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In this paper we find the quantities that are adiabatic invariants of any desired order for a general 
slowly time-dependent Hamiltonian. In a preceding paper, we chose a quantity that was initially an 
adiabatic invariant to first order, and sought the conditions to be imposed upon the Hamiltonian so 
that the quantum mechanical adiabatic theorem would be valid to mth order. [We found that this 
occurs when the first (m - 1) time derivatives of the Hamiltonian at the initial and final time instants 
are equal to zero.] Here we look for a quantity that is an adiabatic invariant to mth order for any 
Hamiltonian that changes slowly in time, and that does not fulfill any special condition (its first time 
derivatives are not zero initially and finally). 

I. INTRODUCTION 

I N many cases it is possible to obtain an asymptotic 
solution of the equations of motion by perturba­

tion theory. For many problems of quantum me­
chanics, it is too much to require the convergence 
in the mathematical sense of the formal series of 
perturbation method. In all practical problems, only 
the first several terms are calculated and the whole 
series may ultimately be divergent. Thus we are 
led to regard them as asymptotic rather than power 
series. The range of applicability of perturbation 
methods is much extended by this new inter­
pretation. 

Kato1 shows also that the perturbation method 
gives asymptotic series which are correct so far as 
the coefficients can be calculated by means of 
operators within the Hilbert space. It is important 
to note that this was established independently of 
the convergence or divergence of the formal series. 
In fact it is rather usual that the series has only a 
finite number of significant terms. 

The significance of the adiabatic theory can only 
be appreciated by noting that the adiabatic expan­
sion in the appropriate expansion parameter is 
asymptotic rather than convergent. Thus, the higher­
order adiabatic theory maygive very great accuracy 
when the first term is already quite good, but it 
usually makes matters worse when the first term 
is mediocre. 2 

. 

Therefore, in many cases it is possible to obtain 
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2 H. Grad, NucI. Fusion SuppI. 1, 61(1962). 

an asymptotic solution of the equations of motion 
by perturbation theory. We are going to show in 
this paper how we can construct an asymptotic 
integral of equations of motion of a quantum 
mechanical system which is constant to any desired 
order. 

The adiabatic theorem is divided into two parts. 
In the first place it states the existence of a virtual 
change in the system which may be called adiabatic 
transformation. Secondly, it asserts that the dynam­
ical transformation defined by the Schrodinger equa­
tion goes over to the adiabatic transformation in 
the limit when the time dependence of the Hamil­
tonian is infinitely slow. Therefore, first we have 
to find the unitary operator representing the 
adiabatic transformation. 

The construction of this adiabatic transformation 
constitutes the main part of the present note. Our 
proof is rather formal and not faultless from the 
point of view of mathematical rigor. 

Kruskal3 has studied the gyration of a charged 
particle in a magnetic field when the magnetic 
field at the position of the particle changes only 
a little during one gyration period. The guiding 
center approximation is then formulated by con­
sidering the ratio E =e/m to be numerically small, 
where m is the mass of the particle and e its charge. 
An asymptotic analysis is called for in Kruskal's 
work. Once having completed the expansion of the 
equations of motion, he claims that there is an 
adiabatic invariant which is constant to all orders, 
an invariant that is given by the magnetic moment 
to lowest order. Of course this result is only asymp­
totic, i.e., the constancy to all orders does not mean 

3 M. Kruskal, U. S. Atomic Energy Commission, Rept. 
NYO 7903 (1958). 
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exact constancy, but merely that the deviation from 
constancy goes to zero faster than any power of E. 

Kruskal's argument is valid quite generally for 
any classical system describable by a Hamiltonian, 
of which the particle moving in a given electro­
magnetic field constitutes a particular example. 4,3 

Berkowitz and Gardner6 have shown that, in 
effect, the expression presented by Kruskal in 
Ref. 1 is indeed an asymptotic representation 
of the exact solution of the initial-value problem, 
valid as E ~ O. These authors have given, therefore, 
mathematical rigor to Kruskal's deductions. 

In this paper we fix our attention on the quantum 
mechanical domain. We introduce the idea of 
generalized adiabatic invariants, which are the 
operators that are adiabatic invariants to any 
desired order in the parameter that measures the 
slow time variation of any explicitly time-dependent 
Hamiltonian. Let us observe that the generalized 
adiabatic invariants to mth order are not equivalent 
to the adiabatic invariants to mth order that were 
studied in a preceding paper7 in which we gave 
the conditions that make the quantum mechanical 
. adiabatic theorem valid to mth order. In Ref. 7 
we chose a quantity that initially was an adiabatic 
invariant to first order, and sought the conditions 
to be imposed upon the Hamiltonian so that the 
quantum mechanical adiabatic theorem would be 
valid to mth order. [We found out that this occurs 
when the first (m - 1) time derivatives of the 
Hamiltonian at the initial and final time instants 
are equal to zero.] Here we look for a quantity 
that is an adiabatic invariant to mth order for 
any Hamiltonian that changes slowly in time and 
that does not fulfill any special condition (its first 
time derivatives are not zero initially and finally). 
The new results of this paper are essentially con­
tained in Secs. 3, 4, and 6. 

In Sec. 5 we show how the generalized adiabatic 
invariant to mth order becomes the adiabatic 
invariant to mth order when the appropriate con­
ditions are imposed upon the Hamiltonian, i.e., 
when we demand that the first m - 1 time deriv­
atives of the Hamiltonian be zero initially and 
finally. 

The research presented in this paper is carried 
on for a quantum mechanical system. However, 
following the operational techniques developed else-

'A. Lenard, Ann. Phys. (NY) 6, 261 (1959); C. S. Gardner, 
Phys. Rev. 115, 791 (1959). 

6 M. Kruskal, J. Math. Phys. 3, 806 (1962). 
8 J. Berkowitz and C. S. Gardner, U. S. Atomic Energy 

Commission, Rept. NYO 7975 (1957). 
7 L. M. Garrido a~d F. J. Sancho, Physica 28,553 (1962). 

wheres
-
ll for classical mechanics, quite similar 

theorems can be proved for the classical domain; 
some clarifications may be needed, however. 

In contrast with the conventional use of the 
operator calculus in quantum mechanics, it is 
generally not appropriate to apply that method to 
classical mechanics unless considerable care is taken. 
The Hilbert space upon which a quantum mechanical 
Hamiltonian operator is defined is simple, and is 
assumed not to change its properties in a time 
flight, or according to other changes of parameters 
implicitly included in the system, such as constants 
of motion, initial conditions and so on. The Hilbert 
space for classical mechanicsl2

•
l3 is, however, not 

so simple. It is impossible to know its Hermitian 
character when the energy surfaces of (2n - 1) 
dimensions, defined by the equation H = E in 
2n-dimensional phase space, are not closed. But we 
should mention that the formal developments of 
classical and quantum mechanics in Hilbert space 
can be rigorously used in classical mechanics if we 
restrict the classical system to a multiperiodic 
system . 

Our paper starts now with a short exposition of 
the quantum mechanical adiabatic theorem, pre­
sented for the sake of completeness and in order 
to fix the notation. We generalize the method 
inmediately, and define the generalized adiabatic 
invariants to mth order. The paper ends by showing 
how the first part of Ref. 7 can be deduced from 
the present theorem by simply imposing the appro­
priate restrictions to the Hamiltonian. 

2. QUANTUM MECHANICAL ADIABATIC THEOREM 

Let us suppose that the Hamiltonian H(t) of the 
system changes continuously from Ho = H(to) at 
the instant t to, to Hl = H(t l ) corresponding 
to t = tl • 

We call T tl - to the time interval during 
which the evolution of the system takes place. 
We introduce the fictitious time T that results 
when we measure the physical time t with the 
parameter T as unity. The Hamiltonian of the 
system at the instant t = to + TT is H(T), an 
operator that is a given continuous function of T, 

8 L. M. Garrido, Proc. Phys. Soc. (London) 76, 33 (1960). 
L. M. Garrido and F. Gasc6n, Proc. Phys. Soc. (London) 

81, 1115 (1963). 
9 L. M. Garrido, J. Math. Anal. Appl. 3, 295 (1961). 
10 L. M. Garrido, Progr. Theoret. Phys. (Kyoto) 26, 577 

(1961). 
11 L. M. Garrido and F. Gasc6n, Progr. Theoret. Phys. 

(Kyoto) 28, 573 (1962). 
12 B. O. Koopman, Proc. Nat. Acad. Sci. U. S. 17, 315 

(1931). 
13 J. V. von Neumann, Ann. Math. 33, 587 (1932). 
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and such that 

H(O) = H o, H(l) = HI. 

We are going to study the case when T is large 
and the evolution of the system takes place while 
the fictitious time changes from r = 0 to r = l. 

Let us call U T(r) the evolution operator where 
r is the fictitious time that, together with T, was 
defined above. 

ih(d/dr)UT(r) = TH(r)UT(r), (1) 

where H(r) is the slowly time-dependent Hamil­
tonian, given by the expression 

H(r) = L EjI\r)Pjl\T) , (2) 

where P?) (r) are the projection operators of the 
stationary states, states that we suppose discrete 
and nondegenerate. 

Let us call R(1)(T) a unitary operator such that 

PjI)(T) = R(I)(T)Pjl)(O)R(l)t(T). (3) 

It is completely defined by the initial condition 
R (1) (0) = I and the differential equation 

ih(d/dT)R(l)(T) = K(I)(T)R(l)(T). (4) 

The operator K(1) (r) obeys the following commuta­
tion relations: 

[K(1)(r) , pi1)(T)] 

= ih(d/dT)P;1) (T) , (j = 1,2,3, ... ), (5) 

and is determined without ambiguity if we add 
the following supplementary condition: 

P?)(r)K(l'(r)pjI)(r) = 0, (j = 1,2,3, ... ), (6) 

equations that yield the following expression for 
K(l)(r) : 

K(l)(r) = ih L [(d/dr)p;1)(T)]PjI)(T). (7) 
; 

The unitary transformation R(')t (T), applied to 
the operators and vectors of Schrodinger's picture, 
produces a new picture: the picture of the rotating 
axis, 

H(1)(T) = R(l)\T)H(r)R(1)(r) 

= L E?) (T)pil) (0) , (8) 
; 

Ki1)(r) = R(l)t(r)K(l)(r)R(l)(r). (9) 

The evolution operator U(1)(r) == R(l)(r)UT(r) 
in the new picture is defined by the initial condition 
U(1) (0) = I and the equation 

ih(d/dT)U(1)(r) = [TH(l)(r) - Ki1)(r)]U(l)(T) , (10) 

an equation that, in the demonstration of the 
adiabatic theorem in quantum mechanics, is treated 

by the method of perturbations considering K~1) (r) 
as the perturbation of TH(l)(r). 

3. GENERALIZATION OF THE PROCEDURE 

To generalize the preceding procedure we have 
to treat (10) as we have treated (1), i.e., as if it 
were the initial Schrodinger equation. We have to 
find the fictitious time-dependent projection op­
erators corresponding to the Hamiltonian Hi1) (r) == 
H(l)(r) - (l/T)Ki l

) (r), operators that we will 
call Pi2) (r). The subspace subtended by P;2) (r), 
according to the theorems of T. Kato, should have 
the same number of dimensions that the subspace 
projected by Pi l

) (T), i.e., the instantaneous eigen­
states of Hi!) (r) should not be degenerate. Indeed, 
Kato l says that the Hamiltonian operator HJ\ = 

H 0 + XH 1 that is a function of the real parameter X, 
is a regular function of A if the propagator G).(z) = 
-[l/(H). - z)] is regular in the proximity of A = 0, 
for some fixed z; then it is shown that the same 
is true for every z not belonging to the spectrum 
of Ho. In this paper we assume that Hi!) (T), and 
all the Hamiltonians whose eigenstates and projec­
tion operators will be used, are regular in the real 
parameter l/T. When these conditions are satisfied, 
T. Kato shows that the multiplicity of the eigen­
values is independent of X, or, in our case, of l/T. 
Correspondingly, all along the present paper we 
suppose that the successive series of instantaneous 
eigenvalues that will be defined are not degenerate. 
Perhaps this condition is much too restrictive and, 
as a consequence, we may leave out some cases 
for which the concept of generalized adiabatic 
invariance could still be valid. We should like to 
remark that it is not our intention to present here 
the most general case; we rather intend to introduce 
the generalized adiabatic invariants, taking as a 
model the steps developed in Sec. 1, which constitute 
the usual demonstration of the adiabatic theorem. 
Other conditions require different procedure, as can 
be seen in another paper of T. Kato.14 

Following the theory of perturbations in quantum 
mechanics, we can write the projection operators 
Pj2) (T) as a function of the projection operators 
of H(l)(r) and of the perturbation (l/T)Kil) (r). 
And, because the projection operators of H(1) (r) 
are independent of r as can be seen from (8), we have 

Pi2)(r) = pi1)(O) + (l/T)F;1)(r), 

(j = 1,2,3, ... ), (11) 

where Fil) (r) contains only powers of l/T. 

14 T. Kato, J. Phys. Soc. Japan S, 435 (1950). 
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We try now to establish a second rotating-axis 
picture for the operators P;2) (T) as follows: 

P~2)(T) = R(2)(T)P?)(0)R(2)t(T), 

(j = 1,2,3, ... ), (12) 

where the unitary operator R(2)(T) is defined by 
the condition R(2)(0) = I, and the differential 
equation 

ih(dldT)R(2)(T) = K(2)(T)R(2)(T), (13) 

in which the operator K(2)(T) obeys, similarly to 
K(1)(T), the commutation relations 

[K(2)(T), p;2)(T)] = ih(dldT)P?,(T), 

(j = 1, 2, 3, ... ), (14) 

and complementary conditions 

P;2)(T)K(2)(T)P?)(T) = 0, (j = 1,2,3, ... ). (15) 

Therefore, such an operator has the form 

K(2l(T) = ih L [(dldT)P;2l(T)]P?l(T). (16) 
; 

In the new picture, we define 

H(2)(T) == R(2)t(T)H~1)(T)R(2)(T) 

= L: Ej2)(T)P;2) (0), (17) 
; 

where E;2l (T) are the instantaneous eigenvalues of 
H~l) (T), and P;2) (0) are its initial projectors. 

The new evolution operator 

U(2)(T) == R(2l t(T)U(1)(T) 

obeys the equation 

ih(dldT)U(2)(T) = [TH(2J(T) - Ki2l (T)]U(2l(T) , (18) 

when 

(19) 

Evidently, the original evolution operator in 
relation to the new one is given by the expression 

UT(T) = R(1)(T)R(2)(T)U(2)(T). (20) 

This process can be repeated indefinitely, and 
so we get the procedure to arrive at the generalized 
adiabatic invariance. 

Let us observe that K~2) (T) is of the order of 
magnitude of liT. Indeed, combining (16) with 
(11) we find 

K(2l(T) = ih L (dldT)Fi 1)(T)JP;2)(T), (21) 
; 

and K~2J(T) is of the same order of magnitude 
of K(2) (T). Therefore, in the Hamiltonian 

H~2)(T) == H(2)(T) - (1IT)Ki2)(T), (22) 

the term - (1/T)K~2) (T) is, at least, proportional 
to l/T2. We said before that F?'(T) contains only 
powers of liT; if the first terms of the expansion 
of Fjl)(T) in powers of liT do not depend on T, 

expression (21) tells us that K(2)(T) is proportional 
to even higher powers of liT than the second. 

The equation for U(Z)(T) could be integrated 
without difficulty if we could neglect K~2) (T) in 
comparison with TH(2\T). The ·solution of the 
Schrodinger equation that appears when we do so, 

ih(dldT)~(2>CT) = TH(2)(T)t/}2)(T), (23) 

may be written, with the initial condition ~ (2) (0) = I, 

~(2)(T) = L exp (-iT~j2)(T)h-l)pj2)(0), (24) 
; 

where 

~;2)(T) = {Ej2l(T')dT" (25) 

If, as we will see immediately, U(2)(T) tends 
toward ~ (2) (T) for large T, we will have approxi­
mately 

UT(T) ~R(1)(T)R(2)(T)~(2)(T). (26) 

We are now going to show that, indeed, (26) is 
a good approximation for U T(T) for large T. The 
complete solution of (18) can be written by means 
of the formula for time-dependent perturbations 
as follows: 

U(2l(T) = ~(2l(T)Ui2)[r], (27) 

where the equation satisfied by U~2) [T] is 

U~2) [r] = 1 + ~ iT K~2) [T'l U~2) [T'l dT', 

with 

K~2)[T] == ~(2)t(T)K~2)(T)~(2)(T). 

(28) 

We plan to show now that the kernel K~2) [T'] is 
a sum of oscillating functions whose frequencies 
increase with T, and that therefore the integral in 
the second member of the Volterra equation (28) 
goes to zero when T ~ co. 

Any operator .£ admits the following decomposi­
tion 

i .k 

where we use the following notation: 

.c;~ = p?)(O).cPk2 )(0). 

(29) 

(30) 

We shall use this decomposition for the kernel of 

Downloaded 13 Jul 2010 to 161.116.168.227. Redistribution subject to AIP license or copyright; see http://jmp.aip.org/jmp/copyright.jsp



GENERALIZED ADIABATIC INV ARIANCE 359 

the integral equation (28), 

K~2)[r] = L (exp {(iTlh)[1P~2)(r) 
;,1; 

- IPk( r)]} pj2) (0)K~2) (r )p12) (0) 

= L (exp {(iTlh)[lPj2)(r) 
j.k 
j"'k 

(31) 

an expression in which we have introduced the 
condition j ~ k because, from (15), we deduce 

(j = 1,2,3, ... ). (32) 

The frequency of the oscillations can be obtained 
by calculating the derivative of the phase of the 
exponentials with respect to r. And so we see that 
the frequency is never zero because the system is 
not degenerate, and that it is proportional to T. 

Let us now consider the operator 

F( r) = f K~2) [0"] dO", (33) 

whose diagonal elements are all zero while their 
nondiagonal elements are 

JT [iT ( (2)( ) (2)( ))] F j • k = 0 exp h IPj 0" - IPk 0" 

(j ~ k), (34) 

where K~2) (0") only contains negative powers of T 
and is, at least, proportional to liT. Integrating 
by parts it is easy to see that Fjk(r) goes as I/T2. 
With this result we can deduce immediately, also 
integrating by parts, that 

U~2) [r] = 1 + O(I/T2). (35) 

With this conclusion we arrive at the following 
expression for U T(r): 

UT(r) = R(1)(r)R(2)(r)ct>(2)(r)[I + O(I/T2)] 

(T ~ CD). (36) 

4. GENERALIZED ADIABATIC INVARIANTS 

If we perform only the first transformation R (1) (r), 
the result admits a simple physical interpretation: 
a system that initially is in the state selected by 
Pjl)(O), will end up in the state selected by Pjl)(I). 
This is the statement of the well-known theorem. 

To state the generalized adiabatic theorem, we 
have to perform successively more than one trans­
formations from a rotating axis picture to another 
rotating axis picture .. Then, after the lth transforma­
tion, we have the following approximation for the 
evolution operator of the system: 

UT(r) = R(1)(r)R C2 )(r) ... RCI)(r)c/>CI)(r) 

X [1 + O(IITI)] (T ~ CD). (37) 

Let us remark now that this expression is an 
excellent approximation for the evolution operator 
of a system with any Hamiltonian that has a slow 
time dependence. No further requirement is imposed 
upon the Hamiltonian so far as its time dependence 
is concerned, and we can approximate its evolution 
operator to any desired power of I/T. 

We may now present another consequence of the 
result (37), a consequence which is deduced by 
evaluating the following product: 

UT(r)Pjl)(O) '" R Cl)(r)R(2)(r) •.. 

X R(/) (r)pj/) (O)R(I) \ r)R C/ ) (r)c/>(I) (r) 

= R(1)(r)R(2)(r) ... 

X R(/-l)(r)Pjl)(r)R(/)(r)c/>(I)(r) 

= R(1)Cr)R(2)(r) ... R(I-l)(r)Pj/)(r)R(I-l)\r) ... 

X R(2)\r)R(l)t(r)UT(r). (38) 

Due to the above relation, we may now state 
the generalized adiabatic theorem in the following 
manner. A system whose state is initially a vector Il) 
whose projector is Pjll (0) will end up its evolution 
in a state that is a vector of the Hilbert subspace 
projected by the following projection operator: 

Sjll(I) = RCl)(I)R(2)(I) ... 

X R(/-1>CI)P;I-ll t (I)R(I-l) t (1) ... R(2) tcI)R Cll t (1), 

(39) 

with an approximation of the order of I/TI
• 

Let us now find out the observables that are 
generalized adiabatic invariants. Suppose that we 
have performed l transformations. We get the 
following evolution operator in the resulting picture: 

U(I)(r) = c/>(I)(r)Ull)[r]. (40) 

With a procedure similar to that presented before, 
this will show that 

Ull)[r] = 1 + O(I/TI). (41) 

Therefore an observable .£ (I) which is a constant 
of the motion generated by the unitary operator 
ct> (I) (r) in this picture will become 

.£O)(r) = U(llt(r).£(I)U(/)(r) 

= Ulllt[r].£(I)Ull)[r] = .£(1) + O(1/TI),(42) 

where .£(1) = .£(1)(0). Therefore the. observables 
that commute with H(I)(r), i.e., those that commute 
with H( I) (0), are adiabatic invariants of lth order 
in the lth rotating-axis picture. Throughout this 
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paper we suppose that the projection operators 
P)I) (0) (for all j and any l) form a complete and 
orthonormal set. 

Now, the evolution operator of the system is (37). 
Therefore the quantity 

[(l)(r) = R(I)(r)R(2)(r) .. . 

X R(I)(r)£(l)R(!)f(r) ... R(2)\r)R(1)\r) (43) 

is the generalized adiabatic invariant of lth order. 
It depends explicitly on time but its expected value 
is constant during the evolution of the system with 
an approximation of the order 11TI. In general, 
therefore, the generalized adiabatic invariants de­
pend explicitly on time; later we shall study the case 
when such an explicit dependence does not appear. 

5. COMPARATION WITH THE ADIABATIC THEOREM 
OFlTH ORDER 

In a preceding paper7 we have shown that a 
system that initially is in a state belonging to the 
subspace projected by PjI) (0) will end up in the 
state belonging to the subspace projected by Pill (1) 
with an error of the order (lITI) when its (l - 1) 
first time derivatives of H(r) are zero initially and 
finally. This is the statement of the adiabatic theorem 
of lth order. We now want to compare this result 
with the present generalized adiabatic invariance 
of lth order. 

The comparison will be reduced to showing that 
we obtain the adiabatic theorem of lth order from 
the generalized adiabatic theorem of the same order 
when we add to the second theorem the extra 
conditions that the first (l - 1) time derivatives 
of the Hamiltonian H (r) are zero initially and 
finally. 

To achieve our aim, we have to show, at first, 
two properties of the operators that generate the 
successive changes of pictures, which are directly 
due to the fact that the first (l - 1) time derivatives 
of the Hamiltonian are zero at certain time instants. 

The first one is concerned with the behavior of 
the unitary operators R(l)(r), R(2'(r), ... , R(l)(r) 
and of their first time derivatives for a certain r 
at which the first (l - 1) time derivatives of HH 
are zero. Indeed in Ref. 7 we have shown that 
when the first (l - 1) time derivatives of H(r) 
are zero, K(ll(r) and its first (l - 2) time derivatives 
are zero. From (9) we immediately deduce that 
Kill (r) and its (l - 2) time derivatives are also 
zero for the same values of r. 

The unitary operator R (1) (r ) satisfies the dif­
ferential equation (4), from whose successive 
differentiation with respect to the parameter r we 

find that the unitary operator R (ll (r) has its (l - 1) 
time derivatives equal to zero for the values of r 
for which the first (l - 1) time derivatives of H(r) 
are equal to zero. This result, together with the 
fact that the Hamiltonian Hil) (r) was defined by 
means of the relation 

Hill(r) = H(ll(r) - (lIT)Ki ll (r) 

= R(l)\r)H(r)R(I)(r) - (lIT)Ki l )(r), (44) 

allow us to show that, for the above-mentioned 
values of r, the (l - 2) first time derivatives of 
Hill (r) are zero while the (l - l)st time derivative 
of the same operator is 

d l - 1 1 d l - l 

drl-l Hill(r) = -Iji dr l - l Kill(r). (45) 

The results of Ref. 7 and the above properties 
of the operators Kill(r), R(l)(r), and Hil)(r) can 
be extended further by the same procedure to all 
the series of similar operators that we have intro­
duced in Sec. 3. And so we arrive at the first state­
ment that we needed, i.e., to the fact that, for the 
values of r for which the first (l - 1) time deriva­
tives of H(r) are zero, Kil)(r) and its first (l - 2) 
time derivatives, the first (l - 1) time derivatives 
of R(l)(r), and the first (l - 2) time derivatives of 
Hill(r) are zero; K~2)(r) and its first (l - 3) time 
derivatives, the first (l - 2) time derivatives of 
R(2)(r), and the first (l - 3) time derivatives of 
H~2)(r) are zero; and so on. 

Given this first statement, and remembering that 
(lIT)Kil ) (r) is the perturbation that, by the methods 
of time-independent perturbations, yields Pi2

) (r) 
from Pill (0), in agreement with (11) and that 
similarly Pi3) (r) is deduced from Pi 2

) (0) by a 
perturbation proportional to K~2) H, we deduce that 

Pill(O) = pi 2)(r) = p)3)(r) = ... 

= Pil-llCr) = Pill(r), (46) 

for the values of r for which the (l - 1) time deriva­
tives of H(r) are zero; the operators Kill(r); 
K~2)H; ... ; K;~~ll(r) will be zero for the same 
values of r, where K;~~ll(r) characterizes the change 
of rotating-axis picture. 

The second property we must show regarding 
the unitary operators R(2)(r), R(3)(r), ... , R(l)(r) 
is that, for the values of r for which the first (l - 1) 
time derivatives of H(r) are zero, the unitary 
operators R(2)(r), R(3)(r), ... , R(I)(r) [R(l)(r) is 
not included] commute with any of the projectors 
Py) (0). Indeed, to show this theorem it is sufficient 
to apply (46) to the relations like (3), (12), and 
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so on, successively. Therefore, from (12) and (46) 
we have 

p~2)(T) = pll)(O) = R(2)(T)P)2)(0)R(2)\T), (47) 

which is equivalent to 

(j = 1,2,3, ... ), (48) 

and similarly for the other unitary operators R (3) (T), 
R(4)(T), ... , R(l)(T). However, we cannot deduce 
that, for these values of T, R(l)(T) also commutes 
with any p~l) (0). If the projection operators Pll) (0) 
for all j constitute a complete set, relation (48) 
implies that the unitary operators R(2) (T), which 
satisfy the same, are unity. Therefore, if the (l - 1) 
first time derivatives of H(T) are zero at the initial 
and final instants, the unitary operators R(2) (T), 
R(3)(T), ... , R(I\T) will commute with all Pll)(O), 
and then we will· deduce that the system that 
initially was at a state whose projector is p~l) (0) 
will end up at a state whose projector is P~l) (1), 
with an error smaller that IITI. This is so because 
at the final instant, in this case, the projector S~l) (1) 
of (39) becomes 

R(l)(1)R(2)(I) ... R(/-l)(l)P;!)(O) 

X R(l-l)t(l) ... R(2)t(I)R(l)t(l) 

= R(l)(I)P;l)(O)R(1)t(l) = P)l)(l). (49) 

This concludes our comparison of the generalized 
adiabatic invariance with the adiabatic invariance 
of order l. Let us study now the relations between 
the corresponding adiabatic invariants in both cases. 
Indeed, because in this case K;~~l) (T), ... , K~2) (T), 
Ki1)(T) are zero for the values of T when the first 
(l - 1) time derivatives of H(T) are zero, we deduce, 
for those values of T, 

H;!)(T) = H(1)(T) , H;2)(T) = H(2)CT), ... 

m~~1)(T) = HO-ll(T), 

E)2)(T) = E)l)(T), Ei3 )(T) = E)2)(T), ... 

E;l)(T) = Eil-1)(T), (50) 

and from relations like (8), (17), and so on, we get 

H(2)(T) == R(2)t(T)H?)(T)R(2)(T) 

= R(2)t(T)H(1)(T)R(2)(T) 

= L Ei ll (T)R(2)\T)P;1)(0)R(2)(T) = H(l)(T), (51) 
j 

given (48) and similar relations. Continuing the 
same procedure, we deduce, for these particular 
values of T, 

H(l)(T) = H(2)(T) = ... = H(I-l)(T) = H(l)(T), (52) 

which are (l - 1) equations. 
Therefore, the constants of the motion ,c (I) of 

H(l)(T), are also, in this case, the constants of the 
motion of H(l)(T), constants which, since Pil)(O) 
in (8) are a complete set of projectors, are also the 
constants of the motion of H(l) (0), 

(53) 

But we have shown before that R(2) (T), R(3)(T), ... , 
R(l)(T), for these particular values of T, are unity. 
Therefore, in this case, (43) becomes 

1(l)(T) = R(l)(T),c(l)R(1)t(T) , (54) 

a quantity that now is the generalized adiabatic 
invariant of lth order. 

There remains to identify 

1(1)(T) = R(l)(T),c(l)R(l)\T), 

where ,c (1) are the constants of the motion of H(1) (T) 
with the constants of the motion of H(T). But from 
(8) we have that the commutator [H(l) (T), 1(1) (T)] =0 
implies 

[H(T) , R(l)(T),c(l)R(l)\T)] 

= [H(T) , 1(1)(T)] = 0, (55) 

and therefore for these values of T which make 
zero the first (l - 1) time derivatives of H(T), the 
instantaneous constants of the motion of H(T) are 
adiabatic invariants of lth order. This is the meaning 
of the adiabatic theorem of lth order. 

6. GENERAL CASE 

The most general case is that situation in which 
we study the generalized adiabatic invariance of 
order l when the first (l' - 1) time derivatives 
of H(T) are zero initially and finally. We can study 
two alternatives: either l > l' or l < l'. The results 
for the third alternative l = l' were studied in 
the preceding section. 

Let's begin with the case l > l'. We deduce, 
as before, that for the values of T for which the 
first (l' - 1) time derivatives of H(T) are zero, 
Kill (T) and its first (l' - 2) time derivatives, the 
first (l' - 1) time derivatives of R(1)(T), and the 
first (l' - 2) time derivatives of H}l) (T), are zero; 
K~2) (T) and its first (l' - 3) time derivatives, the 
first (l' - 2) time derivatives of R(2)(T), and the 
first (l' - 3) time derivatives of H~2) (T) are zero, 
and so on. 

We will deduce that, as in (46), 

pi1)(0) = Pi2)(T) = ... = pil'I(T), (56) 

Downloaded 13 Jul 2010 to 161.116.168.227. Redistribution subject to AIP license or copyright; see http://jmp.aip.org/jmp/copyright.jsp



362 L. M. GARRIDO 

and since the p~l) (0) form a complete set, we will 
deduce that 

R(2)(T) = R(3)(1') = ... = R(I')(1') = I (57) 

for these particular values of T. Nothing can be 
said about R(l)(1') and about R(h)(1'), where h > I'. 
Therefore in this case the adiabatic theorem may 
be stated as follows; a system whose state is initially 
a vector II;) whose projector is Pjll (0) will end up 
its evolution in a state that is a vector of the Hilbert 
space whose projector is 
Sjl)(l) = R(I)(l)R(I'+I)(l) ... 

X R(I-I)(l)P;ll(l)R(I-l)t(l) ... 

X R(I'+ll t(l)R(l)\d), (58) 

with an approximation of the order l/T'. Similarly, 
we will obtain an expression for the adiabatic 
invariant in this case. 

The last case to study corresponds to l < l', 
Relation (57) is also valid now initially and finally, 
and here the generalized adiabatic theorem of order 
l is completely equivalent to the adiabatic theorem 
of l'th order. 

7. CONCLUSION 

We would like to remark that even better approxi­
mation for the generalized adiabatic invariance can 
be obtained in the case when the expansion in 
powers of lIT of F~I) (1') will make that the first 
term of this expansion independent of the fictitious 
time T, because then relations like (16) would give 
a Ki2

) (1') that will be smaller than the one used 
in our exposition. Beside~ this point, there remain 
others whose study may be of some profit. We 
mention, for instance, the combination of the 
generalized adiabatic invariance with the extended 
adiabatic invariance which, following the paper 
of S. Tamor,15 will be published by us soon. 16 
The reader may like to compare the present new 
concept of generalized adiabatic invariance with 
some relevant previous work on adiabatic invariants 
of any order:" 11, 18 

15 S. Tamor, J. Nucl. Energy PC 1 199 (1960) 
16 L. M. qarrido (to be published). . 
17 A. MeSSiah, M ecanique Quan/?","Ml6 (Dunod Cie Porl's 1960). ''1~., .. , 

18 L. M. Garrido, Coll Math. 13, 219 (1961). 
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