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In order to study the connections between Lagrangian and Hamiltonian formalisms
constructed from a—perhaps singular—higher-order Lagrangian, some geometric structures
are constructed. Intermediate spaces between those of Lagrangian and Hamiltonian
formalisms, partial Ostrogradskii’s transformations and unambiguous evolution operators
connecting these spaces are intrinsically defined, and some of their properties studied.
Equations of motion, constraints, and arbitrary functions of Lagrangian and Hamiltonian
formalisms are thoroughly studied. In particular, all the Lagrangian constraints are obtained
from the Hamiltonian ones. Once the gauge transformations are taken into account, the true
number of degrees of freedom is obtained, both in the Lagrangian and Hamiltonian
formalisms, and also in all the “intermediate formalisms” herein defined.

I. INTRODUCTION

The Lagrangian and Hamiltonian formulations of dy-
namical systems are the natural framework for most of the
developments in theoretical physics, and have been a subject
of increasing research for a long time. Here, we want to point
out two directions of development of these formalisms: (a)
the extension to the singular case (i.e., when the Hessian
matrix of the Lagrangian with respect to the velocities is
singular), and (b) the generalization to the higher-order
case (i.e., with Lagrangians depending upon the & th deriva-
tive of coordinates—or fields if we are dealing with field
theory).

Both developments are relevant in theoretical physics.
Lagrangians for gauge theories—the basis of BRST symme-
try—are necessarily singular, due to the arbitrariness under-
lying gauge transformations. On the other hand, several
physical theories use higher-order Lagrangians. This is the
case, for instance, of Hilbert’s action for gravitation [Refs. 1,
2 (references therein), 3, 4], the recent Polyakov’s formula-
tion of the string [Refs. 5, 6 (references therein) ], or Po-
dolski’s electrodynamics and its generalizations to Yang-
Mills theories™!®—see also Refs. 11-16 and references in
Ref. 17. Finally, the field—antifield formalism of Batalin and
Vilkovisky usually leads to higher-order Lagrangians.'®

About 1950, Dirac and Bergmann opened the way for
the study of singular Lagrangians and their associated Ham-
iltonian formalism—see references in Ref. 19, for instance.
A Iot of work has been made since. Geometrization of the
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regular first-order case was established through the use of
the underlying geometric structures of some vector bun-
dles—see Ref. 20, for instance. A bit later, this geometriza-
tion was extended to the singular case, together with many
results concerning the equivalence of Lagrangian and Ham-
iltonian formulations and some new relations between both
formalisms—see references in Refs. 21—24.

Ostrogradskii, in the middle of the last century, devel-
oped the canonical formulation associated to a regular (i.e.,
nonsingular) Lagrangian of arbitrary finite order.”>* On
this basis several theoretical aspects of this formalism have
been studied. This includes field theory and quantization,
constraints, and equivalence with Lagrangian formal-
ism'z&s?

Geometrization of higher-order Lagrangian formalism
has also been performed,?®***' as well as the Hamiltonian
formalism in the regular case.”” Nevertheless, the program
to study and geometrize the higher-order singular forma-
lisms is far from being completed. Contribution in this direc-
tion is the scope of the present paper.

Recently,** some progress has been made in the second-
order singular case through the introduction of an interme-
diate space between the spaces of the Lagrangian and Hamil-
tonian formalisms. With this space several points of the
dynamics of these formalisms have been clarified. One of the
purposes of the present paper is to pursue this work and also
to generalize the method to the k-th order case. The Lagran-
gian may be regular or singular, and only some weak regular-
ity conditions are needed. We work in a finite-dimensional
configuration space, but our results can be applied to field
theory in the same lines of Refs. 42 and 19.

First, we shall intrinsically define a family of intermedi-
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ate spaces that connect those of Lagrangian and Hamilto-
nian formalisms, through a decomposition of the Legendre—
Ostrogradskii’s transformation.

Related to these “partial Ostrogradskii’s transforma-
tions” there is a family of unambiguous evolution operators
K,,...K, _,. For first-order Lagrangians they have been
used to describe the constraints in Lagrangian and Hamilto-
nian formalisms,**™** and can be given a neat characteriza-
tion*® that will be adopted in the present paper.

The intermediate spaces are suitable for their own for-
mulation of the dynamics, and it turns out that all these
formulations are equivalent (they give the same trajectories
in configuration space Q), thus extending the equivalence
between the Hamiltonian and the Lagrangian formalisms to
all the “intermediate formalisms.”

When dealing with a singular Lagrangian all these dy-
namics are defined by a differential equation that cannot be
written in normal form. This is the well-known situation of
constrained systems and leads to stabilization algorithms in
order to determine—partially, at least—the dynamics,
which had a certain degree of arbitrariness due to gauge free-
dom, and to find out the submanifold where the motion can
take place.

All these constructions can be performed for any k th-
order Lagrangian function. Although they may seem rather
formal, they are really useful, especially for singular Lagran-
gians. The aim of the intermediate formalisms is to relate the
dynamics of Lagrangian and Hamiltonian formalisms. Their
equivalence can be proven directly*® but in view of computa-
tions it is more interesting to relate their constraints. As it
will be shown in the present paper, these constraints can be
obtained through the application of the intermediate evolu-
tion operators. In particular, the Lagrangian constraints are
obtained by consecutively applying the k evolution opera-
tors K, _ | ,...,K, to the Hamiltonian constraints. The proof
of this result, as well as the construction of the operators,
strongly relies on the introduction of the intermediate spaces
and their dynamics. They are also applied to study the arbi-
trary functions appearing in the dynamics.

Once the constraints and the dynamics have been deter-
mined, a gauge fixing procedure can be introduced in order
to identify the physical degrees of freedom; their number,
which is actually computed, is the same in all the spaces. The
Lagrangian gauge fixing is also derived from the Hamilto-
nian one, again through the use of the intermediate evolution
operators.

The paper is organized as follows. In Sec. II some con-
cepts on higher-order tangent bundles are introduced. Sec-
tion III is devoted to some general remarks on higher-order
Lagrangians. The intrinsic definition of the “intermediate
spaces” is given in Sec. IV, and the “partial Ostrogradskii’s
transformations” in Sec. V, together with some of their prop-
erties. Sections VI and VII are devoted to the evolution oper-
ators and some relations between them. Some special fea-
tures of the space of the Hamiltonian formalism, including
its primary constraints, are studied in Sec. VIII. A closer
knowledge on the partial Ostrogradskii’s transformations is
thus obtained in Sec. IX.

The ““Lagrangian” equations of motion in each space P,
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for 0<r<k — 1 are introduced for paths in Sec. X and vector
fields in Sec. XI. The Hamilton-Dirac equations of motion
for a path in P, are introduced in Sec. XII. Various relations
between the dynamical vector fields and the unambiguous
evolution operators are obtained in Sec. XIII, and some par-
ticular cases of them are pointed out in the following section.
Then we are ready to develop the stabilization algorithms in
Sec. XV, along with the determination of the “arbitrary”
functions in Sec. XVI. Section XVII deals with the gauge
fixing procedure and the number of degrees of freedom. We
finish with examples and conclusions.

Our notations and conventions are similar to those of
Refs. 29, 33, and 47. All manifolds and mappings are as-
sumed to be C *. Indices of coordinates are generally omitted,
and the summation convention is assumed for them.

In order to apply the stabilization algorithm for Hamilto-
nian formalism,* and the Ostrogradskii’s theorem for singu-
lar Lagrangians,®® the following regularity conditions are as-
sumed; the Hessian matrix W of L has constant rank,
ineffective constraints do not appear at any level, and the rank
of the matrices of Poisson brackets considered in Sec. XV is
constant.

Il. SOME CONCEPTS ON HIGHER-ORDER TANGENT
BUNDLES

In this section we recall some basic concepts and nota-
tion concerning higher-order tangent bundles.”***° Here
and especially in Sec. IV some knowledge of fiber product
manifolds will be needed.*”**!

Throughout this paper Q is an n-dimensional differen-
tiable manifold. We shall make extensive use of the tangent
bundle of order m >0, T"(Q), whichisann(m + 1)-dimen-
sional manifold, whose points are m-velocities. These are
equivalence classes of curves in Q, this equivalence being the
tangency of order m.

If ¢° are coordinates in Q, there are natural coordinates
(§%4¢',...g™) in T"™(Q), which represent the first m deriva-
tives of a curve in Q. These are the only coordinates that will
be considered.

In a natural way, one can define a fiber bundle structure
o™ T™Q—T'Q for m>I, that can be written, in natural co-
ordinates,

07 (g%q™) = (¢°sg’). (2.1)

From of" an exact sequence of vector T'"Q -bundles is con-
structed

T(of")
0=V (T"Q)->T(T"Q) — T"Q X T(T'Q)~0,
(2.2)
which defines the ‘‘vertical vectors of order ”

VA(T™Q): =Ker T(o]"); it is a vector subbundle of
T(T™Q) of rank n(m — 1), for which 4/3¢'*,...d/3¢™
constitute a local frame. The coordinate expression of such
vectors is (g°,...,¢"™;0,...,0,0' * ,...,u™). A section of this sub-
bundle will be called, of course, a vertical field of order /.
Moreover, there are the corresponding ‘““horizontal co-
vectors of order m — I,” the vector subbundle V,(7 "Q)*
CT*(T"Q), locally spanned by dg°,...,dg". A one-form @in
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Trman PRy I . . PR
T™Q is called horizontal of order m — I (0gi<m) if its

range is in this subbundle. The dual sequence of (2.2) is

T(of}

0-T"Q X . I(T'Q* ~ T(T"Q*-V (T"Q)*-0,
(2.

"\’7

from which the isomorphism

T"Q X T,QT*(T’Q) =V (T"Q'CT*T"Q)
is deduced. Thus a one-form horizontal of order m — [/ is
identified with a section of the first vector bundle; therefore,
with a T'Q-bundle morphism F,:T"Q-T*(T'Q). If
O0=A,dg° + ... + A4, dg, then Fo(g°...q™)
= (g% snA)).

Generalizing the vertical endomorphism of T(7Q), the
tangent bundle of T"'Q is provided with m “vertical endo-

morphisms” J, {1<r<m). J, reads, in coordinates,
2] , d
Jo—2 =i %, (2.4)
aqt - aql
in other words
T (@0 nsg™50% ™) = (0., g™0,00,20%, ... ,m0™ 1),
(2.5)

The other is obtained from it: J, = (J,)". Notice that
KerJ,=ImJ,,_,., =V,._ (T"Q.

The transposed endomorphisms %/, will be also consid-
ered. They operate in the cotangent bundle of T™Q and their
action is given by

g, odqi= l»dqi— 1
or, on a point of 7*( T "Q),

1 (@08 3D0 s P ) = (G°es@ ™3P 52D 5er 11D 1 0)
Q2.7)

(2.6)

Actually we shall need the more general expression

'J,(qos---qu;Po,---,Pm )
= [¢°%-...g™; (/O p,,.... [ M}/ (m — Mp.,.0,...,0].

(2.8)
Now we have Ker J, =Im ", _,,, =V,_, (T"Q)"
There is also a natural closed embedding

JuT™ 10— T(T™Q), whose local expression is
JGeng™ ") = (°ng™g g (2.9)

This s, in fact, a vector field along 0™ * !, and therefore it acts
as a differential operator: if feC ©(T"™Q), then

m+l)

dofi= 5 nf=df,]™) (2.10)
is a function in 7" * 'Q, whose local expression is
TF Z af r + 1 (2’1 l )
i= 0

This notation wxll be freely used throughout this paper to
derivate functions depending on an undetermined number of
higher-order velocities.

Finally another particular class of vectors will be con-
sidered in T(T™Q). We say that v,eT, (T Q) satisfies the
sth-order condition (for 2<s<m + 1) if

(o7 ;) v, =7 o\ (@)). (2.12)

2746 J. Math, Phys., Vol. 32, No. 10, October 1991

It amounts to say that the coordinaie expression of v, has the
form (g°%....¢™g" g ™ L0 7 1,..0™). Notice that such vec-
tors constitute an affine subbundle of the vector bundle
T(T™Q), associated to the vector subbundle ¥V, _, (7"Q).
The sth-order condition will be also considered on vector
fields of 77™Q in an obvious way. Then, a vector field satisfy-
ing the (m+ l)th-order condition gives rise o a
(m + 1)th-order differential equation in Q.

Hl. HHIGHER-ORDER LAGRANGIANS

Now let us consider a k th-order Lagrangian in G, that is

i1 L Ladglic 111t

to say, a function L: T*Q— R. Variational calculus yields its
Euler—Lagrange equations [L 1., =0, where

; L

L1= 3 (= Dy (3)
contains derivatives of ¢ up to order 2k.

If the solutions of these equations are to be cons1dered as
integral curves of a vector field, this should be defined in the
manifold 7%~ 'Q. Although the k th-order Lagrangian for-
malism can be geometrized in other ways, this is perhaps the
better one to build up a Hamiltonian formalism from it. The
first step is to construct the Jacobi—Ostrogradskii one-form

8, in T~ Q. It can be defined®® by extending the actionof

d to one-forms, and its coordinate expression is
k~1

6, = 'Zo b dqi:

where the kn functions p; are the Jacobi-Ostrogradskii mo-

menta
)
(_l)ld}T(W)'

2k—=1—i and we have

3.1

k—i-1

bi= Z

j=o

(3.2)

Notice that p; depends at most in g

b, n
ank-l—i = ( - I)k : W(qo’""qk)’ (33)
where W is the “Hessian matrix™
92L
= i 3.4)
dg* 3¢* ( ‘

A very important relation between the momenta is the fol-
lowing:

. 8L

Pioy = '5—,‘ — drb;.
Then, with 8, one defines the Lagrange two-form w, in
T2k — 1Q :

a)L:= —-d@L.

(3.5)

(3.6)

On the other hand there is the energy function E; in
T*—1Q. It can be defined as E, = {4,,X) — o3*~ (L)
for any vector field X in 72* ~'Q satisfying the (k + 1)th-
srder condition—see also (6.7). Its local expression is

k
E = Z Bio1d' — L(g°...4").

P=1
And just as in the first-order case, one is lead to consider
the vector fields X in T2~ 'Q which satisfy the 2k th-order

(3.7
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condition

T(o2k—1)oX =42 (3.3)
and the “‘presymplectic” equation
iyw, =dE,. (3.9)

Both expressions constitute the classical Euler-Lagrange
equations for L. It should be noticed that, for a regular La-
grangian, (3.9) has one and only one solution, and that it
satisfies the 2k th-order condition. For a singular Lagran-
gian, (3.9) is to be studied in the theory of presymplectic
manifolds.?*?

Since the one-form @, is horizontal of order £, it
induces a morphism of T*~'Q-bundles,
FL:=F,:T*~'Q-T*(T*~'Q), which can be called the
Legendre-Ostrogradskii’s transformation of L. It is the nat-
ural generalization of the Legendre’s transformation for a
higher-order Lagrangian. Its local expression is, of course,

FL(g°,...q k-

2k—l) _

= (g% " LiPgreesPr _ 1 )s (3.10)

and, if @ and w are the canonical one- and two-forms of
T*(T*~'Q), then FL*(8) = 6, and FL *(») = w;.

If FL has constant rank and connected fibers, and its
range is a closed submanifold, then the energy function is
projectable through it, and a Hamiltonian formalism can be
carried on in T*(T*~!Q). This is (locally) equivalent to
the Lagrangian formalism, provided that L satisfies some
regularity conditions.>®

{V. DEFINITION OF THE INTERMEDIATE SPACES

In a recent paper*® a decomposition of the Legendre—
Ostrogradskit’s transformation for second-order Lagran-
gians was naively introduced in coordinate language in the
following way:

Ao @)
T3Q-’P| —’T*(TQ)y

where a,(g%..¢°) = (¢%¢",¢%Po) and a,(¢%¢'.4"po)
= (¢%g"',po.p,) (recall that the definition of p, only in-
volves ¢° ¢', ¢°).

In other words, the Jacobi—Ostrogradskii momenta are
introduced step-by-step, and the higher velocities are corre-
spondingly swept off. This decomposition proved to be use-
ful in the analysis of constraints appearing in Lagrangian
and Hamiltonian formalisms, and in the determination of
the dynamics.

As it was said in the same paper, this has a straightfor-
ward  generalization to  kth-order  Lagrangians,
Py — %P, —+++ -~ 1P, but in no case the structure of such
“intermediate spaces” was elucidated.

In order to define the intermediate spaces, we first recall
that if M — N is any manifold morphism, then M is diffeo-
morphic to its graph {(x,p)eM X N |y = f(x)}. Therefore,
one is lead to consider, for 0<r<k, the fiber product mani-
fold

?r:= T2k—1—rQXTA_IQT*(Tk—1Q)

2k —1—

4.1)

with natural coordinates (g°,...,q "Do»Pr — 1 ), hence
of dimension (3k — r)n; and locally define P,, the “interme-
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diate space with » momenta,” as the subset of P, defined by

p.—b, = =pi_1 — P11 =0
which is a 2kn-dimensional submanifold of it because the
(k — r)n differentials of these functions are linearly inde-
pendent everywhere. Notice that a set of fairly natural co-
ordinates for P, is provided by
2k—1—r,

(qo"' Pose ’prﬂl )’
these are the only ones that will be considered in P,.

The above construction is independent of coordinates.
The best way to show it is to make this construction in an
intrinsic way.

Let 6 be the canonical one-form of T*(7T*~'Q); its lo-
cal expression is

k—1

0= i;o p,; dq".

Consider the endomorphism *J, of this manifold, and pull 6
back through it. The result is another one-form (*J,)*(8) in
T*(T*~'Q), whose local expression can be easily comput-
ed using (2.8):

(4.2)

k—1—r
wore = 3 AL

i=0

~——pi,,dq"

Its pull-back to P, through th_e second projection of this fiber
product is a one-form 6, in P,, with the same local expres-
sion:

* —Zl“ " + r)

i=0

6r=pr2*((t',r)*(0)) p!+rd *

(4.3)

On the other hand consider the Jacobi—Ostrogradskii
one-form 8, in T2*~'Q. The rth vertical endomorphism of
T(T?*~'Q)—Ilet us denote it also by J,—operates on this
one-form to yield another one, ‘7,28, , with local expression

k—1—r (2
.00, = z Ltnt bis . dq.
i=0 il
Now notice that the highest velocity appearing in this
expression is ¢** ~' =", corresponding to p,. Since the ca-
nonical projection T'%*~'Q— T ~'~"Q has connected fi-
bers, the above one-form is projectable through it, and has
the same local expression in the last manifold. The result is
finally pulled back to P, through its first projection, thus
obtaining a one-form 6 in P, with the same local expression:

0, = pri((0% =1 _ )4 (7,96,))

kd=r G4+, ;
= > L—7—1!7,-+,c1¢1-
i=0 4

(4.4)

The local expressions of 8, and é, are similar, but p;
have been changed to p; (r<i<k — 1). Therefore, we have
the following.

Theorem 1: For 0<r<k let P, be the subset of P, where
6, and 9, coincide. This is a closed submanifold of dimension
2kn, locally defined by the vanishing of the n(k — r) func-
tions p, — P,s-esPi—1 — Pr—1- n

We shall refer to P, as the rth intermediate space. Notice
that P, is nothing but the graph of the Legendre-Ostro-
gradskii’s transformation, therefore it is identified with
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T*-10. On the other hand
P, =P, =T*"'Q X 14 ., T*(T*~'Q), which is canoni-
cally diffeomorphic to 7%(T*~ Q). We shall make both
identifications when convenient.

Since P, is fibered over 7'2* ~' = "Q, the restriction of its
projection to P, defines a mapping

¥,iP, - TH=1=rQ
with local expression

Yo (q°ng

2k ~ 1 —r,

’pOw--,P,_, 1 ) = (qo)-.quk—' ' r);
(4.5)

this defines a fiber bundle structure in P, over T~ '-"Q,
We finish by pointing out that our method has been
extended to higher-order field theories by Saunders and
Crampin,* and that a different construction of intermediate
spaces has been developped by Carifiena and Lépez.’*

V. THE PARTIAL OSTROGRADSKII'S
TRANSFORMATIONS

The previous construction is only justified because the
*“partial Ostrogradskii’s transformations”—as looked for—
fit naturally with it, as we are going to prove.

First notice that the mapping
03 T3 T* ' ="Q - T? 2= "0 induces in a natural way
a canonical projection P, — P, -

Theorem 2: The canonical projection 2, - P, , , induces
a mapping ,:P,—P, |, for 0<r<k — 1. Its local expres-
sion is

ar(qov~~’q2k -t r;Po ”"7Pr-— 1 )
= (qo’”-)qy(‘z—’;p():'",pr.. l,ﬁr)- (51)
The mapping P P, 1 sends
(¢% g ™' Dgseeli 1 )EP, to the point

I, 0, 0,

0, 0, 0, I,
On “ee v On 0"

3p,/3q° P, /3¢~ 0,

Recalling (3.3) it is clear that the corank of this matrix
is the same as the Hessian matrix W, and their determinants
are related by detT(a,)=(— 1) +"* ~1-"det W,
Therefore, the following is shown.

Proposition 1. If any of the partial Ostrogradskii’s trans-
formations has constant rank, all them have, it is the same
and can be evaluated as

rank o, = (2k — 1)n 4 rank W,
where W is the Hessian matrix of L in any coordinates. W

2748 J. Math. Phys., Vol. 32, No. 10, October 1991

2k — 2 —

(¢°%..q "PossPx — 1 ) and its last n(k — (r + 1)) mo-
menta satisfy p, = p,, thus this imageisin P, , . |
The mapping e, will be called the rth partial Ostrograds-
kil’s transformation. Notice that the Legendre-Ostrograds-
kii’s transformation FL is identified with the composition
Qp..yomoay:Py—P,. We shall use the notation
Q=0 _o..ox,, which defines a mapping P, - P,.

Pr __QL—’ Pr+l
Tr Yr41
T2k-l~rQ Tzk—2—rQ

————
2kel—r
Oy

It is clear that the diagram below is commutative:

Now, let us make a closer study of the partial Ostro-
gradskil’s transformation e,. The first step is, of course, to
compute its tangent mapping. Its action on a coordinate
frame is, rather obviously,

T(a,yold = f %Pr 0 o iok_as
dg' dq'  3q Ip,
(5.2a)
Fayo 8 __ 9 5o
(a,) aqzk~l~r—aqzk_1-r5’ (5.2b)
T(a,)o2- =9 ocicr—1. (5.2¢)
ap; f

The Jacobian matrix can be written as a block matrix, each
block being a square matrix of order a:

(5.3)

We recall that &, has locally constant rank if and only if
Ker T(a,) is a vector subbundle of T(P,); then its rank is
n — rank W, Notice also that the rank of FL at each point is
at least k(n + rank W). However, FL may not have con-
stant rank even though the 2, do.

The canonical symplectic form w of P, = T*(T*~'Q)
allows the construction of

(54)
which is an exact two-form in P, (0<r<k), with local

w,: = ak(v),
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expression

A0 A 2 i 1

Ndpy + - +dg~

+dg" Ndp, + -+ +dg" ' Ndp, _,. (5.5)

(In spite of the notation chosen, this , has little to do with
the previously constructed one-form 8,.) Notice that w, and
w, are w; and o, respectively, and that

A T
Adp, _,

a¥w,, ) =0, (5.6)

By inner contraction with tangent vectors at xeP, a vec-
tor P,-bundle morphism Q,:T(P,) — T(P,)* is obtained:

Q, v =1, o,.

If it has locally constant rank then w, is a presymplectic

form. If it is an isomorphism then w, is a symplectic form.
Now, as in the first-order Lagrangian case, we are ready

to characterize the “regularity” or the “singularity” of the

T A .
Lagrangian in the following sense.

Theorem 3: The following properties are equivalent
(0<r<k — 1): (1) The Legendre-Ostrogradskii’s transfor-
mation is a local diffeomorphism; (2) e, is a local diffeomor-
phism; (3) w, is a symplectic form; (4) the Hessian matrix W
of L is invertible in any coordinates.

Equivalence between (2) and (4) follows from the pre-
ceding proposition. The Jacobian of FLis + (det W)*, thus
(1) and (4) are equivalent. Since w is symplectic, (2) im-
plies (3). Finally one should compute

(a)r)/\nk= (nkNW( — DYk~ 7+ [tk=n22in

X (det WY~ "dg®™ A+~ Ndp, _ .,

to conclude (4) from (3). (In this expression ¢’s and p’s bear
a second index corresponding to coordinates in Q.) The
reader should bear in mind that the Hessian matrix depends
only in ¢°,...,¢%, and that the domains of the partial Ostro-
gradskil’s transformations all are 7*Q -bundles. |

If the Lagrangian L satisfies the properties of the
theorem then it is called regular. Otherwise it is called singu-
lar.

V1. THE INTERMEDIATE EVOLUTION OPERATORS

As well as in the first-order Lagrangian case*>* it is

useful to define an evolution operator K, such that applied to
a function in P, , , its time derivative is obtained in P,.
By generalizing the second-order case,*® we write

a a aL\ 4
K,= 1__+...+ Zk-l—r—_+(_)_
9 aqo 9 aq2k—2-r aqo apo
aL ) d (8L ) a
+ [ —po ) ot (==, .
(aq‘ b ) o, a7 ') o,
(6.1)

The analysis of Ref. 46 shows that these operators
should be considered as vector fields along the partial Ostro-
gradskii's transformations a,—see also Ref. 49 for more in-
formation on vector fields along mappings. In that paper it is
proven that X (in the first-order case) is intrinsically charac-
terized as the vector field along FL that obeys a “second-
order condition” and a “presymplectic equation.” To be pre-
cise, K is the only mapping K:TQ- T(T *Q) such that
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07+0°K = FL, (6.2)
T(0%)°K = Idy,, (6.3)
FL*(ixw) = dE,. (6.4)

Now let us do the same with X,. It should be a vector
field along «,, that is to say, a lift of @, to T(P, ). The
diagram below should be commutative:

T(Pr+l)
K, Op
P, o Py

Then, as explained in Ref. 46, K, acts as a differential opera-
tor on functions feC = (P, ,):

K, fi=(df°a,K,). (6.5)

In our coordinates for the intermediate spaces, the local
expression for such a mapping is

Kr(qoy--"qZk . r§P0 r"!pr— 1 )

aJ k2 s ad
=Uob?+"'+vz g W
d ad
Wy — C b w, —,
T e T T g,

where 1°,...,w, are functions in P,.
Now consider the following diagram:

/

T

T(Prr) L) T(12-27Q)

T?k—l—rQ

P,

Requiring its commutativity amounts to equating the
expressions

T(y, . 1)°K, = (§%...g" =2~ 0%...,0

j2k —2— royr — (qO’”.’q2k -2 - r;ql’“.,q
that is to say, to determining the functions
0 =g',..,v°* =27 "= ¢g?* =1 =" therefore it can be said that
the vectors which are image of K, satisfy the *“(2k — r)th-
order condition.”

Next take the two-form w, , ,€Q*(P, , ) and contract
it with K, to obtain a one-form along «,, which we write
ix @, , with local expression

2k—2-r)
s

2k—l—r)
’

ik @,y =q' dpo + " +q dp, +q" V2 dp,
+'”+qkdf7k——l — Wo dqo“ e —w, dq
- (Kr'i’r+1)dqr+l — = (Kr.ﬁk—l)qu_l'
Since p’s depend only on ¢° to ¢** =2~ 7, the action of K, on

them is the same as d,. Hence, we have the following one-

L 4
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formin P,:
a¥(igw,. )
—q'dpy +
— w, dg° —
— (drp, 1 )dq " — - — (dyPy_)dg" " (6.6)

On the other hand, for 0<r<k — 1 we have the energy
function E, in P,, defined as

+q v 'dp, + - +q dp_,

- —w, dq

loodt ! oy, ) — (0T oy, ) *(L),

(6.7)
where c:T(T*~'Q) X - o T*(T*'Q)—Ris the canoni-
cal bilinear mapping. Its local expression is, as desired,

EAqpro 1) =Poq' + " 4P 1 q +D,g
+ +[3k - 1qk _— L(qoau-’qk)a
(6.8)
therefore a¥(E, . ) = E, and E, is identified with E, . Iis
differential is the one-form in P,:

dE, =q'dp, + - + ¢ *'dp, + 4+ gk dpy

oL AL
do_(__ )dl_-..
(aq) 4°—\ 3 — o Jda
AL ) , (aL ) e
- —p,_ Vg — —p, Jdg'+
(aq' Pen A =\ G P )

e (j_qu_pk‘l)qu‘
Taking the identities (3.5) into account, it is now clear
that equating the just constructed one-forms in P, is equiva-
lent to determining w, = dL /3¢°, w, = L /3" — pg,...,
w, =dL /39" — p, _ . Therefore, we have the following.
Theorem 4: There is one and only one vector field K,
along ¢,

E:=co(j~

(6.9)

op, ,°K, = a,, (6.10)

such that it satisfies the following two relations: the
“(2k — r)th-order condition”

T(¥,41)0K, =j* 2 0y, (6.11)

and the “presymplectic equation”
at(iyw,, ) =dE,. (6.12)

Its local expression is given by (6.1). [ |
K, will be called the rth intermediate evolution operator.
Like the classical Euler-Lagrange equations, if L is reg-

ular then the (2k — r)th-order condition can be deduced

from the presymplectic equation.
Proposition 2: If L is regular then K, is the only vector
field along a, such that a¥ (ix @, , , ) = dE,, and is given by

K, = T(a,)oQ, '°dE,. W(6.13)

Vil. SOME COMMUTATION RELATIONS BETWEEN THE
EVOLUTION OPERATORS

An alternative construction of the X,, which will pro-
vide us with a relation between the contiguous K'’s, is the
following.
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First define the last of them, K, _,, as before—it is-a bit
easier. Then the other can be obtained recursively as follows.
Proposition 3: For 1<r<k — 1, K, _ | is the only vector
field along &, _ , that satisfies the (2k — 7 + 1)th-order con-

ditinn and ench that
U.IL AJRE GRIND DAL LARGLRL

(e, )oK,_, =K,0a,_,.
That is to say, the diagram below is commutative:

(1.1)

T(p,) el 7(p,,,)

K,

P, —5— P

Let us write
2k —2—r

K=5S

i=Q

v + Z ! é’pj
where the v' and w, are already known.
Algo, let
zk—l-—-r_“ a r-l_ a
Kror = g'o ’ dq' " fgo w, dp;’
where ¥’ and W, are functions in P, _, to be determined.
Taking (5.2) into account, we obtain

T(a, )oK, _, (qo’---"?Zk T BosenDr_2)

On the other hand,
K Lo, (q eees A*r,Po» sPr - 2)

2k—2—r r—1

= z a,*,l(v)_"l"zar—l(w)

a * d
X ap} + ar‘ H (wr) apr .

Comparing these two relations it is clear that if one as-
sumes the (2k — r 4+ 1)th-order condition for X, _ , which
implies 7%~ '~ "= g** =", all the coefficients of K,_, are

determined, and the additional identity must hold:

-t or 95
a¥ (w,) = z gtle¥ (HZ:) .
But since w,=0L/8q" —p,_,, we have
_1{w,) =3dL /dq" — p, _ ,; therefore this identity follows
from (3.5). |
As an immediate result from the preceding proposition,
we can show that the following holds true.
Proposition 4: For 1<r<k — 1and any f€C * (P, ., ), we
have:

C(:’__l(K,'f) =Kr—l'af(f)' (7'2)
‘We omit the proof, which is straightforward. |
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Vill. THE PRIMARY CONSTRAINTS IN THE
HAMILTONIAN FORMALISM

Neither the energy E, nor the evolution operators X,
can be constructed in phase space P,. But it has a useful
structure: its canonical two-form o, , which is symplectic. So
it defines a vector P.-bundle isomorphism
O T(P,)—-T*(P,), and the corresponding isomorphism
between the spaces of sections, namely vector fields and dif-
ferential one-forms. In particular, for each function fin P, a
vector field can be constructed:

X, = Q[ 'odf, (8.1)
with local expression
kot of a ar ad )
X, = ——— . (8.2)
4 igo (api dg' g Ip;

The Poisson bracket of two functions in P, is also defined in
the usual way.

From now on it is assumed that the partial Ostrograds-
ki’s transformations have constant rank 2kn—m. Then, lo-
cally, the image P{') | of &, can be assumed to be a closed
submanifold of P, , , of codimension m, defined by the van-
ishing of m functions ¢, | in P, , |, the primary constraints,
whose differentials are linearly independent at each point of
Py

The functions vanishing on P ('), are also called pri-
mary constraints, and constitute an ideal of C * (P, , , ) gen-
erated by the ¢/, ,. Thisis also the set of functions vanishing
through the pull-back of &,. The C * (P, ., )-module of one-
forms along «, vanishing through the pull-back of «, is
therefore generated by the d¢*, | °q,.

Accordingly, we will call primary Hamiltonian con-
straints the constraints locally defining the submanifold
a, (Pr_,) =P of P,. Although one could apply this
name to the constraints defining the image of FL, our ter-
minology is usual in the literature, since these constraints
arise form the singularity of the Lagrangian, and particular-
ly from the definition of the momenta p, _, (see for instance
Ref. 31, for the second-order case). We shall see also that
these primary Hamiltonian constraints are enough to gener-
ate all the Hamiltonian constraints through the Dirac’s sta-
bilization algorithm, so they play the same role as the pri-
mary Hamiltonian constraints for first-order Lagrangians.
An additional reason is given by Proposition 9.

Since the primary Hamiltonian constraints arise from
the “definition” of P 1 (@G PosrDi )

= p, _ 1 (g%...g"), the ¢ can be chosen so that they do not

depend on py,...,pi _ - This result is shown in Refs. 31 and
36. An intrinsic proof is also available,?® provided that this
nondependence is given a geometric expression. We com-
ment briefly on this point.

P, is fibered in several ways. The more obvious one,
compounding ¥, with the projections to lower-order tangent
bundles:

a'P, ~T'Q (0<i<k—1),

(¢%erli — 1 ) (4°....q").
On the other hand it is known the vector 7%~ Q-bundle
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epimorphism (2.3)
@ P -V (T 'Q)*
(qo"“’pk— 1 )'—’(qo""’qk_ 1’p1+ 1 ""’pk -1 )'

With this, the following vector subbundles of T(P, ) can be
constructed;

(k—121>0),

ertio = (L, L),

ap, dp,

Taking ] = k — 2, itis clear from the result stated before
that we have the following.

Lemma 1: The primary Hamiltonian constraints ¢4 can
be chosen to be @, _, projectable—i.e., not depending on
Pose-sPr—2- n

From now on this choice is assumed. This will make the
computations much easier.

Finally we want to notice that there is another way to
say that a function fin P, does not depend on p,,...,p;. To
this end compute

- L df d
k—1yg oV, — o 9

T(o; ™ ")oT(y,)oX, ‘;0 I, 34
Therefore, fis @, projectable if and only if the above expres-
sion is zero.

In particular we have, for the primary constraints,

T(0k=3)°T(y:)oX,, =0, (8.3)
provided that they are chosen as in the lemma.

IX. THE KERNELS OF THE PARTIAL
OSTROGRADSKII'S TRANSFORMATIONS

Since Ker T(a,) C T(P,) is a vector subbundle of rank
m (0<r<k — 1), P, can be covered by open sets on which
Ker T(a,) has a frame given by m vector fields I';,. It is
interesting to have explicit expressions for these vector
fields, in order to compute the projectability of functions
through the partial Ostrogradskii’s transformations.

We put for convenience

rk:=X,,. (9.1)

Using the preceding lemma, these vector fields have local
expression

peo 0% 9 G0 9

— - . (9.2)
g i1 9g*! i;o dq’ Ip;
Then the m vector functions
It )
c=a¥* 9.3
Pu £t (apk -1 3

are a basis for Ker W, since Wy, = dla¥_, (¢4))/3¢" =0,
and are linearly independent; the reason is that the
d¢% /dp, _ , are already independent, since the constraints—
the image of @, _ , —appear by the definition of p, _,.

Notice also the dependence y,, (4°,...,¢%), due to the de-
pendences ¢ (g°%....¢“ ~ "0 _ 1) and py _; (¢%....g").

Proposition 5: The vector bundle Ker T(«,) admitsas a
local frame m vector fields I';, with local expression

a

r# =Vu ank—l—r’

9.4

Gracia, Pons, and Roman-Roy 2751

Downloaded 20 Jul 2010 to 161.116.168.227. Redistribution subject to AIP license or copyright; see http://jmp.aip.org/jmp/copyright.jsp



with y,, defined by (9.3).

A quick inspection of the Jacobian matrix of ¢, shows
that these I',, which are linearly independent, constitute a
frame for Ker T'(a,). Then it is easily checked that they
transform as vector fields. [ ]

An intrinsic construction of these vector fields can also
be provided using the vertical lift of the higher-order tangent
bundles.*

Now we can easily test the local projectability of a func-
tion feC = (P,) through a,: '), /= O for all 1. If @, is more-
over assumed to have connected fibersanda, (P,)CP,  , to
be a closed submanifold this also ensures the global a, pro-
jectability.

It is also known that the wvector subbundles
Ker T'(a,) CT(P,) are completely integrable. We have in-
deed

[T,.I7]1=0, O<r<k—1,

which follows from an elementary calculation involving
T, 7, = 0. This property is not always true for the F:j since

[ToI] = — Xy

We finish by proving an interesting commutation rela-
tion between the intermediate evolution operators and the
vector fields presently constructed.

Proposition 6: For 0<r<k—1 and any function

geceo(Pr+l)’

T (K, g) =a¥T,*"g). (9.5)

We take the local expression
%
e () ()
g a q a aq2k——2—-r q2
) ("L)
+or | =) 5]+
(aPo 3¢°
+ ar(i) (aL —Pr- l) ’
dp./ \oq"
=¥,08/3¢°* =~ "toit. This yields
. 3,
I, (K, g)= (ar* (qu—“%)
+2a

(30) )
Fery ap; aq:‘aqzk—-l-—r 7//“

(9.7)

where the summation only contributes when r = k — 1.
On the other hand, for r#k — 1 it is clear that

(9.6)

and apply I},

. a
a¥(T+ gy = o (@Zk—i") Vs
which is the same as (9.7). If r =k — 1 then

I}
at_ (Tig) =at_, (aq;{) I

It suffices to prove
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. (%‘:ﬁ)_ W1 . ( ok )
(2] == — — &y
a¢ dg' o)

_ 9L

T oo™
which follows from chain’s rule and the fact that ¢ is a
primary constraint. |

As an application, we have the following.
Corollary: K, -g is an «,-projectable function if and only
if, for all u, T',* '-g is a primary constraint in P, . n

X. EQUATIONS OF MOTION FOR PATHS IN THE
INTERMEDIATE SPACES P,,....P,_,

We consider an n-dimensional differentiable manifold @
(configuration space) and a kth-order Lagrangian
LeC = (T*Q). For a curve in @ the Euler-Lagrange equa-
tions read [L 1,,, = 0, with

; aL aL

[(L1= 3 (—1rd} (8q,.) o
This system of # equations has order <2k; its order is 2k if
and only if the Hessian matrix Wof L does not vanish identi-
cally.

The same motion can be described by first-order equa-
tions, but these should be established on a suitable manifold
fibered over Q. It is usually done in T2*~'Q, but also the
Hamiltonian formalismin T*(T*~ 'Q) is available. In fact,
we are going to write equivalent equations of motion in every
intermediate space P, (0<#<k); however, the Hamiltonian
formalism (that of P, ) is delayed to another section.

Let £ be a path in Q. Its (2k — 1)th derivative is its
natural lift £, to P, =T% ~'Q. Then, by composition with
the partial Ostrogradskif’s transformations one gets in a very
natural way paths £, in all the intermediate spaces P,. To
abbreviate, we say that the paths constructed in this way are
equivalent.

We now look for a first-order differential equation for a
path in P,; this path should be equivalent to another one in
@, solution of the Euler-Lagrange equations. In Ref. 46 the
equations of motion for a first-order Lagrangian are written
as

—dpps.  (10.1)

T(FL)o¢ = Ko¢,

where X is defined by Egs. (6.2)-(6.4). Now we shall pro-
ceed in a similar way,
Theorem 5: The equation of motion in P, for a path £,
(Ogr<k — 1) is
T(a,)o&, = K,of,. (10.2)

This equation holds if and only if £, is equivalent to a path £
in @ which is a solution of the Euler-Lagrange equations. It
also holds if and only if for every geC (P, ;)

d
o (ar(8)0€,) = (K, 8)C,. (10.3)
This is illustrated by the following diagram:
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tion for § in P lmp yt
(0<r<k — 2), since
T(ar+ 1 )0§r+1 = T(ar+ 1 )OT(ar)o_é‘r
= T(ar+ 1 )oKroé‘r
= Kr+ 1 oaroé‘r

N R ]
reio2r 12

where relation (7.1) has been used.
The last statement of the theorem is also straightfor-
ward, since

% (@*(8)oF,) = (da*(g)°€, &,

= (T, (a,) (dgoa,°E,) £,)

= (dg°a,°¢, T(a,)¢,)

= (dg°a,°¢,,K,°¢,)

= (Kr .g) oé‘r’
and conversely the value of T(e, )£, is determined by its
contraction with the exact one-forms dgin P, _,, along the
path a,°é,.

Now let us prove the equivalence with the Euler-La-
grange equations. First consider P, and a curve &, therein,

( I 0, 0,
In On On
0" On On In

0, .o, o,
aﬁ’/aqO ces N N a}"’r/aqzk_.l_r On

These 2kn equations are the same as (10.4), and this finishes
the proof. |

Equation (10.3) illustrates the meaning of K,: it is a
time-evolution operator, conveniently expressed in order to
avoid the ambiguity underlying constrained systems. Simi-
larly the following vector field along FL can be considered:

K=K, _, “oa; )oK,
(10.5)

oa, _,0'-0a, = T(ak_lo--
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with Jocal expression (¢°,...,°“ ~'). Ifit is the natural lift of a
solution £ in Q with local expression ¢ = ¢° then we must
have dq'/dt = ¢' * ! for 0<i<2k — 2, and dp,/dt = JL /3¢°
—this comes from the Euler-Lagrange equations (10.1).
Conversely, a curve in P, satisfying all these conditions is
clearly the lift to P, of a solution in @, with local expression
q=q"

Next take P, and a curve £, with local expression

~ Anmiae Fenm o en

¢ 0
\q »..0f

,1}0 ) ll ll. COINCS HOII 4 auluuuu in g LhCll we
must have dg/dt=gq'*' for O0<i<2k—3, p,
= po (g,dq/dt,....d **~ 1q/dt 2k=1y and dp,/dt = IL /3q°.
Of these three conditions the third one can be changed to
dp,/dt = dL /3¢°. The second one can be, in view of the
relation between p, and p, (3.5), and the properties of d,
equivalently written dp, /dt = L /3q"' — p,. Conversely, a
curve in P, satisfying these conditions is obtained from a
solution & in Q, with local expression g = ¢°, since

_a_é _ ii_ N ( dq dzk—l ) _
a0 arl\Pa v g ) T T ar T
The same argument works in every intermediate space
P,, for 0<r<k — 1. A curve £, therein with local expression
(%@~ T iDoyeenPr_ 1) 1S equlvalent to a solution £ in
the base Q with local expression ¢ = ¢° of the Euler-La-

grange equations if and only if it satisfies

9aq _ ¢*', 0<i2k—2-—r, (10.4a)
dt .
dpj 8L .
— _ Ogikr—1, (10.4b)
dt 8q’ pj 1 §]
db
A (10.4c)
dt dq
where it is understood thatp _, = 0.

Now let us compute the local expression of the equa-
tions of motion (10.2):

0, dq®/dt \ ( q' \

0, dq2k—;—r/dt q2k—:l~r
quk—l—r/dt = aL/aqo
dp,/dt JL /3q' — p,
I, : } :
0,/ \ dp._./dt

\aL /34 —p,

(it is the same, according to Proposition 3). Then, a conse-
quence of Theorem 1 is that

d

Z (FL*(g)08,) = (K-g)°&,. (10.6)
The problem posed by singular Lagrangians can be real-

ized by looking at the equations of motion. In the coordinate

version, the evolution of g?* ~ '~ is hidden in Eq. (10.4c).
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Using the definition of p, this equation can be rewritten

2k —t—r
qu dt =(___1)k—l-r
aL. 2k—-2-ral",r ) )
X( —D,y — = it 1 .
\og Pr ’Z:O 3q’q

(10.7)

If L is singular, W is not invertible and this equation cannot
be written in normal form, thus the existence and uniqueness
theorem for differential equations cannot be applied.

In the geometric version, if @, is a diffeomorphism then
the equation of motion can be written

£ =T(a,) = 'oK,oE, (10.8)

and for every initial condition in P, there passes an integral
curve of the vector field T(a,) ~ 'oK,. But if L is singular
then T'(a, ) cannot be locally inverted and the evolution of £,
is not determined by a vector field in P,. This is discussed in
the following section.

Xi. EQUATIONS OF MOTION FOR VECTOR FIELDS IN
THE INTERMEDIATE SPACES P,,....P,_,

It is usual in the literature to shift the problem of finding
the solutions of the equations of motion into the problem of
obtaining the vector fields X, whose integral curves are these
solutions. If L is singular it can be expected that such vecior
fields can only be properly defined on a submanifold of P,
covered by solutions of the equations of motion, and they
will not be uniquely defined, for a given set of initial condi-
tions.

In view of the last section, a relation between X, and K,
is expected. On the other hand the dynamical fields of a first-
order Lagrangian formalism satisfy a “presymplectic equa-
tion” and the “second-order condition.”>® Both features are
contained in the following theorem.

Theorem 6: Suppose that S'is a closed submanifold of P,
(0<r<k — 1) such that there are solutions of the equations
of motion passing by every point of S. Let X, be a vector field
in P, tangent to S. Then the integral curves of X, passingby S
are solutions of the equations of motion in P, if and only if X,

satisfies the following equation [The notation = means

5
equality on the submanifold S (weak equality)]:

T(a,)oX, = K,. (11.1)
S

Moreover, this equation can be equivalently written as the
two following equations: the presymplectic equation

iyw, =dE, (11.2)
S
and the (2k — r)th-order condition
T(03k =1~ 1)oT(y,)0X, =k —2~Toy,, (11.3)
LY

For xe§ let £, be an integral curve of X, passing by x,
and suppose that £, is a solution of the equations of motion in
P,. Then, T(a,)oX,of, = T(a,)of, = K,of,, which
proves equality (11.1) at the point x. Conversely, assume
(11.1) and let £, be an integral curve of X, passing by S.
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Since X, is tangent to S, all the image of £, is contained in S,
and T(a,)°&, = T(a,)oX,°&, = K,of,, which gives the
equation of motion for £,.

in order to prove the equivalence between (11.1) and
(11.2), (11.3) the intrinsic definition of K, can be used.
First,

iX,wr = iX,af(wr+ 1 )
= a:k(l'T(a,)OX,wr-l- 1 )
? a:‘(ik,wr-Q— 1 )

=dE,,
which proves (11.2). On the other hand, since we have
0;2 : ; -_ :oyr = ')’r+ ] Oa”

T(o3 =0T (y,)0X, = T(y,, )oT(a,)°X,
? T(?/r-Q- 1 )oKr

. 2k~ 2
=] Oyr,

which proves (11.3).

Conversely, let X, satisfy these relations and notice that
actually the characterization of K, remains valid for a vector
field along a, considered to be defined only on a submanifold
SCP,. But a vector field such as T(«, yoX, satisfies the con-
ditions needed, since

T(y,. )oAT(@,)0X,) = T(03; =5~ [)oT(y,)oX,

. 2k =2
"'j 07/!’
§

OF (Urapox,@r 1) = i, 07 (@, )

= iX,wr
=dE,.
N
This completes the proof. ]
If the local expression of X, is
X 2k — 1 —r ) a r—1 a (114)
= V—+ w, —, .
:'Zo dq’ ,'Zo 7 dp,

then these equations of motion for X, read, from (10.4) and
(10.7),

V=g *!, 0<i<2k—-2—r, (11.5a)
s
AL ‘ '
=——p._,, Og<r—1, 11.5b
w} < aq, p}—l \/ r ( )
szk~l——r
oL *Erob,
=(___1)k-]-«"( —p,_ — == i+ 1 .
s aq" Pr .'Zo c?q‘q
(11.5¢)

For a regular Lagrangian, Theorem 2 has a simple
expression since {3, is a vector bundle isomorphism.

Proposition 7: Suppose that L is a regular Lagrangian,
Then the relation i, = w, = dE, has one and only one solu-
tion,

X, =, 'odE,, (11.6)
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which also satisfies the (2k — r)th-order condition.

The first statement is obvious. To prove the second one
it suffices to show that T(a,)°X, = K,. But for a regular
Lagrangian K, can be characterized by the only property of
a*(iy,w,, ) = dE, (see Proposition 2) and this has been
proven for K, = T(a, )°X, in the preceding theorem under
the only hypothesis currently considered. [ ]

Of course, this result was already known in the Lagran-
gian formalism.? If L is singular then the (2k — r)th-order
condition must be explicitly imposed to obtain the correct
dynamics. However, one can also discuss other “dynamics”
which include a nonmaximal order condition.’

Xll. EQUATIONS OF MOTION IN THE HAMILTONIAN
FORMALISM

The energy function of P, _ ,, E, _,, is (locally) a, _,
projectable: if the m vector fields Tk ~' = 7,8 /d¢", which
are a frame for KerT(e,), are applied to
Poq' + o+ + Pk 26"+ P 14" — L(g°,....¢") the result
is zero.

A Hamiltonian function is any HeC = (P,) such that
a*_, (H) = E, _,.Such functions exist locally, but for sim-
plicity we can assume them to be defined everywhere. Two
Hamiltonians differ from a function vanishing on the pri-
mary constraint submanifold P {", that is to say, a C * (P, )-
linear combination of the primary constraints ¢, . However,
like the primary constraints, a special class of Hamiltonians
will be selected, in order to make computations easier.*’

When studying the projectability of E, _,, the term
3k -3p,q'* ' plays no role, and is clearly projectable. The
term p, _,¢* — L only depends on 4°,...,q%, therefore it can
be projected to a function A(g°,....g* ~ ,p, _ ). We can write
a Hamiltonian

k-2
H= Z piq' "+ h(g%g" " D). (12.1)

i=0
Although the term 2 -7p,¢'* ! is not coordinate invariant,
this particular expression can be given a geometric mean-
ing.>® Indeed, our particular choice of H is intrinsically ex-

pressed by

T(0f=3)°oT (¥ )oXy =~ 2oyy, (12.2)

which is another way to express that dH /dp, = ¢'*' for
0<i<k — 2. For obvious reasons it can be called the kth-
order condition for X ;.

Now we are ready to look for the equation of motion in
P, . A coordinate analysis can be performed asin (10.4). The
result is

9 _ g+, ocick—2,

12.3a
ar s ( )
dp;, 4L
== p ., 0gigKk—1, 12.3b
dt s aq, pj 1 <] ( )
aL
=P, =2= 12.3
Pr-1 S Pr— 3 (12.3¢)
where it is understood that p _, = 0 and that the fuctions
dL /dq' are computed along the motion using
g~ =dqg*~'/dr
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However, we want to develop a Hamiltonian formalism
in P,. Let &, be a path therein. If it is equivalent to a solution
Skt in P, _, then it obeys
& = (o _ 196k_1) =T(ay_, Yoby 1 =Kp_ %8, _ 1.

Conversely, suppose we have &, in P{" and that
&, =K, _,°& _,, where £ _, is any path in P, _, such
that &, = a,_ ,°&, . Then it follows that &, _, is a solu-
tion of the equations of motion, therefore £, is equivalent to
a solution of the Euler-Lagrange equations.

We would like to get rid of &, _, in the equations of
motion in P,. To this end X, _ , should be related to X,;. By
definition af_, (ix,_ @) =dE,_, =dag_,(H), there-
fore

at__ 1 (iKA—lwk - dHOCZk_ 1 ) - 0.

Since the one-forms along a, _, admit the d¢};ca, _, asa
(local) basis, there exist m functions A% _,, uniquely de-
fined by the choice of H and ¢, such that

iy, @ —dHoa, =Y Af_, dioa; .
m

Using Q; ' this relation yields the following.

Proposition 8: Let H be any Hamiltonian function and
# aset of primary Hamiltonian constraints. Then there ex-
ist m functions A #_ | uniquely defined in P, _, such that

Ko, =Xyo0,_, + YAk Xyoa_y.  (124)
u

Moreover, if the constraints satisfy (8.3) and H satisfies the

k th-order condition (12.2), then the functions A% _, are

¥« -1 projectable—i.e., do not depend on the momenta.
The last statement can be easily obtained in coordinates

from the coefficient of 3 /3g** ~ 2~ ". n
Thanks to the above proposition, the equation of motion

&, =K, _,0&,_, can be rewritten

&, =X,08, + z (ﬂ"lz—logk—l)(qu,fogk)'
u

Let &, be a path in P{" satisfying this relation. We can set
74(t) = A% _ (€ _ 1 (D)), which are m functions of time.
Then &, satisfies

£ =X;08, + > (X 08k )-

Conversely, if £, satisfies this relation for some functions
7*(), let & _, be the only path in P,_, such that

e =a,_,°%_,; and jk-IOYk—l°§k~l=T(7k)°é"k'
Then ¢*~'is
oH
+ ) 7
Pk 1 2 #
and also
oH
qk=at_1(ap )+z’1llt—-17;n
k—1

which proves that 7 =A% _, (¢%...4" ~ ',¢* ~')—see Ref.
36.

Theorem 7: Let £, be a path in P,. It is equivalent to a
solution & in Q of the Euler-Lagrange equations if and only if
itsrangeisin P (" and there exist m functions of time 77 such
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that the following equation holds:

€ =Xk + 3 (D (X y061). (12.5)
"

Equivalently, for every feC = (P, )

L (poe) = UMb + S P U6 (126)
g n

Equation (12.5) is called the Hamilton-Dirac equa-

tion 4>8

XIil. POSITION OF THE STABILIZATION PROBLEM

If the Lagrangian is singular—what is assumed from
now on—relation (11.1) is to be considered as an equation
both for the dynamical fields X, and the submanifolds SC P,
where the motion can take place. This problem will be solved
in the following sections, but for the time being let us pose
the problem. (This can be considered within a more general
formalism.>*¢%)

The equation T, (, ) - X, (x) = K, (x) for the unknown
vector X, (x) has no solution at every xeP, because T, («, )
is not subjective. The set of xeP, such that the compatibility
condition

K, (x)eIm T, («,) (13.1)

holds is generically a submanifold P{" CP, (0<r<k —1)
which will be called the primary constraint submanifold of
P, . However, the same name has been applied to the image of
a,_, (1<r<k). Let us show that both concepts agree for
I<r<k— 1.

First recall that X, (x)eIm T, («,) ifand only if K, (x)
is orthogonal to Ker ‘T, (,). This is spanned by the
déy . (a,(x)) (1<u<m), and therefore the compatibility
condition is that the m functions ¢*: = K, - ¢* +1 vanish. But
the commutation relation (7.2) yields

ar () =ar_ (K, ¢, 0)
=K, 'af((ﬁ/:.;. 1) =0.
Therefore, the ¢* are primary constraints in the sense that
they vanish on «, _,(P,_ ). If ¢¥,, do not depend on

Pos-D»_ 1, then ¢# does not depend on py,...,p, _ ,, and the
local expression of K, allows us to compute

e 1
i -9 (K, ¢ )= —a* (——8¢'+1).
p,_y O,y p,

Since the m vectors y, = a¥_, (9¢%/dp, _ ) are linearly
independent at each point, we have the following,

Proposition 9: Let ¢ be m independent primary con-
straints for P{"CP,, not depending on p,,....p, _,. For
0<r<k — 1 define inductively

¢¢: =Kr.¢,rl+l'

Then the m functions ¢/ do not depend on py,...,p, _, and
generate the primary constraints arising from the compati-
bility condition (13.1). For rs£0 they are linearly indepen-
dent and define the submanifold @, _, (P,_,)CP,.

(13.2)
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Their local expressions are

gr= (= k== [y
\dq"
2k -2 —rA3pH
- altqm), (13.3)
i=o d¢'
It only remains to prove (13.3); it is computed for
r =k — 1, and the proof goes by induction on r. |

Notice that Eq. (13.3) could have been obtained from
the coordinate expression (10.7) and the fact that the y, are
a basis for Ker #.

Now suppose that X, is a solution of the equation of

motion (11.1). The equality 7(a, )X, = K, certainly has
s

solutions with $ = P (!, but they are not necessarily tangent
to P, This will be achieved only on a submanifold
S = PP, and the values of X, will be meaningful only there.
However, X, can be extended out of P " as we want; using
this freedom we extend X, in order to satisfy

T(ea,)oX, =K,. (13.4)
P:”

To abbreviate, any vector field X, satisfying this equality will

be called a primary dynamical field; we extend this conven-

tion for X, = X, for any Hamiltonian H. Notice that two
P}\”

primary dynamical fields differ, on P (¥, from a linear com-
bination of the fields I;,.

An immediate consequence of the definition is the fol-
lowing proposition.

Proposition 10: X, is a primary dynamical field in P,
(0<r<k — 1) if and only if there exist m vector fields ¥,
along «a, such that

K, =T(a,)°X, + S #:Y,. (13.5)
Then, if geC*(P, . ,), ;

K, g=X atg) +> (Y, 8¢} (13.6)
For r>1, the Y, satisfy ’

Y #, =6, (13.7)

Ptrl ¥

The first result is obtained in coordinates by observing
that each component of the vector-valued function
K, — T(a,)oX, vanishes on PV, therefore it isa C = (P,)-
linear combination of the primary constraints. To obtain
(13.7), just apply (13.6) and the preceding proposition. l

On the other hand there is also a connection between the
intermediate evolution operator K, and the fields X, , .

Proposition 11: X, | is a primary dynamical field in
P, ., (0<r<k — 1) if and only if there exist m functions A #
in P, such that

K,=X, %a+3Y 4T,  oa,. (13.8)
I
Then, if geC = (P, ),

K, g=alX,, @)+l ). (139)
B
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The functions A } are uniquely determined by X, | and are
not a, projectable. More precisely,
ILA7=46,. (13.10)

Suppose that X, | is a primary dynamical field. For
r=k — 1 (13.8) is a consequence of proposition 8. Other-
wise it is just a matter of computing

T(ar+ 1 )O(Kr - Xr+l°ar)
= (K — T(er Yo X _)Oa’

A | AN rL 17 A0

0
i)

where (7.1) and (13.4) have been used. Therefore, since the
r.” ! are a frame for Ker T(«q, , | ), there exist some unique-
ly determined functions A # such that

= +1
K, —X,,,°a, =3 16T+ log,.
u

The same argument proves the converse if r#£k — 1.
Otherwise, if

then X, = X,,, with H = H appropriate.
P(kl)

Pl‘ll
Finally, to prove the last assertion one can compute

I (K, g) =3 aX(Ty+hg) (T, A7),
M

which is also a}(I,* '-g) by (9.5); then take into account
the arbitrariness of g. [ ]

X1V. SOME PARTICULAR PRIMARY DYNAMICAL
FIELDS

In order to perform an explicit stabilization algorithm in
P, (0<r<k) a particular primary dynamical field X, is need-
ed to start, in the same way that a Hamiltonian function is
needed to develop the Dirac-~Bergman constraint algorithm.

Since we are only interested in the values of the primary
dynamical fields in P {!?, we can restrict ourselves to look for
dynamical fields of the form (from now on the summation
convention over the greek indices is assumed)

X, =X, + 7T (14.1)

They are known except for the arbitrariness of functions 7%.
The requirement of tangency to the primary submanifold
(which is needed in order to have integral curves on it) can
determine some of these functions and can also lead to new
constraints. This is the beginning of the stabilization algo-
rithm that will be treated in detail in the next section.

Suppose that H and ¢% have been chosen. For r = k we
simply put X, = X,. Otherwise, using coordinates equation
(11.5) determines all the components of X, except 5% ~' ",
the coefficient of d/d¢** ~'~". The general solution of
(11.5¢) will be obtained in P ¢’ by adding to a particular one
%% = ! =" the vectors 7y, of Ker W, where 7% will be taken
as arbitrary functions of time.

Let us look for a particular 7%~ ' ~", Take Eq. (12.4)
and consider the coefficients of d /dg* ~ !

I
qk=af-1( 9H >+ﬂﬁ_1(qow-,qk)a:—l( L )
o) o)
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Derivation with respect g* gives a “completeness relation”**

] oAk,
a __ asabyrs | A A 1A 2
O, =M Wbc—f-’}"u—'—a—k;—, \14.4)
7~
where
J*H
M:=a*_, (-——-—-——
i1 9P 1
2

Ty ok ( d ¢": \ (14 2N
T/Lk__luk -_— \imr.ay

! \apk—l P }
(For sake of readability indices of coordinates in Q appear
explicitly in this equality.)

Then, use of (14.2) allows us to write (11.5¢) in the
form

Ak

v2k~—l—r=i)'2k—-l—r_|_,y#( p v2k~l—r)’
dq

w7l aeen
WIICIC

i',Zk-l—r= ( . l)k-—]—rM

2=,

AL )
X e . (14.4)
(3q’ Pra z q

<o Jq
In this way a particular primary dynamical vector field
X, which is coordinate depending, has been defined. For
this particular X, the propositions in the preceding section
hold, with particular values of A and Y.
Proposition 12: For 1<r<k — 1, the equality

K,_, =:i’r0a,_l -—}-ﬂ,‘:‘_lr;Oar_l (14.5)
holds, with the m functions
oA~
AR, (qo,--"qk’qZk— )= ——k;_l' o (14.6)
dq

and A% _, defined in Proposition 8.
The only point to show is that

q2k-r_______a::_l(52k—l—r) +7/‘u/{'l:—l’

which are the coefficients of the highest velocities in both
hands, and this is obtained using (14.4), (3.5), (3.3), and
(14.2).

Proposition 13: For O<r<k — 1 the equality

K, =T(a,)oX, + ¢“Y ", (14.7)
holds, with the m vector fields along «,
gAY
Y;=(—1)k_‘_r k;l aJ
dgc  Ip,
IAH
= (=Dt - J_. (14.8)
dg* ="'~ dp,_,

It suffices to compute the local expression of
K, — T(a,)oX,, using (3.3), (14.4), (14.2), and (13.3).H

XV. STABILIZATION ALGORITHMS AND RELATIONS
BETWEEN THEM

In every space P, (0<r<k) we have dynamical fields
X, =X, + 7/'T, , where 7" are, in principle, m, = m arbi-
trary functions of time. (From now on the previously used
greek indices acquire a subscript “1”” which refers to the first
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level of the stabilization algorithm.) We are interested in
integral curves for X, only on the submanifold of primary

(1) rac 1
constraints P,"’. This implies a new requirement, namely

the tangency of X, to PV, which leads, as it is well known in
the first-order case, to the determination of some functions 7
and also to new constraints, the secondary constraints. In this
way a new submanifold P> CP " is defined. The proce-
dure continues by requiring again tangency of X, to the new
submanifold and so on. This is the step-by-step stabilization
algorithm for P,. Sometimes all the constraints are so ob-
tained but the primary ones will be loosely called secondary
constraints.

Now we are going to show the intimate connections be-
tween the stabilization algorithms for all the spaces P,
(0<r<k). As a particular case the connection between the
Hamiltonian stabilization algorithm in P, and the Lagran-
gian one in P, will be revealed.

Actually, the connection between the primary con-
straints provided by the operators K, will be reproduced at
each step of the stabilization algorithm. Let us first intro-
duce two results.

Proposition 14: If ,eC = (P,) is a constraint, then
a*_, (1,) is also.

Given a solution &, _, of the equations of motion in
P,_,,weknow from Sec. X that£,: =, _,°£, _, isasolu-
tion of the equations of motion in P,, therefore
(a:‘vl(ipr))ogr—l =¢ro§r=0' |

Proposition 15: If #,eC>(P,) is a constraint, then
K, -4, is also.

Use (10.3) withg =¢,. |

Let us consider the stabilization algorithm for the Ham-
iltonian formalism. s first step leads to a splitting*>® of the
primary constraints ¢’ (1<u, <m, ) of P, into a set of pri-
mary first class constraints ¢} fa <ui <my) and a set of pri-

mary second class constraints ¢’:Y (m] + 1guy<m, ). They
are characterized by the properties

Tk -4 =0, (15.1a)
P}‘,”

I"‘ -t (15.1b)
P( )

det(I™% - 617) 0. (15.1¢)

(In our local approach, this unequality is to hold in a neigh-
borhood in P, of P{".) The evolution vector fields then
read:

X, =X + 7Tk + 7 T, (15.2)

The tangency of X, to P§"’ amounts to saying X, - ¢}’ = 0.

Then, taking (15.1) into account, stability for ¢',f;' “deter-
mines” 7 = f*'eC = (P, ) by requiring

0=X, ¢4 + Tk . (15.3)
[In fact, Eq (15 3) needs only hold in P{, therefore the
functions f « are truly determined up to primary con-
straints.] On the other hand, stability of constraints ¢’ pro-
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duces the new constraints

¢“2 '—Xk k’

where i, runs over the same values as 2, but labels second-
ary constraints.

It is easy to see how this procedure in P, applies to
P, _ . Consider, from Proposition 9,

Mo =K
,If’-l =Kk—1'¢!/:'-
The evolution vector field in P, | is
KXo —“Xk_t +7]k~1r;;‘l + 77‘;:;’_.11-‘2;,—1-
Stability for ¢%' , determines 7 | = ‘,ﬁ;, €C* (P, _ 1)
by requiring
0=X,_, ¢k—-|+fk-—lrk~l¢k—-l’ (15.4)
where use has been made of (9.5) and (15.1¢) to show that

det(T% Vgl ) = ded(Th '+ (K _ - 441))
= det{a¥_, (I‘ﬁ,‘,'ﬁi'))
=at_(det(Th i)
#0. (15.5)

Stability of the constraints ¢,'_, produces the new con-
straints

’Ei\==§'k_x’¢i';_1, (15.6)

where y, runs over the same values as ;] but labels second-
ary constraints, now in P, _,. Then, using (13.6), the defini-
tion of the secondary Hamiltonian constraints, (13.9),
(15.1a) and the definition of the primary constraints of

L £ . Iz
Ki 8 = Xy raf_ ()
Py

=§R— 1 'at~—l(;?k'(¢llf;))
=/?k-—l'(Kk—al'¢lZ;)
=X’k—l'¢‘l:{-l

— A2

=Pk 1

The same reasoning applies to every intermediate space
P,. Relations (15.1) read, for r instead of %,

T, 4 =0, (15.7a)
Pf»”

T ¢ =0, (15.7b)
PH

det(T, g1} #0, (15.7¢)

Some arbitrary functions are determined by 77:" =f f;' from
0=X, ¢ +/ T 4. (15.8)

The constraints

Gragia, Pons, and Roman-Roy 2758

Downloaded 20 Jul 2010 to 161.116.168.227. Redistribution subject to AIP license or copyright; see http://jmp.aip.org/jmp/copyright.jsp



¢ =X, ¢ (15.9)

define P¥ C P (" and the following relation holds:

A =K, ¢ (15.10)
Pr

The stabilization algorithm runs, therefore, in a parallel
way in every space P,.

The next step, which is to define P {*, goes again in the
same fashion. During this procedure some of the previously
first-class primary Hamiltonian constraints may become
second class. At the same time the evolution vector fields X,
have lost part of their arbitrariness thanks to the determina-

tion of the corresponding functions 7' = £V, Notice that
the number of arbitrary functions which are determined in
any step of the stabilization algorithm is the same in each
intermediate space.

Our conclusion is that the operator X, _ , relates, step by
step, the stabilization algorithms of P, and P, _,, for every
1<r<k. Therefore, we have the following.

Proposition 16: If the constraints ¢ define PP C P~ 1

(1<r<k), then the constraints K, ¢ define
P, CPUZD. .

Direct consequence of this result is the following
theorem.

Theorem 8: All the constraints of space P, _, (1<r<k)
can be written in the form X, _, ¢#,, where ¢, runs over the
constraints of space P,. In particular, all the Lagrangian
constraints can be obtained by applying the composition of
the k differential operators K _ ,,...,K, to all the Hamilto-
nian constraints. ]

This theorem is, in some sense, the “inverse” of Proposi-
tion 15. Instead, Proposition 14 has no “inverse” because
there generally exist constraints which are not &, _, project-
able. The whole situation is described by the following result.

Proposition 17: If the constraints ¢, (1<u,<m,) define

the submanifold P°CP ¢~ ", and if the functions £
(1<u;_  <mj_,) are the functions determined in the /th
step of the algorithm (to obtain P! from P~ "), then
P~V is defined in P '~ by

r—1

ar (#, 1<u<m, (15.11)
}l/r‘—l —’lr—l —a:‘—-l(flr‘r‘l)a Iuy_ <mj_,.
(15.12)

This result will be demonstrated for the level / = 2, the
general case can be analogously obtained by a similar reason-
ing and use of induction on /.

We recall that PP C PV is defined by (15.9). Now
consider P{" . According to (15.10), this submanifold is
defined by the constraints K,_,-¢!". The splitting
(1)) = (ui,u7), characterized by properties (15.7), allows
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to compute, using (13.9),
K, _, ¢7; =af_, (X ¢#‘) + A0k, (r,, .¢ﬁrl§);

but I'), '¢f';)0 implies a*_ , (I}, -¢;") =0, therefore

K,_ ¢ =a* (X, ¢ =a*_, (¢') (15.13)

(index u, substitutes u} for secondary constraints).
On the other hand, since a¥_, (T, B y=o0

K,._.¢ —ai"_l(X ¢ + A5 var_ (I - :;')

=ar (X8 + A0 ar (T4,
Then, use of (15.8) gives

K ¢ =@, —ar_ (f)))ar (T, 40D,

(15.14)

and considering (15.7) we conclude that K,_, ¢! =0
(m} + 1<vi<m,) is equivalent to A" | —a*_ (/)
=0 (m} + 1<vi<m,).

Use of (15.13) and (15.14) shows, therefore, that P ("
is defined by

a¥_ (¢7) =0, 1<u,<m,,

Xu-—l =/lr——l'—ar’!‘—l(f¢i,)=o9 m;+1<ﬂi’<m1y

which finishes the proof. ]
This can be summarized by the following theorem.
Theorem 9: All the constraints of space P, _, (1<r<k)

can be written in the form a¥*_ , (@, ), where ¢, runs over the

secondary constraints of space P,, or in the form

A._, —a*_,([f.), wheref, runs over the determined func-
tions of the dynamics in P, and the A, _ , are the correspond-
ing functions in P, _ . |

Notice that every determination of an arbitrary function
in P, gives rise to a constraint of the form (15.12) in P, _,.
These constraints are not «,_, projectable because
I':y = 8, and the theorem therefore classifies the constraints
of every P, (0<r<k — 1) into two sets, according to their o,
projectability.

Observe also that the stabilization of the a,.-projectable
constraints will lead (in general) to new constraints, which
constitute the next level of constraints, whereas the stabiliza-
tion of the non-,-projectable constraints will lead to the
determination of so many of the (previously) arbitrary func-
tions as is the number of these constraints. All these results
were already known for a first-order Lagrangian.*®

At this point, the structure of constraints in spaces P,
has been completely revealed:
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U U U
P PV P,
P;(,I) P.gl) P,((l) .
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U
and the following corollary holds.
Proposition 18: For 0<r<k — 1 and />0
a, (PP)y=PIHD. (15.15)

(P stands for P,). In particular P (* is identified as the
image in P, of the Legendre-Ostrogradskit’s transforma-
tion.

The proof goes by induction on /. For / = 0 this is just
the definition of P{". Now suppose we know that
a, (PP =PI, fromwhicha, (PI'* D) = PU'*? must
be deduced.

The submanifold P{'*» C P! is described by the

constraints ¢, (1<, ,<m,, ). And from the preced-
ing theorem the submanifold P+ C P (" is described by

the constraints a*(¢“72) (1<m,,,<m;.,) and /"
(mj,, + 1<ui’, <my, ). But these last constraints are
not a, projectable, so they do not contribute to restrict the
image of PY*" under @, Therefore, a, (P{¢*")
=g, (P!, where P+ " is defined in P " by the a,-
projectable constraints a* (¢ 1) (1<, , <m,, ). Then,

by its own definition, a, (P{/* 1)y = P!+, u

XVI. THE DETERMINATION OF “ARBITRARY”
FUNCTIONS

In the preceding section the close relation between the
stabilization algorithms of the various intermediate spaces
has been displayed. The established parallelism can actually
be extended to the determination of some of the arbitrary
functions of the corresponding dynamics. In fact, the opera-

tors K, give a relation between the determined functions /% ;’
of the different intermediate spaces P,. Consider the con-
straints in P,

l):,‘:’?'”'

Then, by Proposition 15, X, _, -y will give constraints in
P._,. They are, using (13.9),

Kr—l'Xf;'=Kr—1'/{‘:r“Kr~l ar( r+l)
=A%, bar (XA —ar (KD

a*(fr-(—l
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Therefore, up to constraints, we determine, for I<r<k — 1,

wf . oB7 P oo
fr _Kr r+l"‘Xrﬂ'r
PR
2k -2 F ‘r‘?
i+ 1
=K fil - 3 gri—, (16.1)

| S =0

dq'

where the last step is justified (Ref. 45, the Appendix) be-
cause PF gAYk 1T =)O.

P

XVIi. GAUGE FIXING AND DEGREES OF FREEDOM

The stabilization algorithm in each space P, (0<r<k)
leads to a final constraint submanifold P (7. Constraints de-
fining P (™ have been classified in Sec. VII into a,-project-
able and non-a,-projectable constraints. Owing to this fact,
it is easy to relate the dimensions of the different final sub-
manifolds P (P,

Let n, be the number of independent constraints defin-
ing PP CP,. We recall that the number of primary con-
straints in each P, is m,, except for » = 0. Now consider
P,_,. Its number of independent a,_, projectable con-
straints is #, — m, because the pull-back of primary con-
straints of P, gives no relations in P,_,, whereas the pull-
back of secondary constraints yields independent
constraints in P, _ ;.

The number of non-a,-projectable constraints in P, _,
is just the number of functions #¥ in X, which are finally
determined, . Since every determination corresponds to a
final second-class primary Hamiltonian constraint, this
number is m; — m$, where m is the number of the final
first-class primary Hamiltonian constraints.

Thus we arrive, for 1<r<k, to
n_,=n,—m)+(m —md)=n, —m?, and there-
fore

n, —n,=(k—rymi, O<r<k—1.

This proves the following.

Theorem 10: If PP is the final constraint submanifold
of P, (0<r<k), and if m{ is the number of final first-class
primary constraints in P, then the dimensions of these sub-
manifolds are related by

dim(P ) = dim(P) + (k — rymS. (17.1)
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In particular, dim(P ") = dim(P {P) + km?. |

Thus the final submanifolds of constraints have differ-
ent dimensions depending on P,. At first glance it could
seem contradictory with our results of Secs. IT and IV show-
ing the equivalence between the dynamical contents of every
space P,. The way out of this puzzle is to consider that, due
to gauge freedom, we have not yet determined the true num-
ber of degrees of freedom in every space P,. Now we are

going to introduce a gauge fixing procedure to determine

this number, as it can be done for first-order Lagrangians.?*

We start by introducing the gauge fixing constraints in
P,. The procedure is “propagated” afterwards to all the in-
termediate spaces.

Let us call point-gauge transformations those transfor-
mations that relate—in the space of a certain singular dy-
namical system—physically equivalent points, that is to say,
points belonging to dynamical trajectories connected by
gdugc traﬁSrOfrnatlons in IHC namutoman rormausm these
transformations are generated by the vector fields associated
(through the symplectic structure of phase space) to all the
first-class constraints.?>** We assume they are in number #°.
In order to make these transformations disappear, a gauge
fixing constraint for each first-class constraint has to be in-
troduced; this will rend all the constraints second class.
Moreover, consistency requires the final Hamiltonian vector
field to be tangent to the new submanifold of constraints.
Owing to this reason, we shall proceed in two steps.

0

(1) Introduce mS primary gauge fixing constraints F*'

to convert all the first-class primary constraints into second

0
class. So up to now remaining arbitrary functions 7%’ of the
0 L]

dynamics are determined: 7;' = f%'. Now dynamics is en-

tirely fixed:

XE =R, + 70T
(this corresponds to a Hamiltonian H " = H + 2, f%'4}").
(2) Introduce the remaining n° — m3 secondary gauge
Jfixing constraints G% under two requirements: (a) to con-

vert all first-class secondary constraints into second class,
and (b) to preserve the Hamiltonian as a first-class function:

Xk'G“ =0

PiGF)

(17.2)

Once this gauge fixing procedure is performed, we ar-
rive at a submanifold P (¢7. This is the “initial conditions”
submanifold. The total number of independent constraints
becomes

(17.3)
Now consider the preceding space P, _ ,. Proposition 15

ngt =n, +n°

0
ensures that Fk_, =K,_, F}' are gauge fixing con-
straints in P, _,. These constraints realize the fixation of

dynamics in P, _, in a parallel way as F ! did in P,. In fact,
the final evolution vector field in P {7 | is
X, =X,k-1 +le_1rﬁ?31+77!/:'_1rﬁ?-l
~ 0
=X+ 77;1:'_11—‘2?_ 5

and tangency of X, _; to the new submanifold of constraints

(17.4)
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determines nk~, =fi" 1by requiring
P W k-1 oY
U=2A g 1l’k_1+fk—11 LI T

because, using (9.5),
det(Tk T F_ ) = det(T4 1 (Ky_ - F 1)
= det(@f_, (T Fih)
=af_, (et(TFi)
#0.
Observe, however, that the constraints F ‘,:(‘) generate another

type of constraints in P, _,. Proposition 14 ensures that the

0 . » .
functions a®_ , (F') are also constraints in P, _,. It is easy
to see that stability of these last constraints leads to con-

straints F%' b_,.:
*® ol % * S
X ot ((F) =X, _yraf_(F})

0
= Kk—l'Fll:l

Pil,

=F4 D (17.5)
So we see that the first step of our gauge fixing procedure
introduces 2m¢ constraints in P, __,.

Now we study the consequences of the second step.
Consider the n° — m$ gauge fixing constraints a¥_, (G¥%)
in P, _,. Using (13.6) and (13.9), it is shown that these
constraints are already stable:

X at ((GY) = K, G

L—I
1(/?k—1'G;:)
+/l‘l:)-1at—1(rz,'GZ)

= a*
=a¥_

Gy)+ @Ak,
—af_ (fi))ak_ (Tk -G})

“ak—l(Xk-—l

= 0,

P(Gﬂ

where P{%" is the submanifold defined by all the con-
straints, stabilization, and gauge fixing, in P, _,.

Summing up, we have introduced 2m$ + (#° — m?)
gauge fixing constraints to define P {°7, CP{?,

In P, _, the situation is quite analogous. Fixation of
dynamics is achieved by requiring tangency of X, _, to the
new  submanifold of constraints defined by
F ‘,:?_ =K,_, 'F‘,ﬁl‘)_ ;- But two additional generations of
constraints appear:

u
af_olak_ i (F))
and
ak—Z(Fk—l) =a:_2(Kk_ 1 F‘,:l)
=K _paf_ (Fi )
Therefore, the first step of the gauge fixing procedure leads
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to 3m{ constraints in P, _,. The second step leads to
n® — m?, just the pull-back through , _, ofa¥_, (G} _,).
We conclude that the number of gauge fixing constraints in
Py, is3m? + (n° — m®).

The procedure applies to all the spaces P, (0<r<k).
When we go from P, to P, _,, the number of gauge fixing
constraints increases in m°. Then the final result is that the
number of gauge fixing constraints in P, s
(k—r—1)ym] + (n° —m$) = (k — rym® + n°. Then, the
total number of constraints (standard and gauge fixing) in
P, is

nf=n, + (k—rm + n®

=(n, — (k—rymd)+ (k—=r) +n°

=, +n°
Therefore, if the gauge fixing constraints define the submani-
fold PP C PP, the following theorem holds.

Theorem 11: All the submanifolds P (¢°P (0<r<k) have
the same dimension 2kn — (n* + »n°), where #* is the num-
ber of Hamiltonian constraints and »° the number of the
final first-class ones. In particular, the higher-order Lagran-
gian and Hamiltonian formalisms have the same number of
degrees of freedom.

XVIll. EXAMPLES

We present here two simple examples to illustrate our
results. Both are second-order Lagrangians.

A. L(XO X 1 ,Xz) =x°

Here Q = R, so the intermediate spaces are diffeomor-
phic to R*.

The momenta are trivially computed:;

Phi=1 py=0.
The first one gives just one primary Hamiltonian constraint,
¢; =1-p,

which defines globally a, (P, ) C P, as a submanifold.
Theenergyin P, is E, = p,x' (so E, = 0). Therefore, a
Hamiltonian can be globally defined
H = p,x',

up to primary Hamiltonian constraints. With this H we com-
pute the secondary Hamiltonian constraint

This is first class with ¢ and H, therefore the Hamiltonian
stabilization algorithm is finished and P{" is diffeomorphic
to R2

Since the Hamiltonian constraints are first class, the

constraints in P, are @, projectable. Indeed there is just one
constraint:

¢ =K L3
Similarly,
Py, =P".

Now let us consider the gauge freedom. P {7 is two di-
mensional and we have obtained two first-class Hamiltonian
constraints. Therefore, the gauge fixing procedure leads to a

= po = a}(43).
there are no Lagrangian constraints, so

2762 J. Math. Phys., Vol. 32, No. 10, October 1991

zero-dimensional space: a point. We can take two gauge fix-

ing constraints
F,=x!, G,=x"

The first one makes the primary constraint second class, and

determines completely the dynamics: H = p,x', up to qua-

dratic primary constraints.

Qur procedure leads to three gauge fixing constraints in

P,:
K\'F, =x% afF,) =x', a¥G,)=x"

In the same way, the gauge fixing constraints in P, are
x X x, X

3. L(XO;X',Xz,yogyisyz)‘=X1yz
Here O = R’ and the intermediate spaces are diffeo- ,
morphic to R®,
The momenta are

ﬁxl = 07 ﬁx() =y2’

ﬁyl = xl’ ﬁyﬂ = x2
The submanifold &, (P, ) C P, is globally defined by the two
primary Hamiltonian constraints,

¢, =x' ~Py» ¥y =Pu.

On the other hand the energy in P, is
E| =pox' + poy' (now E; = x'y* — p'x?). Any Hamilto-
nian has the form H = p ox' + p,oy' + Ad, + p),. But the
primary Hamiltonians are second class, so making H first
class determines its arbitrary functions, and we have to use

H=puo(y' ~pa) + PPy ,
up to quadratic primary constraints. No more constraints
are to be found, and no gauge fixing is required:
P9 = PP which is six dimensional.

Since all the Hamiltonian constraints are second class,
there are no projectable constraints in P, and P,. PP is
defined by

=K'y =x"+po, =K 9=y —pp.
And the Lagrangian constraints, which define P, are

$o: = Ko ¢, =x°, Yo: =Ky h =
The final constraint submanifolds are therefore diffeomor-
phic to R® in each formalism.

XIX. CONCLUSIONS

In this paper we have performed a detailed study of
higher-order Lagrangians. As a first step, some geometric
structures particular to higher-order formalism have been
introduced: in particular, the definition of intermediate
spaces allowing the decomposition of the Ostrogradskii’s
transformation into partial transformations. With them,
several constructions already known for first-order Lagran-
gians have been extended to higher-order theories.

Next, all these spaces have been endowed with corre-
sponding dynamics, which have been proven to be equiva-
lent. This gives in particular the equivalence between the
Lagrangian and the Hamiltonian formalisms.
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In the singular case, the structure of the constraints aris-
ing from the dynamics of every intermediate space is com-
pletely displayed and the connections between the different
stabilization algorithms are shown. These connections can

be performed in two different and complementary ways. As

a consequence, the Lagrangian constraints can be easily and
explicitly constructed from the Hamiltonian constraints.

It is also possible to relate the dimensions of all the con-
straint submanifolds. These dimensions are different when
some primary Hamiltonian constraints are first class. In this
case there is some gauge freedom: the various dynamics are
not completely determined due to some arbitrary functions,
and a gauge fixing procedure is needed to get rid of the super-
fluous degrees of freedom. A gauge fixing in the Hamilto-
nian formalism provides gauge fixings for the intermediate

formalisms. in particular for the I aoranman formalism

AVIRIIQLISMIISy 122 PGl UG QUL WL LG h aUL

Then it is found that the true number of degrees of freedom
(the dimension of the gauge fixed constraint submanifold) is
the same either in the Lagrangian or in the Hamiltonian
formalisms—or in any intermediate formalism.

It should be emphasized that, although we have not re-
fused to use coordinates, we have presented most of our re-
sults in a geometric language.
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