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We carry out a self-consistent analytical theory of unipolar current and noise properties of metal–
semiconductor–metal structures made of highly resistive semiconductors in the presence of an
applied bias of arbitrary strength. By including the effects of the diffusion current we succeed in
studying the whole range of carrier injection conditions going from low level injection, where the
structure behaves as a linear resistor, to high level injection, where the structure behaves as a space
charge limited diode. We show that these structures display shot noise at the highest voltages.
Remarkably the crossover from Nyquist noise to shot noise exhibits a complicated behavior with
increasing current where an initial square root dependence~double thermal noise! is followed by a
cubic power law. ©2003 American Institute of Physics.@DOI: 10.1063/1.1525863#
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I. INTRODUCTION

Metal–semiconductor–metal structures have been
fundamental and applied interest since the birth of the ph
ics of semiconductor devices. Here we concentrate on
relevant case of high resistivity semiconductors where me
usually form ohmic or injecting contacts.1 A common feature
of these structures is that carrier transport is mainly limi
by diffusion, with thermionic emission playing a negligib
role. Furthermore, when a bias voltage is applied to th
structures, they can behave either as a linear resistor~if car-
rier injection from the contacts is negligibly small! or as
nonlinear space charge limited device~if carrier injection
from the contacts is extremely high!.2 Therefore, these struc
tures still offer excellent opportunities to study current no
properties induced by diffusion noise in a variety of transp
conditions.

The present knowledge of the noise properties of th
structures can be summarized as follows. At thermodyna
equilibrium, the low frequency spectral density of curre
fluctuations,SI

eq(0), is given by

SI
eq~0!5

4kBT

Req
, ~1!

in agreement with the Nyquist theorem.3 Here, Req is the
equilibrium device resistance,T the bath temperature, andkB

the Boltzmann constant.

a!Electronic mail: ggomila@pcb.ub.es
3750021-8979/2003/93(1)/375/9/$20.00
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For departures from equilibrium, when an external b
~voltage or current! is applied, the Nyquist relation no longe
holds and deviations from Eq.~1! are expected. These devia
tions have been studied in detail in two limiting case
namely: ~i! when the structure behaves as a space cha
limited diode ~with a strong inhomogeneous profile of th
free carrier density!,4–6 and ~ii ! when the structure behave
as a linear resistor~with a homogeneous profile of the fre
carrier density!.7

In the former case~i! the currentI displays a quadratic
dependence on the applied voltageV ~Mott–Gurney law! I
5bV2, whereb is a sample dependent parameter. Acco
ingly, the low frequency spectral density of current fluctu
tions was found to take the form4–6

SI~0!5
8kBT

Z~0!
516kBTb1/2I 1/2, ~2!

whereZ(0) is the low frequency impedance~differential re-
sistance!. Considering the form of the first equality, this typ
of noise was called double thermal noise.8 The crossover
between Nyquist noise and high voltage space charge lim
conditions is summarized by the formula

SI~0!54kBT
V

I S dI

dVD 2

. ~3!

Highly resistive structures under strong carrier injection co
ditions have been used to successfully test experimen
this prediction.8

In the latter case~ii ! the structure behaves as a line
resistor and displays a resistanceR5L/(qAmn̄), whereA is
© 2003 American Institute of Physics
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the cross sectional area,q the carrier charge,m the mobility,
and n̄ the free carrier density~the bar denotes an averag
with respect to fluctuations!. When the applied bias is hig
enough to make the transit time due to drifttT5L2/mV sig-
nificantly shorter than the dielectric relaxation timetd

5e/qmn̄, wheree is the dielectric permittivity, the structur
was predicted to exhibit shot noise7 with

SI~0!52q Ī . ~4!

The above results show two completely different beh
iors for the nonequilibrium current noise properties
metal–semiconductor–metal structures depending
whether the stationary free carrier distribution is strongly
homogeneous~double thermal noise! or homogeneous~shot
noise!. The physical reason for such a discrepancy of beh
ior is an intriguing problem at present. In the authors opin
its origin can be traced back to the theoretical difficulty
accounting for the effects of the diffusion current on t
nonequilibrium current fluctuations in the whole range
different carrier injection conditions.

The purpose of the present paper is to overcome su
difficulty by developing an analytical theory for the nonequ
librium current noise properties of metal–semiconducto
metal structures made of highly resistive semiconductors
includes properly the effects of the diffusion current. T
theory is valid in the whole range of physical conditio
going from homogeneous to highly inhomogeneous free
rier distributions, thus allowing us to describe in a contin
ous manner the current spectral density as a function of
applied bias for different levels of current injection.

The article is organized as follows. Section II describ
the system under study. Section III presents the phys
model used to describe the low frequency transport and
nonequilibrium current fluctuation properties. Section IV
devoted to analyzing the charge transport properties of
device, while Sec. V analyzes its nonequilibrium curre
noise. In particular, we analyze the effects of space charg
the shot noise properties. Section VI draws the main con
sions of our investigation. Two appendixes provide the m
technical derivations.

II. SYSTEM UNDER STUDY

The system under study consists of an active reg
made by a nondegeneraten-type semiconducting materia
sandwiched between two metal plates that act as cont
The semiconductor is assumed to be lightly doped wit
donor densityND . All donors are assumed to be ionized
the considered temperatures~the case of ap-type semicon-
ductor can be analogously considered!. To justify a one-
dimensional electrostatic treatment in thex direction and to
neglect the effects of the boundaries in they andz directions
the transversal size of the sample is assumed to be m
larger than the characteristic Debye screening length.
metals are assumed to form ohmic injecting contacts so
the voltage drop inside them, or equivalently, the cont
resistance, can be neglected to a good approximation.
cordingly, when a voltage is applied to the structure, all
potential drop takes place inside the semiconductor betw
Downloaded 14 Jun 2010 to 161.116.168.169. Redistribution subject to A
-
f
n
-

v-
n
f

f

a

–
at

r-
-
e

s
al
e

e
t
on
u-
st

n

ts.
a
t

ch
e
at
t
c-
e
en

positionsx50 andx5L, and the contacts can be exclude
from consideration. Depending on the parameter values
the contacts homogeneous as well as inhomogeneous c
tions will be studied.

We assume that inelastic scattering processes w
phonons are dominant, so that carrier thermalization at
bath temperature holds at any point. Accordingly, for t
applied bias considered here no carrier heating takes p
which allows us to use a field independent electron mobi
and diffusivity.

III. PHYSICAL MODEL

A. Charge transport

The transport approach appropriate to describe the e
trical properties of the metal–semiconductor–metal struct
under study consists of the standard drift-diffusion curr
equation self-consistently coupled to the Poisson equa
and supplemented by appropriate boundary conditions.
current drift-diffusion equation reads1

Ī

A
5qn̄~x!mĒ~x!1qD

dn̄~x!

dx
, ~5!

where A is the cross sectional area,n̄(x) the local carrier
density,m the mobility ~assumed to be field independen!,
Ē(x) the local electric field, andD the diffusion coefficient
~related to the mobility through Einstein’s relationD/m
5kBT/q, where nondegenerate statistics are assumed!. The
bar denotes an average with respect to fluctuations. The P
son equation is as usual

dĒ~x!

dx
5

q

e
@ND2n̄~x!#, ~6!

with e the static dielectric constant of the semiconducti
material. The appropriate boundary conditions to descr
the ohmic injecting contacts are given by~see Appendix A!

n̄~0!5n̄~L !5nc , ~7!

where the carrier density at the contactsnc is independent of
the applied bias and given by~see Appendix A!

nc5NC expS 2
qfbn

kBT D . ~8!

Here,NC is the effective density of states in the conducti
band andfbn the metal–semiconductor barrier height. F
values of the contact parameters such asnc5ND the station-
ary free carrier distribution is homogeneous, while for valu
such asnc.ND there is net carrier injection from the con
tacts and the stationary carrier distribution is inhomog
neous.

Equations~5! and ~6! can be combined into a singl
equation for the electric field

2D
d2Ē~x!

dx2
2mĒ~x!FdĒ~x!

dx
2

qND

e
G5

Ī

A
~9!

subject to the boundary conditions
IP license or copyright; see http://jap.aip.org/jap/copyright.jsp



t
he

re
op
Th

c

is

in
a

la

w

the
ted
ill
ous
n-

cts
i-

e

in

th
ter
tor,
ing
ent
free
ely

ec.

d
b-

tic
al
t
ical
ri-

in-
ar-
-

377J. Appl. Phys., Vol. 93, No. 1, 1 January 2003 Gomila, Cantalapiedra, and Reggiani
dĒ~0!

dx
5

dĒ~L !

dx
5

q

e
@ND2nc#. ~10!

B. Current fluctuations

The only source of fluctuations in the system is related
the diffusion of carriers inside the structure. Accordingly, t
low frequency noise properties~beyond 1/f noise! can be
described through a drift-diffusion-Langevin model.9–11 It
consists of the linearized version of the transport model p
sented in the previous section supplemented by the appr
ate Langevin source which describes the diffusion noise.
current equation in explicit form reads9–11

dI ~ t !

A
5qmĒ~x!dnx~ t !1qn̄~x!mdEx~ t !

1qD
ddnx~ t !

dx
1

dI x~ t !

A
, ~11!

wheredEx(t) anddnx(t) refer to the fluctuations of electri
field and number density at pointx, respectively, anddI (t)
refers to the fluctuations of the total current. In Eq.~11!,
consistently with the low-frequency limit taken here, the d
placement current is neglected. Moreover,dI x(t) is a Lange-
vin source associated with the fluctuations of the current
duced by the diffusion of carriers inside the sample. It h
zero mean and low frequency spectral density,9–11

2E
2`

1`

dt^dI x~ t !dI x8~ t8!&5K~x!d~x2x8!, ~12!

with brackets indicating ensemble average, and

K~x!54qAkBTmn̄~x!54Aq2Dn̄~x!, ~13!

where in the last equality use is made of the Einstein re
tion. Finally, the linearized Poisson equation is given by

ddEx~ t !

dx
52

q

e
dnx~ t !, ~14!

and the linearized boundary conditions by~see Appendix A!

dnL~ t !5dn0~ t !50. ~15!

In analogy with the case of the transport equations,
can combine Eqs.~11! and~14! into a single equation for the
electric field fluctuation of the form

dI ~ t !2dI x~ t !

A
52D

d2dEx~ t !

dx2
2mĒ~x!

ddEx~ t !

dx

2mdEx~ t !FdĒ~x!

dx
2

qND

e
G , ~16!

with boundary conditions

ddEx~ t !

dx U
0

5
ddEx~ t !

dx U
L

50. ~17!
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IV. STATIONARY SPATIAL PROFILES AND
CURRENT–VOLTAGE CHARACTERISTICS

In this section we present the results concerning
transport properties for the structure under study calcula
from the model presented in Sec. III A. In particular we w
focus on the transition from homogeneous to inhomogene
conditions. To this end, for given properties of the semico
ductor we will vary the contact density fromnc5ND ~corre-
sponding to an homogeneous condition with ohmic conta!
to valuesnc.ND ~corresponding to inhomogeneous cond
tions with injecting contacts!. Note that for given properties
of the semiconductor, varyingnc corresponds to varying the
contact barrier heightfbn , i.e., changing the material for th
metal contact.

In what follows, the results are conveniently discussed
terms of the values of two dimensionless parameters

l 5L/LD and a5nc /ND , ~18!

with LD5(kBTe/q2ND)1/2 being the Debye screening leng
associated with the semiconducting material. The paramel
depends only on the properties of the given semiconduc
while a depends also on the contact properties, thus be
independent variables. Since the nonequilibrium curr
noise properties of devices with homogeneous stationary
carrier density profiles were shown to change qualitativ
when passing froml ,1 to l .1, in what follows we will
treat these two cases separately.

A. Homogeneous solution

For a51 (nc5ND), and any value ofl, there exists a
trivial homogeneous solution to the model presented in S
III A, namely

n̄~x!5ND , Ē~x!5
Ī

qAmND
. ~19!

Accordingly, the current–voltage (I –V) characteristics are
linear and satisfies Ohm’s lawĪ 5V/Rbulk , with Rbulk

5L/(qAmND) being the semiconductor resistance.

B. Inhomogeneous solution

For a.1 (nc.ND) the solution to the model presente
in Sec. III A is spatially inhomogeneous and cannot be o
tained in a closed analytical form. Only under asympto
conditions it is possible to derive approximate analytic
expressions2,6 ~see also Appendix B!. In any case, an exac
solution of the transport model can be obtained by numer
integration following this procedure. One first solves nume
cally Eq. ~9! subject to the boundary conditions in Eq.~10!.
Having found the electric field profileĒ(x), the carrier den-
sity profile n̄(x) is obtained from the Poisson equation~6!.
Furthermore, for a given value of the currentĪ , the applied
voltage is found asV̄5*0

LdxĒ(x), from where theI –V char-
acteristic is obtained.

In what follows we discuss the main features of the
homogeneous solution. To this end we will consider two p
ticular values ofl, namelyl 50.1 andl 550, as representa
tive examples of the behavior observed forl ,1 and l .1,
IP license or copyright; see http://jap.aip.org/jap/copyright.jsp
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respectively. In both cases, the values ofa will be varied in
the range 1<a<104, thus allowing us to explore both
slightly and highly inhomogeneous situations.

Figure 1 displays the stationary free-carrier density p
files for l 50.1 for several values of the applied bias and
a510 @Fig. 1~a!# anda5104 @Fig. 1~b!#. As can be seen, th
stationary free carrier density profiles are inhomogene
and depend on the applied bias value.

For a510 @Fig. 1~a!# the degree of inhomogeneity i
rather small being at most about 1%, and the free car
density departs more significantly fromnc the lower the
value of the applied voltage. The physical reason for t
behavior can be found in the fact that the characteristic
bye screening length of the sample, roughly determined
nc , i.e., LDc5(kBTe/q2nc)

1/2, is larger than the sampl
length L ( l c[L/LDc5 la1/250.13101/2;0.3) thus not al-
lowing the free carrier density to relax from its contact val
nc to its bulk valueND , i.e., to the local charge neutral stat
Similar behaviors appears for other values ofl ,1 and a
.1 as long asl c5 la1/2&1.

For a5104 @Fig. 1~b!# the degree of inhomogeneity be
comes appreciable being up to about a factor of 10. For
applied biasn̄(x) is almost symmetric and departs signi
cantly from nc . The reason is that the characteristic Deb
screening length, which can be roughly approximated
LDc , is shorter than the sample lengthL ( l c5 la1/250.1
3102510), thus allowing relaxation towards the char
neutral state. However, due to the small value ofl c , com-
plete relaxation ofn̄(x) to the valueND is not reached. At
increasing applied bias, a net injection of carriers takes p

FIG. 1. Free carrier density profiles normalized to the donor density
several values of the applied bias, forl 50.1 and~a! a510 (l c50.3) and~b!
a5104 ( l c510).
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resulting in an increase of the values ofn̄(x) and in a rather
asymmetric profile. Finally, for the highest applied bias
carrier injection no longer takes place, and the density dis
bution is almost homogeneous with a value close to the c
tact valuenc . Similar behaviors are observed for other va
ues ofl ,1 anda.1 as long asl c5 la1/2.1.

The current–voltage characteristics forl 50.1 and fora
ranging from 1 to 104 are displayed in Fig. 2. Fora<102,
the I –V characteristics are found to remain linear with
resistance given byRc5L/(qAmnc). This linear behavior
can be understood by noting that for these values ofa the
free carrier density profile is quasihomogeneous with a va
approximately equal tonc and almost independent of th
applied bias@see Fig. 1~a!#. Similar behaviors are found fo
other values ofl ,1 anda.1 as long asl c5 la1/2&1. For
a5103 and 104 the I –V characteristics in Fig. 2 display
superlinear behavior in an intermediate range of applied v
ages, while it is linear at the lowest and highest applied b
The resistance at the lowest bias,Rlow , satisfiesRc<Rlow

<Rbulk , since in this range of bias the free carrier dens
profile is almost independent of bias and satisfiesnc<n̄(x)
<ND @see Fig. 1~b!#. Furthermore, the resistance for hig
applied biasRhigh is almost equal toRc , since in this range
of bias the density profiles are almost independent of b
and given byn̄(x);nc @see Fig. 1~b!#. Finally, the superlin-
ear behavior is due to the net injection of carriers tak
place in this bias regime@see Fig. 1~b!# thus resulting in an
increase of the conductivity of the sample. Similar behavi
appear for other values ofl ,1 and a.1 as long asl c

5 la1/2.1.
Let us now consider the case ofl 550. Figure 3 reports

the stationary free carrier density profile fora5103 and sev-
eral values of the applied bias. The qualitative behavior
the profiles is similar to those observed in Fig. 1~b!, since
both cases correspond to situations in whichl c.1 ~in the
present casel c5 la1/25503103/2;1581). The main differ-
ence between these figures is that in Fig. 3 relaxation to
local charge neutral state can take place for low bias, si
the value of l c is high enough. Similar behaviors are o
served for other values ofl .1 anda.1.

The current–voltage characteristics forl 550 and several
values ofa are plotted in Fig. 4. TheI –V characteristics are

r

FIG. 2. Current–voltage characteristics forl 50.1 and several values ofa
~the corresponding value ofl c is displayed for each curve!. The dashed line
corresponds to the homogeneous solution.
IP license or copyright; see http://jap.aip.org/jap/copyright.jsp
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linear at the lowest bias, superlinear at intermediate bias
again linear at the highest bias. This behavior is similar
that reported in Fig. 2 for the curves witha5103 and 104,
since both cases correspond to situations wherel c.1.

In the present case (l .1) one can reach an asymptot
limit for l @1 and a@1 in which the following analytical
asymptotic expression for theI –V curve can be derived~see
Appendix B!:

Ī

I th
;5

1

l

qV

kBT
, 0<

qV

kBT
& l 2

9

8

1

l 3 S qV

kBTD 2

, l 2&
qV

kBT
&a l 2

a

l

qV

kBT
, a l 2&

qV

kBT

, ~20!

where we have definedI th5 lkBT/(qRbulk). Equation ~20!
gives a good description of theI –V curves for l *10 and
a*100, as can be seen in Fig. 4 where the symbols re
sent Eq.~20!.12 Note that in the asymptotic limit, the low
bias resistance is given byRlow5Rbulk , independent from
any contact parameter since at low bias a state of lo
charge neutrality is achieved in the bulk of the sample~see
Fig. 3!. Furthermore, in the intermediate bias regime,
I –V characteristics display a quadratic bias dependence

FIG. 3. Free carrier density profiles normalized to the donor density fl
550 anda5103 ( l c51581), for several values of the applied bias.

FIG. 4. Current–voltage characteristics forl 550 and several values ofa
~the corresponding value ofl c is displayed for each curve!. The dashed line
corresponds to the homogeneous solution. The symbols correspond t
asymptotic expression of theI –V characteristics given in Eq.~20!.
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agreement with the well-known Mott and Gurney law f
space charge transport in diffusive conductors.2 In this bias
range, a strong injection of carriers from the contacts ta
place, as illustrated in Fig. 3. Finally, at the highest voltag
the resistance is given byRhigh5Rc , since the density profile
is almost homogeneous and equal tonc ~see Fig. 3!.

V. CURRENT NOISE PROPERTIES

We characterize the low frequency current fluctuati
properties by means of the low frequency current spec
density defined as

SI~0!52E
2`

1`

^dI ~0!dI ~ t !&dt. ~21!

For the model presented in Sec. III B,SI(0) can be given a
closed analytical expression that takes into account in
exact way the effects of the diffusion current on the noneq
librium current fluctuations and hence is applicable to
whole range of system parameters. Below we discuss s
rately the cases corresponding to homogeneous and inho
geneous stationary density profiles, since they involve ra
different mathematics.

A. Homogeneous stationary profiles

When the stationary profiles are homogeneous, Eq.~16!
consists of a second order differential equation with cons
coefficients. The solution of this equation, as well as an a
lytical expression forSI(0), hasbeen derived recently:7

SI~0!5
4kBT

Rbulk
1K

~l2
22l1

2!

2L2l1
2l2

2

~el1L21!~el2L21!

~el2L2el1L!2

3@l2~el2L11!~el1L21!

2l1~el1L11!~el2L21!#, ~22!

whereK54qAkBTmn̄, and

l1,252
1

2LE
S 16A114

LE
2

LD
2 D , ~23!

with LE5kBTL/(qV). In Eq. ~23! the subscript 1 corre-
sponds to the plus term and the subscript 2 to the mi
term.

For l ,1, Eq. ~22! takes the form7

SI~0!52q Ī coth~qV/2kBT!. ~24!

Equation~24! predicts a standard crossover between Nyqu
noise@Eq. ~1!# and shot noise@Eq. ~4!# for qV/kBT;3. The
physical reason for the appearance of shot noise is the
sence of long range Coulomb correlations due to the fact
the sample lengthL is smaller than the Debye screenin
lengthLD .7

For l .1 the noise properties change considerably. A
cordingly, in the limitl @1 Eq.~22! is well approximated by7

the
IP license or copyright; see http://jap.aip.org/jap/copyright.jsp
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SI~0!5SI
th5

4

l
for 0<

Ī

I th
& l 1/3

2

l 2 S Ī

I th
D 3

for l 1/3&
Ī

I th
& l

2S Ī

I th
D for l &

Ī

I th

, ~25!

whereSI
th5qI th . The above expression gives: Nyquist noi

at low bias (0<qV/kBT& l 4/3), a cubic dependence on cu
rent of noise at intermediate bias (l 4/3&qV/kBT& l 2), and
shot noise at the highest bias (qV/kBT> l 2). The physical
reason for the appearance of shot noise in this case is
vanishing of long range Coulomb correlations because o
drift transit time shorter than both the diffusion transit tim
and the dielectric relaxation time.7

B. Inhomogeneous stationary profiles

When the stationary profile is inhomogeneous, Eq.~16!
consists of a second-order stochastic differential equa
with nonconstant coefficients. To obtain an analytical so
tion of this equation, we use a method developed in R
13–15. The method is based on the fact that

r~x!5dĒ~x!/dx ~26!

constitutes a particular solution of Eq.~16!. On this basis one
can find an analytical expression for the electric field flu
tuationsdEx(t) that solves Eq.~16! and satisfies the bound
ary condition in Eq.~17!.15 From the expression of the elec
tric field fluctuations we evaluate the voltage fluctuatio
dV(t)5*0

LdEx(t)dx. Following a procedure similar to tha
outlined in Ref. 15, the voltage fluctuations can be expres
as

dV~ t !5E
0

L

¹Z~x!dI x~ t !dx, ~27!

with

¹Z~x!5
r~x!

eAD F E
x

L E~j!2ED

r2~j!
e2 q(f(x)2f(j))/kBTdj

1
~EL2ED!

rLrL8
e2 q(V1f(x))/kBTG , ~28!

and

ED5

E
0

L E~x!

r2~x!
eqf(x)/kBTdx1

EL

rLrL8
e2 qV/kBT2

E0

r0r08

E
0

L 1

r2~x!
eqf(x)/kBTdx1

1

rLrL8
e2 qV/kBT2

1

r0r08

.

~29!

Here,f(x) is the electric potential. The function¹Z(x) is
referred to as the impedance field,4,16,17since it satisfies

Z~0!5E
0

L

¹Z~x!dx5S d Ī

dV
D 21

. ~30!
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From Eq. ~27!, the low frequency spectral density of th
voltage fluctuations is given by

SV~0!54Aq2DE
0

L

@¹Z~x!#2n̄~x!dx, ~31!

where use is made of Eqs.~12! and~13!. The low frequency
spectral density of current fluctuations is then evalua
from10

SI~0!5
SV~0!

Z~0!2
, ~32!

Equations~28!–~32! constitute an exact solution of th
noise model presented in Sec. III for the general case o
inhomogeneous stationary profile. They represent the m
result of this article. Note that the solution incorporates
effects of the diffusion current without any approximatio
thus allowing us to investigate the transition from homog
neous to highly inhomogeneous stationary profiles.

In order to evaluate Eqs.~28!–~32! we will use the
steady-state profiles calculated in Sec. IV B. As for the c
of transport we will consider the valuesl 50.1 andl 550, as
representative examples of the behavior observed forl ,1
and l .1.

Figure 5 reports the low frequency spectral density
current fluctuationsSI(0) as a function of the current as ob
tained from Eqs.~28!–~32! for l 50.1 and several values o
a. For comparison the results for the homogeneous case
calculated from Eq.~22!, are also displayed~dashed line!.
We note that for the lowest degree of inhomogeneitya
<102) the nonequilibrium current noise results can be w
approximated by Eq.~24! ~symbols in Fig. 5!. The reason is
that for these values ofa the profiles are quasihomogeneo
with free carrier densitync and with Debye screening lengt
satisfyingl c,1, which are the conditions for the validity o
Eq. ~24!. Similar behaviors are observed for other values
l ,1 anda.1 for which l c,1.

By contrast, for a high degree of inhomogeneity (a
5103 and 104) the results deviate from Eq.~24!, and regions
where the current noise is suppressed below the shot n
limit are observed at intermediate biases values. The

FIG. 5. Low frequency current spectral density normalized toSI th5qI th as a
function of the current normalized toI th for l 50.1 and several values ofa
~the corresponding value ofl c is displayed for each curve!. The dashed line
corresponds to the homogeneous solution. The symbols correspond t
coth-like expression in Eq.~24!.
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values where shot noise suppression takes place are fou
correspond to those applied biases for which significant
carrier injection from the contacts takes place@see Fig. 1~b!#.
The physical origin of the shot noise suppression should
traced back to the correlations induced by the long ra
Coulomb interaction which are active in this range of bi
Similar behaviors are observed for other values ofl ,1 and
a.1 for which l c.1.

Figure 6 reports the low frequency spectral density
current fluctuationsSI(0) as a function of the current as ob
tained from Eqs.~28!–~32! when l 550 and for several val-
ues ofa. For comparison, the results for the homogene
case, as calculated from Eq.~22!, are also displayed~dashed
line!. As can be seen, a qualitative new behavior at interm
diate current values is identified with respect to the homo
neous behavior for all values ofa. The new behavior is
found to tend to a square root dependence on the curren
to cover broader current intervals asa is increased. This fac
can be quantitatively evaluated by means of the follow
explicit expression valid forl *10 anda*100:

SI~0!

SI
th

;

¦

4

l
, 0&

Ī

I th
&

l

18

12A2

l 3/2 S Ī

I th
D 1/2

,
l

18
&

Ī

I th
&S 9

2
a8l D 1/5

8

a4l 2 S Ī

I th
D 3

, S 9

2
a8l D 1/5

&
Ī

I th
&

a2l

2

2S Ī

I th
D ,

a2l

2
&

Ī

I th

~33!

~see Fig. 6 where the symbols correspond to the approxim
expression!. Otherwise, for 1, l ,10 and 1,a,100 the ex-
act result should be used.

The dependence of the noise power as the square ro
the current corresponds to the well known double therm
noise regime found in space charge limited devices4,5 @see
Eq. ~2!#. We note that the double thermal noise behavio
restricted to current values in the rangel /18& Ī /I th

&(4.5a8l )1/5. For higher currents the noise properties de

FIG. 6. Low frequency current spectral density normalized toSI th5qI th as a
function of the current normalized toI th for l 550 and several values ofa
~the corresponding value ofl c is displayed for each curve!. The dashed line
corresponds to the homogeneous solution. The symbols correspond t
approximate expression in Eq.~33!.
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ate from the double thermal noise behavior and start res
bling those corresponding to homogeneous conditions~cubic
current dependence followed by shot noise!. This fact is il-
lustrated in Fig. 7 where we compare the exact results of
present article~continuous line! with those of existing theo-
ries for double thermal noise represented by Eq.~3! ~tri-
angles! for l 550 anda5103. As can be seen by neglectin
the diffusion current, existing theories can only be applied
to bias values below the onset of the cubic region. At appl
bias above this onset, the diffusion current plays a relev
role and the exact theory presented here must be used.
worth remarking that for devices operating under strong c
rent injection conditions (a*104) the quasi-homogenou
behavior predicted at the highest bias can be hardly obse
in practice because of hot-carrier effects.18 However, in the
low current injection regime (1,a&104) this behavior
should be experimentally accessible as discussed in the
lowing suggested example.

C. Example

As an example to illustrate the experimental accessibi
of the theoretical predictions described above we cons
the following particular case. As semiconductor material
consider high resistivep-type CdTe at room temperature wit
a free carrier density~holes! p5108 cm23. These low values
of the free carrier density can be obtained by means
compensation.19 The hole mobility is taken to bem;40
cm2/V s, the effective hole massm* 50.8m0 , wherem0 is
the electron mass, and the dielectric constante510.3e0 ,
with e0 being the vacuum permittivity. The sample length
assumed to beL54 mm and the cross sectional areaA
540 mm2. As metal for the contacts we consider gol
which has been reported to form almost ideal meta
semiconductor junctions on CdTe.20 The value for the Au/
CdTe barrier height for holes, deduced from that for ele
trons, is fbp50.55 V, where use has been made of t
relationship fbp5Eg2fbn with Eg51.48 eV and fbn

50.93 V.20 According to the value offbp the contact density
for holes is pc51010 cm23, where we used thatpc

5NV exp@2qfbp/(kBT)#, with NV51.831019 cm23 being
the CdTe effective density of the states in the valence ban

the

FIG. 7. Electric current~dashed line! and low frequency current spectra
density~solid line! as a function of applied bias forl 550 anda5103. The
different behaviors are schematically indicated. The current is normalize
I th and the spectral density toSI

th5qI th . For comparison the results obtaine
from Eq. ~3! are also displayed as triangles.
IP license or copyright; see http://jap.aip.org/jap/copyright.jsp
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room temperature. The metal contact described above fo
an ohmic injecting contact in the terms described in
present article~see also the end of Appendix A!.

For the set of parameters considered above, we h
LD50.4 mm and LDc50.04 mm, from wherel 5L/LD

510, a5nc /ND5100 andl c5L/LDc5100. Figure 8 dis-
plays the calculated currentI ~right axis! and low frequency
current spectral density~left axis! as a function of the applied
bias. According to the calculations, the predictedI –V char-
acteristic is linear up to bias voltages around 0.6 V. F
higher bias it tends to be quadratic, up toV;300 V, from
where it returns to linearity. Furthermore, the calculated c
rent spectral densitySI(0) displays the Nyquist therma
value up to voltages around 0.3 V. Then, it increases w
voltage according to the double thermal noise behavior u
around 20 V. At further increasing voltages,SI(0) increases
sharply with voltage according to the cubic dependence w
applied current up toV;1 kV, where shot noise appears.
is worth noting that the calculated values of the low fr
quency current spectral density are well inside the range
experimental accessibility~state-of-the-art correlation spec
trum analyzers21 are able to reach noise levels as low
10229 A2/Hz!. Moreover, the electric fields reach maximu
values up toEav5V/L55 kV/cm, which are still below that
for the onset of hot electron effects inp-type CdTe. We con-
clude that such an example shows that the theoretical pre
tions presented in this article are accessible to an experim
tal confirmation.

VI. CONCLUSIONS

We have carried out an analytical theory of transport a
current fluctuation properties in metal–semiconductor–m
structures made of highly resistive semiconductors. T
theory includes the effects of the diffusion current in an ex
way, thus allowing us to study the whole range of physi
conditions concerning the strength of the applied bias and
level of carrier injection from the contacts. It is shown that
the low carrier injection limit for whichl c5L/LDc,1,
whereL is the sample length andLDc the Debye screening
length associated with the free carrier density at the me
semiconductor interfacenc , the structure behaves like a lin

FIG. 8. Electric current~dashed line! and low frequency current spectra
density~solid line! as a function of applied bias for a highly resistivep-type
CdTe metal–semiconductor–metal structure. Parameters: free carrier
sity 108 cm23, sample length 4 mm, cross sectional area 40 mm2, tempera-
ture 300 K, and contact density 1010 cm23.
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ear resistor with low frequency noise properties given
SI(0)52q Ī coth@qV/(2kBT)#. In the intermediate carrier in
jection regime, roughly determined by 1, l c&100, the struc-
ture displays linear-superlinear-linear current–voltage ch
acteristics. In this regime, the current spectral dens
displays a crossover from Nyquist noise to shot noise me
ated by a region depending first as the square root of
current~double thermal noise! and then as the third power o
the current. Finally, under strong carrier injection conditio
l c@1 the standard theory of space charge limited diode
recovered. In this limit the current–voltage characterist
are first linear and then quadratic. Accordingly, the curr
spectral density displays Nyquist thermal noise at low b
followed by double thermal noise at higher applied bias.
suggest that high resistivep-type CdTe is one of the bes
suited materials to provide an experimental test of the th
retical predictions in the small and moderated injection
gimes.
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APPENDIX A: METAL–SEMICONDUCTOR
MODEL CONTACT

In this appendix we justify the boundary conditions us
along the article for both the transport, Eq.~7!, and the noise
properties, Eq.~15!. Following Refs. 1, 22, and 23, the gen
eral boundary conditions for the transport through a met
semiconductor contact read

n̄~0!5
Ī 1I s

0

qAv r
0

, n̄~L !5
2 Ī 1I s

L

qAv r
L

, ~A1!

with v r
0 and I s

0 ~respectively,v r
L and I s

L) being the recombi-
nation velocity and saturation current, respectively, of
contact located atx50 ~respectivelyx5L). The currentsI s

L

and I s
0 are given byI s

05qAv r
0n0

eq and I s
L5qAv r

LnL
eq, where

n0
eq5NCe2 qfbn

0 /kBT, nL
eq5NCe2 qfbn

L /kBT, ~A2!

Here,NC is the effective density of states in the conducti
band andfbn

0 (fbn
L ) is the barrier height at contactx50

(x5L). For the case of ideal metal–semiconductor jun
tions, the barrier heights are given byfbn

0 5fm
0 2x and

fbn
L 5fm

L 2x, with x being the semiconductor affinity an
fm

0 (fm
L ) the work function of the metal located atx50 (x

5L). For highly resistive materials the diffusio
approximation1 can be applied. In this approximation it i
assumed that the current takes values much smaller than
thermionic current, i.e.,Ī !I s . This condition implies14

Ī /I th! Ī s /I th5a/b, where

en-
IP license or copyright; see http://jap.aip.org/jap/copyright.jsp
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b5mA2pNDm*

e
, a5

neq

ND
. ~A3!

In this limit, one can approximate Eq.~A1! by

n̄~0!;
I s

0

qAv r
0

5n0
eq, n̄~L !;

I s
L

qAv r
L

5nL
eq, ~A4!

which for the case of a symmetric structure correspond
the boundary conditions in Eq.~7!. This result also implies
that the resistance of the metal–semiconductor interfac
negligibly small in comparison to the bulk resistance. As
result, the fluctuations generated at the metal–semicondu
interface can be completely neglected. This is equivalen
approximate14

dn0~ t !;0, dnL~ t !;0, ~A5!

in agreement with the boundary conditions in Eq.~15!.
For the concrete example considered in Sec. V C,

hasb5931026!1, which allows us to apply the diffusive
approximation up to currents satisfying the conditionI s /I th

5a/b51.13107, well above the current values required
observe the different behaviors here identified.

APPENDIX B: ASYMPTOTIC TRANSPORT THEORY

In this appendix we derive the asymptotic expression
the I –V characteristics used in Eq.~20! of Sec. IV B. To this
purpose, we start by considering the limit whenl @1. In this
limit, one can neglect the diffusive contribution in Eq.~9!,
thus obtaining a first order differential equation for the ele
tric field of the form

2Ē~x!FdĒ~x!

dx
21G5 Ī , ~B1!

subject to the boundary conditionE(L)5 Ī /a. In Eq. ~B1!,
and along this appendix, we use dimensionless variable
simplify the expressions. Accordingly, we takeĒ→Ē/Eth ,
Ī → Ī /I th , x→x/LD , L→L/LD , Ū(x)→Ū(x)/kBT, where
Eth5(kBTND /e)1/2. Equation~B1! can be easily integrate
betweenx50 andx5L to give the following relation

ĒL1 Ī lnS 12
ĒL

Ī
D 2Ē01 Ī lnS 12

Ē0

Ī
D 5L, ~B2!

whereĒL5Ē(L) and Ē05Ē(0). On theother hand, by us-
ing again Eq.~B1!, one can derive an explicit expression f
the potential energy differenceŪ(x)2ŪL5*L

xĒ(x)dx,
which once evaluated atx50 gives for the applied bias,V
5UL2U0 ,

V̄5
ĒL

2

2
1IEL1 Ī 2 lnS 12

ĒL

Ī
D

2
Ē0

2

2
2IE02 Ī 2 lnS 12

Ē0

Ī
D . ~B3!
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To end up with an explicit expression for theI –V character-
istics, we impose the boundary conditionĒL5 Ī /a in Eqs.
~B3! and ~B2!, thus giving theI –V characteristics in para
metric form:

V̄5

F 1

2a2
1

1

a
1 lnS 12

1

a D2
u0

2

2
2u02 ln~12u0!G

L2F 1

a
1 lnS 12

1

a D2u02 ln~12u0!G2 ,

~B4!

Ī 5
L

F 1

a
1 lnS 12

1

a D2u02 ln~12u0!G , ~B5!

where the parameteru05Ē0 / Ī satisfies the condition 1/a
,u0,1. By further expanding the previous expression
a@1 one then arrives at Eq.~20!.
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