,£2 ), and a coisotropic im-
beddingof Cinto (P02 ),I: (C,j*2 )«+(P,£2 ), suchthatk o / = j.

The existence of a symplectic manifold (P,f2 ) containing
C may be forgotten for the presymplectic case if we make use
of the coisotropic imbedding theorem recently given by Go-
tay.!s

Theorem 2: Let (M,w) be a presymplectic manifold.
Then, we have the following.

(1) There exists a symplectic form {2 on a tubular neigh-
borhood of the zero section of the dual bundle E * of the
characteristic bundle E of (M,w), where M can be coisotropi-
cally imbedded.
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Jj*d {f,g} =0 and therefore j* {df,dg}

(ii) Any two coisotropic imbeddings of (M,w) are locally
equivalent: if j;, (M,w)—(P;,£2;), i = 1,2, are two of such coi-
sotropic imbeddings, there exist two neighborhoods
U'=12 of j(M) in P, and a symplectomorphism
¢: U,—U,such that ¢ *2, =2, and ¢ 0 j, = ,.

We introduce next some definitions and notations we
are going to use concerning functions and one-forms defined
on a symplectic manifold (P,£2).

Definition 3: Let C be a submanifold of (P,£2 ). A function
JS€ €= (P)is said to be a constraint function for C if f|¢ is
constant, and the set of such functions will be denoted
C(P,C). Afunctiong € € (P,C)is called a first-class function
if {/,g},c=0 V¥ f€ € (P,C), and we will write #(P,C) for the
set of all first-class functions. Finally, the first-class con-
straint functions are those of Z (P,C "¢ (P,C ), and the corre-
sponding set will be denoted 7 (P,C).

Here { , } will denote the Poisson bracket defined on
the set A {(P) of one-forms by the form 2 as follows:
{afB} = 2[2 ~Ya)2 ~!B)] for any pair of one-forms
afeAl(P). Themap 2: ¥(P)—A '(P)is defined by contrac-
tion with £2,02 (X ) = +(X }2. When fand g are functions, the
Poisson bracket is defined by {f,g} = 2 (2 ~'(df), 2 ~(dg)).
The concepts of constraint and first-class functions can be
generalized for one-forms on P as follows.

Definition 4: A one-form a € A '(P) is a constraint one-
form for Cif j*a = 0, j being the immersion j: CP. The set
ofthese one-forms willbe denoted C '(P,C ). The one-form Bis
a first-class one-form if j*{a,8 } = 0, Va € C'(P,C), and the
set of all such one-forms will be written B '(P,C). Finally, by
A '(P,C)wewill denote theset4 '(P,C) = B(P,C)nC (P,C)
of the first-class constraint one-forms.

Proposition 1: With the above notations, we have the
following.

(i) def/(P,C)CA'P,C)NZ(P),

d%(P,C)CB\P,C)NZ'(P),

d¢(P,C)CCHP,C)NZ'(P).
(i) If (C, j*£2 )=(P.L2 ) is a coisotropic imbedding, then

CY{P,C)nZ(P)CBP,C)NZ(P) and therefore
AVP,C)NZ (P} = CYP,C)NZ \(P).
Proof:(i)Iff € € (P,C )thenj* df = d (j*f) = Oand there-

fore dfe C'(P,C)nZ '(P). Moreover, if ge #(P,C), then
= 0. But it implies
that j*{a,dg} = Oforanya € C '(P,C )nZ '(P)because of the
local existence of a neighborhood and a function f€ € (P,C)
such that @ = df according to the relative Poincaré lemma.’

(i) If & € C (P,C )nZ (P ), the lemma of Poincaré shows
that there is a function f (only locally defined) such that
df = a and then j* @ = 0 implies that j*f’is constant on the
neighborhood 7»~ where f was defined. Now, if
B e CY{P,C)NZ '(P) and g is a function (locally defined) such
that pB=dg, and ge%(P,C), we see that
7 (@B) =/*{dfdg) =7* d {fg) = &* |fg). If Ciis coiso-
tropically imbedded in P,Z(P,C)C #(P,C) and therefore
J* {£.g} =0, which implies j* {a,f } = 0. In order to prove
that j* {a,8} =0, VYBeC'P,C) we remark that
C Y(P,C)nZ '(P)generateslocally C !(P,C)asaC* (P)module
and for every f€ C(P,C) there exist b, € C*(P) and
fie €(P,C) such that B can be written as B = Zb, df".
Then, using the identity {a,hy}=X.(h)y+h{ay},
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VheC= (P),a,y €A \(P), with X, = 2 ~(a), we find that
for every a € C(P,C)nZ '(P) and Be C '(P,C),

(@B} = {a,zb.- df"] — SX,(b)df + S {adf’),
and therefore
@B = S, ) d i) + Sb, o (adr'} =O0.

The main goal of this section is the following theorem.

Theorem 3: Let (M,,a) be a locally Hamiltonian pre-
symplectic system and i:C'«M the final constraint submani-
fold. There exist a symplectic manifold (P,£2 ) and a coisotro-
pic imbedding j:C-~P such that j*2 = /*» and we have the
following.

(i) For each vector field I" on M, tangent to C, satisfying
Ul ¢ = ac, there is a locally Hamiltonian vector field I';
on P, tangent to C, such that I'c = I';|c.

(ii) The vector fields I', associated to the dynamical sys-
tem I satisfying the above conditions are given by

I =2""\a +§), (2:2)

where a, is a closed one-form on P such that j*a, = i*a,
and £ any closed first-class constraint one-form on P for C,
EcA\PCINZ'(P).

(iii) (local uniqueness) The coisotropic imbedding and
the family

D(P.C)= {2 ~Yap + £)|E€A(P,CINZ '(P))

are locally unique.

Here local uniqueness means that if /:C\~+P"' is another
coisotropic imbedding, there will exist a family of locally
Hamiltonian vector fields

D(P',C)={2' Vap +£)E€A(P,CIZ (P,
ap: eZ‘(P’)},

and a local symplectomorphism ¢ from a neighborhood of
J(C) in P in a neighborhood of j(C} in P’ such that
jo¢=¢ojand mapsD(P,C)onD(P’'C).

Proof: According to Theorem 2, there is a symplectic
manifold (P,f2 ) and a coisotropic imbedding /:(M, ) (P,2 ).
On the other hand, if (C,i*w) is the presymplectic manifold
which is obtained from application of the constraint algo-
rithm, Theorem 2 furnishes a new symplectic manifold
where (C,i*w) is coisotropically imbedded. Let /, denote such
an imbedding j,:C—P,. The relation between both symplec-
tic structures is given by Theorem 1. We can alsosee Cas a
submanifold J:C—P, with J = [ o i and then Theorem 1 as-
serts the existence of a symplectic submanifold
k:(P,,02,)—~P2) and a coisotropic imbedding
J3:(C,i*@)—(P5,42;) such that k © j; = J. Thelocal uniqueness
part of Theorem 2 leads to the existence of a symplectomor-
phism ¢ of a neighborhood of j,(C ) in P; on a neighborhood
of j,(C) in P,. If (P,£2 ) is any of such neighborhoods and j the
corresponding immersion of C in P, we have a coisotropic
imbedding of C in (P,f2 ). (See Fig. 1.)

In order to prove the points concerning the dynamics,
we remark that both (P42 ) and (P,£2) are neighborhoods of
the zero sections of vector bundles over M and C, respective-
ly. Let 7 ,m;, and 7, be the corresponding projections
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FIG. 1. Diagram of the coisotropic imbed-
ding.

C

7 :P—P, 7. P—C, :P>M, verifying m, © k =idp,
m ©l=idy, and 7; © j =id. Let I', be a vector field in M
tangent to C verifying the dynamical condition (2.1), i.e.,
I Jo\c = ac. From the relation k o j =0 i we see that
the images of the manifold C under / © i and k © j are con-
tained in /(M) and k(P), respectively, and then
C=10j(C)C!{M)nk(P)=W. We define a vector field in
[(M)byl, I, and takeitsrestriction to }¥, that it is not neces-
sarily tangent to H but it will be tangent to C because the
tangency of I, to C implies that there exists a vector field
I in C such that i, I', =TI, and therefore /I I,
= (I o), I'{ is tangent to C. The map 7, :k (P)—Pis a dif-
feomorphism, so that it is meaningful to take the restriction
ofm, to W = I (M )nk (P)anddefinethevectorfield 7, (/, I".)
{the respective restrictions of /, and 7, to W are under-
stood). We remark that 7, /_ I', is tangent to Cin Pbecause
if we take the vector field I"; in C as above and compute
Tig b Lo We find that 7, I I, =j, I';. It is now easy to
see that the vector field 7, /, I, defined in a submanifold of
P satisfies on it the equation «m,, /[, I.)2=ap, with
ap =k* ¥ a. In fact, the following computation shows
that we can associate the vector field X, = 2 ~'(a,) with
I, because

Umg L Lo )2 (Y) = k*(m I T,,Y)
=(m o k) *a((m, © 1), T,,Y)
=o(l.,(m°k),Y)

=yl )olm o k), ¥Y=ap¥).

The vector field X, = 0- 1{&) corresponding to an ele-
ment of 4 '(P,C)nZ '(P) is tangent to C and is such that
X, c €ker i*, and consequently the vector field X, + X,
is a solution of the dynamical equation, too. Therefore, by
addition of vector fields X, with £ € 4 (P,C)nZ }(P) to the
vector field X, we obtain vector fields in P tangent to C.
Noteworthy is that if I, is another vector field in M satisfy-
ing the dynamical equation, then the difference (I'; — I', )¢
lies in ker i*w and therefore 7, j,,I'1 = Tiyjinds +Xg,s
with  fed YP,C)nZ '(P). Actually ker i*w
= m;, {2 ~'(4'(P,C)Z '(P)), because the closed first-class
constraint one-forms generate via £ ~' the submodule
IL(TC')of ¥(P,C)= (X € X(P)|X|c e I'(TC)}.

As far as the local uniqueness is concerned we must
prove that given two coisotropic imbeddings j,, j, into two
symplectic manifolds (P;,f2;), i = 1,2, there will be a local
symplectomorphism ¢:P,—»P, mapping locally Hamiltonian
vector fields on P, in locally Hamiltonian vector fields on P,
and ¢ °oj, =j,. Now, let (P,2) be a symplectic manifold
where the final constraint manifold is coisotropically imbed-
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ded, obtained from any symplectic manifold (S,o) in which
(M,w) is imbedded.

The local uniqueness part of the statement of Theorem 2
says that any two coisotropic imbeddings are locally equiva-
lent and consequently the two symplectic manifolds we will
obtain, either from (M,w) using (S,0) or from (C,i*w) using
the coisotropic imbedding theorem, have to be locally sym-
plectomorphic. The second assertion of the statement fol-
lows from the fact that any symplectomorphism preserves
the locally Hamiltonian character of the vector fields, and
from the condition ¢ © j; = j,, which says that ¢ transforms
constraint one-forms into constraint one-forms; and, as we
haveshown that C {(P,C nZ (P,C) = 4 '(P,C)nZ '(P,C ), the
proof ends.

Definition 5: If (P,C,42) is a regular canonical system
such that the immersion j is a coisotropic imbedding we will
say that (P,C,£2 ) is a regular canonical coisotropic system.

The preceding results can also be presented in a different
language using the concept of local manifold pair, as Wein-
stein does, ' or that of a germ of a manifold as a submanifold
of another one; that is, if C is a submanifold of M and (M,C ) a
pair of manifolds, we will say that (M',C) is equivalent to
(M,C)if thereis another pair (M ”,C )such that M " isan open
submanifold of both M and M '. An equivalence class of pairs
of manifolds is called a local manifold pair or germ of Cin M
and will be denoted [M,C]. A map between two germs is
defined by an equivalence class of maps. This equivalence is
defined as follows: two maps f;:(M,,C )M [,C’),i = 1,2 are
said to be equivalent if there exists a map
8:(M5,C }—(M ;,C’) such that M, is an open submanifold of
both M, and M,, and M}, is an open submanifold of M | and
M with f\, = fom, =8

A germ [P,C] is said to be coisotropic if (P,C) is a pair
where C'is a coisotropic submanifold of the symplectic mani-
fold (P{2). We can consider the category with objects the
germs [P,C] and morphisms the symplectic maps between
germs(g J:[P,C ]—[P',C’']. Wewillsay thatagerm[P,C ]isthe
local structure germ for a presymplectic germ if it verifies the
universal property of being an initial object in this category,
i.e., forevery [P',C] thereis amorphism [¢ J:[P,C}—[P’',C’]
such that ¢, = id. With this language Theorem 3 can be
restated as follows: For every locally Hamiltonian presym-
plectic system (M,w,a), there exists a local structure germ
[P,C], with C the final constraint manifold for (M,w,a). It is
uniquely defined and there is on it a family of locally Hamil-
tonian vector fields furnishing a dynamical description of
the system.

11l. CANONICAL TRANSFORMATIONS FOR
PRESYMPLECTIC SYSTEMS

The traditional concept of canonical transformations
for Hamiltonian dynamical systems as symplectomor-
phisms has recently been generalized® for application to re-
gular canonical systems (P,S,£2 ). The definition of canonical
transformation depends on the choice of a particular kind of
vector field, called locally weakly Hamiltonian fields relative
to (P,S,42), and therefore depends on the immersion of .S in
the ambient manifold P. We aim to find a generalization of
the concept of canonical transformation for a presymplectic

1964 J. Math. Phys., Vol. 26, No. 8, August 1985

system with no reference to an ambient symplectic manifold
containing it, that it will reduce to that proposed in Ref. 9 in
the case of a regular canonical system. Moreover, we will
prove, by making use of the results of the preceding section,
that the general problem of studying the canonical transfor-
mations of a presymplectic system can be reduced to that of
the canonical transformations of a regular canonical system
(P,C.12).

Definition 6: Let (M,w,a) be a locally Hamiltonian pre-
symplectic system and let i :C-«M be the final constraint
submanifold. A vector field X € (M ) is said to be a locally
Hamiltonian vector field relative to C if (i) X is tangent to C,
X cel'(TC) and (ii) there exists a closed one-form
B € Z' (M) such that

X )w—-B)=0. (3.1)

The set of such vector fields will be denoted X,  (M,C).
It is to be remarked that the condition (ii) is weaker than
t(X)o|c = B¢ and any vector field X satisfying this equation
will satisfy (3.1), too. As an example, the dynamical vector
fields provided by the Constraint algorithm are locally Ha-
miltonian vector fields relative to C. On the other hand con-
dition (ii) is equivalent to /% Lyw = 0.

As a corollary of the theorems of Ref. 9 we can write
down the generalization of the Hwa-Chung theorem for pre-
symplectic systems.

Theorem 4: Let (M,w,a) be a locally Hamiltonian pre-
symplectic system with final constraint submanifold i, :C\»
M and rank (R w)=2r. If fcAP(M) is such that
iE(LyB) =0, VX € X, 1 (M,C), then we have the following.

i) B=0ifp>2rorp=2/+ 1withi<r.

(i) If p = 2, I<r, there exists a function fe C* (M ) such
that i%(8 — fw”') = 0 and i% f is constant on each connect-
ed component of C.

In this context the concept of canonical transformation
generalizing that of Ref. 9 is the following one.

Definition 7: Let (M, ,0,,a;), k= 1,2, be two locally
Hamiltonian presymplectic systems and i, :C, M, the cor-
responding final constraint submanifolds. A pair (9,4 ) of
diffeomorphisms @:M,—M, and ¢:C,—C, is said to be a
canonical transformation between (M,,0,,a,) and (M,,0,,a,)
if ()@ o iy =i, ° ¢ and (i) P, (X u(M,,C\)) C X 1 (M,,C)).

A characterization of a canonical transformation for
such systems, which is a straightforward consequence of the
former theorem, is given by the following.

Theorem 5: A pair (P,4) of diffeomorphisms
D:M,—M, and ¢:C,—C,, such that ¢ o i, =i, ° ¢, is a ca-
nonical transformation if and only if there is a real number ¢
such that (P *», — cw,) = 0.

Only the particular case ¢ = 1 will be considered in the
following. It corresponds to the restricted canonical trans-
formations for Hamiltonian systems in the terminology of
the book by Saletan and Cromer,2° but we will omit the word
restricted.

A convenient characterization of the locally Hamilton-
ian vector fields which is also an immediate consequence of

. Theorem 4 is given next.

Theorem 6: Let (M,w,a) be a locally Hamiltonian pre-
symplectic system and i-:C—M the final constraint sub-
manifold. A vector field Xin M tangent to Cislocally Hamil-
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tonian relative to C if and only if the flow of X is a family of
canonical transformations of (M,0,a).

The fundamental result of this section concerns the re-
duction for a general presymplectic system to the case of a
canonical system which is given by the structure theorem of
the precedent section. In fact, the next theorem asserts that
the set of canonical transformations of a presymplectic sys-
tem can be seen as the set of canonical transformations of a
regular canonical system coisotropically imbedded.

Theorem 7: With the same notations as in Definition 7,
for each canonical transformation (D,4) between
(M,,0,,a,), k=12, if (P, ,C,.f2,) are their corresponding
regular canonical coisotropic systems given by Theorem 2,
there exists a symplectomorphism ¥ between them such that
¥ o j, =j, © ¢, with j, being the injections ji :C;,—P.

Proof: Let I, sz.a(Pz,.()z) be the coisotropic imbedding
to M., in (P,,02,), ky:(P2,02,)—(P,,42,) the symplectic subman-
ifold, and j,:C,#(P,,42,) the coisotropic imbedding given by
Gotay’s and Sniatycki’s theorems verifying k, ¢ j, =1, 0,
as in Theorem 3. (see Fig. 2.)

Now, the point is that the composite map j, © ¢:C,
w(P,f2,) is a coisotropic imbedding satisfying
(j,°9)*2, =¥ w,. In fact, a little computation gives
(j00)* 2, =¢* i w,=(P°i)*w, =it w, In order to
prove that j,o¢ is coisotropic, we must show that
TC1?:CTC,, where TC, denotes the set of tangent vectors
to C, through j,° ¢, that is, TC, = (j, © ¢),(TC,). Let
ueTCy™|,, where p=j,0(m,), ie, 2p)uy)=0,
YveTC, |,. If veTC, |,, there exists a tangent vector
v'eTC,|,, such that (j,°¢) (mpp'=v, so that
2y(mo) 4 &, (my)0') =0, wherem, = ¢ (m,),Vv'e T, C,,
or in the same way $2,(p)(w,j,, (Mm2)v") =0, Vv" € T, C,, be-
cause ¢ is a diffeomorphism. Then, u € TC 4% and from the
c01sotropy of C, we have that u € TC,; but TC, = TC, and

5 © §:C\x(P,,02,) is a coisotropic imbedding.

In this point the local uniqueness of Theorem 2 shows
that there exists a symplectomorphism ¥ from (P;,{2,), the
initial symplectic manifold where C, is coisotropically im-
bedded, into (P,,{2,), such that ¥ o j, =, © ¢, and the proof
ends.

Remarks: (i) The function ¥ is defified only locally on a
neighborhood of j,(C) in P, but taking this neighborhood as
the whole manifold the result still holds.

(i) This theorem shows the possibility of studying ca-
nonical transformations for presymplectic systems using
only their local structures as in Theorem 3. This simplifica-
tion permits development of the study of the group of ca-
nonical transformations and its subgroups, so in the follow-
ing sections we will use both points of view to deal with
canonical transformations for a presymplectic system. That
is, given a canonical transformation (®,4) between
(M,0,,a,) and (M,,w,,a,), we use without mention of it the

l/rFﬁ

W T -

1 2 FIG. 2. Diagram displaying the
i ‘ B i \Jg‘ B maps of Theorem 7.

oy

$
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associated canonical transformation (¥4 ) between the asso-
ciated coisotropic regular canonical systems (P;,C,,{2,) and
(P 2 C2’”2)'

(iii) It is also to be remarked that there are canonical
transformations between canonical regular systems that are
not symplectomorphisms. In fact, it is possible to consider
canonical transformations between two canonical regular
systems associated to presymplectic systems (M, ,w,,a;)
that are not symplectic transformations.

IV. THE GROUP OF CANONICAL TRANSFORMATIONS
FOR PRESYMPLECTIC SYSTEMS

Instead of dealing with presymplectic systems as indi-
cated in the preceding sections, there is an alternative way
which is called the reduction of the phase space.'” The
kernel of the presymplectic form w. = i% @ defines an invo-
lutive distribution and therefore it is integrable because of
the well-known Frobenius theorem. The maximal connected
integral submanifolds are the leaves of a foliation that gives
rise to an equivalence relation in C. Suppose we discard the
points o{ C, where w( fails to be of constant rank, and denote
7 :C—C the natural projection of C onto the quotient space.
Then, if 7¢ is a submersion, there exists a symplectic form &
defined on C such that 7¢ & = wc = /¢ o. It is defined by
means of &, (X ) 4 )=, (X,Y), where me Cyrc(m)=
and X, YeT,C, XYeT C are  related by
TemX)=Xme m(Y) = Y. The pair (C @) is called the re-
duced phase space.

This is the usual approach to the study of dynamical
systems with gauge degrees of freedom, as Yang-Mills
fields?"** and gravitational fields.”> In this scheme the ca-
nonical transformations are but symplectomorphisms of the
reduced structure. In this section both alternative definitions
will be related; we will prove that there is a canonical epi-
morphism of the group of generalized canonical transforma-
tions we have defined onto the group Sp(C, &) of symplecto-
morphisms of (C D).

In order to explain this deep relation we need some no-
tations referring to the group of (generalized) canonical
transformations and its more relevant subgroups, which we
present next.

We will denote GC (P,C) the set of canonical transfor-
mations for the coisotropic canonical system (P,C,{2 ) which
can be endowed with a group structure in the natural way.

There are a lot of important subgroups of this with
physical and mathematical meaning. For instance,
GS (P,C) = GC (P,C)nSp(P), whichisnot anormal subgroup
in the general case. Now, if 7:P—C denotes the above-men-
tioned projection, a very important subgroup of GS (P,C) is
made up by the elements that commute with 7 and leave
invariant the symplectic form 2. The set of such fibered
symplectomorphisms is a subgroup to be denoted FS (P,C),
and it has been studied for time-dependent systems in Ref.
24. In a similar way we can define FG (P,C ) as made up from
all fibered canonical transformations.

Wewilldenote TC (P,C ) the set of canonical transforma-
tions that are trivial on C. This set is a normal subgroup of
GC(P,C) and has a subgroup to 7TS(P,C)=TC(P,C)
nGS (P,C).
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The lattice of these subgroups as well as the relationship
between them are shown in the diagram below. The symbol
—means that the lower is normal in the upper one, and a
subgroup in the link of two means that it is the intersection of
both groups on the opposite edges

C(PC) SP(P)
TC(P,C )‘/G Tgs(PC) \/ F/G(P,C)

ISPPCY~prg (P,C

The group of the equivalence classes, GC(P,C})/
TC (P,C), will be denoted Can C and it is obvious that each
class [{®,¢)]eCan C is uniquely defined by ¢ e Diff C,
hence Can C is isomorphic to the group of those diffeomor-
phisms of C preserving the presymplectic structure
2. = j*0. Another related matter is to know whether it is
possible to choose a symplectic transformation of (P,£2) in
any class or not. All this and related questions will be dealt
with in next section.

The main theorem in this section is based on the follow-
ing proposition.

Proposition 2: Any canonical transformation (9,4 ) for
(P,C.2) leaves invariant the distribution defined by £2..

Proof: If ve T,, C is in ker 2-(m), X is a vector field
defined in a neighborhood of m in P such that X,, = v and
X ¢ €' (ker £2.), and we takeinto account that Cis coisotro-
picin P, wecan concludethat I" (ker 2.) = I"(TC" )and con-
sequently I'(ker £2) is generated by constraint first-class
functions; namely, fe «/(P,C} will exist such that
X, = 2 ~'(df) = X. A canonical transformation maps the
set of locally Hamiltonian vector fields tangent to C onto
itself and the subset of those corresponding to constraint
first-class functions on itself and  therefore
¢, ker 2. =ker 2.

Theorem 8: With the same notations as above, the map
¢ C—»C defined by ¢ o 1o = ¢ © ¢, is a symplectic map in
(C.22).

Proof: The map is well defined because the foliation de-
fined by ker .OC is invariant under ¢. Moreover, if we com-
pute 7% ¢ ‘.() we find the chain of identities 7% ¢ *0

=(go 17'C)"‘.() o*2.=02.= 17'"‘.() Now, 7 being a sub-
mersion, we can conclude that ¢ =1

Corollary 1: There is a canonical homomorphism p
between Can C and Sp(C 7] ) given by p(¢ } = ¢

Definition 8: The kernel of the homomorphism p will be
called the group ¥ of (P,C,£2 ) and is made up by the canoni-
cal transformations preserving every leaf of the foliation de-
fined by ker £2..

If 4 (P,C) is the set of Hamiltonian constraint first-class
vector fields in P over C, according to Gotay’s notation,?
namely, 4 (P,C)= {X,= 2 ~\(df)|fe Z(P,C)}, we can
write an exact sequence of Lie algebras as indicated by the
following theorem.

Theorem 9: With the above notations, the sequence

7,

0—4 (P,C )%, 4 (P,C)— £, (C )0
is exact. Here i, is the natural injection of 4 (P,C) in Z(C).
Proof: Notice that the vector fields in X, 4 (C) are 7¢
projectable and therefore 7, is well defined. The Hamilton-
ian  constraint first-class vector fields generate
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ker 2. = I'(TC") and they are mapped by 7, on the zero
vector field. Conversely, if a vector field X € %, 4(C) is
mapped by 7, on the zero vector field, each integral curve
is contained in a leaf of the foliation defined by ker 2., so X
isin I"(TC"*) and it belongs to 4 (P,C).

Corresponding to this exact Lie algebra sequence we
have another sequence of Lie groups

1-»% —Can C—Sp(C,2 }—1.

It is noteworthy that in the case of Yang-Mills fields,
the gauge group ¥ is a Lie Hilbert group and 4 (P,C ) is actu-
ally the Lie algebra of this group.?"?

V. GENERATING FUNCTIONS FOR GENERALIZED
CANONICAL TRANSFORMATIONS

The generating functions for canonical transformations
of Hamiltonian systems arise as associated to the Lagrangian
manifolds corresponding to the graph of the transformation
in a symplectic product space.'"'” If (P,,2,) and (P,,{2,) are
symplectic manifolds, a symplectic structure £2,, is defined
on the product manifold P, X P, by 2,, =7t 2, — 7% £2,,
where 7, :P, X P,—P; (i = 1,2) are the canonical projections.
Then ¢:(P,,02,}—>(P, © {2,) is a symplectomorphism if and
only if its graph is a Lagrangian submanifold of
(P, X Py,102,,)." 1726 Before trying to generalize the concept
of generating function we establish a similar property char-
acterizing the canonical transformations for presymplectic
systems.

Theorem 10: Let (P,,S,,12,), i = 1,2, be two canonical
regular systems. A pair of diffeomorphisms (D,¢ ), @:P,—P,,
¢:S,—S, is a canonical transformation if and only if (i)
@ oj, =j, o ¢, where j;:S;—P, are the imbeddings of the
submanifolds into the symplectic manifolds (P;,£2,); and (ii)
graph @ is an isotropic submanifold of (P, X P,,{2,,).

Proof: Let 1 denote the canonical injection i:
graph ¢—>S,XS, and i the canonical injection
i:graph @®—P; X P,. The map j:graph ¢—graph @ defined
by jix,é(x)=(jix), P(jlx)), Vxe€S, is such that
{1 XJ,) ¢ i=1i0°j. The map i © j:graph ¢—P, X P, is an im-
bedding and

(i 0 j)* 2y, =202, — D *2)).

Consequently (ioj)*2,,=0
X2, —P*2,)=0.

We recall that if k:I—P is an isotropic submanifold of
the symplectic manifold (P,{2 ), then k*2 =0, and if fis a
locally defined one-form such that 2 = d0, the one-form
k *@is closed and there will be a locally defined function S on
I with dS = k *6. Such a function S is called a generalized
generating function for the isotropic submanifold /. The im-
portant point to be remarked is that the generating function
for Lagrangian submanifolds describes the local structure of
these,!’ whereas the generalized generating functions for iso-
tropic submanifolds only partially describe such submani-
folds. We can, however, define generalized generating func-
tions for canonical transformations of presymplectic
systems in a similar way as in the classical case of canonical
transformations for Hamiltonian systems.

With the same notations as in Theorem 10, if %, and
% , are two neighborhoods in P, and P,, respectively, in

if and only if J¥
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which one-forms 8,, i = 1,2 are defined such that d6, = £2,,
the oneform O, ,=7%*0,—7%6, defined in
DU 3 = U X U, satisfies £2,, = dO,,. The relation between
8, and P *0, for a canonical transformation of (P,5,42 ) is giv-
en by the following theorem.

Theorem 11: Let &:P,—P, be a map such that there
exists ¢:5,—S, with @ o j, =j, o §. Then, we have the fol-
lowing.

(i) (P,¢ ) is a canonical transformation if and only if there
is a function G locally defined on graph¢ such that
({0 j)*6,, =dG.

(ii) (@,¢ ) is a canonical transformation if and only if there
is a function F locally defined on S, such that j¥
X0, — D *8,)= —dF.

(iii) In the case of (P,¢ ) being a canonical transforma-
tion, there exist connected neighborhoods 7" in S, and % in
graph ¢ such that G © p — F is constant, where p is the in-
verse of the restriction of 7, to %.

Proof: (i) The submanifold graph @ of P, X P, is isotrop-
icifand only if 0 = (i o j)*$2,, = d (i © j}*O,, and therefore iff
there exists a function G locally defined on a neighborhood
% in graph¢ for every point in graph¢ with
({0 j}*Orz0 =dG.

(ii) The canonicity condition j}{® *42, — £2,) = 0, when
restricted to %X %,, becomes the closedness of j¥
X(P*0, — 6,) on a neighborhood 7~ in S, such that
W) C % n® ~Y(%,). Itis equivalent to the local existence
of a function Fon ¥~ with

J®*6,— 6, = — dF.

(iii) Let p be the inverse map for the restriction of 7, to
graph ¢.

Then, p*dG =/},
G © p — Fis constant.

Definition 9: The functions F and G locally defined as
above on S, and graph ¢, respectively, will be called Poin-
caré and Weinstein generating functions for the canonical
transformation (D,¢ ).

These functions are but generalizations of the corre-
sponding concepts for Hamiltonian systems'”?* and they ad-
mit extensions to open neighborhoods in P, and graph @,
respectively, as shown in the following proposition.

Proposition 3: With the notations of Theorem 10, if
{€7}%_, is a set of independent functions defining 7" in P,
and {£}¥_, isanother defining ¢ (#")in P,, then we have the
following.

(i) The neighborhood % = p(?") in graph ¢ can be de-
finedin graph @by theset {7'}%_, ofindependent functions
givenby 7' = e+ 73 £,

i) There exists a function G
jop(?7)Cgraph @ such that *6,, . =
*G=0G.

(iii) There exists a function ' defined on a neighborhood
¥ of P, such that 7nC,=7,j*F=F, GOp—Fis con-
stant, and (P *6, — 0,)|c, = dFc,.

Proof: (i) Let (v,® (y)) be an element of graph &. Then,
from the identity

NP Y) = (7t &'+ 7% S0P W) = £ W) + (P )

— ®*@,)=dF and therefore

Eleﬁned on
dG\yeapns and
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it follows that 7(y,® (y)) =0 (i = 1,...,k) is equivalent to
ye? and @ (y)e @ (7).

(ii) Let G, be an arbitrary but fixed extension of G to
j(p(V ). Every extension G can be written as
G=G, +Z¢_.fim and therefore

*G=/*G. + _2 Vi o °j) =j*G. = G.

Finally, since j*(i*9,,) = j*dG and using Lagrange’s multi-
plier theorem, we can conclude that i*0,, 4, = dqu,

(iii) Let F, bedefinedas F, = G, © p, and defining Fon a
neighborhood 7 of § in P, by means of
F=F, +Z¥_,(f, o p)’, such a function F is such that
¥ F = F, and furthermore,

dF = dF+Zd(f-°p)§+2(ﬂ°p)d§ =d(Gop),

i=1
where the functions & and 5’ defining 7~ and ¢ (7”) have
been assumed to be chosen as £‘=7'© p. Finally, since
6, — P*Y)=dF =] dF we obtain (6, — @ *0,),5-
= dF -

Before ending this section we want to remark that even
if Fand G seem to play the same role as the classical Poincaré
and Weinstein generating functions, they only define locally
a symplectic transformation. The point is that in some cases
they define a global symplectomorphism @®:P,~P,. This
case was the one considered in Ref. 24 but it is not the general
case in which we are only capable of relating the coordinates
of the points in S, with those of S,. The next section is devot-
ed to explaining how to get the explicit form of ¢:5,—S,
from the generating function G (or G ) as well as to presenting
some remarkable results concerning the generating func-
tions F and G.

VI. LOCAL PROPERTIES OF GENERATING FUNCTIONS

In this section we will analyze the local reconstruction
of a generalized canonical transformation ¢ € Can C start-
ing from its Weinstein generating function, as well as its rela-
tion with the corresponding generating function in the re-
duced phase space. Let (P,,C;,{2;), with i= 1,2, be two
coisotropic regular systems. Then, it is to be remarked that if
(P,¢6) is a generalized canonical transformation between
(P,,C,,42,) and (P,,C,,02,), then graph ¢ is an isotropic sub-
manifold of (P, X P,,f2,,) while C, X C, is a coisotropic sub-
manifold. The canonical projection of C; on the correspond-
ing reduced space will be denoted 7, instead of the more
cumbersome notation 7. The reduced phase spacem
is but C X C2 and the projection on the reduced phase space
t&kcz is denoted IT:C,X Cz—f’x?z, which coincides
with 7, X77,. We also recall that if ¢ isa symPIectomomMSm
between (C,, 1)and (C {)2), the set graph ¢ is a Lagrangian
submanifold of (Cl X Cz,!)u) with .{212 defined usually as
!l,z = #¥ .(21 3 !)2, where 7, C, ><C2—>C1 (i = 1,2)is the
canonical projection. With these notations, we can state the
following proposition.

Proposition 4: Let G be a locally defined Weinstein func-
tion for the canonical transformation (®,¢ ). Then, there ex-
ists a Weinstein generating function G for the reduced sym-
plectomorphism ¢ C ——»Cz such that G = IT*G.

Carifiena et a/. 1967

Downloaded 14 Jul 2010 to 161.116.168.227. Redistribution subject to AIP license or copyright; see http://jmp.aip.org/jmp/copyright.jsp



Proof If 9 and 6, are locally defined one-forms such
that d6, = 2, and d6, = 2, the identity n¥* .(2 =7 {2, im-
plies that there are locally defined functions f; on neighbor-
hoods of the C;’s with 77* 6 =j¥ 8, + df;. If 6! is defined as
0; =6, +dmy f;, where 7;:P,—C; denotes the projection
along the fiber structure of P; over C;, then j* 8] =7} 0,.
Let G be the Weinstein generating function defined in Sec. V
using the one-form O, =#¥0; —a¥8;. The follow-
ing relation holds locally: 7*(j, XiR)*6 1, =dG. If iis
the natural inclusion of graph ¢ in C1 X CZ, we have

ioM=°7 and #, 01701—17, om (f=12). Conse-
quently, the one-form 8,, defined by 6,,= ¥ 01 710,

defines a generating function G such that 7 *dG = dG be-
cause

M+dG = H*;*élz =(n° 77'1)*91 -

=7*0 (j;Xj,)* ©1, =dG.

As a straightforward consequence we can state the fol-
lowing corollaries.

Corollary 2: In the same conditions as the above propo-
sition, we can find Poincaré generalized generating func-
tions for ¢ and ¢, respectively, that are related by F = 7} F

Corollary 3: Let % , be a coordinate neighborhood of a
point x, € C, in P, and (¢’,....¢", P1,---,P,) be Darboux co-
ordinates such that the equations p, = --- = p;, = 0 locally
define C,n% ,. Then, there is a Poincaré generating function
such that dF /d¢' =0, i = 1,...,k, for each canonical trans-
formation.

Proof: It is an obvious consequence of the form
F=nx} F because of the tangency of the vector fields
{8/04'}%_ | to the kernel of /* 2, in C,.

This fact is worthy of note: the generating functions F
do not depend on the gauge variables.

Before studying mixed generating functions for gener-
alized canonical transformations we introduce some nota-
tions. The neighborhoods of P; in which 8, is locally defined
will be denoted by %, (1 =1,2). By x; = (¢",-..¢" L1r--sD»)
we mean a set of canonical coordinates for % , such that the
set 77, = % nC, is defined by the vanishing of the first k p’s.

Lemma I: Let (% ,,x,) be a canonical neighborhood of
m, € C, as defined above. For every canonical transforma-
tion (®,¢ ) from (P,,C,,12,) to (P,,C,,42,), there exists a ca-
nonical neighborhood (%,x;) of ¢(m,) such that
67 )C%,CP(%,) and if x,=(Q",...,0",P,,....P,), we
have Q'o¢=¢, i=1.,n and P, ,°¢=p,
i=1,..n—k.

Proof: The point is that as @ is not a symplectomor-
phism, @ (% ,) is not a canonical neighborhood. We remark
that ¢ (7”,) C C, because ¢ (C,) C C,. There exists a canonical
neighborhood %’ of ¢ (mm,) in P, such that %’ = & (% ), but
what we need is that ¢ (¥",)C %' CP(%,), and it can be
found as follows: ¢ (7",) is a coisotropic submanifold of
(P,,42,) and we know that there is a tubular neighborhood %~
of ¢ (77,)in{P,,£2,) symplectomorphic to a tubular neighbor-
hood of the canonical coisotropic imbedding of ¢ (#7,). Then,
we can choose %, = @ (% ,)n% " and the coordinate func-
tions given by those of the coisotropic imbedding using the
identification by the local symplectomorphism, and on
#(7°,) the set of coordinates given by

(720 77'2)@2
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Q'=q'o¢ !, P, =p, o ¢ ~'. Thisis acanonical set satisfy-
ing the required conditions.
Instead of using the projection of graph ¢n(% ; X % ,) on

7", we can also project on other sets and in this way we can
define generating functions that are not of type I. The neigh-
borhood %, = % X %, is identified with an open set of
R?" X R?" via the map x, X x,. If we think of R?* XX R?" as the
product R"XR"XR"XR", each factor being labeled by a
number a = 1,...,4, the map that projects canonically in the
iXj factor will be called 7¥. So we can construct the follow-
ing six functions from % , to R*XR", {7¥ = 7¥ o (x, X x,)}.
This family of functions defines a family of functions para-
metrized with different sets of variables associated by the
Weinstein function defined on graph ¢ that we will denote
by F; = G(r*)~ ' when (%)~ ! exists. The first function F,, is
the coordinate representation of the usual Poincaré generat-
ing function for (®,4 ), and the last one, F,,, the Poincaré
generating function for (@ ~',¢ ~!). The other ones are the
generalized mixed generating functions of type (ij) for (9,4 )
and their main properties will be described in the theorem
below. There is an important point to be remarked here, on
the definition of the mixed generating functions F;. We have
pointed out that it is necessary that there exists (7/)~! and
this is equivalent to the fact that the submanifold graph ¢ in
P, X P, is transverse to the function 77; that is, denoting by
T (p) the set of points which are mapped in p € R* X R" by

5, T9p) = 17~ (p),p € /(% 1,), graph ¢ will be transverse in
the point (x,é (x)) € graph ¢ to 77 if

Tis ) graph @ ¢ T(x,.ﬂx;) T x4 (x) = Ty 4 ) [PLXPy).

If it occurs we will be able to parametrize locally the sub-
manifold graph ¢ (or graph @ } by means of the function 7%
and then there will exist 7% ~ ! Using these conditions in the
following we can state Theorem 12.

Theorem 12: With the notation defined above, if (D,¢ ) is
a canonical transformation from (P;,C,,£2,) to (P,,C,,2,), lo-
cally we have

= ki1,
aq'
P = _.aLl%, i=k+1,.,n,
aQ’

F; being the mixed generating function of type (1.3) for the
transformation.

Proof: The proof is a simple matter of computing the
coordinate expression of the Weinstein generating function.
That is, since

912=7T]*61— 92=zpidqi_zPiin’
i=1 i=1
then
dF,, = (7'13)_1* dG
~ ) Sp. de'— P, Q)
and then
gﬁ—p,, i=k+1,.n
'
and
IF 5 ,
_— =Pi’ i=k + 1,...’1.
aQ’
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Finally, by the construction of the canonical neighbor-
hood %, in P, we have that P, o¢=p,
i=k+1,.n0'0¢=4g,i=1,.,n.

There exists a similar theorem for each mixed function
F,,F,,, and F,,, and it is very interesting to notice that they
define locally the canonical transformation only for
{n — k)X (n — k)variables on the submanifold C,. In the par-
ticular case of the mixed function of type (1,4), the equations
before become

ﬂ =P
aq'
_9Fy

JP;
showing that the gauge ambiguity does not permit the com-
plete reconstruction of the transformation on the manifold
C, from the generating functions. o

The extended generating functions G,F, defined in Sec.

V, give locally a symplectomorphism (@,¢ ) such that it coin-
cides with ¢ in 7", but in general, as pointed out in Sec. IV, it
will not be possible to extend such a symplectomorphism toa
global one, and it will not be possible to construct smoothly a
set of such functions such that their graphs overlap correct-

ly.

i=k+1,..,n,

= Q‘., i=k “+ 1,...,”,

Vil. CONCLUSIONS

We have introduced the concept of canonical transfor-
mation that generalizes the concept introduced for regular
systems (see, e.g., Ref. 11), time-dependent systems,** and
canonical systems.® The generalization is based on Theorem
3 where the possibility of finding a symplectic manifold P in
an essentially unique way is shown, such that the final con-
straint submanifold C is coisotropically imbedded in P and
for any dynamical vector field I compatible with C thereisa
{no uniquely defined) vector field on P with the same restric-
tion on C (up to identification of C with its image). Further-
more, the result of Theorem 7 shows the possibility of study-
ing the canonical transformations using only their local
structure and the crucial point is that every canonical trans-
formation defines a symplectic transformation in the (sym-
plectic) reduced space and it is possible to define canonical
transformations of the presymplectic space that are trivial
on the quotient space; they will be called gauge transforma-
tions. In fact, if we start with a gauge theory as is usually
meant it will be a presymplectic system and the group of
gauge transformations as defined above coincides with the
gauge group of the theory.

It is remarkable that the equations of motion can now
be considered as a one-parameter family of canonical trans-
formations. Moreover, the equation for the determination of
the generating function is but the generalized Hamilton-Ja-
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cobi equation. These and other applications will be givenin a
subsequent paper.
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