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In this Contribution we show that a suitably defined nonequilibrium entropy of an
N-body isolated system is not a constant of the motion, in general, and its variation
is bounded, the bounds determined by the thermodynamic entropy, i.e., the equi-
librium entropy. We define the nonequilibrium entropy as a convex functional of
the set of n-particle reduced distribution functions (n<N) generalizing the Gibbs
fine-grained entropy formula. Additionally, as a consequence of our microscopic
analysis we find that this nonequilibrium entropy behaves as a free entropic oscil-
lator. In the approach to the equilibrium regime, we find relaxation equations of the
Fokker-Planck type, particularly for the one-particle distribution function. © 2007
American Institute of Physics. [DOI: 10.1063/1.2800165]

I. INTRODUCTION

It is a widely recognized fact that a general mathematical theoretical proof of the second law
is still lacking. As stated in Ref. 1 and quoted here just for illustration sake “To the best of our
knowledge no theoretical mathematical derivation of the second law has been given up until now;
instead it has been based on Kelvin’s or Clausius’s principles of the impossibility of perpetual
motion of the second kind,? which are based on experiment.”3 This lack of definitive theoretical
proof has lead to reports on the violation of the second law” or tests over its validity in some
particular cases.”®

The first significant contribution to the interpretation of the second law of thermodynamics
and the explanation of irreversibility goes back to Boltzmann. Nevertheless, it is known that
Boltzmann’s contribution was criticized by arguing that this contradicts the predictions based on
the microscopic equations of motion. Later, Gibbs and P. Ehrenfest and Ehrenfest worked on this
problem by introducing coarse graining. However, those coarse-graining analyses require the
introduction of a priori equal probability principles, which are hard to justify on physical grounds
as was criticized by Einstein.

In this scenario, our contention is to discern the connection between the microscopic descrip-
tion of an isolated N-body system given through the classical Hamiltonian dynamics and the
description at the macroscopic level expressed by the second law.

It is known that for thermodynamic equilibrium the entropy can be given by the Gibbs
formula

SN=—kBTI‘(F1nF), (1)

where kjp is the Boltzmann constant and F' the full phase-space distribution function which we
assume normalized to unity, i.e., Tr(F)=1. However, this expression is not adequate for represent-
ing the entropy of nonequilibrium isolated systems for which no bath is present.8 The reason is
that although in the case of a time-dependent distribution function out of equilibrium, the entropy
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S given through (1) remains constant. This is not difficult to show given that F evolves according
to the Liouville equation,

d
—F=|HF],, 2
~F=[HF], @
where [..,..]p is the Poisson bracket. In fact, by using Eq. (2) the rate of change of the entropy
(1) is
as oF
7IN = Tr( —n F> =Tr([H,F], In F) = Tr(F[H,In F],) = - Tr([H,F],) = 0. (3)

Therefore here we will generalize Gibbs’ statistics to account for the entropy variations in
nonequilibrium systems. This constitutes an application of our previous results.” Our starting point
is the description of the state of an isolated N-body system in terms of the set of n-particle reduced
distribution functions in the framework of the Bogolyubov-Born-Green-Kirkwood-Yvon
(BBGKY) description.lo Unlike equilibrium, an overall picture in terms of the full phase-space
distribution function does not contain the amount of detail necessary to describe a nonequilibrium
system. Nonequilibrium systems manifest a random clusterization which makes their distribution
in the phase space unstable, thus there is a continuous process of creation of n-particle clusters at
the expense of the annihilation of p-particle clusters with n # p. This fact is taken into account in
the BBGKY hierarchy, making this an appropriate framework for the description of nonequilib-
rium systems. In this context, since the collisions become explicit through the collision term in the
equations of motion, the n-particle reduced distribution functions are not constant of the motion,
therefore a way of defining the entropy to embody the approach to equilibrium might be expressed
in terms of this set of reduced distributions. This is what we do here: we propose a functional of
the set of n-particle reduced distribution functions which generalizes the Gibbs entropy as the
nonequilibrium entropy of the isolated N-body system. We will show that this entropy is not a
constant of the motion and reaches its maximum value at equilibrium.

In the next section, we introduce the Hamiltonian dynamics of the N-body system and obtain
the generalized Liouville equation. In Sec. III, we define the nonequilibrium entropy analyzing its
properties. Section IV is devoted to computing the entropy production and to the derivation of the
kinetic equation for the one-particle reduced distribution function. In Sec. V we describe the
approach to equilibrium. Finally, in Sec. VI, we emphasize our main conclusions.

Il. HAMILTONIAN DYNAMICS

Let us consider an N-body system with a Hamiltonian containing a kinetic energy term plus a
two-particle interaction potential,

N p2 | N
H=2 "+ > ¢lg;-q
=1 2m 2

), (4)

with m being the mass of a particle and <;/>(|qj—qk|) = ¢; the interaction potential. Moreover, the
equations of motion are

o

qG="——, Pi= : (5

Ip; aq;
As said in the Introduction, the statistical description of the system can be performed in terms of
the full phase-space distribution function F(x",f), where x¥={x,, ..., x5} and x;=(q;,p;) or alter-

natively in terms of the distribution vector' f. Both previous descriptions are completely equiva-
lent, however, the second one is more appropriate for nonequilibrium systems. Here,
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t={fo.fi (x])’f2(x2)’~--’fN(xN)} (6)

is the set of all the n-particle reduced distribution functions, with x"={x,, ... ,x,}, n=0,...,N, and
where the n-particle reduced distribution functions,

fn = f F(XN,t)dX,H_] T de7 (7)

are obtained by integrating over the N—n particles with fy=1. The dynamics of the reduced
distribution vector follows from the Liouville Eq. (2) by integration according to Eq. (7), thus one
obtains''™"?

J c J
Efn = [Hmfn]p + (N - H)E Fj,n+l£fn+ldxn+l ’ (8)
j=1 j

where F; ., 1==V; 10,1 and

n 2 n
P;
HI’I:E_—'-%'E ¢i,k (9)

is the n-particle Hamiltonian.
In a compact way and in the language of Hilbert spaces we can write Eq. (8) (Refs. 11 and 9)

igf(t) _ L) (10)

constituting the generalized Liouville equation which succinctly expresses the BBGKY hierarchy
of equations. Here, L is the generalized Liouvillian, a non-Hermitian operator whose diagonal part
PL is defined through'*"'

(n|PL|n"y = i[H,.f,]pOp s >0, (11)

where |n) represents the n-particle state. In addition, the nondiagonal part QL is given by14’11

’ J
(n|Q£|n’> =i (N_ ”)2 Fj,n+1£fn+ldxn+l 5n’,n+1’ n>1. (12)
j= j

Here, P and Q, its complement with respect to the identity, are projector operators. From its
definition through Eq. (11) one can see that PL is a (N+1) X (N+1) diagonal block Hermitian
matrix. On the other hand, from Eq. (12) it is possible to infer that QL is a non-Hermitian (N
+1) X (N+1) diagonal block matrix with nonzero elements only along the diagonal (n,n+1) with
n>1."In terms of the projectors just introduced, Eq. (10) can be rewritten,

io,%f(t) —PLE() = QLE(1). (13)

Hence, the formal solution of Eq. (13) can be written as an integral equation,

f(r) = exp(-= iPLH)f(0) + exp(iPEt)f drexp(—iPL7)(-iQL)(7), (14)
0

which can be formally solved to give11

() =U(1,0)£(0), (15)

where the evolution operator U(z,0) is given by a perturbative development as

Downloaded 14 Jul 2010 to 161.116.168.227. Redistribution subject to AIP license or copyright; see http://jmp.aip.org/jmp/copyright.jsp



103302-4 A. Perez-Madrid J. Math. Phys. 48, 103302 (2007)
o 4
= 0

t Iy 5] 1
Uuw,0)=> | dr f dt, f dty- - f dt; X V(t,t)) -+~ V(t_,t)exp(= iPLt).  (16)
j=0Jo 0 0

Here, V(z;_,t;)=exp[iPL(t;_;—1;)|(-iQL) are non-Hermitian propagators, 1;<t; | <...<t; <t
=t, and the integration proceeds from right to left. Differentiating Eq. (16) one finds

ﬁu@,O) =—iLU(1,0), (17)
ot

the evolution equation for U(z,0). If now, we make a time translation and change the origin of the
time scale so that the time series begin at time ¢,

* 0 1! i i
UO0,—1)=> dt;f'drgfzdtg---f’ dt] X V(0,11) -+ V(t]_.t)exp[— iPL(t] +1)],
—t —t —t -

Jj=0 t
(18)
with ¢/ =;—t, (1<I<) and under time reversal
“r0 t ty tio1
j=0 1t t t t
(19)

Interchanging the integration limits and the integrals we obtain after relabeling the dummy inte-
gration variables

* ! 1 ) i
Z/{(O,I)ZE (— 1)jf dllf dtzf d[3 J dtj X exp(— lPﬁtl)U(l‘j,t]_l) U([],t),
Jj=0 0 0 0 0

(20)

where now, U(t;,t;_1)=(-iQL)exp[—iPL(t;—t;_;)]. In addition, by differentiating Eq. (20) one
gets the evolution equation for U(0,7),

gtU(o,z) —UO.0IL. 21)

The propagator 2(0,) given through Eq. (19) propagates backwards in time from ¢ to 0, hence
this must coincide with the inverse 2(¢,0)~" of 2(¢,0) so that

U(t,0)~"£(r) = (0, 1)f(r) = £(0). (22)

It can be verified that 24(0, 7) is the inverse of U(z,0)." To begin, U(0,1)U(t,0)=1 for t=0. Now by
differentiating and taking into account Eqgs. (17) and (21) we reach

gu(o,t)u(z,O) =0, (23)
ot

so U0, 1)U(t,0)=1 for all 1.
Since PL is Hermitian, all its eigenvalues are real,'® which means that f(7) as given through
Egs. (15) and (16) will have an oscillatory behavior.

lll. NONEQUILIBRIUM ENTROPY

Here as the nonequilibrium entropy for the N-body system we plroposeg’14
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S=—kp Tr{f In ff} + S = kBZ £, In =" f” cdx, + S

eq,n

(24)

€q»

a convex functional of the distribution vector which generalizes the Gibbs formula. In Eq. (24), S,
is the thermodynamic entropy (i.e., the equilibrium entropy) and f,, is the equ111br1um distribution
vector satisfying Lf.,=0, the Yvon-Born-Green (YBG) equlhbrlum hlerarchy ! Therefore, foq i

an eigenfunction of /3 with eigenvalue 0. Moreover,

88 = — kg Tr{SF In(f; 1)} (25)
is zero at equilibrium and
&S =— 3ky Tr{ SKF_ 5F} (26)

is a negative quantity, which shows that § is maximum at equilibrium where its value is S

Note that the BBGKY scenario describes an interacting mixture of fluids made up of particle
clusters in the phase space. Two such fluids differ in the size of the clusters they contain and each
fluid contributes its own entropy, the n-particle entropy, to the total nonequilibrium entropy of our
system. Likewise, the interaction between different fluids leads to the creation of n-particle clus-
ters at the expense of the annihilation of p-particle clusters with n # p.

More interestingly here the most important property of the entropy we propose is its direction
of change in a natural process. To elucidate this, we must establish the entropy bounds, if any.
Hence, let us define the n-particle entropies,

J I -+ dx, (27)
eq n

Since the full distribution function F' contains more information than f,, one might expect that
S,= Sy. This can be proven from the convexity of the logarithmic function, In x<x—1, which can
be rewritten'’

fInf—flng=f-g¢g forf=0, g>0, (28)

where there is strict inequality unless f=g. Hence, assuming that f=F and g=f,, from Eq. (28)
one derives

JFlanx1~--de>JFlnfndx1~--de=Jfnlnfndxl---dxn. (29)

Analogously, it can be proven

ffn In f,dx; - dx, = an In foq ndx; -+ dx,,, (30)
which allows us to rewrite Eq. (29),
fFlanxl de/ffnlnf—dxl'"dx,,. (31)
eq,n

Therefore, from Egs. (1) and (27),
S, =Sy (32)
and consequently, from Egs. (24), (27), and (32) one obtains
0=S-S.,= Sy (33)
In light of this, we find that S is bounded

Downloaded 14 Jul 2010 to 161.116.168.227. Redistribution subject to AIP license or copyright; see http://jmp.aip.org/jmp/copyright.jsp



103302-6 A. Perez-Madrid J. Math. Phys. 48, 103302 (2007)

0=5,4=8=Sy+S. (34)

This result together with our comments at the end of the previous section leads us to conclude that
the nonequilibrium entropy S behaves as a free oscillator with an amplitude of oscillation Ag=
—Sy/2. Hence, there is no possibility of time arrow and a question arises as to how the equilibrium
could be reached and more deeply how to reread the second law for isolated systems. We will try
to answer these questions in the next section.

To end this section, in view of our previous conclusion we assume the existence of a potential
associated with the harmonic entropic oscillator,

D(S) = 3Kei(1)(S = "), (35)
with S*=Seq+S v/ 2. Therefore, the potential bounds satisfy

_ _! Sy )’
(I)(Seq) = q)(SN+ Seq) = 2Keff(t) ) s (36)

and the effective elastic constant is given through

1 &
Ki(t) = | =S| 37
eff() ‘ S(?tz ( )
Consequently,

S—8"=Agsin(VKi(D)1 + @), (38)
where ¢ stands for the initial conditions. This system has a first integral of the motion its “energy”
given by18

. 2
) I S()
H(S(t),S(t),t)=—< /—) +D(S(1), (39)
2\ VK eg1(0)

which is constant. Moreover, the period of the oscillations 7 satisfies

2m=Ken(D) (40)

and should be coherent with the recurrence period of the Poincare cycles.

IV. ENTROPY PRODUCTION. THE LAW OF INCREASE OF ENTROPY

The rate of change of the nonequilibrium entropy or entropy production is obtained by taking
the time derivative of Eq. (24), giving

as of .
P ky Tr{ g 1n(f;qlf)} = ik Tr{Lf In(f, )} (41)

In a more explicit way, after using Egs. (8) and (10)-(12), Eq. (41) can be rewritten

oS
a

N n n
33 f,,pj(—kBTi Infgn+ 2 Fji+ (N—n)fj)dX”, (42)
T,5 5= 9, TS

where F;(x") is defined through f,(x")F;(x")=[F;,,1f,+1dX,1, and T is the kinetic temperature
taking into account that the dependence of f,,, in the velocities is given through a local Max-
wellian. The entropy production given in Eq. (42) vanishes at equilibrium and in any other case it
should not be necessarily zero. In addition, because p; is arbitrary,
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n

J
E F;;+(N- Vl)j:;q =kgT— Infoq, (43)
izl aq;
is sufficient to satisfy the extremum condition 85/ 8f,|.,=0, with S=aS/dt. Precisely, Eq. (43)
gives rise to the YBG hierarchy.g’19
On the other hand, by using Eq. (43), we can rewrite the entropy production given through Eq.
(42) as

|eq

aS 1

N n
— =72 2 (V=) | fup(F= Fx, (44)
t Tn:l Jj=1

which is the starting equation to analyze the relaxation to equilibrium. To this end, as in nonequi-
librium thermodynamics,20 from Eq. (44) we can establish the phenomenological relation

n L-i
fnpjzfeq,npj_z _;(E_f?Q)’ (45)
i=1

where L;; is a phenomenological matrix which, in general, might depend on the nonequilibrium

thermodynamic force (F;— ;). In terms of the mobility M; ;=L; ;/ Tf, we can rewrite Eq. (45) as

Jj== 2 fM, (Fi = F9), (46)
i=1

where we have defined the current J;=f,p;~feq.P;» 50 J; and (F;=F;%) constitute a pair of
conjugated current and thermodynamic force, respectively.

Now we are in position to introduce the crucial point that might explain the approach to
equilibrium and the link with the macroscopic irreversibility. Thus, near equilibrium, which coin-
cides with the extremum position of the entropic oscillator related to the potential given through
Eg. (35), M;;—M;% which in this particular case should be a non-negative constant matrix.
Therefore, in this case

N n
1
2SS W= [ 1, FIMGE - FYa =0, (47)

d n=l j=1

constituting the law of increase of entropy.

V. RELAXATION EQUATIONS

In this section we will analyze the relaxation to equilibrium by deriving the relaxation equa-
tion for the one-particle reduced distribution function. To obtain such an equation we introduce the
inverse mobility matrix {54 (2, /IM{]=6; ), the friction matrix which allows us to invert the near
equilibrium version of Eq. (46)

fn(]:i_f?q):_z :l?j‘Jj:_E gi(jlpj(fn _feq,n)' (48)
i=1 i=1

At this point it will be useful to introduce the physical volume of the system V as a scale factor,
thus we will redefine the reduced distribution functions."

A

Jn=Vf- (49)

Additionally, we must also redefine the forces, writing ,/V and ﬁ?q/V instead of F; and F}
Hence, for n=1, we obtain from Eq. (8)
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—F iA—<N—_1>iAﬁ (50)
&tf1+pé'qfl_ v apfl 1

Thus, by using Egs. (43), (48), and (50) we obtain the kinetic equation for fl =f,

07lf+p(3qf_ B aq nfeq (9pf__ v gﬁpp _feq >
where {= {3 In the thermodynamic limit
14 d d d 1%
Ef"'p%f_kBT(% lnfeq)%f=_p§%p(f_feq)v (52)

with p=N/V being the density. This equation constitutes a generalization of the Bhatnagar-Gross-
Krook relaxation model.”
To illustrate the approach to equilibrium let us write

1(q,p.1) = #y(p.1) plq,1). (53)
By introducing the factorization given through Eq. (53) into Eq. (52) after integration in p, we
obtain
1% 1%
2,2 ,=0, (54)
a  dq
where
Jy= ¢>J qpdp (55)

is the current of the probability density ¢(q,?) or first moment of the density ¢, which satisfies
the equation

d d d
—Jy+ — dp + kgT| — 1 =pl],. 56
pl aqcﬁfdfqpp p+ks ((9(1 nfeq>d> pély (56)

Here, for time > (p{)~!, Eq. (56) leads to

J 1a¢flﬂ d+kBT((91f>¢ (57)
=—_ ppap+——| —In )
*pLogt ) ¢ \og 7
which substituted into Eq. (54) and assuming that ¢, is a local Maxwellian such that [,ppdp
=—kpT gives
d¢
—=-L,o, 58
Py a® (58)

where the lineal differential operator L is given through

Lp=- 2022y 4L, ) (59)
= — —_ — In .
! ploq\oq” Toq
This equation contains a term kz7d/dq In f.q that plays the role of a thermal force usually intro-
duced in polymer dynamics.21

In the next section, starting in Eq. (58) and from the properties of L, defined through Eq. (59),
we will study the approach to equilibrium.
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VI. APPROACH TO EQUILIBRIUM

The differential operator L introduced in the previous section is a non-Hermitian operator
whose Hermitian conjugated is defined through

P kLT< J )
L‘](’D_ g (9(1 19(] feq (60)

Therefore, L, does not have an orthonormal base. However, we can define right-hand and left-
hand eigenfunctions through

L,0,(@) =\, 2, (q) (61)

and

Liw,(@) =\,0,(q), (62)

which we chose to be orthonormal, [dq€),(q)w,(q)= &, ,. As has been said in Sec. III, ¢,(q) is an
eigenfunction with eigenvalue of O of the evolution operator Ly, thus it is possible to write

Q,(q) = deg(@)w,(q), (63)

which can be proven by direct substitution of this relation into Eq. (61) and taking into account
Egs. (59), (60), and (62). So, Qy(q)=¢e4(q) and wy(q)=1. On the other hand the eigenvalues
different from zero are positive. In fact, by multiplying Eq. (61) by w,(q) and integrating, one
obtains

N, | dqoé 0’ = | dqo,L —]ﬂdii>0 (64)
p | d4beqw, = | dqo,lgqdeqw, = py: qd’eqaquaqu/ ,

where the right-hand side in the last equality has been obtained by using Eq. (59) and integrating
by parts. Also, the positivity of { discussed in the context of Eq. (47) has been taken into account.
Now any distribution ¢(q,?) can be expanded in terms of the eigenfunctions

P(q.1) = 2 (1) @,(q) eg(@), (65)
where taking into account the orthonormality condition

a,(1) = J dqw,(q)$(q.1). (66)

From Egs. (58), (59), and (65) one obtains the evolution equation for the coefficients of the
expansion (65),

—a,(1) == N, (1), (67)
which gives

a,(1) = a,(0)exp(= ). (68)

Since wy=1 and ¢(q,?) should be normalized, ay=1. Therefore,

Plq.1) = <1>eq(q)+2 (0)exp(= N, 1) @,(q) ey (q). (69)

showing that after a long period of time equilibrium is eventually reached.
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VIl. CONCLUSIONS

We find that the description of an N-body isolated system in the framework of the BBGKY
hierarchy enables us to prove that the nonequilibrium entropy is not a constant of the motion. We
emphasize that the nonequilibrium entropy should be defined as a convex functional of the dis-
tribution vector. Our contention is that the adequate functional is the one given in Eq. (24).
Moreover, this description reconciles the reversibility of the Hamiltonian dynamics with the ap-
proach to equilibrium.

Due to the periodic character of the solution of the microscopic equations given through Egs.
(15) and (16), we realize that the nonequilibrium entropy corresponds to a dynamical system that
behaves as a free oscillator, an “entropic oscillator” with well established bounds determined by
the equilibrium entropy which is the maximum entropy. We have also manage to construct the
Hamiltonian for this entropic oscillator. Hence, the approach to equilibrium occurs when the
entropy production is positive, i.e., when the dynamical system is rising through the walls of the
elastic potential defined in Eq. (35). In other words, the entropy production is positive when the
balance of forces appearing in the integrand of Eq. (42) is opposite to velocity, thus preventing the
expansion of the N-body system in the phase space. The natural extension of our theory to study
nonisolated systems, i.e., dissipative N-body systems, would be to consider a damped entropic
oscillator instead a free oscillator. In the case of the damped entropic oscillator, the system
collapses in the equilibrium state which is the attractor of the dynamics.

Performing a nonequilibrium thermodynamic analysis, we are able to derive relaxation equa-
tions of the Fokker-Planck type, particularly for the one-particle distribution function. Finally,
through a spectral analysis we show how these equations describe the approach to equilibrium.
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