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A Hamiltonian formalism is set up for nonlocal Lagrangian systems. The method is 
based on obtaining an equivalent singular first order Lagrangian, which is pro- 
cessed according to the standard Legendre transformation and then, the resulting 
Hamiltonian formalism is pulled back onto the phase space defined by the corre- 
sponding constraints. Finally, the standard results for local Lagrangians of any 
order are obtained as a particular case. 

I. INTRODUCTION 

Nonlocal interactions have been proposed several times in theoretical physics with a variety of 
purposes. A nonexhaustive examination of the literature reveals their occurrence in topics as 
diverse as: Fokker-Wheeler-Feynman electrodynamics,’ regularized local field theories,’ some 
models of meson-nucleon interaction3 and, very recently, string field theory,4T5 and semiclassical 
gravity.6 

However, many of these attempts were abandoned in the past due to the lack of a Hamiltonian 
formalism for nonlocal Lagrangian systems, which seems a necessary intermediate step towards 
quantization. Indeed, there is nothing similar to the Legendre transformation for nonlocal 
Lagrangians. Even the phase space itself is not well defined in the nonlocal case. 

Regular first order Lagrangians lead to a set of Euler-Lagrange equations that can be solved to 
write the generalized accelerations (i’ in terms of the generalized coordinates 4 and velocities 4 and 
time t. Then, the existence and uniqueness theorems for ordinary differential systems’ state that 
for any given initial point (qo ,4a, to) in the extended phase space (or initial data space) there is a 
unique solution q(t) passing through q. with velocity Go for t= to. 

Something similar happens for regular nth order Lagrangians, whose Euler-Lagrange equa- 
tions yield a 2nth order ordinary differential system. 

Thus, the existence and uniqueness theorems’ play a crucial role in the definition of the phase 
space for local systems. Moreover, since these theorems establish a 1 to 1 correspondence between 
the phase space and the space of solutions to the Euler-Lagrange equations, we could readily take 
both spaces as equivalent objects from the mathematical point of view.’ 

In the nonlocal case the Euler-Lagrange equations are of functional-differential type (integro- 
differential or difference-differential in the best cases). In most instances there is nothing similar 
to existence and uniqueness theorems, no finite set of initial data is enough to determine a solution 
and it is not at all clear what the initial data space is like. 

Most approaches,4”0-‘2 to the construction of a Hamiltonian formalism for nonlocal 
Lagrangians have tried to change the functional part of the Euler-Lagrange equations into some- 
thing more handy, by expressing it as a function of all the derivatives of any order of q(t). These 
equations thus become local, but only in appearance. Then, either the problem of defining a finite 
dimensional phase space is avoidedI and the Hamiltonization procedure ends with a sort of 
extension of Ostrogradski transformation,13 or a finite dimensional phase space is defined for 
perturbative solutions,4V’1~‘4 only. 

Since the latter methods are either cumbersome and sometimes depend crucially on the form 
of the perturbative expansion of the Lagrangian, a few years ago we developed a new way that 
does not mix the Hamiltonization procedure with the perturbative expansions.*5 Although that 
procedure is perfectly valid and does not differ essentially from the methods exposed in the 
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present paper, its presentation there was mainly based on guess work. Moreover, this paper had 
strong overtones of the relativistic systems of directly interacting particles-the topic that the 
method had been devised for-which may make it less accessible to scholars interested in other 
fields in theoretical physics. 

To provide a clearer idea of the above mentioned initial data problem, let us have a more 
detailed look at Fokker-Wheeler-Feynman electrodynamics’ for two point charges. The Lagrang- 
ian is: 

L=- ml &q-m, 

and the Euler-Lagrange equations are 

m,&(r)=; [Fb(~t,X,)X,(7)+Fb(7~dv,X,)X,(7)] 

(1) 

(2) 

where Fb is the electric field produced by charge b, and a # b = 1,2. 
So, to determine the acceleration of charge 1 at proper time 7, we must know the state of 

charge 2 at $’ and rid’. As r elapses, we need data that belong more and more to the future of 
worldline 2 to determine the acceleration of 1. One could think that giving x2(r) for all r in the 
right hand side, Eq. ( 2) with a = 1 becomes a second order ordinary differential equation that 
determines x t ( r) for any given initial position xi ( ro) and velocity X t ( ro). We must then substi- 
tute this x t ( 7) in Eq. (2) for a = 2 and, most probably, the first given x2( 7) will not be a solution. 

To summarize a little roughly: if we are given less than the whole solution, then probably the 
initial data will be too little. But if the whole solution is given as initial data, it will be too much. 

The above comments suggest we should change our attitude towards the Euler-Lagrange 
equations and consider them as constraints on the space of all the possible solutions 
~;r’(R,M4xM4)={q(~),q=(xl;‘, xl)}, rather than as evolution equations. (The latter is only a nice 
particular feature of the local case that comes from the existence and uniqueness theorems for 
ordinary differential equations.) 

The present paper is organized as follows. In Sec. II we state the variational principle for a 
nonlocal Lagrangian system, derive the corresponding Euler-Lagrange equations and define its 
phase space, l?. In Sec. III we introduce an equivalent local first order singular Lagrangian, whose 
standard Hamiltonian formalism lives in a larger phase space TE, and establish the relationship 
between the above Euler-Lagrange equations and the Hamilton equations plus a constraint. The 
very important notion of reduction of$nite order l6 is introduced in Sec. IV as a subcollection of 
the set of solutions, and the reduced phase space r R is defined. In Sec. V the Hamiltonian 
formalism is referred to a symplectic form on TE, which is pulled back onto the reduced phase 
space to yield a Hamiltonian formalism there. In Sec. VI we first apply our methods to 
Lagrangians that are either local or can be derived from other local Lagrangians-i.e., by formally 
integrating the equations for a few degrees of freedom-and find the same Hamiltonian formalism 
we should have obtained by the standard methods (this allows us to conclude therefore that the 
methods proposed here are a generalization of the standard ones). In Sec. VI C we finally present 
the application of our methods to systems that are truly nonlocal and admit local perturbative 
expansions. The latter case is very common in theoretical physics where a Lagrangian consisting 
of a local term plus a nonlocal one times a coupling constant is often found. Special attention is 
paid to some Lagrangians cited in Ref. 4 in connection with string field theory. 
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II. NONLOCAL LAGRANGIAN SYSTEMS 

A nonlocal Lagrangian is defined by a functional L( [q]) that depends on a continuous vector 
function q’(X), XER and I= 1 , . . . ,N. We shall also assume some conditions on the behavior of 
q’(h) for X+ta. 

The action principle associated to this Lagrangian reads 

dt=O (3) 

for any Sq’(X) with compact support. Here L(t) is a shorthand for L([ T,q’]) where 
T,q’(X)=q[(t+X). 

Writing the functional derivative of L as 

E,kt’;[ql$& 

the action principle (3) yields the Euler-Lagrange equation 

I RdW,t’,[ql) =O. (5) 

Notice that the instances where L is a local (standard) Lagrangian of the nth order are also 
included in the framework here developed. Indeed, we only have to take a function 

L(q’,&.., 
(fl) 
q ‘) of NX (n + I) variables and write 

Then 

El(t,t’;[ql)= 5 %- 
( 1 m=O dq” (t) 

@)(t-tr), (6) 

which, substituted into (5) yields 

j. (- ;jm($)=ov 
i.e., the Euler-Lagrange equations for a Lagrangian system of the nth order (see Ref. 13, p. 266). 

Since the integrals in (3) and (5) run through the whole R, the action S will be divergent 
unless L(t) behaves properly at t = t ~0 for all ql( t) considered. However, even though S is 
divergent, the Euler-Lagrange equations (5) could be meaningful. Indeed, we only need that 
E,(t,t’;[q]) is summable on t E R, for any given t’ E R. 

This is the case for a wide variety of nonlocal Lagrangians that have physical interest, where 
El( t, t ‘) decreases very fast as 1 t - t ’ 1 increases. Therefore, we shall hereafter assume that there 
is a rapidly increasing function N(t) such that 

lim EI(t,t’)N(t-t’)=O. (7) 
If--1’1-0 
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This is indeed the case for local Lagrangians because, as we have seen in ( 6), E(t,t’) is a sum 
of &functions and its derivatives, or in the nonlocal examples examined in Sets. VI and VI C. We 
shall tow denote by r the collection of solutions q’(t), I= 1 , . . . , N, to the Euler-Lagrange equa- 
tions (5) and call it the phase space of the nonlocal Lagrangian system. 

Equations (5) are usually of functional-differential type and, generally, there is no theorem of 
existence and uniqueness for this kind of functional equations, therefore the phase space I cannot 
be parametrized as easily as in local cases. Generally it is not possible to find a finite set of 
parameters characterizing every given solution in I’. The latter rule obviously fails in local in- 
stances, and there is also a variety of nonlocal cases where it also does fail, as we shall see in Sets. 
VI and VI C. 

Ill. THE EQUIVALENT FIRST ORDER LAGRANGIAN 

We now consider the Lagrangian system 

where ’ means partial derivative with respect to A, and L is a functional on Q”(t,A) and is 
considered local in the evolution parameter t but nonlocal in A. 

Notice that we are somehow replacing ql(t) by a function of two independent variables 
Q’( t, A), but we immediately add the second term on the right hand side suggesting a constraint 
J,Q- dAQ=O [i.e., Q(t,A)_ depends only on the variable t+ A].17 

The new Lagrangian L(t) can be viewed as first order Lagrangian for a 1 + 1 dimensional 
field theory, (Q’(r,A),LLj(t,A)); l,j= 1 ,. . . ,N, that is local in the time variable, t, but nonlocal in 
the “space” variable, A. Thus, since it is local in time, we shall apply the standard Hamiltonian 
formalism to L and then translate it into our temporally nonlocal case. 

To ensure the convergence of the last term on the right hand side of (8), for the admitted 
functions Q’(t,A) some restrictions must be imposed on pl(t,A). 

First of all we shall assume that Q’(r,A) is continuous, has continuous derivatives and does 
not increase faster than N(A).Ama, (r>2, as ]A]+~. That is, 

lim IQ~~~~)I = 
IAl-- 

N(A)A-a 0; ff>2. 

Furthermore, we shall require that ,u&~,A) is such that 

I ~~LMN< +w 

(9) 

(10) 

for any continuous function cp(t,A) fulfilling the condition ( 9). 
The Euler-Lagrange equations for L 

are first order partial differential equations rather than second order, because i is singular. 
The first term on the left of Eq. (12) must be understood as 

J. Math. Phys., Vol. 35, No. 6, June 1994 
Downloaded 14 Jul 2010 to 161.116.168.227. Redistribution subject to AIP license or copyright; see http://jmp.aip.org/jmp/copyright.jsp



J. Llosa and J. Vives: Hamiltonian formalism for nonlocal Lagrangians 

SL(t) = ~U[Q(fAl) 
SQ’ttN - SQ’(t,A) ’ 

Moreover, since i is singular, the Legendre transformation 

l-l’(t,A) = 
at) 

&i,(t,A)=07 

. 

(13) 

(14) 

is degenerate and the phase space of our system is not the whole space spanned by 

(Q’(t,At),~j(t,A2),~~(t,A~),~~tt,A~)) 
but only the submanifold defined by the primary constraints 

~j,(t,x)=P~(t,A)-p/(t,A)=O; x’(~,A)=III’(~,A)~O. 

Moreover, the Hamiltonian is 

(15) 

H= H~~~,(~,~)Q’i(~.~)-L([Q(~,~)I)+~~~~~~~(t.~)~i(~.~)+~~(~,~)x~(t,~)l, f (16) 

where u’(t,A) and b[(t,A) are Lagrange multipliers. 
The primary constraints (15) are second class 

{~l(t.A),~‘(t,A’)}=-s”;s(x-xl); {~~(t,A),~j(f~A’)}={X’(t~A),Xj(t,A’)}=O. (17) 

Hence, the Dirac theory of constraints can be applied to eliminate the variables ,x and n. The 
elementary Dirac brackets for the remaining variables are 

{Q’(t,A),Pj(t,A’)}o=Sjs(A-A’); {Qi(t,A),Qi(t,A’)},={Pi(t,A),Pj(t,A’)}D=O. (18) 

The Hamiltonian is 

(19) 

and the Hamilton-Dirac equations are 

b,(t,A)= - 6HD Wt) 
~Q1W4 =f’;ttN+ 6Qitt,A) 9 

Now, constraint (15) and condition (12) on ,q(t,A) imply that 

f P,tt,A)-cp(t,A)<+w 
R 

(20) 

(21) 

(22) 

for all continuous functions cp(t,A) fulfilling the condition (9). 
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This condition is essential to ensure the convergence of Ho and to derive Eq. (21) for 
h(t,O 

The Hamilton-Dirac equations (20), (21) can be easily integrated, so obtaining 

Q’tGd = Q’<W+ A), (23) 

Pl(t,A)= kf do sign(fl)spl~~~$+K,(t+A), (24) 

where K1 is an arbitrary function of t + A. 
This, in terms of initial data leads to the following. 
Proposition I: Given N-functions [‘(A); 1= 1, . . . , N, A E W that are continuous with continuous 

derivatives and ji@ll the slow growth condition (9), the functions 

Q”<t,V=l’O+A>, (25) 

P,(G)= ;fRd (T sign(a)El(t-a,t+A,[~])+Kl(t+A), (26) 

are a solution of the Hamilton-Diruc equations (20) and (21) for any arbitrary functions K,(t +A); 
l=l ,..., N, and with El(t,t’,[l]) given by (4). 

The result (25), (26) follows immediately from (23) and (24), and the fact that 

6L(t-o) ~~([~,-,SI) 
~Qtt-~,A+d Qct, x,~=~~t,+x,~= Ktt+A) =E(t-u,t+A,[<]). (27) 

Equation (26) can also be written as: 

Pltt,A)= f Rdu x(LMA :t-a,t+A,[51)+&( :t+A)-- i sign(A) f Rdc El(a,t+A,[l]), 

(28) 

with 

1 A>O, a>0 

,y(A,a)= i (sign(g)+sign(A))= -1 A<O, a<0 

0 otherwise. 

We should now check whether the summability condition (22) is fulfilled. In Appendix A this 
condition is proven to hold for the first two terms on the right hand side of Eq. (28). Moreover, it 
is obvious that this summability condition holds for the last term, at least for l(A) in a neighbor- 
hood of the solutions of the Euler-Lagrange equations. [Indeed, notice that this term vanishes if 
Q(O,A) = [(A) is a solution of Eq. (5).] 

As a consequence, we arrive at the following result. 
Proposition 2: For any given solution q’(t); I=1 ,...,N of the Euler-Lagrange equations (5) 

there is a solution (Q’(t,A),P,(t,A)); l=I,...,N of the Hamilton equations (ZO), (21)fulfilling the 
convergence conditions (22). 

Proof The functions Q’ and PI are obtained from (25) and (28), writing q’ instead of l’, 
taking K,=O and using the fact that q1 is a solution of (5). [Notice that the canonical transforma- 
tion with generating function F(g,P,t)=JdA@(t,A)[-P,(t,A)+K,(t+A)] transforms 
@(t,A) into Q’(t,A) and F,(t,A) into P,(t,A)+K,(t+A).] We can therefore write: 
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Q’kV=q’tt+A), 

Pkt,A)= f do x(X,4 E,(t-a,t+A,[q]). 
(29 

This enables us to establish a 1 to 1 correspondence between the phase space r (with infinitely 
many dimensions) of the Euler-Lagrange equations ( 5) and a submanifold of the phase space rE 
of the Hamilton equations (20) and (21): 

jE :r+P, 4’(A)~(Q’(O,A),PjtO,A)), (30) 

with 

Q’(O,A)=q’(A), Pj(O,A)= f du X(X,(~) Ej(-u,A;[q]). (31) 

It can be easily proven that the map j, commutes with time evolution. 
Indeed, time evolution on l? is defined by the Hamiltonian flow of (20), (21) 

(32) 

where, according to (25) and (28) 

Q’(r,A)=Q’(O,t+A)=ql(t+A), 

Pj(t,A)= 
J 

dU x(A,c+) Ej(t-a,t+A;[q])+K,(t+A) 

+ i sign(A) f dUEj(a,t+A;[q]). 

(33) 

Choosing the initial data (31), taking into account that q1 E r and writing q’l for T,q’, we obtain 
K,=O and arrive at 

Q’(t,A)=q’(t+A)=T,q’(A)=q”(A), 

Pj(t,A)= f de x(X,0) Ej(t-a,t+A;[q]) 

f UP,-,(?I) 
= da X(X,(T) aqjtt+A) 

= f da ,y(A,a) 
~U[T-A'I) 

Sq”(A) 

= f dc x(A,u) Ej(-uvA;[q’I), 

which, again using (31), leads to 

v&r; T? jd4’)=jE” T,(d). (34) 
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IV. REDUCTIONS OF FINITE ORDER 

For certain Lagrangians, by applying a variety of procedures (see Sec. VI C below), it is 
possible to find an ordinary differential system of finite order: 

(r-1) 
;)k=&qi,qJ,..., q ‘),i,j,k,l,... = l,..., N (35) 

such that every solution of (35) is a solution the Euler-Lagrange equations (5). [The latter does not 
mean the converse, namely, there are many solutions of (5) that do not obey (35).] In such a case 
we say that (35) is an r-order reduction of the functional differential equations (5). 

Let tpO’(t,z) be a solution of (35) for some given initial data z=(qb,4/,,...,rq”O) and let 
TR denote the space of initial data (phase space) of the r-order reduction (35). We can then 
establish the 1 to 1 map 

jR:rR--+r, 
z+q'tA)= (p’@,z), (36) 

because, Eqs. (35) being reduction of (5), every solution the former is also a solution of the latter 
and hence cp’( A,z) E r. 

Proposition 3: The map j, commutes with time evolution. 
Proof: We have a time evolution transformation Tf :rR+lYR defined by 

z=tq;,q/,,..., 
(r-1) (r-1) I 

q ‘o)~TP(z)=(q~‘,4~‘r..., q ’ O) 

with 

(s),r c%+,z) 4 o= i 1 cw ' t=tg 
where t#(t,.z) is the solution of (35) determined by the initial data z E I? 

Furthermore, we have also a time evolution acting on r: 

T, d-4, 
q”tA)~tTtq’)tA)=q’tt+A). 

(37) 

(38) 

(39) 

By the theorem of existence and uniqueness of solutions,’ we have for the ordinary differential 
system (35) that 

vz EP,f,A EW, cp’(t+A,z)=cp’(A,Tfz), (40) 

which, using (36) and (39), can be written as 

vzErR; Tt" jRtz)=jR' T:(z), (41) 

which proves the proposition. 
Now recalling the l-to-l map j, :lY -+rE introduced at the end of Sec. III, we find that the 

product 

j=jE’ jR (42) 

is a 1 -to- 1 map from rR into r-E, and from (41) and (34) we also have 
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vz. E rR; jo T;(z) = Tfo j(z). 

Moreover, the following diagram is commutative 

\ 
jR jE 

Z 

(43) 

rR - rE 
j 

As a consequence of this commutativity, the infinitesimal generators of the various time 
evolutions, TR, T, and TE, are related by the respective Jacobian mappings. 

At every given z=(q’,Qj,..., 
(r-jl) 
4 ) EI’~ the infinitesimal generator” of TR is the vector Xt 

tangent to the orbit {Tf(Z);t E R} at t=O. According to (38) and (39, we have that 

d d (r-1) d 
x;=g- +;i’- +...+ q ‘- 

dq’ a$ 
+&q...., 

(r-l) d 
q )- (44 

(r-2) (r-l) ’ 
Q’ 0’ 

which acts on functions defined on TR. 
Similarly, the infinitesimal generator of T at q1 E I’ is 

I 
6 

X,= /A dr(A)m 

which acts on functional defined on r. 
Finally the generator of TE at (Q, P) E TE is 

%?,P) = +Pj(t,A) 

with 0’ and Pj given by the Hamilton Eqs. (20) and (21). 
As a consequence of (41), (34), and (42) we have respectively that 

XjR,=djR(Xf); Vz E TR, 

XEj,,=d.iE(Xq); Vq E r, 
E .R Xj,=d./(X,); R VzEIF . 

(45) 

(46) 

(47) 
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V. HAMILTONIAN FORMALISM 

The generator of time evolution, XE, on TE is defined by the Hamilton Eqs. (20), (21). We can 
write the latter in more compact a fashion as the Hamiltonian vector field associated to the 
Hamilton function HD by a symplectic form.” 

The latter is the nonsingular, closed differential two-form on l? 

i-iE= 
I 

RdX SP,(O,X)r\SQ’(O,X) eA2(rE). (48) 

Notice that two distinct symbols for differential occur in (48), in order to distinguish dX from 
SQ and SP, the dlgerential of the integration parameter A and the jimctional differentials of 
dynamical variables, respectively. 

The Hamilton Eqs. (20), (21) can then be expressed as 

i(XE)f - 6HD. (49) 

The pull back mapping2’ corresponding to j:TR-+TE is 

dj:A2(rE)+A2(rR), 

which enables us to define a differential 2-form Vz E TR 

@=dj(sZiE,). (50) 

Now, since anE is closed and the pull back commutes with the exterior derivative,20 fiR is also 
closed. However, aR may be singular and hence it need not be symplectic. It is then said to be 
presymplectic. 

Due to the properties of the pull back mapping dj?’ we have that Vz E TR 

i(X~)fi~=i(X~)(djfk$=dj[i(djX~)(R$]= 
dj[i(X$fl$=dj( - SH,)j,= - S(j*H,),, 

where (47) and (49) have been used. 
Then, writing 

HRz j*HD= HDo j, (51) 

we arrive at 

i(XR) - 6HR, (52) 

that is, XR is a Hamiltonian vector field on rR associated to the Hamiltonian function HR by the 
presymplectic form fiR. 

If RR is nonsingular, it enables us to set up a Poisson bracket formalism for the generator 
XR, i.e., the reduced system ( 35). This we shall see in the next section. 

An explicit expression for fiR can be obtained by substituting q’(A) for cp’(A,z) in (31) 

P,(O,A;Z)= I da x(A,c+) Ej(-U,A;[q]) (53) 

and in (48) 
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fiR=/ d)II du- dp x(X,4 ‘E”;--;;;j[pl) &d(p,z)r\G&A,z) (54) 

with 

x(A,a)= $(sign(o)+sign(A)) 

and 

z=(q’,cj’,..., 
(r-1) q ‘). 

Moreover, replacing (31) in (19), we obtain an explicit expression for the Hamiltonian 

HR= I I dA da x(A,u) Ej(-u,A;[cp])~bi(A,z)-L([~(A,z)]). (55) 

VI. APPLICATIONS 

In the first and second cases here considered, the phase space l? has finitely many dimensions 
and rR = l? cm be taken. 

A. Local Lagrangians 

Let us consider a local Lagrangian, depending on the coordinates qa and their derivatives up 
to the nth order, all the same instant t: 

In this case 

L(t)=L(q”(t),cjp(t) ,..., (G)‘(t)), a,/l,..., v= l,..., m. (56) 

and the Euler-Lagrange Eqs. (5) read 

mmi c- l)$ 
dL 

- =o 

( 1 * 
r=O 

co (f) 

(58) 

If L is nonsingular, that is, 

det 

then Eqs. (58) can be solved for the derivatives (vjn and for every set of initial data 

(tO,qa,..:T- q ), there is one solution l”(r) such that 

J. Math. Phys., Vol. 35, No. 6, June 1994 

Downloaded 14 Jul 2010 to 161.116.168.227. Redistribution subject to AIP license or copyright; see http://jmp.aip.org/jmp/copyright.jsp



J. Llosa and J. Vives: Hamiltonian formalism for nonlocal Lagrangians 2867 

and 

d’S=(t,) (r) 
~ = qa;r=O,l ,..., 2n- l,a= l,..., m. dt’ 

Therefore the phase space, I?, of all solutions of (58) can be coordinated by 

w.4p,..., 
(2n- 1) 

q, q’), and dim I’=2nXm. 
The momenta and the presymplectic form fiR can be thus calculated substituting (57) into 

(53) so obtaining 

P,(O,A)= 2 (-l)‘+l ‘I S’“-‘)(A)- 
Islcrcn 0 

which, using well known properties of the &function can be also written as 

n-1 
Pa(U)= 2 Pak s’k)( - A), 

k=O 

with 

n-k-l 

pak’ 2 (-1)” 

1=0 dt’ 

(60) 

(61) 

namely, the Ostrogradski’3 transformation which, by (59), is nondegenerate and hence a true 
transformation of coordinates. 

Furthermore, using (60) in the Hamiltonian (51) we obtain 

n-l 

HR=x 2 p~k’~~“cy-L(q,q,...,‘;;)) (62) 

and the presymplectic form 

n-1 
fiR=c c &,akd;a, (63) 

which is obviously nonsingular. These are respectively the same Hamiltonian function and sym- 
plectic form we should have obtained by applying the Ostrogradski transformation to the nth order 
Lagrangian system (56). 

B. Nonlocal (derived) Lagrangians 

As an illustration of a nonlocal Lagrangian whose phase space r has finitely many dimensions 
we shall consider 

(64) 
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which, according to the classification in Ref. 4 belongs to the class of derived Lugrangians. 
Indeed, 

is the Green’s function for the singular boundary value problem j-y= 0, with y(t) bounded for 
Itl-+a, and in the notation of Ref. 4 we should write 

s 4(f) I Rdr’dr’)e --If--f’l= 5 q(t)(@- l)-lq . 
The functional derivative (4) yields 

E(t,t,;[q])=q(r)ii(t-t,)-q(t)S(t-t,)+ i 1 
(65) 

and the Euler-Lagrange Eqs. (5) are 

8(C[q])=-i(t)-q(r)+ ; 
I 

Rdr,q(tl) e-lr-r~l=O. (66) 

To find the general solution we use that 

$G(t,r,)-G(t,t,)=-&r-t,), (67) 

and substitute it into Eq. (66) to obtain 

q(iU)-(l -g)q=O ) 

whose general solution is 

q(t)= i A, e“‘a’, 
a=1 

(68) 

whereWi=l-g, ifg#l,or 

3 

s(t)= c A, rcr , (69) 
cl=0 

ifg=l. 
Now, since the integral in the Euler-Lagrange Eqs. (66) must be convergent, we can only 

consider the case IRe(o,)l<l. For a wide range of values of g, the phase space r can be coordi- 
(3) 

nated With (q,(i,(i’, 4 ) md dim r=4. 
Then, using Eqs. (29), (48), and (65), we arrive at the presymplectic form 

RR= S~ASq+g&fA6N. (70) 

Moreover, from (51) and (29), the Hamiltonian is 
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2 
ffR= ; + $ (Mr;l-Nni)+ f - ; (M+N)q 

with 

M(r)= 
I 

Oedh e-“q(t-X) and N(t)= 
I 

OmdX e-‘q(t+A) . 

Now, using (68) into these integrals, we obtain 

M= ; (q-cj+q-(;)) and A’= ; (q+i+i+(;)). 

That substituted in (70) and (71) leads to 

nR=SpASq+S7rASx, 

HR= 3p2+q2+ 7r2-x2-2&&), 

2869 

(71) 

(72) 

where 

p=4, ?r=g -“‘(ij+q), and x=g-1’2(i+(;). (73) 

We could have arrived at the same result by recognizing that the nonlocal Lagrangian (64) 
might be derived from the local first-order Lagrangian: 

Lo= ;(q2+Aq*+x2+2&qx), (74) 

on replacement of x(t) and i(r) by 

obtained by formally solving for x the Euler-Lagrange equations derived from Lo with the bound- 
ary conditions: 

x(r) bounded for Irl-w. 

C. Perturbative expansions 

So far we have considered Lagrangians whose phase space r has finitely many dimensions. 
Hence, an ordinary differential system that is equivalent to the Euler equations can be easily found 
and it itself acts as the reduction of finite order used in the methods developed in Sets. IV and V. 

It often happens that the Lagrangian can be written as a sum 

where the first term is local and the second one is nonlocal and comes multiplied by a “coupling 
constant”, g. 

Then, although the solutions of the Euler-Lagrange Eqs. (5) cannot usually be parametrized by 
a finite set of initial data, we can always find a reduction of finite order for them, which corre- 
sponds to the pertubative solutions (namely, those that can be written as a series of powers of g).21 
The reduced phase space TR then has as many dimensions as the phase space for Lo. 

J. Math. Phys., Vol. 35, No. 6, June 1994 

Downloaded 14 Jul 2010 to 161.116.168.227. Redistribution subject to AIP license or copyright; see http://jmp.aip.org/jmp/copyright.jsp



2870 J. Llosa and J. Vives: Hamiltonian formalism for nonlocal Lagrangians 

The situation is pretty similar to what happens in singular perturbation problems,22 where 
taking some parameter equal to zero dramatically changes the very nature of the problem. Here, 
taking g=O converts the nonlocal Lagrangian into a local one, and the Euler-Lagrange equations 
become an ordinary differential system. Nevertheless, in the limit g--+0, a solution of the latter 
equations for L does not generally converge to a solution of those equations for Lc. 

Let us thus consider, for instance, the Lagrangian 

where 

(75) 

Lo= i tip-- of4i2) 

i=l 

(76) 

is a local, nonsingular, first order Lagrangian, and 

Ll= & .I dX, dA2 dA3 Kijk(r-Al,t-A2,t-A3) qi(Al)qi(A2)qR(A3) (77) 

and g is a coupling constant. We shall also assume that the kernel in (77) is symmetric, that is, for 
all permutations (+ E S, 

Kijk(Al ,Az.,A~)=K~~~~,~(A,, ,Aoz,A,). (78) 

For further calculations it will be useful to have 

+ 5 dAl dA;! K+(r-Al,t--AZ,t-t’) q’(Al)qi(A2). I (79) 

The Euler-Lagrange Eqs. (5) are thus 

$0) + &d(r) - t dAldA2dA3~ij~(A3-Al,A~-A2,A3-t)~i(A1)~j(A2)=0, I 630) 

which are of integral-differential type and the problem of initial data is usually not well defined 
(i.e., there is no theorem of existence and uniqueness of solutions). 

For a given set of initial data (46 ,$,), a perrubative solution of (80) for these data is a power 
series 

m 

@(r,z;g)= C g”Qf,)(r,z) 
n=O 

(81) 

such that: 
(8 

~f,)tO,z)=q~SOn and d&,)(O,Z) =&on * (82) 

(ii) The coefficients of the power series resulting from the replacement of q(r) by @(t,z;g) in 
(80) all vanish. That is 
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** I n=O @~,~-tw~@~,~(r)=O, (83) 

n>l ~f,)(r,z) + ~~@~n~t~,z) - im+Fnm, \ dAldA2dA3, (84) 

Kij/(A,-Al ,A3-A2,A3-4@~,)(Al ,.z)@,)(A~,z)=O. 635) 

Now, (83) is a second order differential system on @io,, and the initial data (82), determine a 
unique solution 

with 

l- 1 * 
a,- - 2 &~~:, . i i 

Furthermore, every equation in the hierarchy (85), n 5 1, can be solved once the solutions 
@&,( r,z) are known for all m<n. Indeed, for n = 1, the Eq. (85) plus the initial data (82) yields, 
after a short manipulation, 

(88) 
A,B= f,- 

with 

My(r)= & 
f 

ofdrr sin @((r--t’) 
I 

dAl dA2 dA3 Kijl(A3-Al,A3-A2,A3-r) ei(A*ihI+BwjX2) 

(89) 

and so on for higher order coefficients @f,,(r,z). 
So far we have proven that the initial data z = (~5 ,& determine a unique perturbative solu- 

tion of (79). Hence, we can consider the reduced phase space lTR= {z = (qf, ,4$>} and the 1 to 1 
map 

jR :rR+r, 
z-d(r,z;g). 

(90) 

Applying the methods developed in Sets. IV and V, i.e., Eqs. (54) and (55), we then arrive at 
the presymplectic form 

flR(z)= f K3drl df2 dt3 x(fl ,r2> 
~Ei(--t,J2;C@‘l) 

hk03> 
SGk(r3 ,z;g)ASWr2,z;g) (91) 

and the Hamiltonian 

HR= f K2dA dC x(X70) Ej(-a,A;[@]) @(ATZig)-L([@]), (92) 

where the kernel in (90) is obtained as the functional derivative of (80) 
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+g f dAKjki(fl-A,tl--ts,tl-t2) @(A,z;g). 

Now, taking the perturbative character of @’ into account, 0’ and HR also admit perturbative 
expansions 

m 

and HR= c g”H&. 
n=O 

(93) 

The first and second terms in these expansions can be readily calculated substituting (86) into 
(91) 

with 

n 
“;o)=~ sq;fw;, 

l=l 

i-if,,= 2 S$“a~ Sa$YSak,, 
ABC= t 

n 1 
I$~,= c $4h2+ &?b”,, 

I=1 

H;,,= c 

SF, 1 
rJk Awi+Bwj+CWk Kijk(-Aoi,-BWj,Aoi+Bwj) 

(94) 

(95) 

(96) 

(97) 

(98) 

and 

i?ijk(Wl,W2rCO3)= f dA1 dA2 dA3 Kijk(Al,A2,A3) ei(olAlfo2A2+w3A3). (99) 

Furthermore, the change of variables (86) enables us to rewrite OR in terms of the variables 
qi, 4’. 

Now, the matrix of RR is the matrix of the elementary Lagrange brackets, whose inverse is the 
matrix of the elementary Poisson brackets. Hence, after a little algebra we arrive at 
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W4JkP GATC 5 (d- $ 4’)fts$ysi”$Y+0tg2~, 

{4’,4k}= SATC (q[- $ +sgys;lsB)+o(g2), 
which, with a little more calculation can be seen to coincide with Eq. (3.83b) in Ref. 4. 

Although it might seem at first that our methods require the previous knowledge of the 
solution @r to set up the Hamiltonian formalism, this is not the case. Notice that to determine 
Qpn, and HFn, for n > 1 we only need Q{m, , m <n, and n = 0 is the local case. 

The methods developed in this section can also be applied to systems with infinitely many 
degrees of freedom, i.e., field theories. 

We can consider, for instance, the Lagrangian 

L(t) =I d3X Z(t,x;[ 41) 

with Lagrangian density 

1 1 g 
A!+- ,+,V-- Fm2qb2+ z J3, (100) 

(101) 

which is relevant in string field theory.4 
The symplectic form we obtain is 

cP=f-g+g nf+o(g2), a:= d3P~~(P,ww(PJ), 
I 

(102) 

nf=(25T)- 3j2/ d3p d3p’ 2 ~ABC(P,P’)~A(P,~)~~,(P’,t)ASac(p+P’,r), (103) 
A,B,C= -c 

and the Hamiltonian 

Hg= &PJ)&-PJ)+ ifP2+mZ) &PJ)~(-PJ) , 1 (104) 

H7=(2~)-~‘~ I d3p d3p’ c 
iCopcpt 

2 ~ABC(p,p’)~~(p,~)~~(pl,t)acort), 
ABC= 5 

(105) 
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where 

(106) 

and 

As before, the elementary Poisson brackets are 

{#4P)Y4(P’)l= 
g(27r)-3’2 

zw _ 
P P’ 

xc 
B=Z 

~(P’-P,t)-~~:,~~~~‘~p) dtp-P’,t)] 

(107) 

with 

In order to compare with the results given in Ref. 4 we can consider the same system in terms 
of light cone coordinates (x+,x-,x1,x2), with 

x2 = $ (x%2). 

The zeroth order perturbative equation is then 

2ip+&x+,- p,-p+)-(p2+m2)&x+,-p,-p+)=O. 008) 

Taking x+ as evolution parameters, p= (p’ ,p2) and p+= l/6 (p’ +p3) as canonical mo- 
menta, and defining cop =(p2+m2)/2p+, we arrive at the symplectic form 

Cl:= 
I 

dp+ d2p -ip+SqS(xf,-p,-p+)ASqS(x+,p,p+), (109) 

f,ly=-i(2T)-3’2 
I 

dp+ d2p dp’+ d2p’ dp”+ d2p” S(p++p’++p”+) S2(p+pr+p”) 

XS(p,p’,p”) &x+,p’,P’+) S~(X+,pn.P”+)AS~(x+,P,P+), (110) 

and the Hamiltonian 

Hf= I dp+ d2p ~p2+m2)~(x’,-p,-p’)~(x’,p,pt), (111) 

HR” Gw-3’2 
1 2 J dp+ d2p dp’+ d2p’ dp”+ d2p” S(p++p’++p”+) S2(p+p’+p”) 

XqJ S(p,p’,p”) &x+,P,P+) ~(~‘,P’,P”)~(~‘,P”.P”+), (112) 
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with 

S(P,P’,P”)=~ 3am2e-2a(op+Op'+opl))P+~ 1 
Wp+Op’+Op~ 

and the elementary Poisson brackets 

+g(27~)-~‘~ 
I 

dp”+ d2p” S(p++p’++p”+) S2(p+pr+pn) 

XA(p,p',p") 4(x+,-P",-pi+), 

where 

(113) 

je3am2 

A(~,P’~P’)= 4pfp’+ [e- 2a(wp+Wp'+op.)p+_e-2a(Wp+Wp'+Wp)))P'+]~ 1 
Wp+Op'+blp~f' 

which writing a= l/m* yields the same result as given in Eq. (3.104) in Ref. 4. 

VII. CONCLUSION AND OUTLOOK 

The construction of a Hamiltonian formalism for nonlocal Lagrangian systems has been 
accomplished in two steps. The first consisted in establishing a presymplectic formalism on the 
phase space of the nonlocal Lagrangian system. This is not yet a Hamiltonian formalism, because 
we are not able to prove, for the general case, that the presymplectic form so obtained is actually 
symplectic (i.e., regular), thus having an associated Poisson bracket structure. The main difficulty 
in proving this comes from the fact that a minimal set of independent data (either finite or infinite) 
parametrizing each solution of the Euler-Lagrange equations is not well determined in general. 

The second step consisted in restricting ourselves to systems whose phase space has finitely 
many dimensions, either by itself (e.g., local Lagrangians) or by what is called order reduction. 
We have seen how local, regular Lagrangians can be included in our framework, and proven that 
our methods yield the well known Hamiltonian formalism that is obtained in the standard ways. 

We have also considered the case of nonlocal “derived” Lagrangians, whose phase space also 
has finitely many dimensions. In this case our method is simpler to apply and clearly less artificial 
than the approaches based on Lagrangians that depend on the derivatives of any order. 

Genuine nonlocal Lagrangians are not so easy to deal with. However, most nonlocal 
Lagrangians occurring in theoretical physics can be written as: L = Lo + g L 1 where Lo corresponds 
to the free part and is a local first order Lagrangian, and all the nonlocal contribution comes from 
L, . The Euler-Lagrange equations for L are of functional differential type, and the phase space 
has infinitely many dimensions. It might be, however, that resorting to physical reasons, only 
perturbutive solutions, namely, solutions that admit a formal expansion in powers of g, were 
interesting from a physical viewpoint. We have shown, with two examples, that the space of 
perturbative solutions can be parametrized by a finite number of coordinates (actually, in the same 
number as the nonperturbed system, Lo. We have also seen (Sec. VI C) that, if Lo is regular, the 
presymplectic structure defined in the first part of the work, when restricted to the phase subspace 
of perturbative solutions, yields a symplectic structure and a Poisson bracket formalism. 

There are two points concerning the power of tools here developed that are worth stressing. 
First, the process of construction of presymplectic formalism is thoroughly independent of any 
perturbative expansion, unlike the case in other previous attempts. And second, we have advanced 
a set of formulas, namely, (54) and (55). The application of these formulas to any given nonlocal 
Lagrangian only requires integration of the nonperturbed system [Eq. (83)], the integration of a 
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linear ordinary differential system [Eq. (X5)], and the calculation of some integrals. Although these 
operations can be sometimes cumbersome, they merely involve mechanical manipulations. 

Not surprisingly, it usually happens that the final elementary Poisson brackets {qi , qj} do not 
vanish, but are first order with respect to g (this is a familiar result in the relativistic theory of 
direct interaction, where the no interaction theorems apply).21 Hence, the coordinates of the 
original configuration space are not canonical coordinates. One way of continuing the present 
work would be the determination of possible canonical coordinates and momenta, and the subse- 
quent canonical quantization. 
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APPENDIX: PROOF OF SUMMABILITY CONDITIONS 

We shall now show that the first and second terms on the right hand side of Eq. (28) fulfill the 
summability conditions (22), provided that 5’ is a solution of the Euler-Lagrange Eqs. (4). 

For the first term we must prove that 

y- I 
R2dA da x(A,cr) E,(t-c+,t+A;[q])cp(A)<m (Al) 

for any slowly increasing [see condition (9)] continuous function q(A). 
Defining @={A>0 ,a>O}; @,={A<0 , c<O} we can write 

IA s (19, +l,,) Iw-w+kl-ql)l IPWI W 

and, since sl, transforms with ?$ upon replacement of (A, a) by ( - A, - u), it will be enough to 
prove the convergence of the integral over %J1. (The proof for $ZQI is quite similar.) 

According to (7), there exists L 1 > 0 such that 

whenever hi-c+>L,. 
Hence, the integral over 9, in (115) has the upper bound 

I I 
c 

% AS-O; o>o ;h+04L 
dA da IE(t-a,t+A)I [p(A)j 

+ I dh da 
@(A+u) 

h>O; a>0 ;h+o>L N(A+a) VL>L, , 643) 

where @(A) is the increasing, continuous, positive function defined by 

It is immediate to see that the condition (9) also holds replacing I cp(A)I by @(A). Hence, 
there exists L2>0 such that 

@(A)<N(A)-A-” (d-2) b44) 
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whenever A > L2. 
And using (A4) in (A3), we find that 

j-y,+y~o~~ du IW- UJ+A)I IdVl +I A,O ; ,+odA da (A + a)-“L2max{Ll ,L2} 
6 X+(r>L 

645) 

646) 

and both terms in the right hand side converge for a>2. Hence, .fs,C +m. 
Since L& converts into B, upon replacement of (A,u) by (-X,-u), we can similarly prove 

that JY,,< + a~. 
Hence Il,j+J~, +Jg,,< +a. Q.E.D. 
As for the second term in Eq. (28), we must prove that 

I 
dA Kl(t+A)cp(A)<~ . 

But this follows immediately from the facts that 

I dh UA)cptA-f) , 
that the slow growth condition (9) holds for cp(A - t) provided that it does for q(A), and that 
Kl(A) itself meets the summability condition (10). 
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