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A generalization of the predictive relativistic mechanics is studied where the initial conditions are 
take? on a general hypersurface of M4. The induced realizations of the Poincare group are 
obtamed. The same procedure is used for the Galileo group. Noninteraction theorems are derived 
for both groups. 

I. INTRODUCTION 

The generalization of the no-interaction theorem pre­
sented here is undertaken in the framework of predictive 
relativistic mechanics (PRM), 1 that is, the same Newtonian 
equations of motion remain valid for every inertial observer. 
Relativistic invariance is then understood as referring to 
worldlines, thus adopting the standpoint first stated by Min­
kowski2 that " ... physicallaws might find their most perfect 
expression as reciprocal relations between these worldlines." 

In the usual formulation of PRM, the configuration 
space for an N-point particle system is spanned by the 3N 
simultaneous position coordinates of the particles (simulta­
neity here presumes an inertial observer describing the dy­
namics of the system). In this respect, the usual PRM ap­
proach is similar to the instant form of Dirac3 for 
Hamiltonian relativistic dynamics. 

Also, in most of the various derivations of the noninter­
action theorem, the instant form assumption plays a crucial 
role: the simultaneous position of particles are assumed to be 
either canonical coordinates in the Hamiltonian ap­
proaches4 or the variables spanning the configuration space 
in the Lagrangian formulations. 5 

Other derivations of the theorem, that will not be con­
sidered here, correspond to the covariant formalism ofPRM 
(see Ref. 6) or to the Hamiltonian relativistic systems with 
constraints approach.7 An interesting review on the subject 
can be found in Ref. 8. 

Dirac proposed3 two other possible formulations ofHa­
miltonian relativistic dynamics besides the instant form: 
namely, thefrontform and thepointform. So the question 
arose of whether the instant form assumption was essential 
to the noninteraction result, or if a similar output could be 
obtained in the framework of the other two Dirac forms. 
This point has been studied in a recent work9 and the answer 
is yes. 

At this point, why should we restrict ourselves to the 
three Dirac forms of Hamiltonian relativistic dynamics? 
From a historical point of view, it becomes apparent that 

Dirac proposed these three forms as different possible ways 
of simplification for a wider problem: the derivation of Pois­
son realizations for the Poincare algebra. Nevertheless, 
Dirac himself proposed, and later developed, a technique--­
relativistic Hamiltonian dynamics with constraints 10_ 

which permits us to obtain a much wider solution to this 
problem, beyond the rigid restrictions of the above-men­
tioned three forms of dynamics. 

So, as far as the noninteraction result is concerned, the 
following question becomes legitimate: Does it hold beyond 
the narrow framework of the three forms of Dirac? 

A first answer to this question has been given partially7 
in the framework of Hamiltonian relativistic systems with 
constraints. Under some assumptions it has been proved by 
an example that some mass-shell constraints and fixations 
could be chosen such that, albeit positions of particles are 
taken as canonical coordinates, the noninteraction implica­
tions are circumvented. However, that model has not any 
interest beyond the mathematical one: not only is it unphysi­
cal, but also the procedure to reconstruct the particles' 
worldlines from the phase space trajectories is rather sophis­
ticated, owing to the fact that the fixations are chosen not to 
have a clear kinematical meaning, but to yield some wanted 
specific Dirac brackets. 

We are going to undertake another generalization of the 
noninteraction theorem, now always keeping in mind the 
kinematic aspects of the problem, that is, the way any given 
inertial observer will have to recover the particles' world­
lines from the COnfiguration space trajectories. To this end, 
let us analyze how it is done in the instant form approach. 
For every given value A of a certain parameter, an inertial 
observer takes the space coordinates x~ (A), a = 1, ... ,N, of 
each particle when 

x~ =x~ = .. , =x~ =A, (1.1) 

and the configuration space curve (x; (A ), ... ,x~(A)) describes 
the evolution of the system. Conversely, the N worldlines are 
recovered from a given configuration space trajectory 
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(x; (A ), ... , x~(A II, by merely taking (A,x~(A)), a = 1, ... ,N. 
Other requirements in PRM are (i) that the trajectories 

of the system are the integrals of a second-order differential 
system on the configuration space and (ii) the relativistic in­
variance in terms of worldlines. A further development of 
the latter two conditions yields the so-called induced realiza­
tion of the Poincare group on the cophase space and the 
Currie-Hill equations. 1 

The/ront/orm (resp. point/orm) approach operates in a 
quite similar way.9 For every given value A of a certain pa­
rameter, an inertial observer takes the space coordinates 
x~(A), a = 1, ... ,Nwhen 

x~ +x~ =,1, (1.2) 

(resp. X~2 - x~ =,1, 2). (1.3) 

The evolution of the system in the configuration space is 
then given by (x; (A ), ... ,x~(A II. Conversely, for a certain con­
figuration space curve, the worldline of the ath particle is 
given by 

(A-x~(A),x~(A)), a=I, ... ,N, (1.4) 

[resp. (~A 2 + X~(A), x~(A)), a = 1, ... ,N]. (1.5) 

Similarly, the requirements of relativistic invariance and 
that configuration space trajectories fulfill the second-order 
differential system 

d 2x i 

dA; = a~(xb'vc.A), 

also lead to an induced realization of Poincare group on the 
extended cophase space and to some restrictions on the acce­
lerations that play the same role as the Currie-Hill condi­
tions do in the instant form approach. 

In Sec. II, we shall start from an analysis of the common 
features of these three approaches, in order to generalize the 
predictive relativistic mechanics framework. Then, in Sec. 
III, we prove a generalization of the noninteraction theorem. 
Finally, in Sec. IV, we extend the previous study to Newtoni­
an dynamics, analyzing the noninteraction theorem in this 
case. 

II. THE GENERALIZED PREDICTIVE RELATIVISTIC 
MECHANICS FRAMEWORK 

The three approaches we commented on at the end of 
last section (resp. instant, front, and point forms) share the 
following common features. 

(i) Newtonian equations 0/ motion: The configuration 
space of the N-point particle system is spanned by the 3N 
position coordinates of the particles x~, a = 1, ... ,N, 
i = 1,2,3, and the evolution is governed by a second-order 
differential system 

dx~ i dv~ i i k 

dA = Va' dA = aa(xb,vc.A), (2.1) 

whose functional form does not depend on the inertial ob­
server describing the dynamics. 

(ii) A specific rule to construct the worldlines: For each 
particular solution 

(2.2) 
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of (2.1) with the initial condition 

i( .A;A) i aq;~( 1.1) i q; a .f,1I 0 0 = .fa' aA .f,II,A-o;'·o = lIa, (2.3) 

the worldline x: (A) for the ath particle is obtained by taking 
the space coordinates (2.2) and finding the time coordinate 
x~ (A) ==q; ~ (.fi ,\!~ .A0;A) from 

h (x ~(A )) = A, (2.4) 

where h (x I-' ) is a fixed function on space-time M 4-the same 
function for every inertial observer and every particle [re­
member Eqs. (Ll), (1.2), and (1.3) for the three forms com­
mented on above]. 

Intuitively, this means that each inertial observer con­
structs his configuration space by taking the space coordi­
nates of all particles when their worldlines cross a previously 
chosen parameterized set of space-time hypersurfaces: 
h(xl-')=A. 

In order that x~ (A ) can be obtained from the implicit 
equation (2.4), the partial derivative ah / axo must not vanish. 

(iii) Relativistic in variance o/worldlines: Let Y and Y' 
be two inertial observers connected by the Poincare transfor­
mation 

X '1-' = L I-' v • (XV _ A V). (2.5) 

Let us assume that the worldlines q; :(xb,vc.Ao;A) are ob­
tained by Y from some initial data (Xb'Vc.AO)' Then, the 
transformed space-time curves 

(2.6) 
must be such that are obtained by Y' starting from another 
set of initial data (x~, v~ .Ao). That is, 

LI-'v' [q;~(xb,vc.Ao;A)-AV] =q;:(x~,v;.Ao;A~), (2.7) 

for every A. The parameter A ~ of the right-hand side is deter­
mined by the condition 

A ~ (xb,vc' Ao;L I-'v,A I-';A) 

= h(L I-' V • [q; ~ (xb,vc.Ao;A) - A vp, 
which stems from requiring (2.4) to hold also for Y'. 

lt can be easily obtained from (2.4) that 

(2.8) 

A ~(xb,vc.Ao;t5:,O;A) = A. (2.9) 

The new Y' initial data (x~,v~.Ao) will depend on the 
former Y ones (Xb'Vc.AO) and on the Poincare transforma­
tion, (L I-' v,A I-' ) E (!ll, which relates Y' to Y. That is, 

(2.10) 
v~ =i,(xb,vc.Ao;L I-'v,A 1-'). 

Weare not going to derive explicit expressions for these 
functions, f~ and g{, which define the Poincare transfor­
mation induced by the given (L I-' v' A 1-') E (!ll on the ex­
tended cophase space r( 6N + 1), nor are we going to prove 
by a direct manipulation that they form an actual group real­
ization. Instead, a close examination of commutation rela­
tions will ultimately prove this point. 11 

Note that induced Poincare transformations act as 

(Xa , Vb .AO)-(X~, V~ .Ao) 

thus leaving invariant, by prescription, the sheets A = const, 
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ofr(6N + 1). In any parametrization (L '\ (E[), A IL(EJ »), 
I.J = 1, ... ,10, the infinitesimal generators for induced Poin­
care transformations are given by 

[(B!~) B (Bi.) B ] At= 2: -- '-1- + - .-. 
a BE[ (E) = 0 BXa BE[ (E) = 0 Bv~ 

(2.11 ) 

[summation over repeated space (Roman) or space-time 
(Greek) indices will be hereafter understood]. 

The coefficients on the right-hand side of (2.11) can be 
obtained by taking partial derivatives with respect to E [ and 
then making (EJ) = (0) in the expression 

lP: (!~ (X,V,Ao;E[), g~ (X,V,Ao;E[ ),Ao; 

h (L P tT • [lP ~ (x,V,Ao;A.) - A tT]» 

=L lLy ' [lP:(xb,vc,Ao;A.) - AY], (2.12) 

which results from considering (2.7), (2.8), and (2.10) togeth­
er. 

Since Eq. (2.12) holds for every value of A-at least in an 
open neighborhood-it can be proved easily that any in­
duced Poincare transformation commutes with dynamical 
evolution. That is, the diagram 

(xaO,vbo,Ao)--induced Poincare - (X~,Vbo,AO) 

dynamical 

evolution 

~ 

(L lLy,A IL) 

dynamical 
evolution 

(xal,Vbl,Ad--induced Poincare --•• (X~I,Vbl,Ad 

(LlLy,AIL) 

is commutative. 
In terms of infinitesimal generators, this condition is 

equivalent II to the vanishing of the Lie brackets 

[At,D] = 0, (2.13) 

where 

D= 2: [v~.~ +a~(x,v,Ao).-;] + a~o (2.14) 
a BXa ava 

is the infinitesimal generator of dynamical evolution on 
r(6N + 1). 

In order to find out the coefficients of the generators At, 
we infer from (2.12) that 

Atx~ = c~o 'lP~ + C~j ·x~ - C~ - v~ . (A[h )(xa'lP~)' 
(2.15) 

where 

(2.16) 

lP ~ =lP ~ (xa ,Ao) is the solution of 

h (xa'lP~) = Ao, (2.17) 

and the meaning of (A[ h ) is explained in detail in the Appen­
dix. 

Second, from (2.13) and (2.14) we have that 

A"v~ = At(Dx~) = D(A"x~), 
and therefore 

521 J. Math. Phys., Vol. 27, No.2, February 1986 

Atv~ = C~o . (DqJ~) + C~j . v~ - v~ . D((A[h )(Xa'V~)) 

- a~(Xb'Vc,AO)' (A[h )(xa,lP~)' (2.18) 

Finally, by applying the commutator (2.13) to v~, we obtain 

Ata~ =DAtv~ 
j 2 0 j j j h = C [0 • D lP a + C [j • 8a - (Daa) . (A[ ) 

- 2D(A[h) . a~ - v~ • D2 (A[h), (2.19) 

which must be understood as necessary conditions on the 
accelerations a~ (xb, v c,A ) for the relativistic worldline invar­
iance (2.7) to be accomplished. These conditions will play the 
same role as Currie-Hill equations I in the instant form of 
PRM. 

At this point, we can prove that the commutation rela­
tions among the generators A,., 1= 1, ... ,10, are precisely 
those of the Poincare group. First, after a simple but rather 
tedious calculation, we arrive at 

[A• A·] j C K A· j [ , J Xa = IJ' KXa, (2.20) 

Second, taking (2.13) and (2.20) into account, we have 

[A,.,A1]v~ = ct . Atv~, (2.21) 

and, since A1Ao = 0, we finally obtain 

[At,A1] = ct· At, (2.22) 

where C t,l.J,K = 1, ... ,10, stand for the structure constants 
of the Lie algebra of Poincare. (See the Appendix.) 

III. NON INTERACTION THEOREM 

Let us now assume that there is a Poisson bracket struc­
turel2 of maximum rank on r(6N + 1) such that we have 
the following. 

(i) The coordinate Ao of r( 6N + 1) is neutral relative 
to this Poisson bracket, i.e., 

{Ao./} =0, 

for every function on r(6N + 1). 
(ii) Induced Poincare transformations are canonical. 

That is, there exist ten generating functions At(x,v,Ao), 
1= 1, ... ,10, such that 

At! = {A1'/}, (3.1) 

for every function f 
(iii) The 3N position coordinates x~ can be complement­

ed with 3N conjugated momenta pJ(x,V,Ao) thereby obtain­
ing a set of canonical variables whose elementary Poisson 
brackets are 

{p~,pj} = O. 

(3.2) 

(3.3) 

As is well known-the proof can be found in any treatise on 
advanced analytical mechanics13-Eq. (3.2) is the necessary 
and sufficient condition for the differential system (3.3) to 
have a solution. 

Substituting! in Eq. (3.1) by either x~ or v~, and taking 
(2.14H2.16) into account, we have 

{At,x~} = C~o 'lP~ + C~x~ - C~ - v~ • (A[h )(xa'lP~)' 
(3.4) 

Jaen etal. 521 

Downloaded 12 Jul 2010 to 161.116.168.227. Redistribution subject to AIP license or copyright; see http://jmp.aip.org/jmp/copyright.jsp



{AT,v~} = C}o . (Dtp~) + C}j • v~ - a~ . (A/h )(xa,tp ~) 

- v~ . D((A/h )(xa ,'I' ~)). (3.5) 

Since Ao is a neutral function relatively to the Poisson 
bracket, taking (3.2) into account and using a known proper­
ty of Poisson brackets, we can write 

{
" . k Bab 

x~,atJ = {x~,vcJ-, 
av~ 

(3.6) 

{ i j I {i k I Bab {' k Bab va,ab = va,xc -k + v~,vc 1-· (3.7) 
BXe av~ 

Then, by applying the Jacobi identity and taking (3.2) into 
account, we obtain 

(x~,{AT,xb}} + (xt,{x~,AT}} =0, 

which, using (3.4), yields 

[(A/h )(xa'tp~) - (A/h )(Xb'tp~)] . {Xb'V~} = 0. (3.8) 

This finally implies 

{x~,v~} = 0, Va#b. (3.9) 

By repeating the same treatment with (3.9) instead of (3.2), 
we obtain 

{x~,a~l + [V~,Vb} .(A/h)(xa'tp~)=O. 
Then, by considering together this expression and the 

one that results from interchanging the indices b and a, and 
by the same reasoning, that permitted us to pass from (3.8) to 
(3.9), we can write 

[x~,ab} = [v~,vil = 0, Va#b, (3.10) 

unless (A/h )(xa ,'I' ~) = (A/h )(Xb ''I' ~), for every I = 1, ... ,10. 
Again, by repeating exactly the same procedure to Eq. 

(3.10), we obtain 

[v~,abJ =0, Va#b. (3.11) 

Then, by substituting (3.9)-(3.11) into (3.6) and (3.7) and tak­
ing into account the fact that (x~ ,Vb .Ao) is a complete set of 
independent variables (Ao being a neutral function), after 
some manipulation we have that 

Bab Bab 
- =0 - =0 Va#b. 
BXi 'Bvi ' a a 

(3.12) 

Therefore, the acceleration of a particle can only depend on 
the variables of the particle itself, 

ab = ab(xb,vb.AO)' b = 1, ... ,N, 

and, consequently, there is no interaction between particles. 
Moreover, these accelerations must be required to satisfy Eq. 
(2.19 )-analogous to the Currie-Hill equation-which will 
imply further restrictions on them. Since the function h (x I-' ) 

is unspecified, it is rather cumbersome to analyze in detail 
what these restrictions are like. However, once h (x 1-') is 
made explicit, the analysis is easier in the well-known three 
forms of Dirac-instant form4 (xo = A), front form9 

(xo + x 3 = A), or point form9 (A 2 = - X I-' X 1-'). Introduc­
ing (3.12) into (2.19), we obtain that accelerations must be 
parallel to velocity, that is, motions of particles are rectilin­
ear and uniform. 

The clue of what has been proved hitherto lies in the fact 
that for some generator of Poincare group we have 
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(3.13) 

Indeed, let us assume that there is a function h (x I-' ) such that 

(A/h)(xa'tp~ (xa.Ao») = (A/h)(Xb'tp~ (xb.Ao»), 

VI = 1, ... ,10, 

or, according to Eq. (A2), that 

hl-'(xa'tp~)· [CJ;x~ +Cfo .tp~ -Cf] 

= hI-' (xb,tp ~) . [C J; • xb + C /~ . 'I' ~ - C f], 

which, in the case of translations, yields 

hl-'(xa'tp~) = hl-'(Xb'tp~), 
the most general solution of which is 

h (x 1-') = av • XV + b. 

(3.14) 

(3.15) 

The requirement that (3.44) is to be fulfilled in case of rota­
tions, I = (YI, restricts a little bit more the form of h (x), spe­
cifically 

h (xl-') = aoX° + b. (3.16) 

Finally, Eq. (31.4) specialized for boosts leads to 

which implies that 0 0 = 0. 
We have arrive at h (x 1-') = b, constant, which contra-

dicts the previous assumption that 

Bho (x 1-')#0. ax 
Consequently, we have proved that is not possible in any 

way to choose a hypersurface-defining function h (x I-' ) such 
that the noninteraction result can be avoided, provided that 
a canonical realization of the Poincare algebra and the ca­
nonical character of position coordinates are simultaneously 
assumed. 

IV. A "NON INTERACTION THEOREM" IN GALILEAN 
DYNAMICS 

The three forms of Dirac for relativistic dynamics coin­
cide when the Galilean limit (c-oo) is taken, thus leading to 
the natural form used by physicists for centuries. In spite of 
this, we shall devote this section to the seemingly academic 
task of extending the results formally obtained to Galilean 
dynamics. The outcome will be pleasantly surprising. 

Since the results obtained in Secs. II and III have been 
derived in a rather generic way, similar results will hold for 
any transformation group of space-time, e.g., the Galilei 
group. 

So, we can also speak of induced Galilean transforma­
tions on the extended cophase space and all that has been 
presented in Sec. II holds by changing "Poincare" to "Gali­
leo" -this change affects the coefficients C tv and C f and 
the structure constants C~. 

Also, as has been remarked at the end of Sec. III, in 
order to avoid the no-interaction result, we must find a func­
tion h(x,t) on space-time fulfilling Eq. (3.14). 

As we did in the last section, specializing (3.14) to space 
rotations and space-time translations, we obtain that h must 
be 

h(x,t) =a·t+b, (4.1 ) 
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if (3.14) is to be fulfilled. 
And, since the generators of Galilean boosts in space­

time are - t(a laxi
), (3.14) is identically satisfied in this 

case. 
We have therefore arrived at the interesting result that, 

even in Galilean dynamics, we could wind up with a nonin­
teraction result if we had not chosen the suitable form-Le., 
the function h (x,t ). However, contrary to the relativistic case, 
Galilean dynamics permits only one way-instant form-to 
escape from noninteraction, and this is precisely the one that 
has been naively used from the beginning of Hamiltonian 
classical mechanics. 

v. CONCLUDING REMARKS 

The starting point of the present paper has been that the 
equations of motion for an N-point particle system are sec­
ond-order differential equations and that the configuration 
space of each inertial observer is constructed by taking parti­
cle positions when their worldlines cross a given space-time 
hypersurface h (x ,. ) = const. Relativistic invariance then 
has been imposed by requiring the equations of motion and 
the space-time hypersurface to have the same functional 
form for every inertial observer. 

The outcome is a generalization of predictive relativistic 
mechanics,1 which is recovered as a particular case of the 
framework here developed, by taking h (x ,. ) = Xo. And in 
this generalized framework we have obtained the conditions 
that accelerations must fulfill if worldline relativistic invar­
iance is required. These conditions appear as the counterpart 
of the well-known Currie-Hill equations of predictive rela­
tivistic mechanics. 

We have proved then that the requirement of having a 
canonical formulation for induced Poincare transforma­
tions, where position coordinates can be taken as canonical 
ones, unavoidably implies noninteraction. 

As a consequence of the general manner as the problem 
has been dealt with; the results obtained in the first part of 
the paper for the Poincare group can be easily translated to 
the case of any other group of space-time transformations. 
We thus have written them for the case of the Galilei group, 
thus concluding, in Newtonian dynamics, the only way of 
avoiding noninteraction theorems in the usual "instant 
form," which always has been used as the natural one in 
classical Hamiltonian mechanics. 
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APPENDIX 

For a given function h (x I" ) on the Minkowski space and 
for the standard realization of Poincare group, we have 

(AJh )(x)=(a,.h )(x) [C f"xv - C 1']. 
According to this, we define the shortened notation 

(AJh )a =(AJh )(xa ,ip ~) 

(AI) 

=(a,.h)(xa,ip~)[CJlx~ +Cl'oip~ -cn, (A2) 

where ip ~ (xa ,Ao) is obtained by solving (2.17). 
On the other hand, in the usual parametrization of the 

Poincare group 

L ,. v =~,. v + {J)afJ~:1JvfJ + 0 ({J)2), (J)afJ = - aJ1a, 
(A3) 

A "=EP~~, 

A" = EP~~, 

we have that 

C t:'Plv = ~:1JvfJ - ~G1Jva' C t;'lv = 0, 

c (':,p) = 0, C tp) =~::. 
(A4) 
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