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We develop a theory of canonical transformations for presymplectic systems, reducing this 
concept to that of canonical transformations for regular coisotropic canonical systems. In this 
way we can also link these with the usual canonical transformations for the symplectic reduced 
phase space. Furthermore, the concept of a generating function arises in a natural way as well as 
that of gauge group. 

I. INTRODUCTION 

Since the well-known Dirac's pioneer work 1 on con­
strained Hamiltonian systems, the interest in such theory 
has been growing because it provides an appropriate frame­
work to deal with many physical theories either for finite­
dimensional systems as time-dependent [or more generally 
(n-parameter)-dependent] systems, mechanical systems de­
fined by singular Lagrangians, etc., or infinite-dimensional 
systems exhibiting gauge invariance. A good test of the rel­
evance of these systems is the amount of papers trying to 
develop the mathematical framework for these systems, 
which has been shown to be that of presymplectic geometry, 
which has been possible thanks to the papers by Gotay,2 

Lichnerowicz,3 SniatyckV and others, to whom we apolo­
gize for omitting their names. For a recent review see, e.g., 
Ref. 5. 

The essential characteristic of these systems is the exis­
tence of contraint functions, limiting the possible values of 
the dynamical variables that Dirac classified in first and sec­
ond class according to the vanishing or not of their mutual 
Poisson brackets. This classification was motivated because 
the second-class constraints may be eliminated from the the­
ory up to a redefinition of Poisson brackets becoming now 
the so-called Dirac's brackets, and they may be considered 
as corresponding to spurious degrees offreedom. This aspect 
is really clarified when using appropriate coordinates as in­
dicated by Shanmugadhasan.6 

On the other hand, the invariance ofthe Poincare-car­
tan integral has also been proved to be a sound principle for 
the study of nondegenerate systems and it has motivated a 
recent paper7,8 devoted to the study of the Hamilton-Jacobi 
method for degenerate systems. Our experience with regular 
systems suggests for us to look for a concept generalizing 
that of canonical transformation, and it has been carried out9 

for regular canonical systems by making use of a generaliza­
tion of the Hwa-Chung theorem. 10 We aim in this paper to 
give a general concept of canonical transformation for any 
presymplectic system, as well as attempt to go deep in the 
analysis of this concept in order to characterize such trans­
formations, studying the group structure of such a set of 

canonical transformations, some remarkable subgroups (in 
particular, the subgroup of gauge transformations), and the 
theory of the corresponding generating functions, which fol­
lows the track of Weinstein's theory for symplectic sys­
tems. ll 

The paper is organized as follows: Section II is devoted 
to analyzing the structure of locally Hamiltonian presym­
plectic systems, and the main result of this section, given in 
Theorem 3, is that the study ofthe locally Hamiltonian pre­
symplectic systems can be done by means of its local struc­
ture coisotropic germ. The concept of canonical transforma­
tion for presymplectic systems is given in Sec. III and after a 
deep analysis it is shown that it is enough to consider the case 
of canonical regular systems because any other can be re­
duced to it. Section IV contains a study of the group struc­
ture of the set of canonical transformations. When the pro­
cess of reduction of the presymplectic system is carried out, 
the canonical transformations pass to the quotient and it 
singularizes the subgroup of canonical transformations, in­
ducing the identity in the quotient, called the gauge group. 
The concept of a generating function is introduced in Sec. V 
and Sec. VI is devoted to showing some interesting proper­
ties of the generating functions, which will be of interest to 
manage with in local coordinates. 

II. THE STRUCTURE OF PRESYMPLECTIC SYSTEMS 

The mathematical framework for a geometrical de­
scription of the Dirac's theory of constrained systemsl,12.13 
has been shown to be that of presymplectic dynamical sys­
tems.2-4.14.15 In this section we will analyze the local struc­
ture of such systems and it will be shown how it is possible to 
imbed a presymplectic manifold as a coisotropic submani­
fold of a symplectic manifold in which a family of locally 
Hamiltonian vector fields extending the dynamics of the 
original system can be constructed. This result is based on 
some theorems by Sniatycki4 and Gotay,16 which will be 
restated in order to make this paper more self-contained. 

Definition 1: A presymplectic manifold is a pair (M,w) 
where w is a closed two-form of constant rank on the differ­
entiable manifold M. If a is a closed one-form on M, the 
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triplet (M,w,a) is said to be a locally Hamiltonian presym­
plectic dynamical system. 

The Dirac-Bergmann theory of constrained systems 
corresponds to takingM = D'y (T *Q ) andw, the pullback to 
M, of the canonical two-form Wo on T*Q. HereD'y denotes 
the Legendre map D'y : TQ--T *Q, with Q the configuration 
space and .!i" the Lagrangian function which is assumed to 
be singular; that is, D'y is not a local diffeomorphism. Alter­
natively, we can consider in this case another presymplectic 
manifold (M = TQ,w'y = D ~ wo). 

There are a lot of other relevant presymplectic mani­
folds arising in physics. For instance, we can mention pa­
rameter-dependent systems where the mainfold Mis P xA 
with (p,n ) a symplectic manifold and A the parameter space. 
The closed two-form OJ is given by OJ = 1T*W, where 1Tdenotes 
the natural projection on the first factor 1T: P X A __ Po This is 
the case of the usual way of dealing with time-dependent 
systems. '7 

Given a locally Hamiltonian presymplectic dynamical 
system, the constraint algorithm, developed by Gotay et 
al.,2,'4-'6.'8 provides a method for obtaining a maximal sub­
manifold C, called the final constraint submanifold, for 
which the equation 

t(r)wle = ale (2.1) 

is meaningful, and it is possible to endow a with a dynamical 
sense. The vector field r is not uniquely defined and this 
ambiguity corresponds to what is usually called gauge free­
dom.2.'s 

When dealing with Dirac's constrained Hamiltonian 
systems, the functions locally defining this final constraint 
submanifold are both the primary constraints defining 
MC T*Q and the secondary constraints. But Dirac gave a 
new classification of constraints in first and second class de­
pending on the possibility of eliminating the ambiguity in the 
corresponding mUltiplier in the expression of the total Ha­
miltonian. In the general case constraints of both classes can 
appear, but Sniatycki proved4 that it is possible to imbed 
coisotropically the final constraint submanifold C in a sym­
plectic manifold, in the very general case of C defining a 
regular canonical system, and the second-class constraints 
are eliminated. 

Definition 2: Let (p,n) be a symplectic manifold andj: 
C~ P a submanifold of P. Then (p,C,n ) is said to be a regular 
canonical system ifker j* nnTC is a subbundle of the tangent 
bundle TC. 

Theorem 14: Let (p,C,n ) be a regular canonical system. 
If C is a closed submanifold of P, there exist a symplectic 
submanifold of(p,n), k: (i,n )~(p,n ), and a coisotropic im­
beddingofCinto(P,n ),1: (Cj*n )~(p,n ),suchthatk 0 1= j. 

The existence of a symplectic manifold (p,n ) containing 
C may be forgotten for the presymplectic case if we make use 
of the coisotropic imbedding theorem recently given by Go­
tay.'6 

Theorem 2: Let (M,w) be a presymplectic manifold. 
Then, we have the following. 

(i) There exists a symplectic form n on a tubular neigh­
borhood of the zero section of the dual bundle E * of the 
characteristic bundleE of (M,w), whereM can be coisotropi­
cally imbedded. 
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(ii) Any two coisotropic imbeddings of (M,w) are locally 
equivalent: ifj; (M,w)--+(p;,n;), i = 1,2, are two of such coi­
sotropic imbeddings, there exist two neighborhoods 
U; = 1,2, of j;(M) in P; and a symplectomorphism 
t/J: U,--U2 such that t/J * n2 = n, and t/J OJ, = j2' 

We introduce next some definitions and notations we 
are going to use concerning functions and one-forms defined 
on a symplectic manifold (p,n ). 

Definition 3: Let Cbe a submanifold of(P ,n ). A function 
f E crt 00 (P) is said to be a constraint function for C if fl C is 
constant, and the set of such functions will be denoted 
C (P,C). A functiong E crt (P,C) is called a first-class function 
if [f,gJ IC=O V fE crt(P,C), and we will write ~(P,C) for the 
set of all first-class functions. Finally, the first-class con­
straint functions are those of ~ (P,C)ncrt (P,C), and the corre­
sponding set will be denoted d(P,C). 

Here [ , J will denote the Poisson bracket defined on 
the set A '(P) of one-forms by the form n as follows: 
[a,/3 J = a [a -'(a),a -'1./3)] for any pair of one-forms 
a,/3 E A '(P). The map a:x(p ) __ A '(P) is defined by contrac­
tion with n,a (X) = t(X)n. Whenfand~ are func!ions, the 
Poisson bracket is defined by [f,g J = n (n -'(df),n -'(dg)). 
The concepts of constraint and first-class functions can be 
generalized for one-forms on P as follows. 

Definition 4: A one-form a E A '(P) is a constraint one­
form for C ifj*a = O,j being the immersionj: C~P. The set 
oftheseone-formswillbedenotedC '(P,C). The one-form Pis 
a first-class one-form ifj* [a,/3 J = 0, Va E C '(P,C), and the 
set of all such one-forms will be writtenB '(P,C). Finally, by 
A '(P,C)wewilldenotethesetA '(P,C) = B '(P,C)nC'(P,C) 
of the first-class constraint one-forms. 

Proposition 1: With the above notations, we have the 
following. 

(i) dd(P,C)CA '(P,C)nZ'(P), 

d~(P,C)CB '(P,C)nZ lIP), 

dcrt (P,C) C C '(P,C)nZ '(P). 
(ii) If (C,j*n )~(p,n) is a coisotropic imbedding, then 

C'(P,C)nZ'(P)CB '(P,C)nZ lIP) and therefore 
A '(P,C)nZ lIP) = C '(P,C)nZ '(P). 

Proot(i) IffE crt(P,C)thenj* df= d(j*f) = Oandthere­
fore dfE C '(P,C)nZ '(Pl. Moreover, if g E ~(P,C), then 
j* d [f,g J = 0 and therefore j* [df,dg J = O. But it implies 
that j* [a,dg J = 0 for any a E C '(P,C)nZ '(P) because of the 
local existence of a neighborhood and a functionf E crt (P,C) 
such that a = dfaccording to the relative Poincare lemma.9 

(ii) If a E C '(P,C )nZ '(P), the lemma of Poincare shows 
that there is a function f (only locally defined) such that 
df = a and thenj* a = 0 implies thatj*fis constant on the 
neighborhood 'Y where f was defined. Now, if 
pE C '(P,C)nZ lIP) andgis a function (locally defined) such 
that I' = dg, and g E crt(P,C), we see that 
j* [a,/3 J = j*[df,dgJ = j* d [f,gJ = dj* [f,gJ. If Cis coiso­
tropically imbedded in P, crt (P,C) C ~ (P,C) and therefore 
j* [f,gJ = 0, which impliesj* [a,/3 J = O. In order to prove 
that j* [a,/3 J = 0, VI' E C '(P,C), we remark that 
C '(P,C)nZ '(P)generateslocallyC '(P,C)asaCOO (P)module 
and for every I' E C '(P,C) there exist b; E Coo (P) and 
f; E crt(P,C) such that I' can be written as I' = ~b; dp. 
Then, using the identity {a,hrJ =Xa(h)r+h [a,rJ, 
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Vh e coo (P), a,reA I(P), withXa = iJ -I(a), we find that 
for every a e C I(P,C)nZ I(P) and f3 E C I(P,C), 

{a,/3} = {a,Ib; dP} = IXa(b;)dP + Ib;{a,dp} , 

and therefore 

The main goal of this section is the following theorem. 
Theorem 3: Let (M,w,a) be a locally Hamiltonian pre­

symplectic system and i:C~M the final constraint submani­
fold. There exist a symplectic manifold (p,n ) and a coisotro­
pic imbeddingj:C~P such thatj*n = i·w and we have the 
following. 

(i) For each vector field r on M, tangent to C, satisfying 
L(r)liJlc = alc, there is a locally Hamiltonian vectorfieldrs 
on P, tangent to C, such that ric = r slc ' 

(ii) The vector fields rs associated to the dynamical sys­
tem r satisfying the above conditions are given by 

r s =iJ- I(ap +5"), (2.2) 

where ap is a closed one-form on P such thatj·ap = i·a, 
and 5" any closed first-class constraint one-form on P for C, 
5" E A I(P,C)nZ I(P). 

(iii) (local uniqueness) The coisotropic imbedding and 
the family 

D(P,C) = {iJ -I(ap +5")I5"eA I(P,C)nZl(P)} 

are locally unique. 
Here local uniqueness means that ifl:C~P' is another 

coisotropic imbedding, there will exist a family of locally 
Hamiltonian vector fields 

D(P',C) = {iJ,-I(ar +5")I5"EA 1(P',C)nZI(P'), 

ar E Z I(P')}, 

and a local symplectomorphism t/J from a neighborhood of 
j(C) in P in a neighborhood of l(C) in P' such that 
l 0 t/J = t/J 0 j and maps D (P,C) on D (P' ,C). 

Proof" According to Theorem 2, there is a symplectic 
manifold (p,il ) and a coisotropic imbedding 1:(M,w)~(p,il). 
On the other hand, if (C,i*w) is the presymplectic manifold 
which is obtained from application of the constraint algo­
rithm, Theorem 2 furnishes a new symplectic manifold 
where (C,i*w) is coisotropically imbedded. Letjz denote such 
an imbeddingjz:C-+Pz. The relation between both symplec­
tic structures is given by Theorem 1. We can also see C as a 
submanifold J:C-+P I with J = I 0 i and then Theorem 1 as­
serts the existence of a symplectic submanifold 
k:(P3,n3)-+(p,il) and a coisotropic imbedding 
j3:(C,i·w)-+(P3,n3) such that k 0 j3 = J. The local uniqueness 
part of Theorem 2 leads to the existence of a symplectomor­
phism t/J of a neighborhood ofj3(C) in P3 on a neighborhood 
ofjz(C) in Pz' If(p,n ) is any of such neighborhoods andj the 
corresponding immersion of C in P, we have a coisotropic 
imbedding of C in (p,n ). (See Fig. 1.) 

In order to prove the points concerning the dynamics, 
we remark that both (F,il ) and (p,n ) are neighborhoods of 
the zero sections of vector bundles over M and C, respective­
ly. Let 1Tk,1Tj, and 1T1 be the corresponding projections 
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FIG. 1. Diagram of the coisotropic imbed­
ding. 

1Tk:P-+P, 1Tj :P-+C, 1T1:P-+M, verifying 1Tk 0 k = idp , 

1T1 0 1= idM , and 1Tj oj = idc. Let ra be a vector field in M 
tangent to C verifying the dynamical condition (2.1), i.e., 
L(ra )liJlc = alc' From the relation k 0 j = 10 i we see that 
the images of the manifold C under I 0 i and k 0 j are con­
tained in I(M) and kIP), respectively, and then 
C = I 0 i(C) C 1 (M)nlc (P )= W. We define a vector field in 
I(M)by/.ra and take its restriction to W, that it is not neces­
sarily tangent to W but it will be tangent to C because the 
tangency of ra to C implies that there exists a vector field 
r~ in C such that i. r~ =ro and therefore I.ro 
= (1 0 i). r ~ is tangent to C. The map 1Tk :k (P )-+P is a dif-

feomorphism, so that it is meaningful to take the restriction 
of1Tk to W = I (M)nlc (P)anddefinethevectorfield1Tk. (/.ro) 
(the respective restrictions of I. and 1Tk to Ware under­
stood). We remark that1Tk.l.ro is tangenttoCinPbecause 
if we take the vector field r ~ in C as above and compute 
1Tk.l.ro we find that 1Tk.l.ro = j. r ~. It is now easy to 
see that the vector field 1T k. I. ro defined in a submanifold of 
P satisfies on it the equation L(1Tk. I.ro)n = ap with 
a p = k· tr1' a. In fact, the following computation shows 
that we can associate the vector field Xap = iJ -I(ap) with 
ro because 

L(1Tk.l.ro)n (Y) = k *n l(1Tk.l.ro,Y) 

= (1T1 0 k) .W((1Tk 0 /).ro,Y) 

= w(Fo ,(1T1 0 k). Y) 

= L(ra )W(1T1 0 k). Y = ap(Y). 

The vector field Xs = iJ -1(5) corresponding to an ele­
ment of A I(P,C)nZ I(P) is tangent to C and is such that 
XslC E ker i·w, and consequently the vector field Xap + Xs 
is a solution of the dynamical equation, too. Therefore, by 
addition of vector fields Xs with 5" E A I(P,C)nZ I(P) to the 
vector field Xap we obtain vector fields in P tangent to C. 
Noteworthy is that if r l is another vector field in M satisfy­
ing the dynamical equation, then the difference (r l - ra )Ic 
lies in ker i·w and therefore 1Tk.jl.rl = 1Tk.jl.ro + X s' 
with 5" E A I(P,C)nZ I(P). Actually ker i·w 
= 1Tj• iJ -I(A I(P,C)Z I(P)), because !he closed first-class 
constraint one-forms generate via n - I the submodule 
r(TCl

) of~(P,C) = {XE~(P)IXlc Er(TC)}. 
As far as the local uniqueness is concerned we must 

prove that given two coisotropic imbeddings jl,jz into two 
symplectic manifolds (p;,n;), i = 1,2, there will be a local 
symplectomorphism t/J:P c+Pz mapping locally Hamiltonian 
vector fields on PI in locally Hamiltonian vector fields on Pz 
and t/J 0 jl = jz. Now, let (p,n) be a symplectic manifold 
where the final constraint manifold is coisotropically imbed-
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ded, obtained from any symplectic manifold (S,u) in which 
(M,w) is imbedded. 

The local uniqueness part of the statement of Theorem 2 
says that any two coisotropic imbeddings are locally equiva­
lent and consequently the two symplectic manifolds we will 
obtain, either from (M,w) using (S,u) or from (C,i*w) using 
the coisotropic imbedding theorem, have to be locally sym­
plectomorphic. The second assertion of the statement fol­
lows from the fact that any symplectomorphism preserves 
the locally Hamiltonian character of the vector fields, and 
from the condition t/J 0 jl = j2' which says that t/J transforms 
constraint one-forms into constraint one-forms; and, as we 
have shown that C l{p,C)nZ I{P,C) = A I{P,C)nZ l{p,C), the 
proof ends. 

Definition 5: If (P,C,fJ) is a regular canonical system 
such that the immersionj is a coisotropic imbedding we will 
say that (P,C,fJ) is a regular canonical coisotropic system. 

The preceding results can also be presented in a different 
language using the concept oflocal manifold pair, as Wein­
stein does, 19 or that of a germ of a manifold as a submanifold 
of another one; that is, if C is a submanifold of M and (M,C) a 
pair of manifolds, we will say that (M',C) is equivalent to 
(M,C) if there is another pair (M ",C) such thatM " is an open 
submanifold of both M and M'. An equivalence class of pairs 
of manifolds is called a local manifold pair or germ of C in M 
and will be denoted [M,C]. A map between two germs is 
defined by an equivalence class of maps. This equivalence is 
defined as follows: two maps/; :{MjOC )-(M;,C '), i = 1,2 are 
said to be equivalent if there exists a map 
g:{M3'C )-(M 3'C') such that M3 is an open submanifold of 
both MI and M 2, and M 3 is an open submanifold of M; and 

M~ withhlM3 =h.IM3 =g. 
A germ [P,C] is said to be coisotropic if (P,C) is a pair 

where C is a coisotropic submanifold of the symplectic mani­
fold (P,fJ). We can consider the category with objects the 
germs [P,C] and morphisms the symplectic maps between 
germs[t/J ]:[P,C]-+[P ',C']. Wewillsaythatagerm[P,C]isthe 
local structure germ for a presymplectic germ if it verifies the 
universal property of being an initial object in this category, 
i.e., for every [P',C] there is amorphism [t/J ]:[P,C]-+[P',C'] 
such that t/Jlc = idc. With this language Theorem 3 can be 
restated as follows: For every locally Hamiltonian presym­
plectic system (M,w,a), there exists a local structure germ 
[P,C], with C the final constraint manifold for (M,w,a). It is 
uniquely defined and there is on it a family oflocally Hamil­
tonian vector fields furnishing a dynamical description of 
the system. 

III. CANONICAL TRANSFORMATIONS FOR 
PRESYMPLECTIC SYSTEMS 

The traditional concept of canonical transformations 
for Hamiltonian dynamical systems as symplectomor­
phisms has recently been generalized9 for application to re­
gular canonical systems (P,S,fJ ). The definition of canonical 
transformation depends on the choice of a particular kind of 
vector field, called locally weakly Hamiltonian fields relative 
to (P ,s,fJ ), and therefore depends on the immersion of S in 
the ambient manifold P. We aim to find a generalization of 
the concept of canonical transformation for a presymplectic 
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system with no reference to an ambient symplectic manifold 
containing it, that it will reduce to that proposed in Ref. 9 in 
the case of a regular canonical system. Moreover, we will 
prove, by making use of the results of the preceding section, 
that the general problem of studying the canonical transfor­
mations of a presymplectic system can be reduced to that of 
the canonical transformations of a regular canonical system 
(P,C,fJ). 

Definition 6: Let (M,w,a) be a locally Hamiltonian pre­
symplectic system and let ic:CvtM be the final constraint 
submanifold. A vector field X e x(M) is said to be a locally 
Hamiltonian vector field relative to C if (i) X is tangent to C, 
X lc er(TC) and (ii) there exists a closed one-form 
P e Z I(M) such that 

i~{L(X)W-P)=O. (3.1) 

The set of such vector fields will be denoted XLH (M,C). 
It is to be remarked that the condition (ii) is weaker than 
L(X )wlc = PIC and any vector field X satisfying this equation 
will satisfy (3.1), too. As an example, the dynamical vector 
fields provided by the Constraint algorithm are locally Ha­
miltonian vector fields relative to C. On the other hand con­
dition (ii) is equivalent to i~ Lxw = O. 

As a corollary of the theorems of Ref. 9 we can write 
down the generalization of the Hwa-Chung theorem for pre­
symplectic systems. 

Theorem 4: Let (M,w,a) be a locally Hamiltonian pre­
symplectic system with final constraint submanifold ic :Cvt 
M and rank (i~ w) = 2r. If peAP(M) is such that 
11:(LxP) = 0, 't/X e XLH{M,C), then we have the following. 

(i) 11: P = 0 if p > 2r or p = 21 + 1 with I< r. 
(ii) Ifp = 21, l<r, there exists a functionfe C"" (M) such 

that 11:1J3 - f w A I) = 0 and i~ f is constant on each connect­
ed component of C. 

In this context the concept of canonical transformation 
generalizing that of Ref. 9 is the following one. 

Definition 7: Let (Mk,wk,ak ), k = 1,2, be two locally 
Hamiltonian presymplectic systems and ik :Ck-+Mk the cor­
responding final constraint submanifolds. A pair (4J,t/J) of 
diffeomorphisms 4J:MI-+M2 and t/J:CI-+C2 is said to be a 
canonical transformation between (MI,wl,a d and (M2,w2,a2) 
if (i)4J 0 i l = i2 0 t/J and (ii) 4J.(XLH(MI,CI))CXLH(M2,C2)' 

A characterization of a canonical transformation for 
such systems, which is a straightforward consequence of the 
former theorem, is given by the following. 

Theorem 5: A pair (4J,t/J) of diffeomorphisms 
4J:MC .. M 2 and t/J:CI-+C2, such that 4J 0 i l = i2 0 t/J, is a ca­
nonical transformation if and only if there is a real number C 

such that iT(4J *W2 - CW I) = O. 
Only the particular case C = 1 will be considered in the 

following. It corresponds to the restricted canonical trans­
formations for Hamiltonian systems in the terminology of 
the book by Saletan and Cromer,20 but we will omit the word 
restricted. 

A convenient characterization of the locally Hamilton­
ian vector fields which is also an immediate consequence of 
Theorem 4 is given next. 

Theorem 6: Let (M,w,a) be a locally Hamiltonian pre­
symplectic system and ic :C-+M the final constraint sub­
manifold. A vector field X in M tangent to C is locally Hamil-
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tonian relative to C if and only if the flow of X is a family of 
canonical transformations of (M,w,a). 

The fundamental result of this section concerns the re­
duction for a general presymplectic system to the case of a 
canonical system which is given by the structure theorem of 
the precedent section. In fact, the next theorem asserts that 
the set of canonical transformations of a presymplectic sys­
tem can be seen as the set of canonical transformations of a 
regular canonical system coisotropically imbedded. 

Theorem 7: With the same notations as in Definition 7, 
for each canonical transformation (tP,¢ ) between 
(Mk,wk,ak), k = 1,2, if (Pk,Ck,nk) are their corresponding 
regular canonical coisotropic systems given by Theorem 2, 
there exists a symplectomorphism I/'between them such that 
I/' 0 jl = j2 0 ¢, withjk being the injectionsjk :Ck---+Pk' 

Proot Let 12:M2Uf(P2,iJ2) be the coisotropic imbedding 
toM2 in (P2,iJ2), k2:(P2,n2)---+(P2,iJ2) the symplectic subman­
ifold, andj2:C2Uf(P2,n2) the coisotropic imbedding given by 
Gotay's and Sniatycki's theorems verifying k2 0 j2 = 12 0 i2 
as in Theorem 3. (see Fig. 2.) 

Now, the point is that the composite map j2 0 ¢:CI 
Uf(P2,n2) is a coisotropic imbedding satisfying 
U2 0 ¢ )*fl2 = it WI' In fact, a little computation gives 
U2 0 ¢ )*n2 = ¢ * ;1 W2 = (tP 0 i l)* W2 = it WI' In order to 
prove that j2 0 ¢ is coisotropic, we must show that 
TCtn2 CTCI , where TCI denotes the set of tangent vectors 
to CI through j2 0 ¢, that is, TCI = V2 0 ¢ ). (TCd. Let 
U E TCf02 Ip, where p = j2 0 ¢ (m l ), i.e., n2(p)(U,V) = 0, 
'fIv E TCI Ip. If v E TCI Ip, there exists a tangent vector 
v' E TCdm, such that U2 0 ¢). (mdv' = v, so that 
n 2(m2)(uj2.¢.(m l )v') = 0, wherem2 = ¢ (ml)' 'fIv' E Tm, CI, 
or in the same way n 2(P)(uj2. (m2)v") = 0, 'fIv" E T m2 C2, be­
cause ¢ is a diffeomorphism. Then, U E TC in2, and from the 
coisotropy of C2 we have that U E TC2; but TC2 = TCI and 
j2 0 ¢:CI Uf(P2,n2) is a coisotropic imbedding. 

In this point the local uniqueness of Theorem 2 shows 
that there exists a symplectomorphism I/' from (PI,nd, the 
initial symplectic manifold where CI is coisotropically im­
bedded, into (P2,n2), such that I/' 0 jl = j2 0 ¢, and the proof 
ends. 

Remarks: (i) The function I/'is defi~ed only locally on a 
neighborhood of j I (C) in P, but taking this neighborhood as 
the whole manifold the result still holds. 

(ii) This theorem shows the possibility of studying ca­
nonical transformations for presymplectic systems using 
only their local structures as in Theorem 3. This simplifica­
tion permits development of the study of the group of ca­
nonical transformations and its subgroups, so in the follow­
ing sections we will use both points of view to deal with 
canonical transformations for a presymplectic system. That 
is, given a canonical transformation (tP,¢) between 
(MI,wl,a l) and (M2,w2,a2), we use without mention of it the 

1965 

FIG. 2. Diagram displaying the 
maps of Theorem 7. 
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associated canonical transformation (I/',¢ ) between the asso­
ciated coisotropic regular canonical systems (PI,CI,n l) and 
(P2,C2,n2)· 

(iii) It is also to be remarked that there are canonical 
transformations between canonical regular systems that are 
not symplectomorphisms. In fact, it is possible to consider 
canonical transformations between two canonical regular 
systems associated to presymplectic systems (Mk,wk,ak) 
that are not symplectic transformations. 

IV. THE GROUP OF CANONICAL TRANSFORMATIONS 
FOR PRESYMPLECTIC SYSTEMS 

Instead of dealing with presymplectic systems as indi­
cated in the preceding sections, there is an alternative way 
which is called the reduction of the phase space. 17

•
19 The 

kernel of the presymplectic form We = i~ W defines an invo­
lutive distribution and therefore it is integrable because of 
the well-known Frobenius theorem. The maximal connected 
integral submanifolds are the leaves of a foliation that gives 
rise to an equivalence relation in C. Suppose we discard the 
points of C, where We fails to be of constant rank, and denote 
11" e :C---+C the natural projection of C onto the quotient space. 
Then, if 11" e is a submersion, there exists a symplectic form 01 
defined on C such that ~ 01 = We = ;~ w. It is defined by 
means of 01", (X,Yj = ~mlX,y), Awhere mE C,11"c(m) = m 
and X,YE TmC, X,YE T",C are related by 
11"e mIX) = X,11"e m(Y) = Y. The pair (C,w) is called the re-• • 
duced phase space. 

This is the usual approach to the study of dynamical 
systems with gauge degrees of freedom, as Yang-Mills 
fields21

•
23 and gravitational fields. 23 In this scheme the ca­

nonical transformations are but symplectomorphisms of the 
reduced structure. In this section both alternative definitions 
will be related; we will prove that there is a canonical epi­
morphism of the group of generalized canonical transforma­
tions we have defined onto the group Sp(C,w) of symplecto­
morphisms of (C,w). 

In order to explain this deep relation we need some no­
tations referring to the group of (generalized) canonical 
transformations and its more relevant subgroups, which we 
present next. 

We will denote GC (P,C) the set of canonical transfor­
mations for the coisotropic canonical system (p,C,n ) which 
can be endowed with a group structure in the natural way. 

There are a lot of important subgroups of this with 
physical and mathematical meaning. For instance, 
GS(P,C) = GC(P,C)nSp(P), which is not a normal subgroup 
in the general case. Now, if 11":P---+C denotes the above-men­
tioned projection, a very important subgroup of GS (P,C) is 
made up by the elements that commute with 11" and leave 
invariant the symplectic form n. The set of such fibered 
symplectomorphisms is a subgroup to be denoted FS (P,C), 
and it has been studied for time-dependent systems in Ref. 
24. In a similar way we can define FG (P,C) as made up from 
all fibered canonical transformations. 

We will denote TC (P,C) the set of canonical transforma­
tions that are trivial on C. This set is a normal subgroup of 
GC(P,C) and has a subgroup to TS(P,C) = TC(P,C) 
nGS(P,C). 
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The lattice of these subgroups as well as the relationship 
between them are shown in the diagram below. The symbol 
1---1 means that the lower is normal in the upper one, and a 
subgroup in the link of two means that it is the intersection of 
both groups on the opposite edges 

~C(PC)__ ~SP(P) 
TC(PC~ GS(P,C)....... FG(P,C) 

, .......... ,/ '-FS(P,C)/ 
TS (P,C p.-.,..FTS (P,C r 

The group of the equivalence classes, GC(P,C)I 
TC (P,C), will be denoted Can C and it is obvious that each 
class [((/),¢)] e Can C is uniquely defined by ¢ e DiffC, 
hence Can C is isomorphic to the group of those diffeomor­
phisms of C preserving the presymplectic structure 
I1c = j*l1. Another related matter is to know whether it is 
possible to choose a symplectic transformation of (P,11 ) in 
any class or not. All this and related questions will be dealt 
with in next section. 

The main theorem in this section is based on the follow­
ing proposition. 

Proposition 2: Any canonical transformation ((/),¢) for 
(P,C,11 ) leaves invariant the distribution defined by I1c. 

Proot If ve Tm C is in ker l1c(m), X is a vector field 
defined in a neighborhood of min P such that Xm = v and 
X IC e r (ker I1c ), and we take into accountthat Cis coisotro­
picinP, we can conclude thatr (ker I1cl = r(TCl 

) and con­
sequently r(ker I1cl is generated by constraint first-class 
functions; namely, fe d(P,C) will exist such that 
X, = h -I(df) = X. A canonical transformation maps the 
set of locally Hamiltonian vector fields tangent to C onto 
itself and the subset of those corresponding to constraint 
first-class functions on itself and therefore 
¢. ker I1c = ker I1c. 

Theorem 8: With the same notations as above, the map 
¢:C-+C, defined by ¢ 0 1T C = 1T C 0 ¢, is a symplectic map in 
(C,h). 

Proot The map is well defined because the foliation de­
fined by ker I1c is invariant under ¢. Moreover, if we com­
pute 111: ¢ * iJ we find the chain of identities 111: ¢ * iJ 
= (¢ o1Tc!*h = ¢ *l1c = I1c = 1T*iJ. Now, 1Tbeing a sub­

mersion, we can conclude that ¢ * h = iJ. 
Corollary 1: There is a canonical homomorphism p 

between Can C and Sp(C,h ) given by p(¢ ) = ¢. 
Definition 8: The kernel of the homomorphism p will be 

called the group f§ of (P,C,11 ) and is made up by the canoni­
cal transformations preserving every leaf of the foliation de­
fined by ker I1c. 

If A (P,C) is the set of Hamiltonian constraint first-class 
vector fields in P over C, according to Gotay's notation, 2 

namely, A (P,C) = {X, = h -I(df)lfe d(P,Cll, we can 
write an exact sequence of Lie algebras as indicated by the 
following theorem. 

Theorem 9: With the above notations, the sequence 
i. 1Tc. 

~A (P,C )-+XLH (P,C )-+XLH (C)-+O 

is exact. Here i. is the natural injection of A (P,C) in x(C). 
Proot Notice that the vector fields in XLH (C) are 1T c 

projectable and therefore 1T c. is well defined. The Hamilton­
ian constraint first-class vector fields generate 
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ker I1c = r (TCl 
) and they are mapped by 1T c. on the zero 

vector field. Conversely, if a vector field X e XLH (C) is 
mapped by 1T c. on the zero vector field, each integral curve 
is contained in a leaf of the foliation defined by ker 11 c' so X 
is in r (TCl 

) and it belongs to A (P,C). 
Corresponding to this exact Lie algebra sequence we 

have another sequence of Lie groups 

l-+f§-+Can C-+Sp(C,iJ}-+l. 

It is noteworthy that in the case of Yang-Mills fields, 
the gauge group f§ is a Lie Hilbert group and A (P,C) is actu­
ally the Lie algebra ofthis group.2l,2S 

v. GENERATING FUNCTIONS FOR GENERALIZED 
CANONICAL TRANSFORMATIONS 

The generating functions for canonical transformations 
of Hamiltonian systems arise as associated to the Lagrangian 
manifolds corresponding to the graph of the transformation 
in a symplectic product space. 11,17 If (PI,I1I) and (P2,112 ) are 
symplectic manifolds, a symplectic structure 1112 is defined 
on the product manifold PIX P2 by 11 12 = tr1' 11 I - 1T'f 112, 
where 1Ti :PI XP2-+Pi (i = 1,2) are the canonical projections. 
Then ¢:(PIJI1 I )-+(P2 0112) is a symplectomorphism if and 
only if its graph is a Lagrangian submanifold of 
(PI xP2,l1d. I 1,17,26 Before trying to generalize the concept 
of generating function we establish a similar property char­
acterizing the canonical transformations for presymplectic 
systems. 

Theorem 10: Let (Pi ,si,I1J, i = 1,2, be two canonical 
regular systems. A pair of diffeomorphisms ((/),¢ ), (/):P I-+P2' 
¢:SI-+S2 is a canonical transformation if and only if (i) 
(/) 0 jl = j2 0 ¢, where ji :Si-+Pi are the imbeddings of the 
submanifolds into the symplectic manifolds (Pi ,I1/); and (ii) 
graph (/) is an isotropic submanifold of (PI xP2,1112). 

Proot Let t denote the canonical injection t: 
graph ¢-+S I X S2 and i the canonical injection 
i:graph (/)-+PI XP2• The map j:graph ¢-+graph (/) defined 
by j(x,¢(x))=(jl(x), (/)(jI(X)), 't/xeSI is such that 
VI Xj2) 0 t = i 0 j. The map i 0 j:graph ¢-+PI XP2 is an im­
bedding and 

(i 0 j)*1112 = 1T(111 - (/) *112). 

Consequently (i 011*11 12 = 0 if and only if 1T 
X(I1 I -(/)*112)=0. 

We recall that if k:I-+P is an isotropic submanifold of 
the symplectic manifold (P,I1), then k *11 = 0, and if 0 is a 
locally defined one-form such that 11 = dO, the one-form 
k *0 is closed and there will be a locally defined function S on 
I with dS = k *0. Such a function S is called a generalized 
generating function for the isotropic submanifold 1. The im­
portant point to be remarked is that the generating function 
for Lagrangian submanifolds describes the local structure of 
these, II whereas the generalized generating functions for iso­
tropic submanifolds only partially describe such submani­
folds. We can, however, define generalized generating func­
tions for canonical transformations of presymplectic 
systems in a similar way as in the classical case of canonical 
transformations for Hamiltonian systems. 

With the same notations as in Theorem 10, if ~ I and 
~ 2 are two neighborhoods in PI and P2 , respectively, in 

Carinena sf al. 1966 

Downloaded 14 Jul 2010 to 161.116.168.227. Redistribution subject to AIP license or copyright; see http://jmp.aip.org/jmp/copyright.jsp



which one-forms Oi' i = 1,2 are defined such that dOi = n i, 
the one-form 0 12 = 171 01 - 111 O2 defined in 
~ 12 = ~ I X ~ 2 satisfies n 12 = d012. The relation between ° I and 41*02 for a canonical transformation of (P ,s,n ) is giv­
en by the following theorem. 

Theorem 11: Let 41:Pc",P2 be a map such that there 
exists ¢:SC .... S2 with 41 0 jl = j2 0 ¢. Then, we have the fol­
lowing. 

(i) (41 ,¢ ) is a canonical transformation if and only if there 
is a function G locally defined on graph ¢ such that 
(i ° J)*Ol2 = dG. 

(ii) (41,¢ ) is a canonical transformation if and only if there 
is a function F locally defined on SI such that J"r 
X (01 - 41*(2 ) = - dF. 

(iii) In the case of (41,¢) being a canonical transforma­
tion, there exist connected neighborhoods 'Y in SJ and ~ in 
graph ¢ such that Gop - F is constant, where p is the in­
verse of the restriction of 1T I to ~ . 

Proof: (i) The submanifold graph 41 of P J XP2 is isotrop­
ic if and only if 0 = (i ° J)* n 12 = d (i ° J)*012 and therefore iff 
there exists a function G locally defined on a neighborhood 
~ in graph ¢ for every point in graph ¢ with 
(i ° J)*0121"U = dG. 

(ii) The canonicity condition J"r(41*n2 - n J) = 0, when 
restricted to ~ I X ~ 2, becomes the closedness of J"r 
X (41 *02 - ( 1) on a neighborhood 'Y in SJ such that 

j I( 'Y) C ~ In41 - I( ~ 2)' It is equivalent to the local existence 
of a function F on 'Y with 

(iii) Let p be the inverse map for the restriction of 1T I to 
graph¢. 

Then, p* dG = J"r(OI - 41*(2) = dF and therefore 
Gop - F is constant. 

Definition 9: The functions F and G locally defined as 
above on SJ and graph ¢, respectively, will be called Poin­
care and Weinstein generating functions for the canonical 
transformation (41,¢). 

These functions are but generalizations of the corre­
sponding concepts for Hamiltonian systems17

•
24 and they ad­

mit extensions to open neighborhoods in PI and graph 41, 
respectively, as shown in the following proposition. 

Proposition 3: With the notations of Theorem 10, if 
{sil~= I is a set of independent functions defining 'Y in PI 
and {~il~= I isanotherdefining¢ ('Y)inP2, then we have the 
following. 

(i) The neighborhood ~ = p('Y) in graph ¢ can be de­
fined in graph 41 by the set { 7]i l ~ = I of independent functions 
given by 7]i = 171s i + 111 ~i. 

(ii) There exists a function G defined on 
j ° p('Y)Cgraph 41 such that i*0121 = dGlgra h.J. and _ Braph~ P Of' 

j*G=G. 
(iii) There exists a function F defined on a neighborhood 

r of PI such that rnCI = 'Y,J"rF= F, Gop - Fis con­
stant, and (41*02 - Ol)k = dF1c,· 

Proof: (i) Let (y,41 (y)) be an element of graph 41. Then, 
from the identity 

7](y,41 (y)) = (171 s i + 171 ~ i)(y,41 (y)) = s i(y) + ~ i(41 (Y)), 
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it follows that 7]i(y,41 (y)) = 0 (i = 1, ... ,k) is equivalent to 
Y E 'Yand 41(y) E 41 ('Y). 

(ii) Let G. be an arbitrary but fixed extension of G to 
j(,o( 'Y)). Every extension G can be written as 
G = G. + l:~= 1/;7]i and therefore 

_ k 

j*G = j*Ge + L (f; 0 j)(7]i oj) = j*G. = G. 
i=1 

Finally, sincej*(i*Od = j*dG and using Lagrange's multi­
plier theorem, we can conclude that i*0121"U = dG1"U· 

(iii) LetF. be defined as Fe = G. ° p, anddefiningFon a 
neighborhood r of SI in PI by means of 
F = Fe + l:~ = I (f; ° pIs i, such a function F is such that 
J"r F = F, and furthermore, 

k k 

dF= dFe + L d(f; 0 p)Si + L (f; Op)dsi =d(G op), 
i=1 i=1 

where the functions t i and 7]i defining 'Y and ¢ ('Y) have 
been assumed to be chosen as S i = 7]i 0 p. Finally, since 
J"r(OI_- 41*(2 ) = dF =J"r dF we obtain (01 - 41*(2)lr 
=dFjr. 

Before ending this section we want to remark that even 
ifF and G seem to play the same role as the classical Poincare 
and Weinstein generating functions, they only define locally 
a symplectic transformation. The point is that in some cases 
they define a global symplectomorphism 41:Pc .... P2• This 
case was the one considered in Ref. 24 but it is not the general 
case in which we are only capable of relating the coordinates 
of the points in S I with those of S2' The next section is devot­
ed to explaining how to get the explicit form of ¢:SC· .... S2 
from the generating function G (or G ) as well as to presenting 
some remarkable results concerning the generating func­
tions F and G. 

VI. LOCAL PROPERTIES OF GENERATING FUNCTIONS 

In this section we will analyze the local reconstruction 
of a generalized canonical transformation ¢ E Can C start­
ing from its Weinstein generating function, as well as its rela­
tion with the corresponding generating function in the re­
duced phase space. Let (Pi,COn;), with i = 1.2, be two 
coisotropic regular systems. Then. it is to be remarked that if 
(41.¢) is a generalized canonical transformation between 
(PI,CI,n l) and (P2,C2.n2), then graph ¢ is an isotropic sub­
manifold of (PI xP2,nd while CI X C2 is a coisotropic sub­
manifold. The canonical projection of Ci on the correspond­
ing reduced space will be denoted 7] i instead of the more 
cumbe:som~e notation 1T C,' The reduced phase space ~ 
~ I X C2 and the projection on the reduced phase space 
CI X C2 is denoted n:cI X C2-C;XC;, which coincides 
with 7] I X 1)2' y" e also ~ec~ll that if ~ is a symylectomorphism 
between (CI,n l ) a!.ld (Cl,n;). the set g!aph ¢ is a Lagrangian 
submanifold of (CIXC2,nd with n l2 defined usually as 
hl2 = 171' hi -171 h 2 , where 17-i:(;1 X (;2-(;1 (i = 1,2) is the 
canonical projection. With these notations, we can state the 
following proposition. 

Proposition 4: Let G be a locally defined Weinstein func­
tion for the canonical transformation (41,¢). Then, there ex­
ists a Weinstein g~n~rati!.lg function G for the reduced sym­
plectomorphism ¢:CI-C2 such that G = n*G. 
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Proof: If '0; and 0; are locally defined one-forms such 
that dB; = iJ; and dO; = fJj, the identity 7]r nj = it fJ j im­
plies that there are locally A defined functions/; on neighbor­
hoods of the Cj 's with 7]1' 0; = i1' OJ + d/;. If 0; is defined as 
0; = OJ + d11if fj, where 1Tij:Pj_Cj denotes the projection 
along the fiber structure of P j over Cj , thenj1' 0; = 7]1' 'OJ' 
Let G be the Weinstein generating function defined in Sec. V 
using the one-form 0;2 = tr1' 0; - 1Tt 0 ~. The follow­
ing relation holds locally: 7*VI Xj2)*0 12 = dG. If i is 
the natural inclusion of graph ¢ in (:1 X (:2' we have 
ion = no 7 and frj 0 no 7 = 7]j 01Tj (i = 1,2). Conse­
quently, the one-form el2 defined by el2 = i71' '01 - frt '02 

defines a generating function G such that n *dG = dG be­
cause 

n*dG = n*7*eI2 = (7]1 0 1TI)*BI - (7]2 0 1T2)B2 

= 7* 0 VI Xj2)* 0;2 = dG. 

As a straightforward consequence we can state the fol­
lowing corollaries. 

Corollary 2: In the same conditions as the above propo­
sition, we can find Poincare generalized generating func­
tions for,p and ¢, respectively, that are related by F = 7]T F. 

Corollary 3: Let CZr I be a coordinate neighborhood of a 
point XI E CI in PI and (qI, ... ,qn, PI, ... ,Pn) be Darboux co­
ordinates such that the equations PI = ... = h = 0 locally 
define ClnCZr I' Then, there is a Poincare generating function 
such that aF /aqj = 0, i = l, ... ,k, for each canonical trans­
formation. 

Proof It is an obvious consequence of the form 
F = 7]T F because of the tangency of the vector fields 
{a/aqj}~= I to the kernel of iT fJI in CI' 

This fact is worthy of note: the generating functions F 
do not depend on the gauge variables. 

Before studying mixed generating functions for gener­
alized canonical transformations we introduce some nota­
tions. The neighborhoods of Pj in which OJ is locally defined 
will be denoted by CZr j (1 = 1,2). By XI = (ql, ... ,qn ,PI, ... ,Pn) 
we mean a set of canonical coordinates for CZr I such that the 
set r I = CZr InCI is defined by the vanishing of the first k p's. 

Lemma 1: Let (CZr I'XI) be a canonical neighborhood of 
m l E CI as defined above. For every canonical transforma­
tion (<P,,p) from (PI,CI,fJ I) to (P2,C2,fJ2), there exists a ca­
nonical neighborhood (CZr 2,X2) of ,p (m d such that 
,p(rl )cCZr 2C<P(CZr I) and if X2=(QI, ... ,Q",PI, ... ,Pn), we 
have Qjo,p=qj, i= l, ... ,n and Pk + j o,p=Po 
i= 1, ... ,n - k. 

Proof The point is that as <I> is not a symplectomor­
phism, <I> ( CZr I) is not a canonical neighborhood. We remark 
that,p (r tl C Cz because,p (CI) C C2• There exists a canonical 
neighborhood CZr I of,p (m din P2 such that CZr I = <I> (CZr d, but 
what we need is that ,p ( r I) C CZr I C <I> (CZr d, and it can be 
found as follows: ,p (r d is a coisotropic submanifold of 
(P2,fJ2) and we know that there is a tubular neighborhood 'lr 
of,p (r din (P2,fJ2) symplectomorphic to a tubular neighbor­
hood of the canonical coisotropic imbedding of,p (r I)' Then, 
we can choose CZr 2 = <I> (CZr tln'lr and the coordinate func­
tions given by those of the coisotropic imbedding using the 
identification by the local symplectomorphism, and on 
,p (rl ) the set of coordinates given by 
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Q j = qj 0 ,p -I, P; = pj o,p -I. This is a canonical set satisfy­
ing the required conditions. 

Instead of using the projection of graph ¢n( CZr 1 X CZr 2) on 
r 1 we can also project on other sets and in this way we can 
define generating functions that are not of type I. The neigh­
borhood CZr 12 = CZr 1 X CZr 2 is identified with an open set of 
R2n XR2n via the map XI XX2' IfwethinkofR2n XR2n as the 
product RnXRnXlRnXRn, each factor being labeled by a 
number a = 1, ... ,4, the map that projects canonically in the 
iXj factor will be called ~j . So we can construct the follow­
ingsix functions from CZr 12 to RnXRn, {~j = ~j 0 (X1XX2)}. 
This family of functions defines a family of functions para­
metrized with different sets of variables associated by the 
Weinstein function defined on graph,p that we will denote 
by Fij = G(~j)-I when (~j)-I exists. The first functionFI2 is 
the coordinate representation of the usual Poincare generat­
ing function for (<P,,p), and the last one, F34, the Poincare 
generating function for (<I> -I,,p -I). The other ones are the 
generalized mixed generating functions of type (ij) for (<P,,p) 
and their main properties will be described in the theorem 
below. There is an important point to be remarked here, on 
the definition of the mixed generating functions Fij' We have 
pointed out that it is necessary that there exists (~j) - I and 
this is equivalent to the fact that the submanifold graph ,p in 
PI XP2 is transverse to the function ~j; that is, denoting by 
Tij (P) the set of points which are mapped in P E Rn X Rn by 
~j,Tij(P) = ~j - 1(P),p E ~J( CZr d, graph ,p will be transverse in 
the point (x,,p (x)) E graph,p to ~j if 

1(x,~(x))graph <Pffi 1(x.~(x))Tij(~j(x,,p(x))) = 1(x.~(x))(PIXP2)' 

If it occurs we will be able to parametrize locally the sub­
manifold graph,p (or graph <1» by means of the function ~j 
and then there will exist ~j - 1 . Using these conditions in the 
following we can state Theorem 12. 

Theorem 12: With the notation defined above, if(<P,,p ) is 
a canonical transformation from (P1,C1,fJd to (P2,C2,fJ2), lo­
cally we have 

i= k + 1, ... ,n, 

Pj = - ~ci~, i = k + 1, ... ,n, 

FI3 being the mixed generating function of type (1.3) for the 
transformation. 

Proof The proof is a simple matter of computing the 
coordinate expression of the Weinstein generating function. 
That is, since 

n n 

0 12 = tr1' 01 - 1T1 O2 = I pj dqj - I Pj dQ;, 
;=1 j=1 

then 
dF12 = (1'13)-1* dG 

= (1'I3)-I*(I(pj dl- Pj dQj)) 

and then 

i=k+ 1, ... n 

and 

_ aF13 =p. . k 1 
• ' 1= + , ... n. 

aQi 
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Finally, by the construction of the canonical neighbor-
hood %'2 in P2 we have that Pi 0 cf> = Pi' 
i = k + 1, ... n,Qi 0 cf> = qi, i = 1, ... ,n. 

There exists a similar theorem for each mixed function 
F I4,F23, and F24, and it is very interesting to notice that they 
define locally the canonical transformation only for 
(n - k) X (n - k ) variables on thesubmanifoldC I . In the par­
ticular case of the mixed function of type ( 1,4), the equations 
before become 

a~~4 = Pi! i = k + l, ... ,n, 

_ aFI4 = Q. k 1 ap. I' i = + , ... ,n, 
I 

showing that the gauge ambiguity does not permit the com­
plete reconstruction of the transformation on the manifold 
C1 from the generating functions. 

The extended generating functions G,P, defined in Sec. 
V, give locally a symplectomorphism (~,cf> ) such that it coin­
cides with tP in r I' but in general, as pointed out in Sec. IV, it 
will not be possible to extend such a symplectomorphism to a 
global one, and it will not be possible to construct smoothly a 
set of such functions such that their graphs overlap correct­
ly. 

VII. CONCLUSIONS 

We have introduced the concept of canonical transfor­
mation that generalizes the concept introduced for regular 
systems (see, e.g., Ref. 11), time-dependent systems,24 and 
canonical systems.9 The generalization is based on Theorem 
3 where the possibility of finding a symplectic manifold Pin 
an essentially unique way is shown, such that the final con­
straint submanifold C is coisotropically imbedded in P and 
for any dynamical vector field r compatible with C there is a 
(no uniquely defined) vector field on P with the same restric­
tion on C (up to identification of C with its image). Further­
more, the result of Theorem 7 shows the possibility of study­
ing the canonical transformations using only their local 
structure and the crucial point is that every canonical trans­
formation defines a symplectic transformation in the (sy~ 
plectic) reduced space and it is possible to define canonical 
transformations of the presymplectic space that are trivial 
on the quotient space; they will be called gauge transforma­
tions. In fact, if we start with a gauge theory as is usually 
meant it will be a presymplectic system and the group of 
gauge transformations as defined above coincides with the 
gauge group of the theory. 

It is remarkable that the equations of motion can now 
be considered as a one-parameter family of canonical trans­
formations. Moreover, the equation for the determination of 
the generating function is but the generalized Hamilton-Ja-
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cobi equation. These and other applications will be given in a 
subsequent paper. 
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