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In order to study the connections between Lagrangian and Hamiltonian formalisms 
constructed from a-perhaps singular-higher-order Lagrangian, some geometric structures 
are constructed. Intermediate spaces between those of Lagrangian and Hamiltonian 
formalisms, partial OstrogradskiI’s transformations and unambiguous evolution operators 
connecting these spaces are intrinsically defined, and some of their properties studied. 
Equations of motion, constraints, and arbitrary functions of Lagrangian and Hamiltonian 
formalisms are thoroughly studied. In particular, all the Lagrangian constraints are obtained 
from the Hamiltonian ones. Once the gauge transformations are taken into account, the true 
number of degrees of freedom is obtained, both in the Lagrangian and Hamiltonian 
formalisms, and also in all the “intermediate formalisms” herein defined. 

1. INTRODUCTION 

The Lagrangian and Hamiltonian formulations of dy- 
namical systems are the natural framework for most of the 
developments in theoretical physics, and have been a subject 
of increasing research for a long time. Here, we want to point 
out two directions of development of these formalisms: (a) 
the extension to the singular case (i.e., when the Hessian 
matrix of the Lagrangian with respect to the velocities is 
singular), and (b) the generalization to the higher-order 
case (i.e., with Lagrangians depending upon the k th deriva- 
tive of coordinates-or fields if we are dealing with field 
theory). 

Both developments are relevant in theoretical physics. 
Lagrangians for gauge theories-the basis of BRST symme- 
try-are necessarily singular, due to the arbitrariness under- 
lying gauge transformations. On the other hand, several 
physical theories use higher-order Lagrangians. This is the 
case, for instance, of Hilbert’s action for gravitation [ Refs. 1, 
2 (references therein), 3,4], the recent Polyakov’s formula- 
tion of the string [Refs. 5, 6 (references therein) 1, or Po- 
dolski’s electrodynamics and its generalizations to Yang- 
Mills theories’-” -see also Refs. 1 l-16 and references in 
Ref. 17. Finally, the field-antifield formalism of Batalin and 
Vilkovisky usually leads to higher-order Lagrangians. l8 

About 1950, Dirac and Bergmann opened the way for 
the study of singular Lagrangians and their associated Ham- 
iltonian formalism-see references in Ref. 19, for instance. 
A lot of work has been made since. Geometrization of the 
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regular first-order case was established through the use of 
the underlying geometric structures of some vector bun- 
dles-see Ref. 20, for instance. A bit later, this geometriza- 
tion was extended to the singular case, together with many 
results concerning the equivalence of Lagrangian and Ham- 
iltonian formulations and some new relations between both 
formalisms--see references in Refs. 2 l-24. 

Ostrogradski’i, in the middle of the last century, devel- 
oped the canonical formulation associated to a regular (i.e., 
nonsingular) Lagrangian of arbitrary finite order.25p3 On 
this basis several theoretical aspects of this formalism have 
been studied. This includes field theory and quantization, 
constraints, and equivalence with Lagrangian formal- 
ism 26-37 

Geometrization of higher-order Lagrangian formalism 
has also been performed,29*3*4’ as well as the Hamiltonian 
formalism in the regular case.29 Nevertheless, the program 
to study and geometrize the higher-order singular forma- 
lisms is far from being completed. Contribution in this direc- 
tion is the scope of the present paper. 

Recently,33 some progress has been made in the second- 
order singular case through the introduction of an interme- 
diate space between the spaces of the Lagrangian and Hamil- 
tonian formalisms. With this space several points of the 
dynamics of these formalisms have been clarified. One of the 
purposes of the present paper is to pursue this work and also 
to generalize the method to the k-th order case. The Lagran- 
gian may be regular or singular, and only some weak regular- 
ity conditions are needed. We work in a finite-dimensional 
configuration space, but our results can be applied to field 
theory in the same lines of Refs. 42 and 19. 

First, we shall intrinsically define a family of intermedi- 
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ate spaces that connect those of Lagrangian and Hamilto- 
nian formalisms, through a decomposition of the Legendre- 
OstrogradskFs transformation. 

Related to these “partial OstrogradskiY’s transforma- 
tions” there is a family of unambiguous evolution operators 
K K O,“‘, k - 1 * For first-order Lagrangians they have been 
used to describe the constraints in Lagrangian and Hamilto- 
nian formalisms,4345 and can be given a neat characteriza- 
tion4” that will be adopted in the present paper. 

The intermediate spaces are suitable for their own for- 
mulation of the dynamics, and it turns out that all these 
formulations are equivalent (they give the same trajectories 
in configuration space Q), thus extending the equivalence 
between the Hamiltonian and the Lagrangian formalisms to 
all the “intermediate formalisms.” 

When dealing with a singular Lagrangian all these dy- 
namics are defined by a differential equation that cannot be 
written in normal form. This is the well-known situation of 
constrained systems and leads to stabilization algorithms in 
order to determine-partially, at least-the dynamics, 
which had a certain degree of arbitrariness due to gauge free- 
dom, and to find out the submanifold where the motion can 
take place. 

All these constructions can be performed for any k th- 
order Lagrangian function. Although they may seem rather 
formal, they are really useful, especially for singular Lagran- 
gians. The aim of the intermediate formalisms is to relate the 
dynamics of Lagrangian and Hamiltonian formalisms. Their 
equivalence can be proven directly36 but in view of computa- 
tions it is more interesting to relate their constraints. As it 
will be shown in the present paper, these constraints can be 
obtained through the application of the intermediate evolu- 
tion operators. In particular, the Lagrangian constraints are 
obtained by consecutively applying the k evolution opera- 
tors K, _ i ,...,K, to the Hamiltonian constraints. The proof 
of this result, as well as the construction of the operators, 
strongly relies on the introduction of the intermediate spaces 
and their dynamics. They are also applied to study the arbi- 
trary functions appearing in the dynamics. 

Once the constraints and the dynamics have been deter- 
mined, a gauge fixing procedure can be introduced in order 
to identify the physical degrees of freedom; their number, 
which is actually computed, is the same in all the spaces. The 
Lagrangian gauge fixing is also derived from the Hamilto- 
nian one, again through the use of the intermediate evolution 
operators. 

The paper is organized as follows. In Sec. II some con- 
cepts on higher-order tangent bundles are introduced. Sec- 
tion III is devoted to some general remarks on higher-order 
Lagrangians. The intrinsic definition of the “intermediate 
spaces” is given in Sec. IV, and the “partial OstrogradskiY’s 
transformations*’ in Sec. V, together with some of their prop- 
erties. Sections VI and VII are devoted to the evolution oper- 
ators and some relations between them. Some special fea- 
tures of the space of the Hamiltonian formalism, including 
its primary constraints, are studied in Sec. VIII. A closer 
knowledge on the partial OstrogradskiT’s transformations is 
thus obtained in Sec. IX. 

The “Lagrangian” equations of motion in each space P, 

for O<r<k - 1 are introduced for paths in Sec. X and vector 
fields in Sec. XI. The Hamilton-Dirac equations of motion 
for a path in P,. are introduced in Sec. XII. Various relations 
between the dynamical vector fields and the unambiguous 
evolution operators are obtained in Sec. XIII, and some par- 
ticular cases of them are pointed out in the following section. 
Then we are ready to develop the stabilization algorithms in 
Sec. XV, along with the determination of the “arbitrary” 
functions in Sec. XVI. Section XVII deals with the gauge 
fixing procedure and the number of degrees of freedom. We 
finish with examples and conclusions. 

Our notations and conventions are similar to those of 
Refs. 29, 33, and 47. AN manifolds and mappings are as- 
sumed to be C m. Indices of coordinates aregenerally omitted, 
and the summation convention is assumed for them. 

In order to apply the stabilization algorithm for Hamilto- 
nian formalism, 43 and the OstrogradskZs theorem for singu- 
lar Lagrangians, 36 the following regularity conditions are as- 
sumed: the Hessian matrix W of L has constant rank, 
ineflective constraints do not appear at any level, and the rank 
of the matrices of Poisson brackets considered in Sec. XV is 
constant. 

II. SOME CONCEPTS ON HIGHER-ORDER TANGENT 
BUNDLES 

In this section we recall some basic concepts and nota- 
tion concerning higher-order tangent bundles.29v48149 Here 
and especially in Sec. IV some knowledge of fiber product 
manifolds will be needed.47P49-5’ 

Throughout this paper Q is an n-dimensional differen- 
tiable manifold. We shall make extensive use of the tangent 
bundleoforderm)O, T”(Q),whichisann(m + l)-dimen- 
sional manifold, whose points are m-velocities. These are 
equivalence classes of curves in Q, this equivalence being the 
tangency of order m. 

If $ are coordinates in Q, there are natural coordinates 
(q0,4’ ,...,q”) in 7”“(Q), which represent the first m deriva- 
tives of a curve in Q. These are the only coordinates that will 
be considered. 

In a natural way, one can define a fiber bundle structure 
o;“:T”Q- T’Q for m>Z, that can be written, in natural co- 
ordinates, 

o;l(qO,..., 4”) = (q0,...,q9. (2.1) 
From 0;” an exact sequence of vector T mQ -bundles is con- 
structed 

T(o;“) 

O-+V,(TmQ)+T(TmQ) -+ T”Qx~~T(T’Q)+O, 

(2.2) 
which defines the “vertical vectors of order I,” 
V, ( TmQ): = Ker T(o;“); it is a vector subbundle of 
T( T”Q) of rank n(m - I), for which d/dq’+‘,...,d/dqm 
constitute a local frame. The coordinate expression of such 
vectors is (q” ,..., q”;O ,..., O,v’+ ’ ,..., v”). A section of this sub- 
bundle will be called, of course, a vertical field of order 1. 

Moreover, there are the corresponding “horizontal co- 
vectors of order m - I,” the vector subbundle V, (T”Q)’ 
C T * ( T “‘Q), locally spanned by dqO,...,dq’. A one-form 8 in 
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TmQ is called horizontal of order m - I (0(1(m) if its 
range is in this subbundle. The dual sequence of (2.2) is 

T(oi”) 
O+T”Qx,~T(T’Q)* + T(T”Q)*-V,(T”Q)*-tO, 

(2.3) 
from which the isomorphism 

T”Q x T,,T*(T’Q)zVV,(T”Q)lCT*(T”Q) 

is deduced. Thus a one-form horizontal of order m - 1 is 
identified with a section of the first vector bundle; therefore, 
with a T/Q-bundle morphism F,:TmQ-+T*(T’Q). If 
B = A, dq” + 1.. + A, dq’, then Fe (q’,...,q*) 
= (qO ,..., q54J ,... 4,). 

Generalizing the vertical endomorphism of T( TQ), the 
tangent bundle of TmQ is provided with m “vertical endo- 
morphisms” J, ( 1 <r<m). Ji reads, in coordinates, 

a . a 
J,o-=I-; 

aqi- 1 aqi 

in other words 
J, (q” ,..., qm;vo ,..., v”) = (q” ,..., qm;0,v0,2v’ ,..., mv”- I). 

(2.5) 
The other is obtained from it: J, = (J, )‘. Notice that 
KerJ, = ImJ,-,+, = V,-,(T”Q). 

The transposed endomorphisms 9, will be also consid- 
ered. They operate in the cotangent bundle of T mQ and their 
action is given by 

IJ,o&f=i&f-* (2.6) 
or,onapointof T*(T”Q), 

'4 (qO,...,qrn;po ,...,pm 1 = (q’,..., q*;p, &,...,mpm,O). 

(2.7) 
Actually we shall need the more general expression 

‘J,(qO,...,q”;po,...,p, ) 
= [qO,...,q”;(t?/O!)p r ,..., [m!/(m - r)!]p,,O ,..., 01. 

(2.8) 
NowwehaveKer’J,=Im’J,-,+, = V,-,(TmQ)‘. 

There is also a natural closed embedding 
j*:T*t ’ Q- T( TmQ), whose local expression is 

j*( qO,...,q” + ’ ) = (qO ,..., qm;q’,..., qm + ‘). (2.9) 
This is, in fact, a vector field along 0; + ‘, and therefore it acts 
as a differential operator: iffEC m ( TmQ), then 

d& = yj,f= (dA j”) (2.10) 
is a function in T” + ‘Q, whose local expression is 

d,F= 2 af,i+‘. 
i=. aqi 

(2.11) 

This notation will be freely used throughout this paper to 
derivate functions depending on an undetermined number of 
higher-order velocities. 

Finally another particular class of vectors will be con- 
sidered in T( TmQ). We say that vgcT4 ( TmQ) satisfies the 
&h-order condition (for 2<s<m + 1) if 

T(o,“_,)*v, =f-‘lo:-, (q)). (2.12) 

It amounts to say that the coordinate expression of vq has the 
form (q” ,..., qm;q’,.+.,#- ‘,v*- ‘,.~.,P). Notice that such vec- 
tors constitute an affine subbundle of the vector bundle 
T( T”‘Q>, associated to the vector subbundle V, _ 2 (T mQ). 
The sth-order condition will be also considered on vector 
fields of TmQ in an obvious way. Then, a vector field satisfy- 
ing the (m + 1 )th-order condition gives rise to a 
(m + 1) th-order differential equation in Q. 

Ill. HIGHER-ORDER LAGRANGIANS 

Now let us consider a k th-order Lagrangian in Q, that is 
to say, a function L: T kQ+ R. Variational calculus yields its 
Euler-Lagrange equations [L ] 9c tI = 0, where 

[L]= i (-i)id$.($) 
i=O 

contains derivatives of q up to order 2k. 
If the solutions of these equations are to be considered as 

integral curves of a vector field, this should be defined in the 
manifold Tzk - ’ Q. Although the k th-order Lagrangian for- 
malism can be geometrized in other ways, this is perhaps the 
better one to build up a Hamiltonian formalism from it. The 
first step is to construct the Jacobi-OstrogradskiI one-form 
8, in Tzk - ‘Q. It can be defined29 by extending the action of 
d, to one-forms, and its coordinate expression is 

k-l 

8, = C ji dq’, 
i=O 

(3.1) 

where the kn functions j, are the Jacobi-Ostrogradsk mo- 
menta 

k-i- I 

jji= C (-l)jd$ aL 

(aq > 
~. 

j=o 
i+i+ I (3.2) 

Notice that bi depends at most in q2k - ’ - ‘, and we have 

ah 
wk - * - i 

= ( - l)k-‘--w(qO,...,qk), 

where W is the ‘%essian matrix” 

W:=dZL. 
aqk aqk 

(3.4) 

A very important reIation between the momenta is the fol- 
lowing: 

(3.5) 

Then, with et one defines the Lagrange two-form wL in 
2k- I T Q: 

@L 
:= - d8L. (3.6) 

On the other hand there is the energy function EL in 
T2k-‘Q. It can be defined as EL = (e,,X) -ozk-l*(L) 
for any vector field X in TZk - ‘Q satisfying the (k + 1) th- 
nrder condition-see also (6.7). Its local expression is 

EL = i ji- ,qi-- L(qO ,.‘., qk). (3.7) 
i= 1 

And just as in the first-order case, one is lead to consider 
the vector fields X in TZk- ‘Q which satisfy the 2k th-order 
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condition 
T(&+;)oX+k-- 

and the “presymplectic” equation 
(3.8) 

iXoL = dE,. (3.9) 
Both expressions constitute the classical Euler-Lagrange 
equations for L. It should be noticed that, for a regular La- 
grangian, (3.9) has one and only one solution, and that it 
satisfies the 2k th-order condition. For a singular Lagran- 
gian, (3.9) is to be studied in the theory of presymplectic 
manifolds.22752 

Since the one-form 8, is horizontal of order k, it 
induces a morphism of T k - ‘Q -bundles, 
FL: = FoL:T 2k-‘Q-+T*(Tk-‘Q),whichcanbecalledthe 
Legendre-OstrogradskFs transformation of L. It is the nat- 
ural generalization of the Legendre’s transformation for a 
higher-order Lagrangian. Its local expression is, of course, 

FL(q’,..., q2k- ‘) = (q” ,..., q“-‘;j,, ,..., jk- ‘), (3.10) 

and, if 8 and w are the canonical one- and two-forms of 
T*(Tk- ‘Q), then FL *(8) = et and FL *(w) = w=. 

If FL has constant rank and connected fibers, and its 
range is a closed submanifold, then the energy function is 
projectable through it, and a Hamiltonian formalism can be 
carried on in T * ( T k - ‘Q) . This is (locally) equivalent to 
the Lagrangian formalism, provided that L satisfies some 
regularity conditions.36 

diate space with r momenta,” as the subset of 7,. defined by 
p,-a,=... =pk-’ -$k-’ =o, 

which is a 2kn-dimensional submanifold of it because the 
(k - r) n differentials of these functions are linearly inde- 
pendent everywhere. Notice that a set of fairly natural co- 
ordinates for P, is provided by 

(qO ,... ,42k- ’ - ‘;po,4%- 1); 
these are the only ones that will be considered in P,. 

The above construction is independent of coordinates. 
The best way to show it is to make this construction in an 
intrinsic way. 

Let 8 be the canonical one-form of T * ( T k - ‘Q) ; its lo- 
cal expression is 

IV. DEFINITION OF THE INTERMEDIATE SPACES 

In a recent paper33 a decomposition of the Legendre- 
OstrogradskiY’s transformation for second-order Lagran- 
gians was ndively introduced in coordinate language in the 
following way: 

T3QZp, :T*(TQ), 

where a, (q’,... q3) = (q”,q’,q2,jo 1 and a, (q”,q’,q2,po 1 
= (q”,ql,po$, ) (recall that the definition of a, only in- 

volves q”, q’, q2). 
In other words, the Jacobi-Ostrogradskii momenta are 

introduced step-by-step, and the higher velocities are corre- 
spondingly swept off. This decomposition proved to be use- 
ful in the analysis of constraints appearing in Lagrangian 
and Hamiltonian formalisms, and in the determination of 
the dynamics. 

As it was said in the same paper, this has a straightfor- 
ward generalization to k th-order Lagrangians, 
PO - ““p, -t-*--L P&m ‘Pk, but in no case the structure of such 
“intermediate spaces” was elucidated. 

In order to define the intermediate spaces, we first recall 
that iffiM-+N is any manifold morphism, then M is diffeo- 
morphic to its graph { (x,y)EM XN Iy =f(x>}. Therefore, 
one is lead to consider, for O<r<k, the fiber product mani- 
fold 

p,:= T 2k-‘--,Q.+,eT*(Tk-‘Q) (4.1) 
with natural coordinates (q” ,..., q2k- ’ - ‘;po ,..., pk _ , ), hence 
of dimension (3k - r)n; and locally define P,, the “interme- 

k-l 

0 = C pi dq’. (4.2) 
i=O 

Consider the endomorphism ‘J, of this manifold, and pull f3 
back through it. The result is another one-form ( ‘J, ) * (8) in 
T * ( T k - ‘Q) , whose local expression can be easily comput- 
ed using (2.8): 

(‘J,,*(e) = 2 7 
k-1--r (i+ r)! p, dqi 

,+r * 
i=O 

Its pull-back to‘S”, through the second projection of this fiber 
product is a one-form 8, in p,, with the same local expres- 
sion: 

8, =pr;((‘J,)*(O)) = ‘-iMrFpjtr dq’. 
i-0 

(4.3) 
On the other hand consider the Jacobi-Ostrogradski’i 

one-form Br. in T 2k - ‘Q. The rth vertical endomorphism of 
?-CT Zk - ‘Q)-let us denote it also by Jr-operates on this 
one-form to yield another one, ‘J, 08,) with local expression 

'J,oeL = k-i-r+$i+r dq’. 
i=O 

Now notice that the highest velocity appearing in this 
expression is q2k - ’ - ‘, corresponding to a,.. Since the ca- 
nonical projection T2k - IQ-+ T 2k - ’ - ‘Q has connected fi- 
bers, the above one-form is projectable through it, and has 
the same local expression in the last manifold. The result is 
finally pulled back to, p, through its first projection, thus 
obtaining a one-form 8, in7, with the same local expression: 

6, =prT((~:~rI_,)*(‘J,oe,.>) 

= k;$;rFji+r dq’. (4.4) 

The local expressions of 0, and 6, are similar, but pi 
have been changed to ji (r<i< k - 1) . Therefore, we have 
the following. 

Theorem 1: For O(r< k let P, be the subset of p, where 
8, and 8, coincide. This is a closed submanifold of dimension 
2kn, locally defined by the vanishing of the n (k - r) func- 
tions pr - j r,**vpk-, -jk-I* n 

We shall refer to P, as the rth intermediatespace. Notice 
that PO is nothing but the graph of the Legendre-Ostro- 
gradskn’s transformation, therefore it is identified with 
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T2k - ‘Q. On the other hand 
Pk =Fk = Tk-‘QXrX-,oT*(Tk-‘Q),whichiscanoni- 
tally diffeomorphic to T * ( T k - ‘Q). We shall make both 
identifications when convenient. 

Since F, is fibered over T2k - ’ - ‘Q, the restriction of its 
projection to P, defines a mapping 

y,:P, + T2k - ’ - ‘Q 
with IocaI expression 

y, (qO ,..., q2k - I - ,po ,..., p,- , 1 = (qO ,..., q2k- ’ - ‘); 

(4.5) 
this defines a fiber bundle structure in P, over T2”- ’ - ‘Q. 

We finish by pointing out that our method has been 
extended to higher-order field theories by Saunders and 
Crampin, and that a different construction of intermediate 
spaces has been developped by Cariiiena and Lopez. 54 

V. THE PARTIAL OSTROGRADSKII’S 
TRANSFORMATIONS 

The previous construction is only justified because the 
“partial OstrogradskiY’s transformations”-as looked for- 
fit naturally with it, as we are going to prove. 

First notice that the ma.pping 
o;;Z;r;:T2k-l-r Q- TZk - 2 - ‘Q induces in a natural way 
a canonical projection 7, -F, + ’ . 

Theorem 2: The canonical projection F, -+F, + , induces 
a mapping a, :P, -+ P, $- , , for O<r<k - 1. Its local expres- 
sion is 

a,(q0,...,q2k- ’ - rpo, . . . . p,-, 1 
= (qO ,..., q2k-2-‘;po,...,pr-l,~,). 

The mapping E-*R+ 1 
(5.1) 
sends 

(q’,..., q2k - ’ - ‘;pC, ,..., pk - , )ti, to the point 

I 

1, 0, 0, --* 
--. . . 

-* : . . . 
ItI 0, 0, -‘a 

0, .*. . . . 0, 0, 1, 
: . 0; . . . . . . o; : 0: ‘*. 

3j,/aqo ... . . . . . . a$,/aq2k----- 0, . . . 

Recalling (3.3) it is clear that the corank of this matrix We recall that a, has locally constant rank if and only if 
is the same as the Hessian matrix W, and their determinants Ker T(a,) is a vector subbundle of T(P,); then its rank is 
are related by det T(a,) = ( - l),+n(k-l-r’det W. n - rank W. Notice also that the rank of FL at each point is 
Therefore, the following is shown. at least k(n + rank w). However, FL may not have con- 

Proposition I: If any of the partial Ostrogradskir’s trans- stant rank even though the a, do. 
formations has constant rank, all them have, it is the same The canonical symplectic form w of Pk = T* ( T k - ‘Q) 
and can be evaluated as allows the construction of 

ranka, = (2k- l)n+rank W, 
where W is the Hessian matrix of L in any coordinates. n 

co,: = ait (~1, (5.4) 
which is an exact two-form in P, (O<r<k), with local 

(q0,**.,q2k - 2 - ,. ,po,sse9pk _ , ) and its last n(k - (r + 1)) mo- 
menta satisfy pi = Bi, thus this image is in P, + , . n 

The mapping a, will be called the rthpartial Ostrograds- 
kii’s transformation. Notice that the Legendre-Ostrograds- 
kiY’s transformation FL is identified with the composition 
ak-loo...oao:Po+Pk. We shall use the notation 
ars : = a, _ , o... oa,, which defines a mapping P, -+ P, . 

P, a’ c P ‘+I 

7, 
I 

7r+l 
7 

T’lk-l-r Q 2k-1-; T2k-2-‘Q 
OZk-2-r 

It is clear that the diagram below is commutative: 
Now, let us make a closer study of the partial Ostro- 

gradski’i’s transformation a,. The first step is, of course, to 
compute its tangent mapping. Its action on a coordinate 
frame is, rather obviously, 

* 
T(a,)od=d+clpld 

aqi aqi aqi ap, ) 
O<i<2k - 2 -r, 

(%?a) 

T(a,)o a 
8, a 

aq2k-t-r= aq2k-l--r~’ 

T(a,l”-$=$, O<ie- I. 
, I 

(5.2b) 

The Jacobian matrix can be written as a block matrix, each 
block being a square matrix of order n: 

0, 
: . 
: . 

0, 

1, 
0 ml 

(5.3) 

I 

2748 J. Math. Phys., Vol. 32, No. 10, October 1991 GrBcia, Pons, and RomAn-Roy 2748 

Downloaded 20 Jul 2010 to 161.116.168.227. Redistribution subject to AIP license or copyright; see http://jmp.aip.org/jmp/copyright.jsp



expression 
w, =dqOAdp, + ..a +dq’-‘Adp’-, 

+ &‘A@, + *** +dqk-‘Adpk-,. (5.5) 
(In spite of the notation chosen, this w, has little to do with 
the previously constructed one-form e,.) Notice that w0 and 
@k are oL and w, respectively, and that 

aF(o,+ ,I = w,. (5.6) 
By inner contraction with tangent vectors at XEP, a vec- 

tor P’-bundle morphism R, : T( P, ) + T( P’ ) * is obtained: 
fl;v,: = i+w’. 

If it has locally constant rank then w’ is a presymplectic 
form. If it is an isomorphism then w’ is a symplectic form. 

Now, as in the first-order Lagrangian case, we are ready 
to characterize the “regularity” or the “singularity” of the 
Lagrangian in the following sense. 

Theorem 3: The following properties are equivalent 
(O<r<k - 1) : ( 1) The Legendre-0strogradskii”s transfor- 
mation is a local diffeomorphism; (2) a’ is a local diffeomor- 
phism; ( 3 ) w’ is a symplectic form; (4) the Hessian matrix W 
of L is invertible in any coordinates. 

Equivalence between (2) and (4) follows from the pre- 
ceding proposition. The Jacobian of FL is + (det W) k, thus 
(1) and (4) are equivalent. Since w is symplectic, (2) im- 
plies ( 3 ). Finally one should compute 

(@,I Ank= (nk)!( _ Ilk--r+l(k--rWln 

X (det WJk-‘dqO, A*** Adp’- ,.n, 

to conclude (4) from ( 3). (In this expression q’s andp’s bear 
a second index corresponding to coordinates in Q.) The 
reader should bear in mind that the Hessian matrix depends 
only in q” ,...,qk, and that the domains of the partial Ostro- 
gradskiTs transformations all are rkQ -bundles. n 

If the Lagrangian L satisfies the properties of the 
theorem then it is called regular. Otherwise it is called singu- 
lar. 

VI. THE INTERMEDIATE EVOLUTION OPERATORS 

As well as in the first-order Lagrangian case43*44 it is 
useful to define an evolution operator K’ such that applied to 
a function in P’+ , its time derivative is obtained in P’. 

By generalizing the second-order case,33 we write 

(6.1) 
The analysis of Ref. 46 shows that these operators 

should be considered as vector fields along the partial Ostro- 
gradski?‘s transformations a’-see also Ref. 49 for more in- 
formation on vector fields along mappings. In that paper it is 
proven that K (in the first-order case) is intrinsically charac- 
terized as the vector field along FL that obeys a “second- 
order condition” and a “presymplectic equation.” To be pre- 
cise, K is the only mapping K:TQ-+ T( T *Q) such that 
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o,tgoK = FL, (6.2) 
T(o*)oK= Id Q TQ’ (6.3) 
FL *(iKw) = dE,. (6.4) 
Now let us do the same with K’. It should be a vector 

field along a’, that is to say, a lift of a’ to T(P’+ , ). The 
diagram below should be commutative: 

T(Prtl) 

/. 

I(’ Of,+, 

P' a, prt1 

Then, as explained in Ref. 46, K’ acts as a differential opera- 
tor on functions@ m (P’+ , ) : 

K;f = (df oa’,K’). (6.5) 
In our coordinates for the intermediate spaces, the local 

expression for such a mapping is 

K, (qO ,..., q2k - ’ - ‘;po ,... ,p,- I 1 

= @ a I . . . + $k - 2 -' a 
a40 w k - 2 - r 

+w,a+ 
ap, 

where v’,..., w’ are functions in P,. 
Now consider the following diagram: 

T( P’,,) w T(T2k-2-rQ) 

p’ 77 TZk-I-‘Q 

Requiring its commutativity amounts to equating the 
expressions 

T(Y,+ I )oK’ = (q” ,..., q2k- 2 - ‘;v” ,..., Use--- ‘), 

J .2k - 2 - ‘oy, = tqO ,..., q2k - 2 - r;q’ ,..., q2k - ’ - ‘), 

that is to say, to determining the functions 
v 0 I = q ,..., V 2k - 2 - ’ = q2k - ’ - ‘; therefore it can be said that 
the vectors which are image of K’ satisfy the “( 2k - r)th- 
order condition.” 

Next take the two-form w, + , efi2( P, + , ) and contract 
it with K’ to obtain a one-form along a,, which we write 
k,a ’ + , , with local expression 

iK,wr+ I =q’dpo+~~*+q’+‘dp’+q’+2d~‘+t 

+ .*++qkdjk-, -wodqo--.*-w’dq’ 

- (K;~‘+,)dq’+‘- *** - (K;j,-,)dqk-‘. 

Since $‘s depend only on q” to q2k - 2 - ‘, the action of K’ on 
them is the same as d,. Hence, we have the following one- 
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form in P,: 

a%i,w+ 1 1 

- w, dq” - * -1 - w, dqr 

- (d#,+ , ,dq’+ ’ - *** - (dTjk-, )dqk- I. (6.6) 
On the other hand, for O(r(k - 1 we have the energy 

function E, in P,, dellned as 
E,:=cO(jk-‘oo~k-~,l-‘Oy,,a,k) - (~~~-*-‘oy,)*(L), 

(6.7) 
wherec:T(Tk-‘Q)XTk-,QT*(Tk-‘Q)--+Risthecanoni- 
cal bilinear mapping. Its local expression is, as desired, 

E,(q”,...&J,~, 1 =poq’ + --- +p,- *q’+~,q’f ’ 

+ ‘-’ +jk- iqk - L(q”,...,qk), 
(6.8) 

therefore a: (E, + , ) = E, and E, is identified with EL. Its 
differential is the one-form in P,: 

dE,=q’dpo+...+q’+‘dij,+...+qkdj3k-, 

-($),-($_,)dq’-*+a 

- 
( 

g-p,-, ) ’ (-+Pr)&‘+1 dq - 

- . . . - aL-j,-, dqk. 
a9k > 

(6.9) 

Taking the identities (3.5) into account, it is now clear 
that equating the just constructed one-forms in P, is equiva- 
lent to determining w. = dL /dq”, w, = dL /aq’ - po,..., 
w, = dL /aq’ - p, _ , . Therefore, we have the following. 

Theorem 4: There is one and only one vector field K, 
along a,, 

OP,+ 1 OK, = a,, (6.10) 
such that it satisfies the following two relations: the 
“( 2k - r) th-order condition” 

T(Y,+ I )oK, =j2k-*2roy,, (6.11) 
and the “presymplectic equation” 

aFG,,o,+, 1 = W. (6.12 
Its local expression is given by (6.1). w 

K, will be called the rth intermediate evolution operator. 
Like the classical Euler-Lagrange equations, if L is reg- 

ular then the (2k - r) th-order condition can be deduced 
from the presymplectic equation. 

Proposition 2: If L is regular then K, is the only vector 
field along a, such that a: ( iK,w, + , ) = dE,, and is given by 

K, = T(a,)ofiZ;‘odE,. n (6.13) 

VII. SOME COMMUTATION RELATIONS BETWEEN THE 
EVOLUTION OPERATORS 

An alternative construction of the K,, which will pro- 
vide us with a relation between the contiguous K’s, is the 
following. 

First define the last of them, K,+ _ , , as before-it is a bit 
easier. Then the other can be obtained recursively as follows. 

Proposition 3: For 1 (r<k - 1, K’ _ , is the only vector 
field along a, _ , that satisfies the (2k - r + 1) th-order con- 
dition and such that 

T(a,)oK,-, = K,oa,-,. (7.1) 
That is to say, the diagram below is commutative: 

T(P,) = T(P& 

I/ K/ 
I I 

PP-1 - P, - %-I a, P ‘+I 

Let us write 
Zk-2-r 

K,= C vi~,~wj+ 

i=O aqi j=O aPj 

where the vi and wj are already known. 
Also, let 

Zk-l-r 

K,-, = C 
i=o 

B-‘$+‘&&, 
j=O J 

where I? and iBj are functions in P, _ , to be determined. 
Taking (5.2) into account, we obtain 

T(a,PK,- , (go ,..., q2k- ‘;po,...,p,- 2 1 

On the other hand, 
K,oa,- , (so,..., q2" - ',P~,...,P,- :! 1 

2k-2-r 

= i;. 

X -$+a?-,(w,)$-. 
I ’ 

Comparing these two relations it is clear that if one as- 
sumes the (2k - r + 1) th-order condition for K’_ , , which 
implies $k - 1 - ’ = q2k - ‘, all the coefficients of K,- , are 
determined, and the additional identity must hold: 

2k-1-r 

i=O 

But since W,=aL/aq,--p,-,, we have 
a:- , (w, ) = aL /b’qr - 8, _ , ; therefore this identity follows 
from (3.5). I 

As an immediate result from the preceding proposition, 
we can show that the following holds true. 

Proposition 4: For 1 (r< k - 1 and anyfEC m (P’ + , ), we 
have: 

a?-, (K;.f 1 = K,-, *a:(f). (7.2) 
We omit the proof, which is straightforward. n 
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VIII. THE PRIMARY CONSTRAINTS IN THE 
HAMILTONIAN FORMALISM 

Neither the energy E, nor the evolution operators K, 
can be constructed in phase space Pk. But it has a useful 
structure: its canonical two-form tit, which is symplectic. So 
it defines a vector PA -bundle isomorphism 
& : T( Pk ) + T * ( Pk ), and the corresponding isomorphism 
between the spaces of sections, namely vector fields and dif- 
ferential one-forms. In particular, for each functionfin Pk a 
vector field can be constructed: 

X/: = Cl; ‘OdJ 

with local expression 
(8.1) 

XfZk$ df d 
( 

af a ----- . 
r=O api aqi aqi api > 

(8.2) 

The Poisson bracket of two functions in Pk is also defined in 
the usual way. 

From now on it is assumed that the partial Ostrograds- 
ki?s transformations have constant rank 2kn -m. Then, lo- 
cally, the image Pl!j, of Q, can be assumed to be a closed 
submanifold of P, + , of codimension m, defined by the van- 
ishing of m functions &+ , in P, + , , theprimary constraints, 
whose differentials are linearly independent at each point of 
p(l) rt I’ 

The functions vanishing on P j!,! , are also called pri- 
mary constraints, and constitute an ideal of C m (Pr, , ) gen- 
erated by the &!+ , . This is also the set of functions vanishing 
through the pull-back of a,. The C m (P, + , )-module of one- 
forms along a, vanishing through the pull-back of a, is 
therefore generated by the d&f+ , oa,. 

Accordingly, we will call primary Hamiltonian con- 
straints the constraints locally defining the submanifold 
a,-,(Pk-,)=P ii, of Pk. Although one could apply this 
name to the constraints defining the image of FL, our ter- 
minology is usual in the literature, since these constraints 
arise form the singularity of the Lagrangian, and particular- 
ly from the definition of the momentapk _ , (see for instance 
Ref. 3 1, for the second-order case). We shall see also that 
these primary Hamiltonian constraints are enough to gener- 
ate all the Hamiltonian constraints through the Dirac’s sta- 
bilization algorithm, so they play the same role as the pri- 
mary Hamiltonian constraints for first-order Lagrangians. 
An additional reason is given by Proposition 9. 

Since the primary Hamiltonian constraints arise from 
the “definition” of pk- , (q”,...,qk;p0,...,pk-2) 
=fik-,(q” ,...,qk), the & can be chosen so that they do not 

depend on po,.+.,pk _ 2. This result is shown in Refs. 31 and 
36. An intrinsic proof is also available,55 provided that this 
nondependence is given a geometric expression. We com- 
ment briefly on this point. 

Pk is fibered in several ways. The more obvious one, 
compounding Yk with the projections to lower-order tangent 
bundles: 

&P,-+T~Q (o<z<k- i), 

(qO ,... ,p1- , b--4q” ,..., 4’). 
On the other hand it is known the vector Tk- ’ Q-bundle 

epimorphism ( 2.3 ) 
cil, :Pk + Vt(Tk-IQ)* (k- 1>1>0), 

(q”,*-,pk-, )‘-+(qO,*-,qk- ‘#I+ l,***,pk- 1). 
With this, the following vector subbundles of T( Pk ) can be 
constructed: 

Ker T(m,) = (-$...,&). 

Taking I = k - 2, it is clear from the result stated before 
that we have the following. 

Lemma 1: The primary Hamiltonian constraints & can 
be chosen to be til, _ 2 projectable-i.e., not depending on 
Pot ..vpk-2’ n 

From now on this choice is assumed. This will make the 
computations much easier. 

Finally we want to notice that there is another way to 
say that a function f in Pk does not depend on p. ,...,p[. To 
this end compute 

T(o~-‘)oT(~~)ox, = i afa. 
i=O api aqi 

Therefore, f is u, projectable if and only if the above expres- 
sion is zero. 

In particular we have, for the primary constraints, 
T(&: )OT(y, ,“xa = 0, (8.3) 

provided that they are chosen as in the lemma. 

IX. THE KERNELS OF THE PARTIAL 
OSTROGRADSKli’S TRANSFORMATIONS 

Since Ker T( a, ) C T( P, > is a vector subbundle of rank 
m (O<r<k - l), P, can be covered by open sets on which 
Ker T( a, ) has a frame given by m vector fields IL. It is 
interesting to have explicit expressions for these vector 
fields, in order to compute the projectability of functions 
through the partial Ostrogradskii’s transformations. 

We put for convenience 
rk.=x Ir’ &:” (9.1) 

Using the preceding lemma, these vector fields have local 
expression 

Then the m vector functions 

(9.2) 

(9.3) 

are a basis for Ker W, since Wyp = &‘(a:- , (# ))/aqk = 0, 
and are linearly independent; the reason is that the 
a&/??p, _ , are already independent, since the constraints- 
the image of ak _ , -appear by the definition ofp, _ , . 

Notice also the dependence r, (q”,...,qk), due to the de- 
pendences & (q” ,..., qk- ‘;pk _ , ) andg, _ , (q” ,..., qk). 

Proposition 5: The vector bundle Ker T( a, ) admits as a 
local frame m vector fields I; with local expression 

r; = Y, 
a 

&2k-l-r ’ 
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with yP defined by (9.3). 
A quick inspection of the Jacobian matrix of a, shows 

that these I?;, which are linearly independent, constitute a 
frame for Ker T(a, ) . Then it is easily checked that they 
transform as vector fields. n 

An intrinsic construction of these vector fields can also 
be provided using the vertical lift of the higher-order tangent 
bundles.55 

Now we can easily test the local projectability of a func- 
tion fEC oii (P, ) through a,: l?; *f = 0 for all ,u. If a, is more- 
over assumed to have connected fibers and ay, (P, > C P, + , to 
be a closed submanifold this also ensures the global a, pro- 
jectability. 

It is also known that the vector subbundles 
Ker T(a, ) C T(P,. ) are completely integrable. We have in- 
deed 

p-y;] =o, O(r<k- 1, 

which follows from an elementary calculation involving 
r; +yV = 0. This property is not always true for the ri since 

[ r:, ,rE 1 = - x{tiL,,il. 

We finish by proving an interesting commutation rela- 
tion between the intermediate evolution operators and the 
vector fields presently constructed. 

Proposition 6: For O<r<k - 1 and any function 
iFCrn(Pr+ 11, 

r;-(K,+g) = a;(r;+ l.g). 
We take the local expression 

(9.5) 

(9.6) 

and apply r; = y, CY /agk - * - ’ to it. This yields 

r;-K-g) = (a: ( agff2mr) 

(9.7) 
where the summation only contributes when r = k - 1. 

On the other hand, for r# k - 1 it is clear that 

a:(r;+ l-g) = a) 

which is the same as (9.7). If r = k - 1 then 

wi 
aL aqi ( > 

#k-l 46 - =-- 
aqi aKi apk-, ( ) 
a% = -- 

aqiaqk ‘p’ 

which follows from chain’s rule and the fact that #$ is a 
primary constraint. n 

As an application, we have the following. 
Corollary: K, ‘g is an a,-projectable function if and only 

if, for all p, r;+ ’ -g is a primary constraint in P, + , . n 

X. EQUATIONS OF MOTION FOR PATHS IN THE 
INTERMEDIATE SPACES P. ,..., Pk-, 

We consider an n-dimensional differentiable manifold Q 
(configuration space) and a k th-order Lagrangian 
LEC o(I ( T kQ). For a curve in Q the Euler-Lagrange equa- 
tions read [L ] 4[ ,) = 0, with 

[Ll= i (-l)id+$)=$-d,,. ( 10‘1) 
i=O 

This system of n equations has order <2k; its order is 2k if 
and only if the Hessian matrix WofL does not vanish identi- 
calIy. 

The same motion can be described by first-order equa- 
tions, but these should be established on a suitable manifold 
fibered over Q, It is usually done in T2k - ‘Q, but also the 
Hamiltonian formalism in T * ( T k - ‘Q) is available. In fact, 
we are going to write equivalent equations of motion in every 
intermediate space P, (O<r<k); however, the Hamiltonian 
formalism (that of Pk ) is delayed to another section. 

Let { be a path in Q. Its (2k - 1 )th derivative is its 
natural lift go to P, z TZk - ’ Q. Then, by composition with 
the partial OstrogradskiY’s transformations one gets in a very 
natural way paths c, in all the intermediate spaces P,. To 
abbreviate, we say that the paths constructed in this way are 
equivalent. 

We now look for a first-order differential equation for a 
path in P,; this path should be equivalent to another one in 
Q, solution of the Euler-Lagrange equations. In Ref. 46 the 
equations of motion for a first-order Lagrangian are written 
as 

T( FL) 08 = Ko,$, 

where K is defined by Eqs. (6.2) -( 6.4). Now we shall pro- 
ceed in a similar way. 

Theorem 5: The equation of motion in P, for a path 6, 
(O<r<k - 1) is 

T(a, >o& = K,o&. (10.2) 

This equation holds if and only if gr is equivalent to a path 6 
in Q which is a solution of the Euler-Lagrange equations. It 
also holds if and only if for every g& m (P, + , ) 

-$ W(g)%) = W,+g)%. (10.3) 

This is illustrated by the following diagram: It suffices to prove 
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VP,) =-de T(Pr+,) 

I 7 P, a, Pvt.1 r 

What is really easy to prove is that the equations of mo- 
tion for g, in P, imply those of c,+ , = a,%$,. in P,, , 
(O<r<k - 2), since 

T(a,+, )o~,+, = T(a,+, )oT(a,)o& 

= T(a,.+, )oK,o~, 

= K + I oar% 

=K+10~,+19 

where relation (7.1) has been used. 
The last statement of the theorem is also straightfor- 

ward, since 

$ (aF(g)o5,) = (da:k)%,,~,) 

= (‘T,,(a,).(dgoa,o~,),~,) 

= (dg”aro&,T(ar)o&) 

= Wgoa,oLK,ol,) 

= (K;g)oL 

and conversely the value of T(a,)oir is determined by its 
contraction with the exact one-forms dg in P, .+ i , along the 
path a, 06,. 

Now let us prove the equivalence with the Euler-La- 
grange equations. First consider P,, and a curve g,, therein, 

with local expression ( qO,,,,,qzk - ’ ). If it is the natural lift of a 
solution 6 in Q with local expression q = q” then we must 
have dq’/dt = q’ + ’ for O(i<2k - 2, and dj,/dt = dL /aq” 
-this comes from the Euler-Lagrange equations ( 10.1). 
Conversely, a curve in P, satisfying all these conditions is 
clearly the lift to P, of a solution in Q, with local expression 
q = 4”. 

Next take P, and a curve {, with local expression 
(q0,...,q2k - *. ,pO ). If it comes from a solution in Q then we 
must have dq’/dt = qi + ’ for 0&2k - 3, p. 
=a, (q,dq/dt,...,d 2k - ‘q/dt 2k - *) and d$,/dt = aL /aq”. 

Of these three conditions the third one can be changed to 
dp,/dt = aL /aq”. The second one can be, in view of the 
relation between fi,, and a, (3.5), and the properties of d,, 
equivalently written dj, /dt = JL /aq’ - po. Conversely, a 
curve in P, satisfying these conditions is obtained from a 
solution { in Q, with local expression q = q”, since 

g - da, 4 dZk-‘4 q, dt ,..., - _ aL dpO -0. 
aqo dt &2k- 1 a@ dt 
The same argument works in every intermediate space 

P,, for O<r<k - 1. A curve l, therein with local expression 
(qO,...,qlk- ’ -“p , o ,..., pI- , ) is equivalent to a solution { in 
the base Q with local expression q = q” of the Euler-La- 
grange equations if and only if it satisfies 

dq’ 
x=4 i+l , O<i<2k - 2 - r, 

dPj _ aL --a4/--p/- 1, O=Gifr- 19 
dt 

-ALpI-*, 4X 
dt aqr 

(10.4a) 

(10.4b) 

(10.4c) 

where it is understood that p _ , = 0. 
Now let us compute the local expression of the equa- 

tions of motion ( 10.2) : 

I” 

I- 
0” : 0” 

aj,/aqo 

0” 0” *-* 
-. : . . 

--. : : . 
1, 0, 0, *-* 

. . . . . . 0, 0” Ill 
: . --_ 

. . . . . . 0” 0” 

. . . . . . . . . ajr/aq*k-l-- 0, . . . 

0, 0, 
: : . . 
: : . . 

0, 0, 
= = 

I, I, 

0” 0” 

4’ 
: . 

4 2k-1-r 

aL /aqo 
aL /aq’ - p. 

These 2kn equations are the same as ( 10.4), and this finishes 
the proof. 

Equation (10.3) illustrates the meaning of K,: it is! 
time-evolution operator, conveniently expressed in order to 
avoid the ambiguity underlying constrained systems. Simi- 
larly the following vector field along FL can be considered: 

K:=Kk-,oak-20*~~oao =T(ak-,O.**Oa,)OKo 
(10.5) 

I 
(it is the same, according to Proposition 3). Then, a conse- 
quence of Theorem 1 is that 

-$ (FL *Wo6oo) = WW6o. (10.6) 

The problem posed by singular Lagrangians can be real- 
ized by looking at the equations of motion. In the coordinate 
version, the evolution of q2k - i - ’ is hidden in Eq. ( 10.4~). 
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Using the definition of$, this equation can be rewritten 

W dq2k-‘-’ 
dt 

=(-l)k--l--r 

2k-2-r@ 

x $-p,-, - c 
( 

-_I_qi+, . 
i=. aqi > 

(10.7) 
If L is singular, W is not invertible and this equation cannot 
be written in normal form, thus the existence and uniqueness 
theorem for differential equations cannot be applied. 

In the geometric version, if a, is a diffeomorphism then 
the equation of motion can be written 

8, = T(a,) - ‘oK,o& (10.8) 

and for every initial condition in P, there passes an integral 
curve of the vector field T(a, ) - ‘OK,. But if L is singular 
then T( a, ) cannot be locally inverted and the evolution ofg, 
is not determined by a vector field in P,. This is discussed in 
the following section. 

Xi. EQUATIONS OF MOTION FOR VECTOR FIELDS IN 
THE lNTERMEDlATE SPACES Po,...,Pk-, 

It is usual in the literature to shift the problem of finding 
the solutions of the equations of motion into the problem of 
obtaining the vector fields X, whose integral curves are these 
solutions. If L is singular it can be expected that such vector 
fields can only be properly defined on a submanifold of P, 
covered by solutions of the equations of motion, and they 
will not be uniquely defined, for a given set of initial condi- 
tions. 

In view of the last section, a relation between X, and K, 
is expected. On the other hand the dynamical fields of a first- 
order Lagrangian formalism satisfy a “presymplectic equa- 
tion” and the “second-order condition.“s6 Both features are 
contained in the following theorem. 

Theorem 6: Suppose that S is a closed submanifold of P, 
(O(r<k - 1) such that there are solutions of the equations 
of motion passing by every point ofS. Let X, be a vector field 
in P, tangent to S. Then the integral curves ofX, passing by S 
are solutions of the equations of motion in P, if and only ifX, 

satisfies the following equation [The notation = means 
S 

equality on the submanifold S (weak equality) ] : 

T(a,)oX, = K,. s (11.1) 

Moreover, this equation can be equivalently written as the 
two following equations: the presymplectic equation 

ix,w, = dE, s (11.2) 

and the (2k - r) th-order condition 

T(o$~l~;)oT(y,)oX, ;j2k-2Z-‘oy,. (11.3) 

For x& let g, be an integral curve of X, passing by x, 
and suppose that 6, is a solution of the equations of motion in 
pr- Then, T(a,)oX,og, = T(a,)o& = K,$,, which 
proves equality ( 11.1) at the point x. Conversely, assume 
( 11.1) and let 4, be an integral curve of X, passing by S. 

Since X, is tangent to S, all the image of {, is contained in S, 
and T(cr, )a,&, = T(a,)oX,of, = K,o~,, which gives the 
equation of motion for 6,. 

In order to prove the equivalence between ( 11.1) and 
( 11.2), ( 11.3) the intrinsic definition of K, can be used. 
First, 

ix,@, = ix,@ (w, + ,I 
= afOTca,jox,w. + I 1 

= aZYiK,ti,+, 1 
S 

= dE,, 

which proves ( 11.2). On the other hand, since we have 
2k-l-r 

02k-.2--‘“~‘=Y’+10arr 

T(&I:T:)oT(~,)oX, = T(y,+, )oT(a,>oX, 

y T(Y,+, IoK, 

which proves ( 11.3). 

= .2k-2- r. 
J Y I, 

Conversely, let X, satisfy these relations and notice that 
actually the characterization ofK, remains valid for a vector 
field along a, considered to be defined only on a submanifold 
SC P,. But a vector held such as T( a, ) OX, satisfies the con- 
ditions needed, since 

T(Yr+ I )o(T(a,)oX,) = T(o:~~~r:)oT(y,)oX, 

= *2k-2-r. 
J Yr* 

S 

a3bla,~ox,w + , 1 = ix,a:(w,+, 1 

= lx,@* 

= dE,, 
s 

This completes the proof. 
If the local expression of X, is 

Zk-1-r 

xr= c 
ui&+‘~lwjd, 

i=O aq* j=O aPj 

( 11.4) 

then these equations of motion for X, read, from ( 10.4) and 
(10.7), 

oi = qi + I, O<i<2k - 2 - r, (11Sa) 
S 

w 2Lp. 
J s a@ I- I, OcQ<r - 1, 

w,,2k - I - I 

(11Sc) 

For a regular Lagrangian, Theorem 2 has a simple 
expression since a, is a vector bundle isomorphism. 

Proposition 7: Suppose that L is a regular Lagrangian. 
Then the relation ix, = w, = d&, has one and only one solu- 
tion, 

X, = 02; ‘OdE,, (11.6) 
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which also satisfies the (2k - r) th-order condition. 
The first statement is obvious. To prove the second one 

it suffices to show that T(a,)oX, = K,. But for a regular 
Lagrangian K, can be characterized by the only property of 
a:( iKru,+ , ) = dE, (see Proposition 2) and this has been 
proven for K, = T( CY, ) OX, in the preceding theorem under 
the only hypothesis currently considered. a 

Of course, this result was already known in the Lagran- 
gian formalism.29 If L is singular then the (2k - r)th-order 
condition must be explicitly imposed to obtain the correct 
dynamics. However, one can also discuss other “dynamics” 
which include a nonmaximal order condition.57 

XII. EQUATIONS OF MOTION IN THE HAMILTONIAN 
FORMALISM 

The energy function of Pk _ , , Ek _ , , is (locally) ak _ , 
projectable: if the m vector fields l?i - ’ = y,J /6’qk, which 
are a frame for Ker T(a,), are applied to 
Po4’ + ‘-’ +p,&q’-’ + ak _ , qk - L (q” ,..., qk) the result 
is zero. 

A Hamiltonian function is any HEC m ( Pk ) such that 
at- , (H) = Ek _ , . Such functions exist locally, but for sim- 
plicity we can assume them to be defined everywhere. Two 
Hamiltonians differ from a function vanishing on the pri- 
mary constraint submanifold P i’), that is to say, a C a (Pk ) - 
linear combination of the primary constraints &. However, 
like the primary constraints, a special class of Hamiltonians 
will be selected, in order to make computations easier.33 

When studying the projectability of Ek _ , , the term 
x;k:;p,qq’+ ’ plays no role, and is clearly projectable. The 
termp, _ , qk - L only depends on qO,...,qk, therefore it can 
be projected to a function h(qO,...,qk - ‘,pk _ , ). We can write 
a Hamiltonian 

k-2 

H = C piqi+ ’ + h(q” ,..., qk- ‘;pk- , ). (12.1) 
i=O 

Although the term Zf,ipiqi+ , is not coordinate invariant, 
this particular expression can be given a geometric mean- 
ing.55 Indeed, our particular choice of H is intrinsically ex- 
pressed by 

T(o::;)OT(yk)o& =jkm2’ykl (12.2) 
which is another way to express that dH/api = q’+ ’ for 
O<i<k - 2. For obvious reasons it can be called the kth- 
order condition for X, . 

Now we are ready to look for the equation of motion in 
Pk. A coordinate analysis can be performed as in ( 10.4). The 
result is 

dq’ 
dtTq 

t+l , O<i<k-2, 

*2-p,_,, 
dt s ad OQ<k - 1, 

PA-1 yak-, =% 
aqk 

(12.3a) 

(12.3b) 

where it is understood that p _ , = 0 and that the fuctions 
dL /b’qi are computed along the motion using 
qk = dqk - ‘/dt. 

However, we want to develop a Hamiltonian formalism 
in Pk. Let gk be a path therein. If it is equivalent to a solution 
$k--l ’ 

obeys 
‘$k = (a,-,k;~,_,, %(‘a&,)$;:, =K;:,O&-,. 

Conversely, suppose we have gk in Pi’) and that 
ik =Kk-,ogk-,, wherec,-, is any path in Pk-, such 
thatlk =ak-,‘ck-,. Then it follows that gk _ , is a solu- 
tion of the equations of motion, therefore gk is equivalent to 
a solution of the Euler-Lagrange equations. 

We would like to get rid of ck _ , in the equations of 
motion in Pk. To this end Kk _ , should be related to X,. By . . definmon a:- , ( iK,, _ ,@k ) = dEk _ , = da:_, (H), there- 
fore 

a?-l(iKA-,uk -dH”ak-,) =O. 

Since the one-forms along ak _ , admit the d&Oak _ , as a 
(local) basis, there exist m functions R $ _ , , uniquely de- 
fined by the choice of H and I$$, such that 

iK,-,wk -dH”ak-, = CA{-, d&Oak-,. 
P 

Using Sz, ’ this relation yields the following. 
Proposition 8: Let H be any Hamiltonian function and 

& a set of primary Hamiltonian constraints. Then there ex- 
ist m functions il f _ , uniquely defined in P, _ , such that 

K k-, =xHoak-l +~/zf-lxtioak-l. (12.4) 
P 

Moreover, if the constraints satisfy (8.3) and H satisfies the 
k th-order condition ( 12.2), then the functions il$- , are 
yk _ , projectable-i.e., do not depend on the momenta. 

The last statement can be easily obtained in coordinates 
from the coefficient of d /dq2k - 2 - ‘. a 

Thanks to the above proposition, the equation of motion 
kk = Kk _ ,olk _ , can be rewritten 

&k =x,=f’!$k +c (n::-,o~k-,)(x,o‘i?k). 
P 

Let Sk be a path in P k (,) satisfying this relation. We can set 
@‘(t) = /z $ _ , Ek _ , (t)), which are m functions of time. 
Then &Jk satisfies 

ik = xHo6k + 2 vtx&ogk )* 
P 

Conversely, if gk satisfies this relation for some functions 
q?‘(t), let gk _ , be the only path in Pk _ , such that 
~k=ak-loj?k-, and jk-“yk_,‘gk-, =T(yk)‘ck. 

Then Qk - ’ is 

and also 
aH qk=aZ-, aPk-, ( > +ptL?$, 

which proves that q/1 = R $ _ , (q”,...,qk- ‘,Qk- ‘)-see Ref. 
36. 

Theorem 7: Let ck be a path in Pk. It is equivalent to a 
solution gin Q of the Euler-Lagrange equations if and only if 
its range is in P k (” and there exist m functions of time vp such 
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that the following equation holds: 

&k = XH”fk + c v”(t) (x,O& 1. 
fl 

(12.5) 

Equivalently, for every fEC m ( Pk ) 

-$ (fogk) = {f,H>Ock + c ri”-b?,+;>“~k. (12.6) 
P 

a 
Equation (12.5) is called the Hamilton-Dirac equa- 

tion 43,58 

XIII. POSITION OF THE STABILIZATION PROBLEM 

If the Lagrangian is singular-what is assumed from 
now on-relation ( 11.1) is to be considered as an equation 
both for the dynamical fields X, and the submanifolds SC P, 
where the motion can take place. This problem will be solved 
in the following sections, but for the time being let us pose 
the problem. (This can be considered within a more general 
formalism.5’*60 ) 

The equation T, (a,) .X, (x) = K,(x) for the unknown 
vector X, (x) has no solution at every x&‘, because T, (a, ) 
is not subjective. The set ofxeP, such that the compatibility 
condition 

K, (x&Im TX (a, 1 (13.1) 

holds is generically a submanifold P :‘) C P, (0(&k - 1) 
which will be called the primary constraint submanifold of 
P,. However, the same name has been applied to the image of 
a,_, ( 1 <r<k). Let us show that both concepts agree for 
l<r<k - 1. 

First recall that K, (x)oIm T, (a,) if and only if K, (x) 
is orthogonal to Ker ‘T, (a,). This is spanned by the 
d&f+, (a,(x)) ( 1 <,u<m), and therefore the compatibility 
condition is that the m functions 8:: = K, +#f+ , vanish. But 
the commutation relation (7.2) yields 

a?-, ($3 = a?, W,#+ ,I 

=K,-, -aft&+ , ) = 0. 
Therefore, the &! are primary constraints in the sense that 
they vanish on a,-, (P,- , ). If &+ , do not depend on 
p. ,..., p, _ , , then $$ does not depend onp, ,..., p,- 2, and the 
local expression of K, allows us to compute 

-=d(K,#+,)= -a: 4% 
ah-, ah-, 

Since the m vectors yfi = a:- , (S’&/ap, _ , ) are linearly 
independent at each point, we have the following. 

Proposition 9: Let #$ be m independent primary con- 
straints for Pi” C Pk, not depending on p. ,..., pk _ 2. For 
O<r<k - 1 define inductively 

&‘:=K,~~+,. (13.2) 

Then the m functions 4’: do not depend on po,...,p, _ 2 and 
generate the primary constraints arising from the compati- 
bility condition ( 13.1). For r# 0 they are linearly indepen- 
dent and define the submanifold a, _ , (P, _ , ) C P,. 

Their local expressions are 

&t= (- l)“-‘-‘yp* 
( 

~-p,~, 

- 2kzfr$ q’+ I) . (13.3) 

It only remains to prove (13.3); it is computed for 
r = k - 1, and the proof goes by induction on r. m 

Notice that Eq. ( 13.3) could have been obtained from 
the coordinateexpression ( 10.9) and the fact that they, are 
a basis for Ker W. 

Now suppose that X, is a solution of the equation of 

motion ( 11.1). The equality T(a, )0X, = K, certainly has 
solutions with S = PI”, but they are not iecessarily tangent 
to P(l). This will be achieved only on a submanifold 
S=+j , and the values of X, will be meaningful only there. 
However, X, can be extended out of P I” as we want; using 
this freedom we extend X, in order to satisfy 

T(a, PXp===lK,. (13.4) 

To abbreviate, any vector field X, satisfying this equality will 
be called a primary dynamicalfield; we extend this conven- 

tion for X, = X,, for any Hamiltonian H. Notice that two 
Pi” 

primary dynamical fields differ, on P jr), from a linear com- 
bination of the fields FL. 

An immediate consequence of the definition is the fol- 
lowing proposition. 

Proposition 10: X, is a primary dynamical field in P, 
(O<rsk - 1) if and only if there exist m vector fields YL 
along a, such that 

K, = T(a,)oX, + C@:YL. 
t’ 

Then, ifg&“(P,+, ), 

(13.5) 

K, ‘8 = X, -a? W + C ( Y; *gkK. i(L (13.6) 

For P>/ 1, the YL satisfy 

y:*&f+ 1 =,q;’ (13.7) 
I 

The first result is obtained in coordinates by observing 
that each component of the vector-valued function 
K, - T( a, ) OX, vanishes on P :’ I, therefore it is a C o (P, ) - 
linear combination of the primary constraints. To obtain 
( 13.7), just apply ( 13.6) and the preceding proposition. q 

On the other hand there is also a connection between the 
intermediate evolution operator K, and the fields X, + , . 

Proposition I I: X, + , is a primary dynamical field in 
P ,+, (O<r<k - 1) if and only if there exist m functions R ‘f 
in P, such that 

Kr =X,-cl oa, -I- C /z fT;+ ‘aa,. 
P 

Then, if g& r” (P, + , ), 

K,*g = a?(%+ , *g) + C a:( rL+ *+g)A f. (13.9) 
G 
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The functions A F are uniquely determined by X, + , and are 
not a, projectable. More precisely, 

l-;-A:=& (13.10) 
Suppose that X,, , is a primary dynamical field. For 

r = k - 1 ( 13.8) is a consequence of proposition 8. Other- 
wise it is just a matter of computing 

T(a,+ I )“W, -X,+ ,oa,) 
=(K,+, -T(ar+I)oXr+l)oa,=O, 

where (7.1) and ( 13.4) have been used. Therefore, since the 
r;+ ’ are a frame for Ker T( a I + , ) , there exist some unique- 
ly determined functions R $! such that 

K,-X,+,Oa,=C/2~r~+‘oa,. 
P 

The same argument proves the converse if r# k - 1. 
Otherwise, if 

Kk-, =X&oak-, +~Q-,Xtioak-tl 
P 

then X, = X,, with H = fi appropriate. 
Pi” Pi” 

Finally, to prove the last assertion one can compute 

rji-(K;g) =Ca~(rl+*.g)(r:.~:), P 
which is also a: ( r;+ ’ *g) by (9.5); then take into account 
the arbitrariness ofg. m 

XIV. SOME PARTICULAR PRIMARY DYNAMICAL 
FIELDS 

In order to perform an explicit stabilization algorithm in 
P, (O<r( k) a particular primary dynamical field Xr is need- 
ed to start, in the same way that a Hamiltonian function is 
needed to develop the Dirac-Bergman constraint algorithm. 

Since we are only interested in the values of the primary 
dynamical fields in Pi’), we can restrict ourselves to look for 
dynamical fields of the form (from now on the summation 
convention over the greek indices is assumed) 

x, =Xr +qyr;. (14.1) 
They are known except for the arbitrariness of functions ~7:. 
The requirement of tangency to the primary submanifold 
(which is needed in order to have integral curves on it) can 
determine some of these functions and can also lead to new 
constraints. This is the beginning of the stabilization algo- 
rithm that will be treated in detail in the next section. 

Suppose that Hand & have been chosen. For r = k we 
simply put XA = X,. Otherwise, using coordinates equation 
( 11.5) determines all the components ofX, except fizk - ’ - ‘, 
the coefficient of J/J$” - ’ -‘. The general solution of 
( 11 SC) will be obtained in P , (‘) by adding to a particular one 
fi2k - ’ - ’ the vectors n$!y,, of Ker W, where r,$! will be taken 
as arbitrary functions of time. 

Let us look for a particular Czk - ’ - ‘. Take Eq. ( 12.4) 
and consider the coefficients of c7 /dqk - *: 

qk = a:- I 
dH ( > 4% 

apk _ , + A$-, (qO,...,qk)aZ-, - . 
( ) JPk-1 

Derivation with respect qk gives a “completeness relation”43 

where 

M:=a~-, 
d2H 

@k-1 @k-l > 

+A$-,aX-, (14.3) 

(For sake of readability indices of coordinates in Q appear 
explicitly in this equality.) 

Then, use of (14.2) allows us to write (11.5~) in the 
form 

V 2k-l-rr~2k-l-r++p 

where 
V -2k-i-r= (_ ljk-I-rjjg 

* (14.4) 

In this way a particular primary dynamical vector field 
gr=, which is coordinate depending, has been defined. For 
this particular Xr the propositions in the preceding section 
hold, with particular values of R and Y. 

Proposition 12: For 1 <r(k - 1, the equality 
K r- 1 =-ZTroa,-, +A:-,r;oa,-, 

holds, with the m functions 
(14.5) 

aA:-, 
A $!- , (q” ,..., qk,qZk - ‘) = --&- q2k - r, 

andil$-, defined in Proposition 8. 
The only point to show is that 

4 2k-r=a(r:-1(fi2k-11r) +y,il$f-,, 
which are the coefficients of the highest velocities in both 
hands, and this is obtained using ( 14.4), (3.5), (3.3), and 
(14.2). 

Proposition 13: For O<r<k - 1 the equality 

K, = T(a,)o?r + KY;, 
holds, with the m vector fields along a, 

(14.7) 

JA$t-, a y; = ( - l)k-l--r- 
aq” JP,- 1 

=(-Ilk--l--r aA: a 
aqzk--l--rdp,_l' (14.8) 

It suffices to compute the local expression of 
K, - T(a,)oxr, using (3.3), (14.4), (14.2), and (13.3).m 

XV. STABILIZATION ALGORITHMS AND RELATIONS 
BETWEEN THEM 

In every space P, (O<r<k) we have dynamical fields 
X, = 2,. + 7J;“FE,, where ~7:’ are, in principle, m, = m arbi- 
trary functions of time. (From now on the previously used 
greek indices acquire a subscript “1” which refers to the first 
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level of the stabilization algorithm.) We are interested in 
integral curves for X, only on the submanifold of primary 
constraints Pl’). This implies a new requirement, namely 
thetangencyofx, toPI’), which leads, as it is well known in 
the first-order case, to the determination of some functions 7 
and also to new constraints, the secondary constraints. In this 
way a new submanifold P’2’CP”’ is defined. The proce- 
dure continues by requiring again iangency of X, to the new 
submanifold and so on. This is the step-by-step stabilization 
algorithm for P,. Sometimes all the constraints are so ob- 
tained but the primary ones will be loosely called secondary 
constraints. 

Now we are going to show the intimate connections be- 
tween the stabilization algorithms for all the spaces P, 
(O<r<k). As a particular case the connection between the 
Hamiltonian stabilization algorithm in Pk and the Lagran- 
gian one in PO will be revealed. 

Actually, the connection between the primary con- 
straints provided by the operators K, will be reproduced at 
each step of the stabilization algorithm. Let us first intro- 
duce two results. 

Proposition 14: If 1cr,& w (P,) is a constraint, then 
a:- , ($, ) is also. 

Given a solution lr- , of the equations of motion in 
P, _ , , we know from Sec. X that gr: = a, _ , of, _ , is a solu- 
tion of the equations of motion in P,, therefore 
(a:- I ($,>Pf,- I = Zlr,% = 0. q 

Proposition 25: If ,jroC m (P,) is a constraint, then 
K,_ ’ *$” is also. 

Use (10.3) with g = $,. n 
Let us consider the stabilization algorithm for the Ham- 

iltonian formalism. Its first step leads to a splitting43*58 of the 
primary constraints (5:’ ( I <p, <m, ) of Pk into a set of@- 
maryjirst class constraints &’ ( 1 <,u; ( m ; ) and a set of pri- 
mary second class constraints &’ (m; + 1 +.L;’ Grn, ). They 
are characterized by the properties 

r;, 4PpTio, L 
r;; .&yp7jo. x 
det(r$$$) #o. (15.lc) 

(In our local approach, this unequality is to hold in a neigh- 
borhood in Pk of P:“. ) The evolution vector fields then 
read: 

xk = zk + $‘r;; + $‘r;;,. (15.2) 

The tangency of X, to P :’ ) amounts to saying Xk ‘&’ ; 0. 

Then, taking ( 15.1) into account, stability for 4:’ “deter- 
,, 

mines” 77:’ = f zp,C m ( Pk ) by requiring 

0 = gk .&’ + f ;;‘r~,-&‘. (15.3) 

[In fact, Eq. (15.3) needs only hold in Pi”, therefore the 
functions fI;’ are truly determined up to primary con- 
straints. ] On the other hand, stability of constraints 4:’ pro- 

duces the new constraints 

&‘: = Xk .&, 

wherep2 runs over the same values as,& but labels second- 
ary constraints. 

It is easy to see how this procedure in Pk applies to 
Pk _ , . Consider, from Proposition 9, 

f#;:rl , = Kk _ , ‘&‘, 
,, *, 

& , = Kk _ , v#:’ . 

The evolution vector field in Pk _ , iS 

xk-, =ii?k-, +&r~~‘+~:~,r~~‘~ 

Stability for 4:: , determines 7:: , = f ti , EC ce (P& _ ’ ) 
by requiring 

0 = Xk _ , +&;l, + f ;L , rg- ,+;EI , , (15.4) 

where use has been made of (9.5) and ( 15.1~) to show that 

det(rf,;;‘+&[ ,) =det(I+;; *.(K,-, VJ@)) 

= det(aff- , (l$-&;‘l) 

= a$-, (det(F$*&‘)) 

#O. (15.5) 

Stability of the constraints cj$- , produces the new con- 
straints 

&-,:=xk-,-&;_,, ( 15.6) 
wherep2 runs over the same values as,uu; but labels second- 
ary constraints, now in Pk _ , . Then, using ( 13.6)) the defmi- 
tion of the secondary Hamiltonian constraints, (13.9), 
(15,la) and the definition of the primary constraints of 

Pk-lt 

Kk _ , ‘$ppz xk _ , ‘a?-, (@) 

k-t 

=~k-l’a~-l(~k’(~~t)) 

=~~-,*.K/+,$$) 

=x,+,*&i, 

=4:-t. 

The same reasoning applies to every intermediate space 
P,. Relations ( 15.1) read, for r instead of k, 

r;, xC;~~~O, , 
r;; vd?p7,0, , 

(15.7a) 

( 15.7b) 

det(P;;$r:‘)#O, (15.7c) 

Some arbitrary functions are determined by 7:;’ = f r” from 

o=j&$'r" +f:;'r;&'. (15.8) 

The constraints 
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p’1. - - 4, . - x,v$yi (15.9) 

define PI-“, C P I’, and the following relation holds: 

~~‘,p~,K--l.~~. (15.10) 
, 

The stabilization algorithm runs, therefore, in a parallel 
way in every space P,. 

The next step, which is to define P z3,, goes again in the 
same fashion. During this procedure some of the previously 
first-class primary Hamiltonian constraints may become 
second class. At the same time the evolution vector fields X, 
have lost part of their arbitrariness thanks to the determina- 
tion of the corresponding functions 7’;” = fr’. Notice that 
the number of arbitrary functions which are determined in 
any step of the stabilization algorithm is the same in each 
intermediate space. 

Our conclusion is that the operator K, _ , relates, step by 
step, the stabilization algorithms of P, and P,- , , for every 
1 (r~k. Therefore, we have the following. 

Proposition 26: If the constraints &‘define PI” C P L’- ‘) 
(l<r<k), then the constraints K;&” define 
pui, cp”lz 1) I n 

Direc; cbnsequence of this result is the following 
theorem. 

Theorem 8: All the constraints of space P,- , ( 1 fr&) 
can be written in the form K,- , *4,, where 4,. runs over the 
constraints of space P,. In particular, all the Lagrangian 
constraints can be obtained by applying the composition of 
the k differential operators K, _ , ,...,K, to all the Hamilto- 
nian constraints. n 

This theorem is, in some sense, the “inverse” of Proposi- 
tion 15. Instead, Proposition 14 has no “inverse” because 
there generally exist constraints which are not a, _ , project- 
able. The whole situation is described by the following result. 

Proposition Z7: If the constraints $7 ( 1 =+, (m, ) define 
the submanifold P (‘) C P (‘- ‘) and if the functions f y’- ’ 
( 1 G$;‘- , cm;, , ) are the’funciions determined in the I th 
step of the algorithm (to obtain Pt’) from P:‘- ‘,), then 
P t?,‘, is defined in P ikt’ by 

a,*_, (43, l<p,<m,, (15.11) 

,, 
Sk,‘: =A’;“--; -a:-, (fyi’-‘), 1</-1;‘-, (my-,. 

(15.12) 

This result will be demonstrated for the level I = 2, the 
general case can be analogously obtained by a similar reason- 
ing and use of induction on 1. 

We recall that P’*)CP~‘) is defined by (15.9). Now 
consider P :!! , . Accoiding to ( 15. lo), this submanifold is 
defined by the constraints K,- , -4:‘. The splitting 
(p, ) = (PU; ,p;), characterized by properties ( 15.7), allows 

to compute, using ( 13.9)) 

but I-;, $ = p(l) 0 implies a:- , (I:, ~4:‘;‘;) = 0, therefore 
I 

K,-, -df = a:-, (%r*#f) = a:- , (4:‘) (15.13) 

(index ,u2 substitutes ,LL; for secondary constraints). 
On the other hand, since af- , (I?:; *@) = 0, 

K ,-,vP:~=~:-,(X~$:;‘) +ArL,a:-, cry&j 

= a?-, (Z$:‘) +A:! ,a:-, (r;,+q5:‘). 

Then, use of (15.8) gives 

K ,-,.#;;‘=(il:1, --a:-,(f:‘))a:_,(rl;..~~‘,, 

(15.14) 

and considering ( 15.7) we conclude that K,- , *q5:’ = 0 
(m; + l(y;‘<m, ) is equivalent to il :I, - a:-, (f:) 
= 0 (m; + l<y;‘Grn, ). 

Use of (15.13) and (15.14) shows, therefore, that PL’) 
is defined by 

a%, (50 =O, 1<;1u2<m2, 

,Y%,:=A’;‘l, -aE,(f?)=O, m; + I(py<m,, 

which finishes the proof. n 
This can be summarized by the following theorem. 
Theorem 9: All the constraints of space P,. _ , ( 1 s%k) 

can be written in the form a:- , (4, ), where #r runs over the 
secondary constraints of space P,, or in the form 
A r-1 - a:-, ( f, ) , where f, runs over the determined func- 
tions of the dynamics in P, and theil, _ , are the correspond- 
ing functions in P, _ , . n 

Notice that every determination of an arbitrary function 
in P, gives rise to a constraint of the form ( 15.12) in P,- , . 
These constraints are not a,- , projectable because 
P-X = S, and the theorem therefore classifies the constraints 
of every P, (O<r<k - 1) into two sets, according to their a, 
projectability. 

Observe also that the stabilization of the a,-projectable 
constraints will lead (in general) to new constraints, which 
constitute the next level of constraints, whereas the stabiliza- 
tion of the non-a,-projectable constraints will lead to the 
determination of so many of the (previously) arbitrary func- 
tions as is the number of these constraints. All these results 
were already known for a first-order Lagrangian.36 

At this point, the structure of constraints in spaces P, 
has been completely revealed: 
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P, -L P, e *** + 

U U 

Pi’) per, . . . I 
: : . . 

pm Pi’) . . . 
0 

U U 
pc/+ 1) . . . 1 

U -. . 

Pk-I -) 
U 

P:‘l I 

P”, k I 

U 

P;‘:,,’ 

p;1_‘lc- 1) 

U 

and the following corollary holds. Therefore, up to constraints, we determine, for 1 <r<k - 1, 
Proposition 18: For O<r<k - 1 and I>0 
a,(P;“) = PJ:+,“. (15.15) 

(Pi’) stands for P, ) . In particular P Lk, is identified as the 
image in PA of the Legendre-Ostrogradskii’s transforma- 
tion. 

fypTnKp .f ;‘; , - ;k, .A y 
, 

2k--2-r a/If =K,.f$ - c qi+‘-, 
aqi P’n r i=O 

(16.1) 

The proof goes by induction on 1. For I = 0 this is just 
the definition of Pi’). Now suppose we know that 
a,(Pi”) = Pan,“, from whicha,(Pi’* I)) = PLy12’ must 
be deduced. 

where the last step is justified (Ref. 45, the Appendix) be- 
cause fi2k - ’ - ‘a/2 T/as”” - ’ - r = 0. 

p(l) 
XVII. GAUGE FIXING AND D;GREES OF FREEDOM 

The submanifold Pz’++,“C PI’,?,” is described by the 
constraints 4::‘; ( 1 q ,+2 (m1+2 ). And from the preced- 
ing theorem the submanifold Pi’+ “C PF” is described by 
the constraints a: (47; f ) (l<p,+,<m,+,) and fly+, 
W+l + 1 <&‘+ , <ml, , ). But these last constraints are 
not a, projectable, so they do not contribute to restrict the 
image of P jr+ ‘, under a,. Therefore, a, (PI’* I)) 
= a,(PI’+ I,‘), where Plr+ ‘,’ is defined in Pi” by the a,- 

projectable constraints a:(#:!,?;) (1 (p,+ 2 <rn[+ 2 ). Then, 
by its own definition, ar ( Ptr+ I”) = Pan,“‘. q 

The stabilization algorithm in each space P,. (O(r<k) 
leads to a final constraint submanifold PI”. Constraints de- 
fining PI” have been classified in Sec. VII into a,-project- 
able and non-a,-projectable constraints. Owing to this fact, 
it is easy to relate the dimensions of the different final sub- 
manifolds P z^. 

Let n, be the number of independent constraints dehn- 
ing Pl*CP,. We recall that the number of primary con- 
straints in each P, is ml, except for r = 0. Now consider 
P,- , , Its number of independent a, _ , projectable con- 
straints is n, - m, because the pull-back of primary con- 
straints of P,. gives no relations in P,- , , whereas the pull- 
back of secondary constraints yields independent 
constraints in P,- , I) XVI. THE DETERMINATION OF “ARBITRARY” 

FUNCTIONS 
In the preceding section the close relation between the 

stabilization algorithms of the various intermediate spaces 
has been displayed. The established parallelism can actually 
be extended to the determination of some of the arbitrary 
functions of the corresponding dynamics. In fact, the opera- 
tors K, give a relation between the determined functions f r’ 
of the different intermediate spaces P,. Consider the con- 
straints in P, 

Then, by Proposition 15, K, _ , -fl’ will give constraints in 
P,- , . They are, using (13.9), 

Kr-, -fi’ = K,- , *A c’ - K,- , .a:( ff$, ) 

=A!!., +a:-,(%;Afi’) -a?-,(K;ffl,). 

pk 

U 
Pi’) 

Pp 
u 

pf+ 1) ’ 

p;l+ k- I) 

U 
pL/+ k) 

: . 

I 

The number of non-a,-projectable constraints in P, _ , 
is just the number of functions 77 in X, which are finally 
determined, f $. Since every determination corresponds to a 
fnal second-class primary Hamiltonian constraint, this 
number is m, - my, where my is the number of the final 
first-class primary Hamiltonian constraints. 

Thus we arrive, for l<r<k, to 

Fore ’ 
= (n, - m, ) f (m, - my) = n, - my, and there- 

nk - n, = (k - r)my, O<rSk - 1. 
This proves the following. 

Theorem 10: If P I” is the final constraint submanifold 
of P, (O<r<k), and if m(: is the number of final first-class 
primary constraints in Pk , then the dimensions of these sub- 
manifolds are related by 

dim(Pl”) = dim(PiR) -/- (k - r)m’:. (17.1) 
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In particular, dim (P A” ) = dim (P ifi ) + km:. w 
Thus the final submanifolds of constraints have differ- 

ent dimensions depending on P,. At first glance it could 
seem contradictory with our results of Sets. II and IV show- 
ing the equivalence between the dynamical contents of every 
space P,. The way out of this puzzle is to consider that, due 
to gauge freedom, we have not yet determined the true num- 
ber of degrees of freedom in every space P,. Now we are 
going to introduce a gauge fixing procedure to determine 
this number, as it can be done for first-order Lagrangians.24 

We start by introducing the gauge fixing constraints in 
Pk. The procedure is “propagated” afterwards to all the in- 
termediate spaces. 

Let us call point-gauge transformations those transfor- 
mations that relate-in the space of a certain singular dy- 
namical system-physically equivalentpoints, that is to say, 
points belonging to dynamical trajectories connected by 
gauge transformations. In the Hamiltonian formalism these 
transformations are generated by the vector fields associated 
(through the symplectic structure of phase space) to all the 
first-class constraints.22*24 We assume they are in number no. 
In order to make these transformations disappear, a gauge 
fixing constraint for each first-class constraint has to be in- 
troduced; this will rend all the constraints second class. 
Moreover, consistency requires the final Hamiltonian vector 
field to be tangent to the new submanifold of constraints. 
Owing to this reason, we shall proceed in two steps. 

( 1) Introduce my primary gaugeJxing constraints F$ 
to convert all the first-class primary constraints into second 
class. So up to now remaining arbitrary functions 72’ of the 
dynamics are determined: 4’ = f:‘. Now dynamics is en- 
tirely fixed: 

xy = zifk +f;‘r;, 

(this corresponds to a Hamiltonian H GF = H + 8,, f ~‘&‘). 
(2) Introduce the remaining no - m(: secondary gauge 

fixing constraints G$ under two requirements: (a) to con- 
vert all first-class secondary constraints into second class, 
and (b) to preserve the Hamiltonian as a first-class function: 

X,*G$ = 0. (17.2) 
.1-=-J 

Once this gauge fixing procedure is performed, we ar- 
rive at a submanifoId PkGfl. This is the “initial conditions” 
submanifold. The total number of independent constraints 
becomes 

nzF: = nk + no. (17.3) 
Now consider the preceding space Pk _ , . Proposition 15 

ensures that F$‘- , * - . - K, _ , .Fz’ are gauge fixing con- 
straints in Pk _ , . These constraints realize the fixation of 
dynamics in Pk _ , in a parallel way as F$ did in Pk. In fact, 
the final evolution vector field in Pi? , is 

XGF km, =T&-, +.f~~,r~p’f~~~,r~~’ 

=&-, +?&,ry; (17.4) 

and tangency of X, _ i to the new submanifold of constraints 

determines T,$- , = f f- , by requiring 

O=g;-,-F?.e, +f$,r$-‘*F$-,, 

because, using ( 9.5 ) , 

det(I’&:, l.F$-l ) = det(r$‘- ‘.(K,- , .Ff)) 

= det(az-, (r$*Ff)) 

= a;t-, (det(ri:,.F$)) 

#O. 

Observe, however, that the constraints F’$ generate another 
type of constraints in Pk _ , . Proposition 14 ensures that the 
functions a:- , (F$) are also constraints in P, _ , . It is easy 
to see that stability of these last constraints leads to con- 
straints F$- , : 

XE[, *at-, (F$) = xk _ , *at-, (F$) 

= K,-,.F$ 
Pi’?, 

(17.5) 

So we see that the first step of our gauge fixing procedure 
introduces 2my constraints in Pk _ , . 

Now we study the consequences of the second step. 
Consider the no - my gauge fixing constraints a:- I (G$ ) 
in Pk- , . Using (13.6) and (13.9), it is shown that these 
constraints are already stable: 

X~!l-aZ-lCG~)p; Kk-,*G;I 
!. I 

=a L(%+,.W 

+A!‘-,a;-,(r&-G;I) 

=a:-,(XfF-,*G;) +<A$‘-, 

- aZ-, (f?)b?-, ( p, rk .G)C) 

= 0, 
Pi”-“: 

where P:Gp, is the submanifold defined by all the con- 
straints, stabilization, and gauge fixing, in Pk _ , . 

Summing up, we have introduced 2rny + (no - rn’: ) 
gauge fixing constraints to define P :‘%T CPA? I . 

In Pk _ 2 the situation is quite analogous. Fixation of 
dynamics is achieved by requiring tangency of X, _ 2 to the 
new submanifold of constraints defined by 
F;:2:=Kk-z.F;:,. But two additional generations of 
constraints appear: 

a;- 2(aZ-l V’?)) 
and 

a:-,(FzE,) =c$-~(K~-~*F~‘) 

=K,-,*a:-,(I;$). 

Therefore, the first step of the gauge fixing procedure leads 
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. . to 3rny constramts m P, _ *. The second step leads to 
no - my, just the pull-back through ak _ 2 of at- , ( G I_ , ) . 
We conclude that the number of gauge fixing constraints in 
P k-2 is3my + (no-m:). 

The procedure applies to all the spaces P, (O~rgk) , 
When we go from P, to P,- , , the number of gauge fixing 
constraints increases in my. Then the final result is that the 
number of gauge fixing constraints in P, is 
(k-r- l)m’: + (no-my) = (k-r)my fn’.Then,the 
total number of constraints (standard and gauge fixing) in 
P, is 

nS;“= n, + (k - r)my + no 

= (nk - (k - r)m?) + (k - r) + no 

= nk + no. 

Therefore, if the gauge fixing constraints define the submani- 
fold P tGR C P t”, the following theorem holds. 

Theorem 11: All the submanifolds PiGR (O<r<k) have 
the same dimension 2kn - ( nk + no), where nk is the num- 
ber of Hamiltonian constraints and no the number of the 
final first-class ones. In particular, the higher-order Lagran- 
gian and Hamiltonian formalisms have the same number of 
degrees of freedom. 

XVIII. EXAMPLES 

We present here two simple examples to illustrate our 
results. Both are second-order Lagrangians. 

A. L(XO,x’;u2) =x2 
Here Q = R, so the intermediate spaces are diffeomor- 

phic to R4. 
The momenta are trivially computed: 
t;, = 1, j. = 0. 

The first one gives just one primary Hamiltonian constraint, 

4: = 1 --PI, 
which defines globally a, (P, ) C Pz as a submanifold. 

The energy in P, is El = pox’ (so E. = 0). Therefore, a 
Hamiltonian can be globally defined 

H=p,x’, 
up to primary Hamiltonian constraints. With this Hwe com- 
pute the secondary Hamiltonian constraint 

4: = b$:,m =po- 
This is first class with #i and H, therefore the Hamiltonian 
stabilization algorithm is finished and Pi” is diffeomorphic 
to R2. 

Since the Hamiltonian constraints are first class, the 
constraints in P, are a, projectable. Indeed there is just one 
constraint: 

(bf:=K,*& =po =a?(&). 

Similarly, there are no Lagrangian constraints, so 
PO = PAR. 

Now let us consider the gauge freedom. Pi” is two di- 
mensional and we have obtained two first-class Hamiltonian 
constraints. Therefore, the gauge fixing procedure leads to a 

zero-dimensional space: a point. We can take two gauge fix- 
ing constraints 

F2 = x1, G2 =x0. 

The first one makes the primary constraint second class, and 
determines completely the dynamics: N = pox’, up to qua- 
dratic primary constraints. 

Our procedure leads to three gauge fixing constraints in 
P, : 

K, *F2 =x2, a:(F,) =x’, a:(G2 ) =x0. 
In the same way, the gauge fixing constraints in PO are 

3 
X, x2, 2, x0. 

3. W,w’ru’,r”,u’,f,=x’v 

Here Q = R*, and the intermediate spaces are diffeo- 
morphic to IV. 

The momenta are 
fix, = 0, a, = y*, 
A 
Pyl =x ‘, j@ = -x2. 

The submanifold a, (P, ) C Pz is globally defined by the two 
primary Hamiltonian constraints, 

42 =X’-Pylr tcI* =Pxt* 

On the other hand the energy in P, is 
El = p&x’ + puoy’ (now E, = x ‘y” - y’x*) . Any Hamilto- 
nian has the form H = pxoxl + p@y’ + 45, + ~74~. But the 
primary Hamiltonians are second class, so making H first 
class determines its arbitrary functions, and we have to use 

H=p,,(Y -Pxr 1 +PxoP.vlt 
up to quadratic primary constraints. No more constraints 
are to be found, and no gauge fixing is required: 
P iGn = Pi”, which is six dimensional. 

Since all the Hamiltonian constraints are second class, 
there are no projectable constraints in PO and P, . Pi” is 
defined by 

+,:=K,$, =x2+pN, $t:=Kl-$2 =y=-pyo. 

And the Lagrangian constraints, which define Ph”, are 
#o:=Ko.q5t =x3, t+bo:=Ko~$, =y3, 

The final constraint submanifolds are therefore diffeomor- 
phic to R6 in each formalism. 

XIX. CONCLUSIONS 

In this paper we have performed a detailed study of 
higher-order Lagrangians. As a first step, some geometric 
structures particular to higher-order formalism have been 
introduced: in particular, the definition of intermediate 
spaces ahowing the decomposition of the OstrogradskFs 
transformation into partial transformations. With them, 
several constructions already known for first-order Lagran- 
gians have been extended to higher-order theories. 

Next, all these spaces have been endowed with corre- 
sponding dynamics, which have been proven to be equiva- 
lent. This gives in particular the equivalence between the 
Lagrangian and the Hamiltonian formalisms. 
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In the singular case, the structure of the constraints aris- 
ing from the dynamics of every intermediate space is com- 
pletely displayed and the connections between the different 
stabilization algorithms are shown. These connections can 
be performed in two different and complementary ways. As 
a consequence, the Lagrangian constraints can be easily and 
explicitly constructed from the Hamiltonian constraints. 

It is also possible to relate the dimensions of all the con- 
straint submanifolds. These dimensions are different when 
some primary Hamiltonian constraints are first class. In this 
case there is some gauge freedom: the various dynamics are 
not completely determined due to some arbitrary functions, 
and a gauge fixing procedure is needed to get rid of the super- 
fluous degrees of freedom. A gauge fixing in the Hamilto- 
nian formalism provides gauge fixings for the intermediate 
formalisms, in particular for the Lagrangian formalism. 
Then it is found that the true number of degrees of freedom 
(the dimension of the gauge fixed constraint submanifold) is 
the same either in the Lagrangian or in the Hamiltonian 
formalisms-or in any intermediate formalism. 

It should be emphasized that, although we have not re- 
fused to use coordinates, we have presented most of our re- 
sults in a geometric language. 
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