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Some generalized soliton solutions of the cosmological Einstein-Rosen type defined in the 
space-time region t 2;pr- in terms of canonical coordinates are considered. Vacuum solutions 
are studied and interpreted as cosmological models. Fluid solutions are also considered and are 
seen to represent inhomogeneous cosmological models that become homogeneous at t - 00. A 
subset of these evolve toward isotropic Friedmann-Robertson-Walker metrics. 

I. INTRODUCTION 

Many known cosmological solutions of the Einstein­
Rosen form can be deduced as generalized soliton solu­
tions. 1

,2 Soliton solutions are obtained by application of the 
Belinskii and Zakharov soliton transformation3 and can be 
easily generalized by taking advantage of the linearity ofEin­
stein's equations for the Einstein-Rosen metric. 

The main ingredients in the construction of a soliton 
solution are the seed metric, which is the starting solution to 
be transformed, and the so-called pole trajectories, a set of 
well defined functions that may be real or complex, Al­
though solutions with real pole trajectories may be obtained 
as the limit of solutions with complex poles when some of the 
parameters are null, they also form a class on their own. 

In terms of canonical coordinates (t,Z)3 (for instance, 
Einstein-Rosen coordinates), the generalized soliton solu­
tions with real poles are defined either in the space-time re­
gion r-;pt 2 or in the region t 2;pr-. These solutions may be 
completed by matching them to the seed solutions in the 
region t 2;pr- orin r-;P t 2, respectively.4,5 The completed solu­
tions, however, have discontinuous first derivatives along 
the matching light cones r- = t 2, These light cone disconti­
nuities disappear if we take complex poles: the metrics are 
then defined in the whole (t,z) coordinate range and the two 
regions are smoothly matched, 

All soliton solutions can be understood in terms of one­
pole and two-pole solutions.6 Real one-pole generalized soli­
ton solutions valid in r-;pt 2 have been seen 1,2 to include well­
known solutions such as the spatially homogeneous Ellis and 
MacCallum7 metrics and their Wainwright, Ince, and 
Marshman8 inhomogeneous generalizations; the first have 
the cosmological singularity only, at t = 0, but the second 
are also singular at Izl .... 00 and r- = t 2. The Wainwright et 
al. solutions completed with the seed solutions in t 2;pr- are 
better interpreted as the limits of complex pole solutions9 or 
as composite universes.4,10 Real two-pole generalized soliton 
solutions, on the other hand, have been seen to include the 
Carmeli and Charach11 ,12 pulse wave solutions, which are 
not singular at Izl- 00. In all of these solutions the spatially 
homogeneous Kasner metric has been taken as the seed met­
nco 

In this paper we consider the generalized soliton solu­
tions with real poles defined in t 2;pr-. To our knowledge 

these solutions have not been studied previously. In some 
sense they are complementary to the solutions just men­
tioned and their possible relevance as cosmological models 
should be emphasized. 

We consider vacuum one-pole and two-pole solutions. 
For the one-pole solutions we see that, unlike the metrics in 
r-;pt 2, they do not include homogeneous metrics. They have 
only the cosmological singularity at t = 0 and the light cone 
singularity at r- = t 2. This second singularity, however, dis­
appears when one takes complex poles. Therefore, all of 
these solutions are potentially interesting as limits of perfect­
ly regular inhomogeneous cosmological models, but are 
much simpler and easier to study. On the other hand, two­
pole solutions give, as in the previous case, pulse wave type 
metrics. All of the generalized soliton solutions evolve in 
time to the seed solution (the Kasner metric in our case) and 
are classified as Petrov type I metrics. 

We also consider solutions representing the coupling 
with a massless scalar field. Such solutions are easily ob­
tained from the vacuum metrics. The new solutions admit a 
fluid interpretation8,13,14 according to the space-time prop­
erties of the scalar field; in some regions it is a perfect fluid 
with a stiff equation of state whereas it is an anisotropic fluid 
in others. The scalar field also admits a generalized soliton 
solution and we show that the final metric can be seen as a 
generalization of a Tabensky and Taub fluid plane symmet­
ric metric, 13 The most interesting aspect of this solution is 
that it approaches spatially homogeneous metrics for t ..... 00 
and for some values of the parameters it approaches the iso­
tropic Friedmann-Robertson-Walker (FRW) metric. 
Thus this is an example of cosmological isotropization of 
initially inhomogeneous metrics. 

The vacuum solutions with one and two poles are stud­
ied in Sec. II by means of the curvature tensor. The fluid 
solutions, which are easier to interpret because of the exis­
tence of a coordinate system attached to the fluid, are consid­
ered in Sec. III. 

II. VACUUM SOLUTIONS 

In this section we consider the generalized soliton solu­
tions with real poles that are defined in the space-time region 
t 2;pr-. We also consider briefly the solutions defined in r-;p t 2. 

The Einstein-Rosen metrics can be written as 
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(1) 

where/and <I> are functions of t and Z only. 
According to Einstein's equations the potential function 

<I>(z,t) verifies a linear wave equation. Using the linearity of 
this equation, soliton solutions of <I> may be generalized easi­
ly.I.2,S In fact, if we take the spatially homogeneous Kasner 
metric as the seed metric, 

<l>o=dlnt, 1o=(d 2-1)/2Int, (2) 

where d is an arbitrary real parameter, the soliton solutions 
with n simple poles may be written as6 

n (/L') <1>=<1>0 + <l>s = dIn t + L In --l... , 
;= I t 

(3) 

[ 
n (II )]2+d-n / = lot n(4 - n)/2 JI .c;-

n n 

X IT (/Lk -/LI)2 IT (/L~ _t2)-I, (4) 
k,1= I k= I 
k>1 

where 

/L;± = Z; ± (z7 - t 2) 1/2, Z; =it - z, (5) 

are the pole trajectories that are real if the parameters it are 
real or complex otherwise; they verify that /L/ It = t I/L;- . 

The analysis of these solutions is usually performed by 
considering one and two poles only.6 

By taking it real we see that <l>s' for /L/, is a linear 
superposition ofterms of type cosh -I (z lit). Therefore, the 
one-pole solution may be generalized as 

(6a) 

where h is a real parameter. The corresponding/ coefficient 
is easily found from (4) by taking appropriate limits: 

/ = t (d' + h ' - I) /2 (zt _ t 2) - h '/2 exp [hd cosh - I (z / t) ] . 

(6b) 

Solution (6), which is defined in the space-time region 
iZli;>t, is the Wainwright et al. solution.8 Generally it has 
singularities at t = 0, izi-+ 00 , and t 2 = zt. When 
h 2 = d 2 + 3 it has the cosmological singularity only (t = 0) 
and is the Ellis and MacCallum 7 spatially homogeneous an­
isotropic solution: Bianchi V if d = 0, Bianchi III if d 2 = 1, 
and Bianchi Vlh otherwise. In this case it is better to use 
coordinates (T,Z) adapted to spatial homogeneityl2 

t = exp( - 2aZ)sinh(2aD, Z = exp( - 2aZ)cosh(2aD, 
where a is a positive constant. 

. When this solution is completed by matching it to the 
Kasner solution in the space-time region t 2;>zt, it may be 
seen as the limit of the one complex pole solution with no 
light cone singularities9 and it may be interpreted as a com­
posite universe.4 ,l0 

To complete this short review of soliton solutions de­
fined in zt ;>t 2 we now consider the two-pole solutions that 
are necessary in order to give an overview of all the soliton 
solutions. These are the solutions obtained with /L 1+ and /L2- , 

<l>s = (h 12) [cosh-I (zl/t) - cosh-I (z2/ t) ], 

min(izt\,iz2i);>t, (7a) 

and the/coefficient is 
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/ = t (d' - 1)/2(/L2 _ /LI)h '/2(/LI//L2)h(2d - h)/4 

X(zt - t2)(~ _ t 2»)-n'18. (7b) 

Metrics (7), which are not singular at izi-+ 00, are the Car­
meli and Charach ll ,I2 pulse wave solutions. They may be 
seen as the limit of the corresponding complex pole solutions 
that describe gravisolitons propagating on a Kasner back­
ground. 16 

The solutions we wish to consider here are the family of 
real pole generalized soliton solutions defined in the space­
time region t;> iZII. In some sense they may be considered as 
complementary to the solutions just mentioned. For one 
pole such a family may be obtained in a way similar to (6a) 
but changing h to ih (Refs. 5 and 17): 

<l>s = h cOS-I(zllt), iZli<t. (8a) 

The / coefficient may be obtained also from (4) by taking 
appropriate limits: 

/ = t (d' - h' - 1)/2(t2 _ zt )h'/2 exp[dh cos-I(z/t)]. 

(8b) 

This solution may be matched to the Kasner metric in the 
region iZli;>t. 

We may now study the intrinsic properties of solution 
(8). By taking the null tetrad 

n= (2/)-1I2(a, +az )' 1= (2/)-1I2(a,-az )' 

m = (2gxx ) -1/2 ax + i(2gyy) -1/2 ay, 

and the complex conjugate of m, m*, the Riemann tensor 
has three non-null components only. IS For the metric (8) 
these are 

'112 = - (8/) - I [(1 + h 2 _ d 2) t - 2 

- 2hzI dt -2(t 2 - zt) -1/2], 

'110 = - (2/) -IX +, '114 = - 2(/) -IX-, 

X± = (t2_~)-I/2(hzt-2(3d2_h2_1) 

± ht - I (3d 2 - h 2 - 3»)/4 

+ (t2_~)-lh2d(2+~t-2±3zt-I)/2 

+ (t2_~)-3/2h(z+z3±t(2+h2 

+ h 2~t -2)/2) + dt -2(d 2 - h 2 - 1 )/4. 

(9) 

The algebraic classification of this metric is easily done 
by following the d'lnvemo and Russell-Clark algorithm. 15,18 
For h #- 0 the metrics are of Petro v type I. Of course for h = 0 
the metric reduces to the Kasner seed, which is of Petrov 
type D for d = 0, flat space for d 2 = 1, and Petrov type I 
otherwise. 

The metric has only the cosmological singularity at 
t = 0 and the light cone singularity at zt = t 2; but this last 
one may be avoided with complex poles. Unlike the solution 
(6), there are no values of the parameters for which the 
metric is spatially homogeneous. Therefore for a cosmologi­
cal interpretation we match metric (8) with the Kasner met­
ric in iZli;>t and the new solution may be seen as the limit of 
inhomogeneous complex pole solutions that have the cosmo­
logical singularity only. Such complex pole solutions are ac­
ceptable cosmological models, and may be considered as 

G. Oliver and E. Verdaguer 443 

Downloaded 13 Jul 2010 to 161.116.168.227. Redistribution subject to AIP license or copyright; see http://jmp.aip.org/jmp/copyright.jsp



composite universes,4.1O; however, they are not so easily de­
duced and analyzed. 

Metric (8) evolves to the spatially homogeneous 
Kasner metric when t -+ 00 • 

We may now consider the two-pole solutions. They are 
obtained, similarly to (8), by changing h to ih in (7a): 

ct>s = (h /2)[cos-I(zl/t) - COS-I (Z2/t ) ], 

t>max(lzll,lz21), (lOa) 

and the metric coefficientjis found to be 

j= t(d 2-h 2-1)12[ (t2 -zt )(t 2 _~) ]h2/8 

X(Z2~t2_zt _ZI~12_~)h2/4 

X(~12_~ +~12_zt)-h2/4 

Xexp[ (dh /2)(cOS-1 (ZI/t) - cOS-I(Z2/1»)]. (lOb) 

This metric is complementary to the Carmeli and Charach II 
pulse wave solutions (7). It may be understood as the (de­
structive) superposition of the two solutions (8). In (7) this 
superposition was essential in order to avoid the singularity 
at Izl-+ 00 of the one-pole solutions (6). Here this is not 
necessary because the solution (8) is not singular at Izl-+ 00 

(it is not defined there). The interpretation ofthe solution, 
however, is similar. The space-time may be divided by the 
light cones IZII = land IZ21 = I. In the intersection region we 
have solution (10); it is matched to the one-pole solution at 
the "inner" light cones and to the seed solution at the "out­
er" cones. At 1-+ 00 the completed metric becomes the 
Kasner metric and thus it may be interpreted as pulse waves 
propagating on a Kasner background. It is the limit of the 
corresponding complex pole solution; in such a solution an 
observer sitting at some fixed Z will start in an homogeneous 
model and will end up in the same model after having gone 
through inhomogeneous regions of type (8). 

III. SOLUTIONS WITH FLUIDS 

We now consider the coupling of Einstein's equations 
with a massless scalar field 0'. These equations read 13 

RI"V = 0'.1" O'.v' (lla) 

0';1";1"=0. (1lb) 

It is well known that a solution of this system may have a 
fluid interpretation.8

•
13.14 Given 0' this is done in the follow­

ing way. If 0'.1" is a timelike vector, 0'.1" erl" < 0, 0' may be con­
sidered as the potential of a perfect fluid with a stiff equation 
of state p = p (p = pressure, p = energy density). This is 
achieved by defining the density, pressure, and four-velocity 
of the fluid as 

p=p= -~O'.l"erl", ul" = (-0"l"erl")- 1/20'./l-' (12) 

The energy-momentum tensor of the fluid is identified from 
the rhs of (11a) as Tl"v - !8'l"vT, where 

Tl"v = 2puI"uv +pgl"v' (13) 

that is, a perfect fluid with a stiff equation of state. 
If 0'.1" is a spacelike vector, 0'.1" erl" > 0, the above identifi­

cation is still formally valid but now ul" is a spacelike vector 
and the perfect fluid interpretation does not hold. Following 
Tabensky and Taub13 we can see that the rhs of ( lla) may be 
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identified with an anisotropic fluid. For this we define an 
orthonormal tetrad (TI" ,O-'I",xl" 'YI" ), where TI" is a timelike 
vector, 0-1" =ul"' and xI"' YI" are spacelike vectors. Now gl"v 
= - TI" Tv + o-.I"o-.v + xl"XV + YI" Yv and the rhs of (11a) 

can be written as Tl"v - !8'I"V T with 

Tl"v = ~O'.A erA ( 1'1" 1'v + 0'.1" O'.v - XI"XV - Y I" Yv ), (14) 

which corresponds to the energy-momentum tensor of an 
anisotropic fluid with energy density p = !O'.A erA and vanish­
ing heat-flow vector. The weak and strong energy condi­
tions l9 are satisfied and the fluid interpretation is reasona­
ble.13 

For the Einstein-Rosen metrics (1) the solutions of 
(11) are easily found. In such a case the scalar field O'(t,z) 
verifies the same linear wave equation, ( 11 b), that the poten­
tial field ct>(t,z) verifies. Only the metric coefficientj(t,z) is 
modified by the presence of such a scalar field and it is simply 
found as the product of two functions, each one of them 
determined, respectively, from ct>(I,Z) and O'(I,Z) by similar 
equations. 13.20 

Therefore we may take generalized soliton solutions for 
0'. For the real one-pole case we take, as in (8a), 

O'=alnl+bcos-I(ZI/I), 1>lzll, (15) 

where a and b are arbitrary parameters. This is the solution 
used by Tabensky and Taub13 in their study of plane sym­
metric metrics that evolve to FRW models. 

Now thejcoefficient is easily obtained by making use of 
( 4) and (8b) as 

(16a) 

The potential ct> has not been modified, i.e., ct> = ct>o + ct>s 
with ct>s being (8a), 

(16b) 

Metric (16) gives a solution to Einstein's equations 
( 11 a) with the coupling of the massless scalar field (15). It 
reduces to the Tabensky and Taub plane symmetric metric 
when d = h = O. For I this metric approaches a spatially 
homogeneous metric. 

The space-time regions where 0'.1" is, respectively, time­
like and spacelike are divided by the straight line, 

(17) 

According to the previous discussion we have a perfect fluid 
in the space-time region between the straight line (17) and 
I = Z I > 0 and an anisotropic fluid in the complementary re­
gion. 

The presence of a fluid makes this metric easier to study 
and interpret because we may adapt the coordinate system to 
the fluid. Following Refs. 13 and 21 we shall introduce co­
moving coordinates. In the region where 0'.1" is timelike we 
may use O'(t,z) as the time coordinate and define a space 
coordinate Z (t,z) by 

dZ=a-II(O'.z dl+O'., dz); (18) 

this ensures that Z.I" erl" = 0 and that Z.I" is spacelike. 
Equation (18) is easily integrated as 

(19a) 
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The fluid lines are the hyperbolas defined by Z = const; they 
approach straight lines for t -+ 00. The time coordinate may 
be defined as 

T = exp[a-Iu(t,z) - a-'b cos-l(b(a2 + b 2) -1/2)], 
(19b) 

where the constant parameters have been introduced for 
convenience and u(t,z) is given in (15). 

In the region where u,l' is spacelike, T and Z are space 
and time coordinates, respectively, and the fluid lines are 
defined by u(t,z) = const. 

The coordinate change defined by (19) is not explicitly 
invertible. However, for large t, which is the region we are 
interested in, it is 

t= T + b(a2 + b 2) -1/2Z, z=Z + b(a2 + b 2) - 1/2T, 

and the metric (16) can be written in comoving coordinates 
as 

ds2 = T(d' + h' + 2a' + 2b' - '){1 + (Z In (a2 + b 2) -1/2 

where 

X [ (b 12)( d 2 - h 2 - 2a2 - 2b 2 - 1) - ahd]} 

X{[I- 2(Z/nb(a2 + b 2)-1/2]dZ 2 - dT2} 

+ T[1 + (Z/nb(a2 + b 2)-1/2 

A = 1 + (ZIT)(a2+b 2)-1/2(db-ah) 

xexp{h cos-l[b(a2 + b 2)-1/2]). 

(20) 

For d = h = 0, i.e., the Tabensky and Taub plane sym­
metric solution, and 2(a2 + b 2) = 3 the metric approaches 
at T -+ 00 the flat FR W metric with a stiff perfect fluid 

dr = T(dZ 2 + dx2 + dy2 - dT 2). (21) 

Metric (20) also approaches the isotropic flat FRW 
model, (21), when d = 0 and 2(a2 + b 2) = 3 - h 2. For all 
other values of the parameters the metric approaches a spa­
tially homogeneous but anisotropic model. 

To finite values of time the metric is spatially inhomo­
geneous and may be interpreted as representing inhomoge­
neous finite perturbations on homogeneous metrics. There­
fore the solutions (20) may be considered as an example of 
inhomogeneous cosmologies that become spatially homoge­
neous and, for some values of the parameters, isotropic, as a 
result of cosmological evolution. 
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Solution (16) may be matched to the space-time region 
IZII>t with the seed soution obtained by setting h = b = O. 
There we again have discontinuities in the first derivatives 
for the metric and the fluid potential. Rather than interpret­
ing it as a solution with shock waves, it is better interpreted 
as the limit of the corresponding complex one-pole solutions 
that have no fluid discontinuities in the pressure or the den­
sity. The asymptotic behavior at t -+ 00 of such a solution is 
that of the real pole solution described above, i.e., it evolves 
to spatially homogeneous metrics. 

We could also describe fluid solutions with two or more 
poles; the interpretations, however, are now rather obvious. 
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