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Abstract .  A monoclonal antibody CC92 (IgM), raised 
against a fraction of rat liver enriched in Golgi mem- 
branes, recognizes a novel Endo H-resistant 74-kD 
membrane glycoprotein (gp74). The bulk of gp74 is 
confined to the cis-Golgi network (CGN). Outside the 
Golgi gp74 is found in tubulovesicular structures and 
ER foci. In cells incubated at 37°C the majority of 
gp74 is segregated from the intermediate compartment 
(IC) marker p58. However, in cells treated with or- 
ganelle perturbants such as low temperature, BFA, and 
[A1F4]- the patterns of the two proteins become indis- 
tinguishable. Both proteins are retained in the Golgi 
complex at 20°C and in the IC at 15°C. Incubation of 
cells with BFA results in relocation of gp74 to p58 
positive IC elements. [AIF4]- induces the redistribution 

of gp74 from the Golgi to p58-positive vesicles 
and does not retard the translocation of gp74 to IC 
elements in cells treated with BFA. Disruption of 
microtubules by nocodazol results in the rapid disap- 
pearance of the Golgi elements stained by gp74 and 
redistribution of the protein into vesicle-like struc- 
tures. The responses of gp74 to cell perturbants are in 
sharp contrast with those of cis/rniddle and trans- 
Golgi resident proteins whose location is not affected 
by low temperatures or [AIF4]-, are translocated to the 
ER upon addition of BFA, and stay in slow disinte- 
grating Golgi elements in cells treated with nocodazol. 
The results suggest that gp74 is an itinerant protein 
that resides most of the time in the CGN and cycles 
through the ER/IC following the pathway used by p58. 

S 
TRUCTURE and function are intimately interrelated in 
the intricate machinery that is the Golgi complex (Far- 
quhar and Palade, 1981; Dunphy and Rothman, 1985; 

Kornfeld and Kornfeld, 1985; Griffiths and Simons, 1986; 
MeUman and Simons, 1992). Recent results have provided 
new insights on how the Golgi complex is organized and 
functions. At least three compartments appear to constitute 
the Golgi complex: the cis-Golgi network (CGN) ~, the 
stack of cisternae, and the TGN (see the reviews by Rothman 
and Orci, 1992; and Mellman and Simons, 1992). The CGN 
appears to consist of the cis-most cisterna associated with an 
array of tubules (Lindsey and Ellisman, 1985; Rambourg 
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I. Abbreviations used in this paper: BFA, brefeldin A; CGN, cis-Golgi net- 
work; Endo H, endo-/~-N acetylglucosaminidase; GMPeq, cis-Golgi mem- 
brane protein; GMPta, trans-Golgi membrane protein; IC, intermediate 
compartment; N-glycanase, peptide-N-glycosidase F; NRK, normal rat 
kidney; pAb, polyclonal antibody; PDI, protein disulfide isomerase; RAM, 
rabbit anti-mouse. 

and Clermont, 1990) and is the Golgi subcompartment in- 
volved in receiving and sorting newly synthesized proteins 
from the ER (Palade, 1975; Pfeffer and Rothman, 1987). In 
most cells it also appears to be involved in the recycling of 
proteins and lipids to the ER (Pelham, 1988, 1989; Dean and 
Pelham, 1990; Pelham, 1991), the addition of the first 
N-acetylgalactosamine residues to O-linked oligosaccha- 
rides (Tooze et al., 1988), the phosphorylation of lysosomal 
enzymes (Pelham, 1988), and the fatty acylation of mem- 
brane proteins (Rizzolo and Kornfeld, 1988; Bonatti et aI., 
1989). The material transported from the ER arrives at the 
CGN via the intermediate compartment (IC) (Schweizer et 
al., 1988, 1990). The IC appears to be formed by a complex 
network of tubules that covers large areas of the cytoplasm. 
However, the nature of the IC remains controversial and it 
is not clear whether it is a distinct organelle interposed be- 
tween the ER and the Golgi complex (Schweizer, A., G. 
Grifliths, T. Bachi, and H. P. Hauri. 1991. J. Cell Biol. 
374:65a; Plutner et al., 1992) or if it is formed by the collec- 
tion of ER outposts (i.e., transitional elements) involved in 
the exchange of materials with the Golgi complex (Hauri and 
Schweizer, 1992). The CGN and the ER/IC are connected 
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by vesicular organelles that shuttle and transport materials 
between the two (Palade, 1975). 

Much remains to be understood on how the CGN and the 
IC are organized, function, and interact. Since organelles, 
as well as their subcompartments are defined by specific pro- 
tein frameworks, our understanding of the structure and 
function of the CGN and the IC requires the characterization 
of their protein components to enable the study of their dis- 
tribution and organization. This is presently limited by the 
paucity of accepted marker proteins (Hauri and Schweizer, 
1992). Some studies have recently been reported with a few 
markers: the rat IC component p58 (Saraste et al., 1987; 
Saraste and Svensson, 1991) and its human homolog (Lahti- 
nen et al., 1992) p53 (Schweizer et al., 1988, 1990); the 
KDEL receptor (Lewis and Pelham, 1992; Tang et al., 1993) 
and the small GTP-binding proteins rab2 (Chavrier et al., 
1990); and rablbp (Plutner et al., 1991). 

Here we report the characterization of a novel membrane 
protein, gp74, the bulk of which resides predominantly in the 
CGN and cycles between the Golgi and the ER/IC along the 
same pathway used by the IC marker p58. The responses of 
gp74 distribution to organelle perturbants such as BFA, low 
temperature, [A1F4]- and nocodazol reveals the dynamics, 
morphology, and functional connections of a pathway be- 
tween the CGN, the IC, and ER. 

Materials and Methods 

Cell Cultures 
NRK (Normal rat kidney) cells were grown on plastic Petri dishes or glass 
coverslips, in 90% DME, 10% FCS, 10 mM morpholinoethane-sulfonic 
acid, 2 mM glutamine and antibiotics (50 U/ml penicillin; 50 #g/ml strep- 
tomycin) at 37°C (or room temperature), in an atmosphere of 93% air, 7% 
CO2, and 85% humidity. When required the cells were incubated with 
BFA, a gilt from Sandoz Laboratories (Basel, Switzerland), nocodazol 
(Sigma, St. Louis, MO), [AiF4]-, or the protein synthesis inhibitor cyclo- 
heximide. 

Antibodies and Other Protein Probes 
mAb CC29 was an IgM raised in a mouse injected with 0.1 M Na2CO3 
treated membranes from a rat liver fraction enriched in the Golgi complex 
(Yuan et al., 1987). The development of mouse mAbs and rabbit polyclonal 
antibodies (pAb) to integral membrane proteins from the cis/widdle 
(GMPc-0 and trans-Golgi (GMPt-0 has been previously reported (Yuan et 
al., 1987; Alcalde et al., 1992). The pAb to the IC marker p58 (Saraste 
et al., 1987) and the rat mAb to tubulin (Kilmartin et al., 1982) wore gifts 
of Drs. Saraste (University of Bergen, Bergen, Germany) and Kiimartin 
(Laboratory of Molecular Biology, MRC, Cambridge, UK), respectively 
The pAb to the ER marker PDI (Lambert and Freedman, 1985) was a gift 
of Dr. Castafio (Institnto de Investigaciones Biom6dicos, CSIC, Madrid, 
Spain). The mAb Cu-I to the "In epitope (GalNAc~-O-Ser/Thr) (1hkahashi 
et al., 1988) was a git~ of Dr. S. I. Hakomori (The Biomembrane Institute, 
Seattle, WA). The pAb to mannosidase II (Moremen and Touster, 1985) was 
a gift of Dr. M. Baron (Center for Biotechnology, Karolinska Institute, Hud- 
dinge, Sweden). Limax flavus agglutinin (LFA) was from Calbiochem- 
Novabiochem Corp. (La Jolla, CA). Protein Awas from Pharmacia (Lurid, 
Sweden). Rhodamine and fluorescein-conjugated rabbit anti-mouse IgG + 
IgM (RAM) pAb was from Dako (Dakopatts, Glostrup, Denmark). Rabbit 
anti-mouse IgG and,IgM pAbs conjugated to gold ware from BioCell 
(Cardiff, UK). Biotin-~onjugated goat anti-rabbit IgG + IgM (RAM) pAb 
and fluorescein-conjngated streptavidin wore from Boehringer Maanheim 
Biochemicals (Indianapolis, IN) and were used to stain p58 (Lahtinen et 
al., 1992). 

Characterization of gp74 
Incubation of NRK extracts, metabolically labeled with [35S]methionine, 

with antibody CC92, did not immunoprecipitate any protein and the anti- 
body failed also to react with proteins from either rat liver or N1LK extracts 
resolved by SDS-PAGE and blotted onto nitrocellulose. The identification 
of gp74 was thus achieved by photoaflinity labeling using sulfosuccinimidyl 
2-(p-azido salicyl-amido) ¢thyl-l',Y-dithiopropionate (SASD) (Tae and Ji, 
1982) attached to mAb CC92. Briefly, 5.5 #g of the photoaitinity reagent 
SASD (Pierce, Rockford, IL) was labeled with 0.5 mCi l~I  to a maximal 
specific activity of 5 x 104 Ci/mol and conjugated to 36/~g of CC92 anti- 
body, according to the manufacturer instructions. NRK cells, grown to 90% 
confluence in a 100 mm dish were fixed-permeabilized for 5 s with 90% 
methanol, at room temperature, to permeabllize the cells without irreversi- 
ble fixation of the proteins. The fixed-permeabilized cells were then in- 
cubated for 1 h at 37°C in the dark with the [1521] SASD-antibody con- 
jugate in PBS, in the absence or presence of a 200-fold molar excess of 
unconjngated CC92 antibody. After thorough washing of the cells with PBS, 
the SASD was photoactivated for 15 win at a wavelength between 244-366 
nm. The [125I] SASD antibody conjugate covalently bound to the protein 
was reduced for 30 win at 37°C with 50 mM DTT in PBS, washed quickly 
twice with PBS, and incubated with 250 #1 of 10 ~g/ml RNAse, 10/~g/ml 
DNAse in PBS for 30 min at 37°C. Finally, the cells were harvested, and 
boiled for 20 win in the RNAse/DNAse solution adjusted to contain 2% 
SDS, 0.1 M DTT, 1 mM PMSF, 1 ~g/ml leupeptin, 1/~g/ml chymostatin, 
1 #g/ml aprotinin. 125I-labeled proteins were analyzed by SDS-PAGE. 
Identical experiments were also performed with [125I] SASD-conjugated 
F(ab'h CC92 fragments. These F(ab')2 fragments were produced by in- 
cubating purified CC92 with pepsin (Boehringor Mannheim Biochemicals), 
at a wt/wt ratio of 25/1, in 35 mM sodium acetate]150 mM NaC1, for 
24 h at 4°C; the fragments were separated from undigested CC92 antibody 
by gel filtration on a column of Superose (Pharmacia, FPLC) and 0.26 nmol 
coupled to 16 nmol [l~I] SASD as described above. 

Protein electrophoresis, autoradiography, and glycoprotein analysis were 
performed as previously described (Barriocanal et al., 1986). Studies on 
the partition of gp74 between the Triton X-114 and aqueous phases were per- 
formed as described (Bordier, 1981). 

Immunofluorescence Microscopy 
Single and double immunofluorescence microscopy studies were performed 
on NRK cells as described (Barriocanal et al., 1986; Yuan et al., 1987; 
Lahtinen et al., 1992). 

Immunoelectron Microscopy 
Monodisperse colloidal gold particles with average diameters of 15, 8, or 
10 nm were prepared as described (Frens, 1973; Slot and Geuze, 1985) and 
conjugated to protein A (Roth, 1982) and fetuin (Roth et al., 1984) as 
reported. Male Sprague-Dawley rats wore anesthetized, perfused with 
balanced salt solution and then for 20 win with 0.1 M phosphate buffer (pH 
7.4) containing either 4% paraformaldehyde, or 4% paraformaldehyde/0.1- 
0.05 % glutaraldehyde. Duodenum, distal, and proximal colon were quickly 
excised, cut into small pieces, and immersed in the respective fixatives for 
2 h at room temperature. NRK cells were cooled on ice, washed with either 
ice-cold 0.1 M sodium cacodylate, pH 7.2, or 0.2 M Hepes, pH 7.2, 
detached from the culture dishes by digestion with 25 ~g/ml proteinas¢ K, 
resuspended with vigorous pipetting, pelleted by centrifugation at 3,000 
rpm for I win, and immersed in the fixatives described above. Fixed tissues 
and cells were rinsed in the same buffer and free aldehyde groups blocked 
with 50 mM ammonium chloride in PBS for 1 h at room temperature, with 
several buffer changes. The fixed specimens were embedded in Lowicryl 
K4M at -35°C (Carlemaln et al., 1982), and postembedding'immunogold 
labeling done on either Lowicryl K4M ultrathin sections (Roth, 1982) or 
uitrathin cryosections (Slot and Geuze, 1985). 

Single Labeling with mAbs orpAb. Thin sections were floated on drops 
of PBS for 10 win, at room temperature, and then incubated for 2 h at room 
temperature, or overnight at 4°C, on small droplets of mAbs in PBS, or sera 
in PBS/I% skim milk. After rinsing twice with PBS, sections wore in- 
cubated with mAbs for 45 win at room temperature with 25 #g/ml attinity- 
purified RAM IgG + IgM in PBS/0.1% Tween 20. Sections incubated with 
RAM or with 15C8 antiserum were floated for 1 h at room temperature on 
a droplet of protein A-gold (15 nm) (OD525 = 0.4) in PBS 3+ (PBS/I% 
BSA/0.075% Triton X-100/0.075% Tween 20), washed twice with PBS, 
once with distilled water, and air dried. 

Double Labeling with l.,imax flavus Lectin and mAbs to Tn and gp74. 
The first labeling reaction was performed with the lectin, according to the 
two step cytochemical procedure described by Roth et al. (1984): briefly, 
sections were floated on a droplet of PBS and then transferred to a droplet 
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of LFA (75-100 #g/ml in PBS), washed and incubated with fetuin-gold (8 
nm) (ODs25 = 0.3) in PBS 3+ for 30 rain. The labeled sections were rinsed 
twice in PBS, floated on 1% glutaraidehyde in PBS for 15 min, washed again 
in PBS, and laid onto a drop of 50 mM of ammonium chloride in PBS for 
60 rain to block free aldehyde groups. 

Following two more washes in PBS, the sections were incubated with the 
corresponding mAbs, either anti-Tn or anti-gp74, which were labeled with 
RAM and then with protein A-gold (15 nm). 

Double Labeling with Antibodies. For double labeling with mAbs Cud 
and CC92, the tissue sections were incubated first with mAb Cud and then 
with RAM IgG-gold (10 urn) diluted to 1/10 or 1/20 in PBS. The sections 
were fixed with 1% glutaraidehyde, and free aldehyde groups quenched with 
ammonium chloride (50 mM in PBS) before incubation with mAb CC92 
and, subsequently, with RAM lgM (15 run) diluted 1/10-1/20 in PBS. For 
double labeling with either anti-GMPe.l or anti-PDl serum and mAb 
CC92, the sections were incubated first with either serum, labeled with 
protein A-gold (10 nm), fixed with glntaraldehyde, and quenched with am- 
monium chloride before incubation with mAb CC92. Labeling of mAb 
CC92 was visualized directly using RAM IgM-gold (15 urn) or RAM fol- 
lowed by protein A-gold. For double labeling with anti-p58 serum and mAb 
CC92 the sections were incubated first with the antibody to p58, labeled 
with goat anti-rabbit IgG-gold (15 urn), fixed with glutaraldehyde, and 
quenched with ammonium chloride, before incubation with mAb CC92 and 
subsequently with RAM IgM-gold (10 urn). 

All the gold-labeled sections were air-dried and stained in 3 % uranyl 
acetate for 6 min and with 1% lead citrate for 45 s in a nitrogen atmosphere, 
before viewing in a Phillips 301 electron microscope at 60 KV electron ac- 
celeration voltage. 

Other Procedures 

The metabolic labeling of NRK cells, preparation of cell extracts, im- 
munoprecipitations, gel electrophoresis, and immunoblotting were per- 
formed as previously described (Bonifacino et al., 1985; Barriocanal et 
al., 1986; Alcaide et al., 1992). The time courses of the redistribution 
of gp74, p58, GMPe.I, GMPt.I in response to BFA, [AIF4]-, low tempera- 
rares and nocodazol, were studied by quantifying the effects of the drugs 
on groups of I00 cells stained and studied by immunofluorescence mi- 
croscopy. 

Other Reagents 

Tetrachloroanric acid, trisodium citrate, polyethylene glycol (20,000 tool 
wt), paraformaidehyde, Tween 20, ammonium chloride, aluminium chlo- 
ride, and sodium fluoride were from Merck (Darmstadt, FRG); glutaralde- 
hyde (25% in water) was from Fluka (Buchs, Switzerland); Triton X-l14 
and fetuin were from Sigma. 

Results 

Antibody CC92 Recognizes a 74-kD 
Membrane Glycoprotein 

Since antibody CC92 failed to immunoprecipitate or react 
with the antigen on immunoblots, the characterization of the 
antigen was achieved by photoaflinity labeling using [t251] 
SASD conjugated to the CC92 antibody. When [t25I] SASD 
antibody was incubated with ceils fixed-permeabilized with 
methanol at room temperature for 5 s, a 74-kD protein (gp74) 
was radiolabeled (Fig. 1, lane/). The specificity of the reac- 
tion was shown by the lack of labeling when the incubation 
was performed in the presence of a 200-fold molar excess of 
unconjugated antibody (Fig. 1, lane 2) but not by excess of 
an unrelated IgM (not shown). The same protein was labeled 
by [t25I] SASD-CC92 (Fab')2 fragments (Fig. 1, lane 5) and 
the reaction again was inhibited by performing the incuba- 
tion in the presence of a 200-fold molar excess of uncon- 
jugated CC92 antibody (lane 6). The weaker reaction of 
gp74 with [~25I] SASD-CC92 (Fab')2 fragments than with in- 
tact [~25I] SASD-CC92 IgM, is probably due to the more 
extensive cross-linking and consequent inactivation of the 

Figure L Antibody CC92 recognizes a 74-kD membrane glyeopro- 
tein. NRK cells fixed-permeabilized for 5 s with methanol were in- 
cubated with the [~25I]-labeled SASD-CC92 antibody conjugate 
and the affinity-labeled proteins analyzed by SDS-PAGE and auto- 
radiography (lane 1). Labeling as in lane 1 but incubation per- 
formed in the presence of a 200-fold molar excess of unconjugated 
antibody CC92 (lane 2). Digestion of labeled gp74 with Endo H 
(lane 3) and with N-glycanase (lane 4). gp74 (*) radiolabeled by 
[125I]-labeled SASD-CC92 F(ab')z-conjugated fragments (lane 5). 
Labeling as in lane 5 but in the presence of a 200-mol excess of 
cold CC92 antibody (lane 6). The protein marked with the arrow- 
head corresponds to SASD cross-linked F(ab')2 CC92 fragments, 
separated by the reducing conditions used in the electrophoresis. 
Partition of gp74 between the Triton X-114 (lane 7) and the aqueous 
(lane 8) phases. The top and bottom of the gels are marked with 
arrows. 

fragments by SASD as suggested by the weaker fluorescent 
staining of cells incubated with CC92 (Fa~2 treated with 
SASD (not shown). This might explain the presence of a 
strong 47-kD band (Fig. 1, lanes 5 and 6) which showed the 
molecular weight expected for IgM (Fab')2 fragments pro- 
duced by pepsin digestion (Pascuai and Clem, 1992) and 
comigrated with [mI] SASD-CC92 (Fab~2 fragments (not 
shown). 

Analysis of the sensitivity of gp74 to endo H and N-gly- 
canase digestion revealed that the protein contained fewer 
N-linked high-mannose residues than complex N-linked car- 
bohydrates (Fig. 1, lanes 3 and 4). The polypeptide backbone 
had an apparent molecular weight of 34 kD, indicating a sur- 
prisingly high number of complex carbohydrates in gp74 (see 
Discussion). Finally, incubation of gp74 with Triton X-114 
at 37°C (Bordier, 1981) resulted in complete partitioning of 
the protein into the detergent phase (Fig. 1, compare lanes 
7 and 8), indicating that gp74 was a membrane glycoprotein. 

gp74 Is Localized in the Golgi Complex and Punctate 
Structures Clustered in the Golgi Area 

NRK cells fixed-permeabilized with cold (-20°C) metha- 
nol, when incubated with the antibody to gp74 displayed the 
fluorescence pattern shown in Fig. 2 A. There was an intense 
staining of a large reticulum, located at one of the poles of 
the nucleus, and numerous punctate structures distributed in 
its vicinity. The reticulum was identified as part of the Golgi 
complex by double staining of cells with antibodies to gp74 
and to the Golgi integral membrane proteins GMP,.~ (com- 
pare Fig. 2, A and B) and GMP,.j (not shown). As expected 
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Figure 2. Cellular distribution of gp74. NRK cells double stained 
with antibodies to gp74 (.4) and GMP¢_~ (B), to gp74 (C) and PDI 
(D) and to gp74 (E) and p58 (F). Note the staining of the Golgi 
reticulum and punctate structures by gp74, the localization of the 
Golgi to the area of partial ER (i.e., PDI) exclusion and the different 
distributions of gp74 and p58. Bars, 15 #m. 

for the Golgi, the reticulum was located in the area of partial 
ER exclusion as seen in cells double stained for gp74 and the 
ER marker protein disulphide isomerase (see Fig. 2, C and 
D). Moreover, the distribution of gp74 was markedly differ- 
ent from that of the IC marker p58 which stained a 
granuloreticular structure which was spread beyond the 
Golgi area (Saraste and Svensson, 1991) and stained the 

Golgi complex with less intensity than gp74 (Fig. 2, compare 
E and F). 

EM Studies Localizes gp74 to the cis-most Golgi, 
Smooth Tubulo-vesicular Structures and Discrete 
Zones of  the ER 

The localization of gp74 within the Golgi complex was stud- 
ied at the ultrastructural level on intestinal goblet cells, 
which display a highly polarized Golgi complex between a 
well developed ER, on the cis side, and clusters of mucin 
droplets, on the trans side. The polarization of the Golgi 
complex was demonstrated by the complete segregation of 
simple O-linked glycans (GalNaco~-O-Ser/Thr) in the cis- 
Golgi from sialylated saccharides in the trans-Golgi, in cells 
double labeled with the mAb Cu-1 (15 nm gold) and Limax 
flavus lectin (8 nm gold), respectively (Fig. 3 A). The distri- 
bution of gp74 within the Golgi complex was localized to a 
compartment opposite to the trans-Golgi, as demonstrated 
by the segregation of the antibody to gp74 (15 nm gold) from 
the Limax flavus lectin (8 nm gold) (Fig. 3 B). Furthermore, 
gp74 (15 nm gold) showed partial colocalization both with 
the cis/middle-cisterna marker GMPc-, (10 nm gold) (Fig. 3 
C) and the simple O-linked glycans in the cis-Golgi (not 
shown). A detailed comparison of the distributions of gp74 
and GMPc-~ revealed that gp74 was slightly more cis than 
GMPc-~ (Table I A). The cisterna housing gp74 was fre- 
quently swollen and displayed the fenestrated morphology 
characteristic of the cis-most cisterna (Fig. 3 B) (Rambourg 
et al., 1979; Rarnbourg and Clermont, 1990). The data was 
consistent with the accumulation of gp74 in the cis-most 
Golgi (i.e., CGN). 

In NRK cells gp74 also accumulated in the cis side of the 
Golgi (Fig. 4 A). The distribution of gp74 outside the Golgi 
complex was further studied by EM in these cells also la- 
beled for the ER marker protein disulphide isomerase (PDI) 
and the IC marker p58. The studies, performed in the ab- 
sence and presence of cycloheximide (not shown), showed 
that gp74 was localized in clusters at discrete and separate 
ER foci (Figs. 4, B and G), as well as in long tubules (Fig. 
4, D and E) and 50-60 nm vesicles (Fig. 4 F). The areas 
of ER (Fig. 4 B) and some of the tubules and vesicles labeled 
with gp74 were frequently found to contain PDI (Fig. 4 C, 
E, and F). Moreover, gp74 overlapped partially with the IC 
marker p58 in the ER foci (Fig. 4, G and H) and in electrolu- 
cent pleomorphic structures with a light electrodense core 
(Fig. 4 I). A quantitative analysis of the gp74 and p58 distri- 
butions indicated a preferent localization of gp74 in the Golgi 
and of p58 in the ER (Table I B). 

Changes in gp74 and p58 Distn'butions 
with Temperature Shifts 

The concentration of gp74 in the CGN and its presence in 
ER and tubulovesicular structures suggested the possibility 
that gp74 was a protein that cycled between the Golgi com- 
plex and the ER. Furthermore, the partial overlapping be- 
tween the distributions of gp74 and the IC marker p58 sug- 
gested that the two proteins may use the same pathway of 
cycling. To test this possibility, the distributions of gp74 and 
p58 were compared in ceils incubated at 37, 20, and 15°C, 
temperatures that alter the transport through the exocytic 
pathway (Saraste et al., 1986; Kuismanen and Saraste, 1989; 
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Figure 3. Localization of gp74 within the Golgi complex. Lowicryl sections of rat goblet celB. (A) Labeling of the cis (antibody to "In 
antigen, 15 nm gold), and trans (sialic acid residues labeled with Limax flavus lectin/fetuin, 8 nm gold) sides of the Golgi complex. (B) 
Segregation of gp74 (antibody CC92, 15 nm gold) and sialic acid residues (Limax flavus lectin/fetuin, 8 nm gold). (C) Distribution of 
gp74 (antibody CC92, 15 nm gold) and GMPc-1 (antibody 15C8, 10 nm gold), respectively. Note the slightly cis localization of gp74 (ar- 
rowheads) with respect to GMPcq (arrows). (D) Distribution of gp74 (antibody CC92, 10 nm gold, small arrows) and p58 (antibody to 
p58, 15 nm gold,/arge arrows): note the similar location of both antigens and their segregation into different clusters. (E) Distribution 
of p58 throughout the cis-Golgi (arrowheads) and ER cisternae. G, Golgi complex; M, mucin droplets; mr, mitochondria; N, nucleus; 
PM, plasma membrane. RER, rough endoplasmic reticulum. Bars, 0.5/~m. 
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Figure 4. Localization of gp74 outside the Golgi complex. Lowicryl sections of NRK ceils (A-C, G-/) and ultra-thin cryosections of rat 
enteroeytes (D-F) labeled for gp74 (A-C, G-L 10 nm gold; D-F, 15 nm gold), PDI (A-C, 15 nm gold; E and F,, 10 nm gold) and p58 
(G--L 15 nm gold). (A) Note the clusters of gp74 and PDI in the cis side of the Golgi (G). (B and C) Observe the foci distribution of 
gp74 clusters through the ER cisternae labeled with PDI (arrows). (D and E) Clustering of gp74 within long tubules that contain PDI 
(E, arrows). (F) Vesicle labeling by gp74 and PDI (arrow). Labeling of ER cisteruae (G), sacks (H; arrows mark the contour of tubules 
ending in a sack) and a pleomorphic electrolucent structure (1) by clusters of gp74 and p58 (arrows) and gp74 alone (arrowheads). Bars: 
(A-F, H and I) 200 nm; (B and G) 500 run. 

Schweizer et al., 1990). Comparison of cells incubated at 
370C with cells incubated at 20°C revealed no significant 
effect of the low temperature on the gp74 distribution (com- 
pare Figs. 2 E and 5 A). In contrast, the incubation at 200C 
resulted in a dramatic accumulation of p58 in the Golgi com- 
plex (compare Fig. 5 B with Figs. 2 F and 5 A). However, 
in cells incubated at 15°C, gp74 was found to stain less the 
Golgi complex and to overlap more extensively with p58 
than at 370C (Fig. 5, compare C to F). The distribution of 
gp74 at 15°C was similar to that of p58 in cells incubated at 

37°C, as shown also by EM studies that localized the two 
proteins in ER foci and electrolucent pleomorphic vesicles 
(data not shown). Finally, the change in gp74 distribution 
was also in contrast with the insensitivity of the resident cis- 
Golgi protein, GMPc.~, to incubation at 15°C temperature 
(Fig. 5 G). 

The results identified gp74 as a putative itinerant Golgi 
protein. They suggested that at 20°C transport from the 
Golgi to the IC was slowed down resulting in the retention 
of p58 in the Golgi, and at 15°C transport from the IC to 
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Table I. Comparison of the Distributions of gp74, the 
cis-Golgi Markers GMPc-1 and Tn, and the IC Marker p58 
through the Golgi and ER 

Antigen 

A - 1  +1 +2 +3 +4 +5 

gp74 26 + 2  30 ± 3  18 5 : 2  5 5 :1  
p58 7 ± 1 11 ± 3 2 5 :1  - 

GMPo-I 4 5 :1  11 5 :1  13 ± 2  2 5 :1  
TN 30 ± 3 39 ± 4  29 ± 2  8 5 : 2  

- -  i 

- -  w 

B Endoplasmic Golgi 
Reticulum complex 

gp74 4 5 : 1  6 4 5 : 8  
p58 10 5:1  19 ± 2  

GMPc-I 0.2 5: 0 . l  29 ± 2 
Tn 0.3 ± 0.1 98 5 : 3  

The distribution of the antigens was studied by counting the gold particles on 
micrographs from Lowicryl sections of rat goblet cells immunostained as 
indicated in Fig. 3. (.4) Distribution of antigens within the Golgi. Individual 
Golgi eisternae were numbered in a cis to trans direction from +1 to +5. 
Position - 1 corresponds to gold particles found in pre-Golgi dements adjacent 
to the cis-most cisterna (+ 1). (B) Distribution of antigens between the Golgi 
and the ER in rat goblet cells, 

the Golgi was blocked (Schweizer et al., 1990; Saraste and 
Svensson, 1991) causing the retention of gp74 and p58 in the 
IC. The codistribution of gp74 and p58 at 20 ° and 15°C also 
suggests that both proteins use the same Golgi-ER/IC cycling 
pathway. 

BFA Induces the Translocation of gp74 to p58 
Positive Vesicles 

Studies in cells treated with BFA have shown marked differ- 
ences in the redistribution of cis-Golgi and IC proteins, with 
the cis-Golgi proteins translocated to the ER (Lippincott- 
Schwartz et al., 1989; 1990; Doms et al., 1989; Ulmer and 
Palade, 1989; Reeves and Banting, 1992; Alcalde et ai., 
1992) and the bulk of p58 retained in what appears to be IC- 
derived or transport elements (Lippincott-Schwartz et al., 
1990; Saraste and Svensson, 1991). The apparent cycling of 
the Golgi gp74 through the IC made it interesting to study 
if its response to BFA was influenced by its access to IC ele- 
ments. In cells treated for 10-15 min with BFA the cis-Golgi 
marker GMP~kt showed a uniform distribution consistent 
with its translocation to the ER (Alcalde et al., 1992) (Fig. 
6 A). The bulk of gp74 was however found in p58 positive 
punctate structures scattered throughout the cytoplasm (Fig. 
6, compare B and C). Studies of the BFA-treated cells by EM 
confirmed the disappearance of the Golgi complex (not 
shown) and the presence of gp74 in pleomorphic vesicles (av- 
erage large axis 540 nm) that devoid of the ER marker PDI 
(Fig. 7, A and B) frequently contained p58 (Fig. 7, C and D). 
In addition, as in untreated cells, gp74 was also localized in 
discrete foci within the membrane of swollen ER cisternae 
(Fig. 7, A and C) (see Discussion). 

The Golgi Elements Stained by gp74 and GMP~_~ Are 
Reassembled at Different Rates upon Removal of BFA 
A previous study on the reassembly of the Golgi complex in 
cells pretreated with BFA has shown that the removal of the 

drug was followed by the rapid translocation of GMPc., 
from the ER into vesicle-like structures, but that reassembly 
of the cis-Golgi was a much slower process that required 
nearly 1 h (Alcalde et al., 1992). The different redistribution 
of gp74 and GMPc-t in response to BFA and the EM obser- 
vation that gp74 and GMPc.~ are probably in distinct cis- 
Golgi compartments made it interesting to compare the reas- 
sembly of the Golgi by following the distributions of gp74 
and GMP~.~. The reconstruction of the Golgi elements 
stained by gp74 (Fig. 6 D) occurred between 8 and 10 min 
after removal of the drug, while GMPo.~, though trans- 
ported out of the ER, was retained in vesicle-like structures 
for an hour before its incorporation into the Golgi (see Fig. 
6, F and G). The rapid incorporation of glf/4 into a Golgi 
reticulum and the lag between the release of GMPo_, from 
the ER and its incorporation into Golgi elements are all con- 
sistent with the location of gp74 and GMPo.~ in distinct 
Golgi compartments which are reassembled at different rates 
(Alcalde et al., 1992) (see Discussion). 

[AIF,1" Induces the Redistribution of gp74 from the 
Golgi to p58 Positive Vesicles in Cells That Show No 
Change in the Distribution of Golgi Resident Proteins 

Previous studies have shown that non-clathrin-coated vesi- 
cles are involved in the transport of materials between the ER 
to and through the Golgi complex (Malhotra et aI., 1989; 
Orci et al., 1986, 1989; Seralini et al,, 1991; Peter et al., 
1993) and that stabilization of their coats by [AIF4]- results 
in vesicle accumulation and inhibition of transport (Melan- 
con et al., 1987; Beckers et al., 1987; Beckers and Balch, 
1989; Donaldson et al., 1991; Peter et al., 1992). 

Since gp74 appeared to cycle between the Golgi complex 
and the IC, we sought to confirm its itinerant character by 
studying its distribution in cells treated with [AlF4]-. Con- 
trol experiments included [AlF4]--treated cells stained for 
the immobile Golgi proteins GMPc.~ and GMPt-t as well as 
for the itinerant IC p58. As shown in Fig. 8, cells that were 
treated with 50 #M [AlF4]- for more than 20 mi/I, when 
double stained for gp74 and either GMPc.~ or GMP,.1, dis- 
played gp74 in punctate structure clustered in the Golgi area 
and GMPc.] and GMP,.I in intact Golgi reticulums (Fig. 8, 
compare A to C). In cells double stained for gp74 and p58 
it was noted that incubations with [AlF4]- for periods 
shorter than 20 min resulted in concentration of p58 in the 
Golgi complex (compare Figs. 2 F with 8, E and G). How- 
ever, in incubations longer than 20 min [AlF4]- caused the 
disappearance of the Golgi staining and the appearance of 
punctate structures which were stained by gp74 (Fig. 8, H 
and I). The punctate structures were identified by EM as 
40-70 nm electrodense vesicles (Fig. 8 J). Again, the results 
were consistent with the itinerant character of gp74 (see Dis- 
cussion). 

[AIFd- Does Not Interfere with the Redistribution of 
gp74 in BFA-treated Cells but Delays the Translocation 
of Golgi Resident Proteins to the ER 

It has been reported that [A1F4]- blocks the BFA induced 
transiocation of cis-Golgi proteins to the ER (Donaldson et 
al., 1991) and the redistribution of the procoat component 
/~-COP (Ktistakis et al., 1992). We thus studied the effect of 
[A1F4]- on the redistribution of gp74 in cells treated with 
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Figure 5. Redistribution of gp- 
74 and p58 in ceils incubated 
at low temperatures. NRK 
cells were incubated at 20"C 
for 2 h (,4 and B) or at 15°C 
for either 30 min (C and D) or 
2 h (E-G). Cells double 
stained for gp74 (A, C, and E, 
rhodamine channel) and p58 
(B, D and F,, fluorescein chan- 
nel) and single stained for 
GMPc-1 (G). Note the reten- 
tion of gp74 and p58 in the 
Golgi of cells incubaW.d at 
20°C (A and B) and their 
gradual redistribution to gran- 
ular structures in ceils in- 
cubated at 15°C (C-F). Ob- 
serve that the distribution of 
GMPc.~ is not affected by the 
low temperature incubation 
(G). (H) Time courses of the 
redistributions of gp74 and 
p58 at 15°C and 20°C: per- 
centage of cells showing 
colocalization of gp74 and p58 
at different temperatures. 
Bars, 15/~m. 

BFA. Preincubation of the cells in 50 #M [AIF4]- for 10 
min did not prevent the translocation of the protein to 
vesicle-like structures (Fig. 9, A and B) though markedly 
delayed the disassembly of Golgi elements stained by 
GMPo_I (Fig. 9, C and D), ot-mannosidase (Fig. 9, E and F) 
or GMPt_~ (for the time course of translocation of the four 
proteins see Fig. 9 (G and H). 

The gp74 Undergoes a Rapid Redistribution in 
Response to Microtubule Depolymerization 

Previous studies have shown that the Golgi complex under- 

goes a relatively slow disorganization upon changes in mi- 
crotubule organization, thus implicating microtubules in the 
maintenance of the Golgi structure and its centrosomai local- 
ization (Kupffer et al., 1982, 1983; Wehland et al., 1983a,b; 
Sandoval et ai., 1984; Turner and Tartakoff, 1989; Kreis, 
1990; Corth6sy-Theulaz, 1992). Microtubules have also 
been implicated in the traffic of vesicles that shuttle between 
the ER, IC and Golgi complex (Lippincott-Schwartz et ai., 
1990; Saraste and Svensson, 1991). The effect of microtu- 
bule disruption on the distribution of gp74 was examined in 
cells that were treated with 20 #M nocodazol and, then, dou- 
ble stained for gp74 and the Golgi resident proteins GMPc-1 
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Figure 6. Changes in gp74 distribution upon addition and removal of BFA. NRK cells were incubated for 10 min with 1/zg/ml BFA. (A) 
Cell stained for GMP¢_m. (B and C) Cell double stained for gp74 (B) and p58 (C). Note the diffuse cytoplasmic staining of the cell stained 
for GMP~q (compare 6 A and with Fig. 2 B) and the colocalization of gp74 and p58 to punctate structures (B and C). Cells incubated 
for 70 min with 1/~g/ml BFA and then for 10 min in drug-free medium were stained for gp74 (D) or GMPcq (E). Time courses of the 
redistribution of gp74 (t~) and GMP~.~ (B) upon removal of BFA: ceils displaying the proteins in punctate structures (F) and in fitlly recon- 
structed Golgi complexes (G). Note that the fast rise in gp74-positive punctate structures is followed by a rapid decline that coincides 
with the assembly of Golgi elements. Observe that GMPc-1 is slowly released from the ER and is not incorporated into Golgi elements. 
Bars, 15/zm. 

and GMPt_I. Depolymerization of microtubules (Fig. 10, A 
to C) had a rapid and dramatic effect on the distribution of 
gp74 which disappeared from the Golgi and was detected in 
numerous punctate structures scattered throughout the cyto- 
plasm (Fig. 10, D, H, L, F, J, and N). In contrast, the resi- 
dent proteins GMP,_~ (Fig. 10, E, 1, M) and GMP~.t (Fig. 
10, G, K, O) remained in cis- and trans-Golgi elements and 
drifted with them upon their disruption. The results impli- 
cate microtubules in the cycling of gp74 which appeared to 
be unable to return to the slowly disintegrating Golgi com- 
plex. In this respect, it is interesting to note that pretreatment 
of cells with [A1F4]- prevented the effects of nocodazol on 
both the redistribution of gp74 and the disruption of Golgi 
elements (Fig. 11) (see Discussion). 

Discuss ion  

Using a monoclonal antibody raised to rat liver membranes 

we have identified a novel CGN membrane protein that cy- 
cles through the ER/IC. The antibody recognizes a glycopro- 
tein of 74 kD (gp74) that has a polypeptide backbone of 
34 kD. 

The high content in N-linked complex carbohydrates, 
though unexpected, is not novel as proteins resident in the 
early Golgi (Yuan et al., 1987; Gonatas et al., 1989) and ER 
(Peter et al., 1992) have been reported to have complex car- 
bohydrates. It is likely that proteins located in cis compart- 
ments acquire complex carbohydrates by virtue of their cy- 
cling through or escaping to the Golgi stacks where reside 
the enzymes involved in the processing of simple to complex 
carbohydrates (Kornfeld and Kornfeld, 1985; Pelham, 1991; 
Peter et al., 1992). This is consistent with the observations 
that decreasing but significant levels of gp74 are detected in 
the second and third cisternae of the Golgi stack (see Ta- 
ble I B). 

Immunofluorescence microscopy studies show that the an- 
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Figure 8. Redistribution of glf/4 and p58 in response to [AIF4]-. NRK cells were treated for 30 rain with 50/zM [A1F4]- and double stained 
for gp74 (A, fluorescein channel) and GMPc-t (B, rhodamine channel). Note the relocation of gp74 to punctate structures clustered in the 
vicinity of the Golgi elements stained by GMPc.t. (C) Percentage of cells that incubated with 50/zM [AIF4]- for the indicated times and 
stained for gp74 (~), GMPc.~ (u), or GMPt-~ ([]) showed intact Golgi elements. Cells treated for 10 min (D and E), 20 rain (F and G), 
or 40 min (Hand I) with 50/~M [A1F4]- and double stained for gp74 (D, F,, and H, rhodamine channel) and p58 (E, G, and L fluorescein 

channel). (J) EM of cells treated as in H and I; vesicles loaded with g16"/4 (gold 10 nm) and p58 (gold 15 nm). (K) Time course of the 
redistribution of p58 in cells treated with 50 tim [AIF4]-. Percentage of cells displaying preferential accumulation of p58 in gp74 negative 
(n) or positive punctate structures ([]) and in Golgi elements (a). Bars: (A and B) 15/~m; (D-I) 15/~m; (J) 100 nm. 

tibody to gp74 strongly stains the same reticular structure 
visualized by antibodies to the Golgi resident membrane pro- 
teins GMP¢., and GMPt_t (Yuan et., 1987), indicating that 
the bulk of gp74 is in the Golgi complex. Studies on the dis- 
tribution of gp74 within the Golgi complex, performed by 
immunogold EM, show that gp74 is located in a compart- 
ment opposite the trans-Golgi that contains sialylated pro- 
teins (Roth et al., 1985, 1986) and suggests that gp74 is ex- 
pressed in the cis-Golgi. ~Its position cis to GMP~.~, a 
marker of the cis/middle cisternae (see Table I) and codistri- 
bution with the Tn antigen, GalNacot-O-Ser/Thr, seen in gly- 
coproteins that are not transported beyond the early cis- 
Golgi (Takahashi et al., 1988), suggests that gp74 is located 

in the cis-most Golgi. This conclusion is also supported by 
the localization of gp74 in cisternae with the fenestrated mor- 
phology characteristic of the first Golgi cisterna (Rambourg 
et al., 1979) which is part of the CGN (Lindsey and Ellis- 
man, 1985; Rambourg and Clermont, 1990; Mellman and 
Simons, 1992). Furthermore, the rapid redistribution of 
gp74 upon addition and removal of BFA is also consistent 
with its retention in the CGN (Alcalde et al., 1992). 

In addition to the Golgi complex gp74 is also localized in 
numerous punctate structures which, though clustered in the 
vicinity of the Golgi, are not stained by cis- and trans-Golgi 
resident markers. At the EM level, the gp74 localized outside 
the Golgi complex is found as foci within the ER cisternae, 

Figure Z Localization of gp74 in cells treated with BFA. Lowicryl sections of NRK cells incubated for 10 rain with BFA and double stained 
for g1574 (15 nm gold) and PDI (10 tun gold) (.4 and B) or for glf/4 (10 nm gold) and p58 (15 nm gold) (C and D). (.4) Clusters of glf/4 
labeling the membranes of swollen ER cistemae loaded with PDI and of large pleomorphic vesicles lacking PDI and ribosomes (*) are 
visible. (B) Vesicle loaded with gp74 (the arrows mark the contour of the vesicle). (C and D) Labeling of ER membranes (/arge arrows) 
and of pleomorphic vesicles with membranes that lack ribosomes (*) by gp74 and p58. ER membranes decorated with ribosomes are marked 
with three small arrows and glycogen rosettes with arrowheads. Bars, 500 nm. 
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Figure 9. [AIF4]- does not retard the redistribution of gp74 in cells 
treated with BFA. NRK cells incubated in normal medium stained 
for gp74 (A), GMPc-1 (C), or c~-mannosidase II (E). Cells in- 
cubated for 10 min with 50 tzM [AIF4]- before continuing the in- 
cubation for 10 min with 1 ~g/ml BFA, stained for gp74 (B), 
GMPc_~ (D), or c~-mannosidase II (F). Percentage of cells that 
preincubated for 10 min with 50 /~M [AIF4]- and then for the 
indicated times with 50 tiM [AIF4]- and 1 ttg/ml BFA, when 
stained for gp74 (t3), GMPc.~ (.), c~-mannosidase II ([]), or 
GMPt.ffm) showed intact (G) or disassembled Golgi complexes 
(H). Bars: (A-F) 15 #m. 

in smooth tubules, large pleomorphic vesicles with smooth 
surfaces and electrolucent lumens (378 urn) and small vesi- 
cles (60-75 urn). The CGN has been described as the part 
of the Golgi complex constituted by the first cisternae and 
an attached network of tubules (Lindsey and EUisman, 1985; 
Rambourg and Clermont, 1990; Mellman and Simons, 
1992), though the characterization and determination of the 
extension and connections of the tubular components of the 
CGN remains to be rigorously defined (Rothman and Orci, 
1992; Mellman and Simons, 1992). In view of its localiza- 
tion in the cis-most Golgi and vesiculotubular structures and 
evidence that it cycles through the ER/IC (see below) it is 
likely that gp74 resides most of the time in the CGN. It is 
also important that the large pleomorphic and small vesicles 
that host gp74 frequently contain the itinerant IC protein p58 
(Saraste and Svensson, 1991) and the KDEL-tagged PDI, 
proteins that also cycle between the ER/IC and the Golgi 
complex and suggests that these structures could be involved 
in the cycling of gp74 between the ER/IC and the CGN. 

The comparison of the cellular distributions of gp74 and 
the IC p58 was particularly interesting as they both appear 
to be itinerant proteins. The observation that the majority of 
the gp74 and p58 molecules are segregated in cells incubated 
at 37°C, codistribute in the Golgi at 200C and overlap in the 
IC at 150C suggest that both proteins cycle between the 
ER/IC and CGN. The results suggest that at 200C p58 can 
leave the IC and is retained in the Golgi, probably due to a 
slowdown of the transport from the Golgi to the IC. In con- 
trast, at 150C the two proteins appear to leave the Golgi com- 
plex and are retained in the IC by the blocking of the trans- 
port from the IC to the Golgi (Saraste et al., 1986; 
Kuismanen and Saraste, 1989; Schweizer et al., 1990; 
Saraste and Svensson, 1991). 

The relation between the ER and the IC remains unclear. 
The IC has recently been renamed the trans-endoplasmic 
reticulum network (Hauri and Schweizer, 1992), a term that 
stresses the existing evidence of its morpholog'cal and func- 
tional connections with the ER and considers ~he IC as the 
sum of the transport outposts of the ER. In this respect it is 
unclear whether the tubular structures believed to constitute 
the IC (Schweizer et al., 1988; Saraste and Svensson, 1991) 
form a network separated or continuous with the ER cister- 
nae. The ER foci that contain clusters of gp74 and p58 could 
correspond to the transport outposts of the ER, but it is not 
clear if they are part of the IC. The dramatic redistribution 
of gp74 and p58 into pleomorphic vesicles upon addition of 
BFA and the detection of gp74/p58 foci in the ER of these 
cells, suggests that gp74 was trapped in IC elements distinct 
from the ER foci, and that these may not be part of the IC. 
The relocation of gp74 to p58 positive vesicular structures 
in response to BFA might reflect the continuous access of this 
Golgi protein to the IC, a possibility that is supported by the 
observation that the resident protein GMPc.~ is, in contrast, 
translocated to the ER (Alcaide et al., 1992). It is, however, 
unclear why the bulk of gp74 is retained in structures that 
contain p58. It has been suggested that BFA blocks the 
anterograde transport between the ER/IC and the Golgi 
(Lippincott-Schwartz et al., 1990a; Orci et al., 1991). How- 
ever, since we do not observe any decrease in the staining 
of gp74/p58 positive vesicles on prolonged incubations with 
BFA, it is likely that the drug also blocks the transport from 
IC elements to the ER. If the retrograde transport is blocked, 
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the observation that the translocation of resident Golgi pro- 
teins to the ER continues in cells containing gp74 localized 
to vesicular structures (Alcalde et al., 1992) would support 
the possibility that proteins can be translocated directly from 
the Golgi to the ER, probably through tubules that emerge 
from the Golgi (Lippincott-Schwartz et al., 1990). 

BFA has also been a useful tool in the study of the 
transport-related phenomenon of Golgi assembly, which 
upon removal of the drug has been shown to proceed in a cis 
to trans direction (Alcalde et al., 1992). The observation that 
the Golgi reticulum stained by gp74 assembles rapidly upon 
removal of the drug is again consistent with the retention of 
gp74 in the CGN. The differences between the rates of as- 
sembly of the Golgi elements containing gp74 (8-10 min) 
and GMP~.~ (1 h; Alcalde et al., 1992) is consistent with 
EM data indicating that gp74 and GMPc-~ are localized in 
different Golgi compartments (Table I A). The possibility 
that these differences are due to the asynchronous return of 
gp74 and GMPc-t to a Golgi pattern is less likely as the 
Golgi elements stained by gp74 are assembled within 8 to 10 
rain after removal of BFA and, within the same period of 
time, GMP0.~ was released from the ER, even though the 
Golgi dements stained by GMPc.1 were only assembled af- 
ter 1 h. 

The redistribution of gp74 to vesicles in [AlF4]--treated 
cells is again in contrast with the absence of any effect on the 
distribution of GMPc.1 and also supports the idea of gp74 is 
an itinerant protein. It is interesting that [AIF4]- treatment 
causes the rapid disappearance of p58 from vesicle-like 
structures and accumulation in the Golgi complex but that, 
in a subsequent phase, the protein is relocated to gp74- 
positive vesicles. The early effect probably reflects the rapid 
consumption of uncoated vesicles and/or an increase in the 
coating of Golgi membranes resulting in the slowdown of 
vesicle budding and retention of the protein in the organdie. 
The accumulation of gp74 and p58 in vesicles after a lag of 
20 min, is consistent with their loading into slow budding 
transport vesicles that are unable to lose their coats and fuse 
with the acceptor organdies (Melan¢on et al., 1987). 

It has previously been reported that [AlF4]-  blocks the 
BFA induced translocation of Golgi proteins to the ER, and 
interferes with the disassembly of the Golgi complex, by 
securing the coats attached to Golgi membranes (Donaldson 
et al., 1991; Ktistakis et al., 1992). The fastening of coats 
to Golgi membranes could decrease the mobility of mem- 
brane proteins, increase the stability of the organdie, and re- 
sult in the inhibition of the vesicle-mediated transport 
(Melan¢on et al., 1987; Stow et al., 1992). Such a mecha- 
nism would explain the slow translocation of GMPo.~, 
GMP,.~, and a-mannosidase to the ER in the cells pretreated 
with [AlF4]- and the lack of effect of [AlF4]- on the redistri- 
bution of gp74 to vesicle-like structures reflect the itinerant 
character of gp74 and its ability to escape from coated mem- 
branes that retain resident proteins with high efficiency. 

Finally, the rapid dispersion of gp74 into punctate struc- 
tures upon microtubule depolymerization is also distinct 
from the response of resident Golgi membrane proteins. The 
involvement of microtubule motors in vesicular transport 
(Vale and Goldstein, 1990; Vallee and Shpetner, 1990; Bliek 
and Meyerowitz, 1991) and the translocation of gp74 to dis- 
perse punctate structures suggest that the cycling of gp74 is 
disorganized in the absence of microtubules. The dispersion 

is, however, also consistent with the possibility of a rapid dis- 
ruption of the gp74 containing compartment as microtubules 
have also been implicated in maintaining the integrity and lo- 
calization of the Golgi complex (Kupffer et al., 1982, 1983; 
Wehland et al., 1983a,b; Sandoval et al., 1984; Turner and 
Tartakoff, 1989; Kreis, 1990; Corthtsy-Theulaz, 1992) and 
the gp74-stained reticular structure shows discontinuities 
that are in sharp contrast with the integrity of Golgi elements 
stained by cis- and tran-resident membrane proteins. Since 
previous results have shown that in cells treated with BFA the 
disassembly of the Golgi complex proceeds in a cis to trans 
direction (Alcalde et al., 1992), we speculate that microtu- 
bule depolymerization might cause the rapid disruption of a 
highly fragile CGN and initiate the collapse of the entire 
Golgi complex. 

It is interesting that whereas [AIF4]- promotes the slow 
redistribution of gp74 to vesicles in cells with intact microtu- 
bules it inhibits the rapid redistribution of the protein that 
follows microtubule depolymerization. The inhibitory effect 
could result from extensive coating and stabilization of the 
Golgi membranes that may inhibit vesicle budding and/or 
Golgi disruption in the absence of microtubules. 

We do not know the function of gp74. Among the mam- 
malian Golgi proteins reported in the literature gp74 shows 
a similar distribution and cycling behavior to the 23-kD 
KDEL receptor (Lewis and Pelham, 1992; Tang et al., 
1993). The KDEL receptor retrieves luminal ER proteins 
from later stages of the secretory pathway and has been in- 
volved in the regulation of the retrograde flow (Lewis and 
Pelham, 1992). A quite distinct signal (KKXX or KXKXX) 
has been identified on the cytoplasmic taft of the adenovirus 
E3/19K and other resident ER membrane proteins, suggest- 
ing an equally specific receptor and the possibility that it 
would act to retrieve protein molecules that escape the ER 
(Jackson et al., 1990). The accumulation ofgp74 in the CGN 
and its cycling through the ER/IC suggests that could be in- 
volved either in the retrieval of ER proteins or in regulating 
the retrograde flow. We are presently examining these possi- 
bilities. As the scarcity of accepted marker proteins is a ma- 
jor limitation to studies on the structure and function of the 
cis-most Golgi (i.e., CGN), new markers like gp74, used in 
conjunction with other markers of the IC should enable bet- 
ter definition of the boundaries between the CGN and IC and 
characterize their structures and dynamics. It is likely that 
from such studies and from the understanding of the mecha- 
nisms that regulate the cycling of proteins between the IC and 
Golgi complex a more complete picture of their function and 
relationships will emerge. 
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Figure 11. [AIF4]- delays the redis- 
tribution of gp74 and the disruption 
of the Golgi complex in cells treated 
with nocodazol. (A) NRK cells in- 
cubated for 30 rain with 20 pM 
nocodazol, stained for gp74. (C) 
NRK cells incubated for 10 rain with 
50/~M [AIF4]- before continuing the 
incubation for 30 min with 20 ~M 
nocodazol, stained for gp74. (B and 
D) Percentage of cells that incubated 
as in A (B) or C (/9) and stained for 
gp74 (t2), GMPc-1 (HI), or GMPt-1 
(In) displayed intact Golgi complexes. 
Bars, 15/zM. 
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