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The diffusion of passive scalars convected by turbulent flows is addressed here. A practical 
procedure to obtain stochastic velocity fields with well-defined energy spectrum functions is also 
presented. Analytical results are derived, based on the’ use of stochastic differential equations, 
where the basic hypothesis involved refers to a rapidly decaying turbulence. These predictions 
are favorable compared with direct computer simulations of stochastic differential equations 
containing multiplicative space-time correlated noise. 

I. INTRODUCTlON 
In spite of being a classical problem in statistical hy- 

drodynamics, the diffusion of a passive scalar convected by 
a random incompressible fluid is still a question of major 
practical interest in a variety of contexts, ranging from 
statistical optics to diffusion controlled chemical reactions 
and spreading of pollutants. After the pioneering work by 
Taylor’ and Richardson’ in the 192Os, and Batchelor3 in 
the 195Os, a large body of literature4 has been devoted to 
the delicate question of defining and computing a turbulent 
diffusion coefficient as a measure of the etfectiveness of 
turbulent mixing. 

Certainly, for homogeneous flows and nonreactive sca- 
lars, one expects that such a turbulent diffusion, whenever 
it exits, will essentially depend on the statistical properties 
of the turbulence. However, there is not a unique approach 
to translate this expectation into analytical terms. Roberts’ 
applied the so-called direct interaction approximation 
(DIA) for one-particle diffusion, to get an expression for a 
turbulent diffusion coefficient, which has to be determined 
self-consistently using the solution of the scalar field itself. 
Kraichnan6 confirmed numerically the consistency of that 
approach using a Lagrangian description appropriate to 
particular prescriptions for two-dimensional (2-D) and 
three-dimensional Eulerian velocity fields. Analytical work 
and closure relations proposed by Saffman’ and McLaugh- 
lin et al.* has been recently generalized by Lipscombe 
et aLg to account for Gaussian turbulent fields defined, not 
necessarily homogeneous and stationary. Finally, the more 
recent antecedent we are aware of reporting on this’subject 
is that of Chechetkin et al,” who deal with non-Gaussian 
fields. 

The perspective we adopt here to address the problem 
of diffusion in random flows is quite different.” Method- 
ologically, the whole approach rests on the use of both 
analytical and simulation techniques presently available to 
deal with stochastic differential equations. We start with an 
auxiliary random scalar field g(r,t), whose temporal evo- 
lution is expressed in terms of a Langevin equation. A 
trivial transformation is further employed to obtain a 
divergence-free, isotropic, stationary, and homogeneous 
stochastic velocity field g( r,t), whose statistical parameters 

(ui, to, and lo, respectively, for its intensity, time, and 
length correlations), are easily identified in terms of the 
originally prescribed ones for 77 (r,t) . Non-Markovian tech- 
niques, specially designed for stochastic equations with 
spatiotemporally correlated multiplicative noise, are finally 
applied to derive an evolution equation for the probability 
density of the dispersed scalar. The dynamics of its lowest- 
order moments then leads directly to the desired diffusion 
coefficient. The great advantage of this procedure is that 
the results for the effective diffusion are in this way ex- 
pressed as an expansion in terms of the statistical param- 
eters of the random velocity field. 

This strategy is further checked through direct com- 
puter simulations of the previously introduced stochastic 
differential equations discretized on a lattice. A particular 
technique that largely facilitates the handling of the auxil- 
iary field n (r,t) consists in simulating its dynamics in Fou- 
rier space, according to a procedure developed recently by 
some of us.l’ A reasonable agreement is found between 
analytical and simulation results, which consistently coin- 
cide in the limit of small correlation times to for slightly 
developed turbulent fields. 

The paper is organized as follows. After these intro- 
ductory remarks, Sets. II and III contain, respectively, 
analytical developments appropriate to the stochastic evo- 
lution for the dispersed scalar and the velocity field. In Sec. 
IV we summarize the results for the effective diffusion, 
after briefly reviewing the basic ingredients of the com- 
puter simulations. Finally, the most technical points of the 
analytical derivations are included in the Appendix. 

II. STOCHASTIC EQUATIONS FOR THE DISPERSED 
SCALAR 

Our starting point is an Eulerian equation of motion 
for the scalar variable Y(r,t) dispersed by a turbulent ve- 
locity field &r,t),13 

aWit) 
p= D V2Y(r,t) -V[g(r,t)Y(r,t)], at 

D is the molecular diffusion coefficient, and the velocity 
field is assumed to be a homogeneous, isotropic, and sta- 
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tionary stochastic quantity defined by its cumulants.‘4 In 
particular, its mean value is taken zero and the second 
cumulant is given by (superscripts stand for vector com- 
ponents ) 

(S’(rl ,t~@(bCd > =R’j(r,s), (2) 

where r= lri--r2] and s= ItI--t21. In addition, Qr,t) is 
assumed to represent an incompressible flow [Vf(r,t) =O], 
so that15 

3Rij(r,s) 
arj =o. (3) 

Unless otherwise stated, summing over repeated indices 
will be employed. 

The next step is to study the temporal evolution of the 
mean value (W (r,t) ) averaged over the realizations of the 
random flow &r,t>, 

aW(r,t>) 
at =DV2WW>) - (V[&d~(r,d I>. (4) 

Actually, taking a S-like initial condition, the averaged 
field (Y (r, t) ) is nothing but the probability density for the 
spatiotemporal distribution of a unit amount of the dis- 
persed scalar. Its first nonzero moment, . ml’(t) = ew,,(r,,)) = s R” d”r r’d(Y(r,t)), (5) 

is then all we need to compute an effective diffusion coef- 
ficient. 

As anticipated in the Introduction, we want to com- 
pare our analytical results with those obtained from direct 
computer simulations of both the dynamics of the random 
flow and that of the dispersed scalar. Note, in passing, that 
this is a clear alternative to the direct simulation of the 
convected trajectory of a Brownian particle, an approach 
that was recently proposed by Drummond et al. l6 Com- 
puter simulations obviously require an appropriate discret- 
ization of the continuous scheme so far introduced. In this 
paper, we choose as a standard grid a 2-D square lattice of 
NxN points with elementary unit spacing A,= A,,= A. 
The updating procedure is advantageously vectorized by 
transforming the 2-D lattice, with positions defined by two 
indices (a&‘), to a one-dimensional array with a single 
index, p = (a - 1) N +p. Shifted periodic boundary condi- 
tions are prescribed to bound the square lattice. ” Needless 
to say that if we also choose to perform all the analytical 
treatment that follows from Eqs. ( l)-( 5) in its discretized 
version, we may gain a wider range of confidence in com- 
paring theoretical and simulation results. This is precisely 
what we propose on what follows, with the clear under- 
standing that the results for the continuous theory will be 
easily recovered, when necessary, taking the limit A-0. 

Starting with this analytical program, Eq. (1) trans- 
forms into 

ay,(t) -= DV;,‘hW +g;,W@L at (6) 

with discrete centered forms for the Laplacian and partial 
derivative operators, 

= -V$'Y;(t). (7) 

In Eq. (7), notation Q stands for a not contracted Y index. 
Analogously, Eq. (4) for the discretized mean value 
(Y,(t)) reads as 

CwJJt) > 
at =DV;,(Y,w) +(g;,(t)g’,(t)). 

Equation (8) is transformed by using the well-known No- 
vikov’s theoremI into 

awpw 
at =DV;yWyW+ s,” W&,(t>~~(W 

= DV;,W,(t>) + s om dt’ R’j(r,,@, 1 t-t’ I) 

(9) 

where the discretized correlation tensor for the random 
flow Rij(rv,u, I t-t’ I ), and the so-called response function 
of the advected scalar SY,( t>/S$ t’) have been conve- 
niently introduced. We recall in this point that in deriving 
Eq. (9)) from Eq. (8) we have assumed that g( r,t) is a 
Gaussian stochastic field. For non-Gaussian flows one 
should have included higher-order cumulants. In any case, 
Eq. (9) must be considered as a valuable approximation 
for non-Gaussian velocity fields if higher-order cumulants 
are small enough, in comparison with RiJ(r,,v, It-t’ I ). It 
is also worth noting that in Eq. (9) we have extended the 
integration limits up to CO, according to the fact that we 
are interested in dealing with a steady diffusive regime. 

The main remaining task consists now in evaluating 
the response function left in Eq. (9). To this end one as- 
sumes that R*j(r ,,o, I t-t’ I ) is a rapid time decaying func- 
tion in units of a correlation time to, which is smaller than 
any other relevant time scale of the system. Then, an ex- 
pansion of the response function in powers of (t-t’) is 
invoked to systematically deal with the non-Markovian dy- 
namics expressed by Eq. (9). This development follows a 
general procedure valid for any prescribed noise 
statistics,lg and since it is of a rather technical nature we 
transfer it into the Appendix. Retaining only ilrst-order 
contributions in (t-t’) and repeatedly summing over the 
lattice indices, an approximate closed equation for the 
probability density (Y,(t)), linear in the autocorrelation 
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tensor, is obtained. By referring to its spatial fluctuations 
?nif (t), a stationary diffusive regime is then identified 
through the usual linear law, 

((Ar>2)=((hX)2)+((Ay)2)=4(D+AD)t, (10) 

where AD is the diffusive convection originated in the tur- 
bulent flow. Explicit expressions for AD, which can be 
traced back to the elementary contributions written down 
in the Appendix, read for the discrete version as 

ADd= 
s 

m dss[R(2*‘2A,s) 
0 

+RC%s)---R(b)], (11) 
where a shorthand notation has been used for the correla- 
tion tensor, 

R(r,s)=$[R”(r,s)+RY”(r,s)]. (12) 
Correspondingly, the continuous version of Bq. ( 11) 
adopts the form 

AD,= 
I 

m ds R(O,s) +4D 
s 

* dssR”(O,s), (13) 
0 0 

in which R” (0,s) =a2R (r,s)/a? 1 r=O’ In deriving Eq. ( 13) 
from Rq. (11) we have used the symmetry properties of 
R(r,s), which imply that R’(O,s) =0.15 

Actually, the first contribution to AD, in Eq. ( 13) is 
easily evaluated as ugto, ui being any of the diagonal com- 
ponents of the equal-time, equal-point correlation tensor 
for the turbulent velocity, i.e., a measure of the turbulence 
intensity. Our previous treatment” was indeed limited to 
that first correction, which can be also viewed as an exactly 
correct limiting case of Robert’s analysis5 for the diffusion 
of a scalar field convected by a very rapidly varying ran- 
dom velocity field. The final output of our approach here is 
that the next term in the correlation time to is evaluated, as 
expressed by Eqs. ( 11) and ( 13), written above. 

To finish our analytical derivation, we only need to 
prescribe precise statistics for the random flow to be used 
in relation with the explicit results of Eqs. ( 11) and ( 13). 
This is exactly the aim of the next section. 

III. STATISTICS OF THE RANDOM FLOW 

As stated in Sec. II, we are interested in generating a 
homogeneous, isotropic, and stationary stochastic quantity 
representing an incompressible statistically well-behaved 
turbulent velocity field defined by its cumulants. In partic- 
ular, the three basic parameters, u& to, and IO are easily 
evaluated in terms of the correlation R (r,s) through their 
standard definitions, 

u;=R(O,O), 

1 m 
to-2 

s 
ds R (0~1, 

uo 0 

1 * 
I,=-2 s 

drR(r,O). 
uo 0 

(14) 

Of particular interest for us is the energy spectrum func- 
tion E(k) representing the density of contributions to the 
kinetic energy on the wave-number axis. Actually, this per- 
mits an alternative evaluation of the turbulence intensity, 
since 

U;= s * dk E(k). 
0 

(15) 

The kind of spectra we are looking for is that proposed by 
Kraichnan,6 which describes a widely distributed band of 
excitations with a peak centered at a well-defined wave 
number k,, 

E(k) cck3 exp( -ak2&). (16) 

To this end we introduce an auxiliary random scalar field 
q(r,t) that satisfies the continuous Langevin equation, 

h(u) 
r-=--(r,t)+exp i12V2 c(r,t), at ( ) 

(17) 

where c(r,t) is a Gaussian white noise of zero mean and 
correlation, 

(18) 

Equations (17) and ( 18) identify the three basic statistical 
parameters of 7 (r,t) : E stands for the intensity of the noise, 
whereas iz and 7, respectively, identify its spatial and tem- 
poral correlation lengths. 

The incompressible random flow f(r,t), in terms of 
which we have derived all the analytical results in the pre- 
ceding section, is then simply obtained, according to 

i 
%w> ar7(r,t) 

&r,t) = [~x(r,t),~y(r,t)] = ----- ___ 
aY f ax 1 * 

(19) 

The statistics of g(r,t) is in this way easily transformed 
from that of q(r,t). In particular, its Gaussian nature fol- 
lows directly from that of [( r,t), since only linear relations 
are involved in the definitions of both fields. The compo- 
nents of the random flow correlation are then expressed as 

R’i(r,s) ==& exp( -$-:) 

X[$nifl’+( l-.Y$)aij], (20) 

where ni stand for the components of the unit vector in the 
r, - r2 direction. Equation (20) verifies general symmetry 
properties, characteristic of homogeneous and isotropic 
turbulence.” Using the above expression in Eqs. ( 12) and 
( 14)) we obtain, for the correlation R (r,s), the result 

R(r,s) =ug exp( -2-i) (l--G;), (211 

where the statistical parameters are given by 
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FIG. 1. Normalized correlation R(r,O) against r for different values of /2. 
Solid lines correspond to Eq. (21) and symbols are simulation results 
obtained with e=20.0, r= 1.0, N=64, A=OS, and At=O.l. The values of 
d are (0) 1.0 and (m) 2.0. The statistics are evaluated over 100 runs 
X250 time steps. 

E 
d=gz 9 

to=r, (22) 
J/2 

lo=+. 

Depicted in Fig. 1 is the behavior of R (r,O) , In what refers 
to the energy spectrum function E(k), following the pre- 
scriptions (17) and (18) given above, straightforward al- 
gebra leads directly to the result 

32&p 
E(k) =?;! exp (23) 

which shows a peak centered at ko= (3~/8)“~1;‘. The 
characteristic shape of the energy spectrum function (23) 
is shown in Fig. 2. 

Obviously, computer simulation of Eqs. ( 17) and ( 19) 
to get the stochastic flow requires their appropriate discret- 

2 - 
I-- --1 

0 0.5 1 1.5 
k 

FIG. 2 Energy spectrum E(k) against the wave number k for different 
values of e. SoIid lines correspond to Eq. (23) and symbols are simulation 
results obtained with r=l.O, ;1=2.0, N=64, A=l.O, and At-0.1. The 
values of E are f@) 10.0 and (I) 20.0. The statistics are evaluated over 
100 runs x 250 time steps. 

ization. As anticipated in the Introduction, the simulation 
of the discrete auxiliary field qy(t) in Fourier space, 
largely facilitates its manipulation. The temporal evolution 
for the discrete wave-number components, ijP,,( t) derived 
from Eqs. ( 17) and ( 18) obeys the Langevin equation2’ 

&/w(t) 
~---=-7111v(t)+exp(-c~,)~~,(t), dt 

where 

c& [ 2--cosF) -cos($)], 

(24) 

(25) 

and $Jt) is a zero mean S-anticorrelated noise,12 such 
that 

For the sake of simplicity, we define in Eqs. (24)-(26) the 
positions in Fourier space by two indices (~,L,Y). Actually, 
the numerical running of these expressions can also be 
vectorized using a single index, k= (p - 1) N+ Y. The great 
advantage of Eq. (24) is that it can be exactly integrated in 
time to give 

rl,,(t+At) =$,(t)exp( -Wd TV&), (27) 

where BP,,(t) are Gaussian random numbers of zero mean 
and correlation, 

G&GQAt)) =* expC -2cJ 

X [ I-exp( l-~)]S,,-J&-~. 

(28) 

Once ?jJt) is obtained, the appropriate transformation 
expressed by Eq. (19) gives, for t&e discrete wave-number 
components of the velocity field &J;,,(t), 

C,(t)=--$sin T +jJt), . ( 1 
(29) 

T&(t) =$ sin F F&(t). 
. ( 1 

Simple algebra2’ leads, for the discrete correlation, 

fnv) g) [ sin2r$) +sin2F)], 

(30 > 

which is symmetrical when permuting m and n, bein ^ _..^ 
r =,(mLfnL)“‘A. From Eq. (30) we can identify thi 
tg:ee basic parameters of the turbulent flow. The results 
for U: and to immediately read as 
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ui=2TG2Aq C exp(-2cPJ[sin2($)+sin2($)], 
P7V 

(31) 
to=7-, 

whereas for Ze we first perform a least-squares fit of 
R(r,,,, ,O> to the continuous result R (r,O), and then, fol- 
lowing Eq. (14), we analytically integrate the obtained fit 
from zero to infinity.” In Fig. 1 we present the obtained 
simulation results for R (r,O), normalized to ui, for two 
different values of the correlation length /2. The continuous 
lines correspond to the result of Eq. (2 1) . As can be seen, 
the correlation length is a convenient measure of the linear 
extent to which the turbulent velocities are appreciablely 
correlated. In what refers to the results for the energy spec- 
trum function, Fig. 2 clearly illustrates that both the sim- 
ulation and the continuous model of Eq. (23) show a well- 
defined peak in the wave-number space. 

Now, respectively, substituting Eqs. (30) and (21) 
into Eqs. ( 11) and ( 13)) we finally end up with systematic 
results for the steady effective diffusion coefficient, ex- 
pressed in terms of the basic parameters u:, to, and lo. 
Explicitly they read as 

2 

- W”2~~~o~WO)l 
(32) , 

for the discrete model or its continuous counterpart 

AD,=z&&*+f&$) ), (33) 
\ ‘0 J 

where U; is that of Eq. (22). Results of Eqs. (32) and (33) 
will be compared in Sec. IV with those resulting from com- 
puter simulations. From this comparison, it is shown that 
the theoretical predictions above make sense, in so much as 
they are consistent with globally positive corrections to the 
diffusion coefficient. 

IV. RESULTS 

After discussing the most important steps of our ana- 
lytical calculation of AD, let us turn now to the numerical 
simulation scheme. Our computer simulation of Eq. (6) is 
runned on a square lattices of NxN points with shifted 
periodic boundary conditions and elementary spacing A. 
The numerical procedure has two main steps: first we con- 
struct the stochastic velocity field Z&(t) with the above 
prescribed properties by means of the auxiliary scalar field 
qP( t).m The initial condition ~~(0) is chosen to corre- 
spond to that of the steady state of qP( t) (understood here 
in a statistical sense). In this way we are sure to be in an 
isotropic and homogeneous velocity steady state from the 
beginning of the simulation. Then, we start the simulation 
of Eqs. (6) and (7) by means of a first-order Euler algo- 
rithm with a time-step integration At, which is small 
enough to ensure the stability of the simulation procedure, 

FIG. 3. Time evolution of the relative dispersion ((Ar)2)-((Ar)2)ref 
from direct numerical simulation of E!q. (34). The straight line corre- 
sponds to the least-squares fit of Eq. (37) between t =5 and t= 30, giving 
A&,=0.4748. Parameter values are D=O.l, E= 15.0, ~=0.1, L= 1.0, 
N=64, A=0.5, and At=O.Ol. The statistics are evaluated over 100 runs. 

‘J$D+At) =YJt> +At[ DV;,%(t) +g;,WS;(t) I, 
(34) 

with the initial condition 

I, =b(N-1)/2,/L, (35) 

which represents a S-like initial condition at the center of 
the lattice. Now under the influence of the molecular dif- 
fusion D and the velocity field, the scalar spreads over all 
the lattice. At each time step we measure the variance 
((Ar)“), and from its behavior in time one could directly 
evaluate the effective diffusion coefficient as 

Instead, we prefer to compute AD by referring to the vari- 
ance in a purely diffusive system ( ( Ar) “) ref through a least- 
squares fit to 

(37) 

in the steady diffusive regime. In this way, the eventual 
nonsteady behavior of ( ( Arj2) at short and long times is 
better handled. Actually, some remarks are worth men- 
tioning in relation with the temporal evolution of the vari- 
ance (Fig. 3). At the beginning, the dispersed scalar needs 
a certain time lag to become effectively convected by the 
turbulent fluid. This gives rise to a transient behavior from 
an initial regime dominated by pure molecular diffusion to 
a later one, where turbulent dispersion predominates. On 
the other hand, as time increases, finite size effects begin to 
play a role, and the dispersion of the passive scalar is 
bounded due to the periodic boundary conditions pre- 
scribed here. As a consequence, AD would artificially de- 
crease to zero. Between these two regimes, AD is evaluated 
according to the fit of Eq. (37). In Fig. 3 the least-squares 
fit interval ranges from t=5-30, including 500 simulation 
points. 

Shown in Fig. 4 are the different results for AD vs E. 
Symbols correspond to numerical simulations, whereas dis- 
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FIG. 4. Convective contribution AD to the effective diffusion coefficient 
against E. For notation and parameter values, see the text. 

Crete and continuous lines represent theoretical predic- 
tions, respectively, associated with Eqs. (32) and (33). In 
order to check the consistency of our discretization proce- 
dure with respect to the continuum limit, two different 
lattice configurations have been considered. Respectively, 
they correspond to N= 64 with A =0.5 (hereafter referred 
to as grid A) and N= 128 with A=0.25 (grid B). We use 
open symbols and dashed lines for grid A while full sym- 
bols and dotted lines stand for grid B. The two selected 
values of the time correlation 7 are 0.1 (triangles) and 0.01 
(circles). Numbering lines from bottom to top, the odd 
and even ones correspond respectively to r=O.l and 0.01. 
For all Fig. 4 we have fixed D=O. 1 and ;1= 1.0. 

In what refers to the statistics amassed, averages over 
100 and 25 runs have been, respectively, used for grids A 
and B. Both averages do not quantitatively differentiate in 
accuracy and are reliable enough, given the spatial average 
explicitly included in Eq. (5). Typical errors, estimated 
from individual runs, lie in the interval 0.01-0.02 and give 
a maximum uncertainty for AD below 8%. 

The first significant conclusion refers to the time cor- 
relation to, which is directly r. As it is clearly seen, for 
small enough values of to as those selected here, numerics 
entirely follow in the direction of theoretical predictions, 
either discrete or continuous. Actually this fact is in perfect 
agreement with the basic hypothesis involved in the theo- 
retical scheme. 

Second, and more important, is the question of how 
the continuum limit is approached. When looking at the 
quantitative agreement between simulation and theoretical 
predictions, the discrete approach always shows the best 
accordance with numerics, as was expected. Actually, the 
differences between both schemes observed in Fig. 4 are 
easily understood when comparing the first term on the rhs 
of Eqs. (32) and (33), since the correlation R (r,s) at the 
origin r=O or to first neighbors A could be significant dif- 
ferent, especially for low values of ;1 relative to the elemen- 
tary spacing A (see Fig. 1). In order to diminish such 
differences, one is left with two possibilities: either one 
prescribes a smaller value for A, while properly increasing 
the number of mesh points iV, so that the continuous sys- 
tem has the same size, or one fixes a higher value for il. 

Unfortunately, the magnitude of AD for such high corre- 
lation lengths would fall under the simulation accuracy 
itself. Actually, the first choice corresponds to consider 
grid B instead of grid A, as we have done in Fig. 4. In any 
case, the continuum limit is approached as the dimension- 
less quotient A/A increases. 

In summary, the question we have here addressed is 
that of the effective diffusion of passive scalars in turbulent 
velocity fields. In addition, a precise procedure to obtain 
stochastic flows with well-known energy spectrum func- 
tions is also presented. From the theoretical point of view, 
the basic hypothesis involved, both in a continuous and 
discrete model, refers to a fast correlation time of the sto- 
chastic field, allowing a controlled expansion for the effec- 
tive diffusion coefficient. These predictions are favorably 
compared with direct computer simulations of stochastic 
differential equations containing multiplicative space-time 
correlated noise discretized on a lattice. 
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APPENDIX: FORMAL EVALUATION OF RESPONSE 
FUNCTIONS 

The formal integration of Eq. (6) leads to 

‘u,(t) ==Y,(O) + s t 
0 

N DV;J’,W +g;,WE;“;(s> 1. 
(Al) 

Deriving Eq. (Al) functionally, we get an implicit equa- 
tion for the response function (0 <t’ <t), 

s 
t a 
o " am) ~ [ DV&,'~,W 

(AZ) 

Therefore 

6Y,(t> $ $$&/ (DV$Y/,+g;& / p 
f sg;(t’> ’ (A3) 

* 

which adopts the form of a differential equation, can be 
solved iteratively with the initial condition 

(A4) 

The final outcome of this algebra is a series development of 
the response function in powers of (t--t’).19 Retaining 
only the terms independent of the turbulent field c;,(t) up 
to first order in (t-t’ ) they read as 
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with 
(A5) 

ag ‘,,(t) %Jt) = aY,(t> ay,(t) 

-g j,(t) & DV$W). w3 Y 
With the help of Eq. (7), Eq. (A6) transforms into 

M&(t)=- DV~,Y,(t)V~~n~+V~~Y,(t)DV2, (A7) 

Now results (A5) and (A7) for the response function are 
directly replaced in the integral part of Eq. (9) to finally 
obtain the explicit evolution equation for the probability 
density (YP( t) ) . In doing so, the sort of terms that finally 
come from the coupled average (g’,,,(t)&(t)) fall into the 
following two categories: 

(4 

RXXk*,d I f--t’ I 1 (-~;&L$~w) 

=R”(r,,,It-t’I>(-V~~y~[-Vi;ci\Y~(t)]) 

x ($+l,b-&l,&)%(t) > 

1 
==J$ ((~~+l,O-~~L-ll,O)~~~~XX(~~,y+l~ It--‘1 > 

X~,+l(~)-~XX(~,,,y-l,~t--‘I P+Wl) 
1 

=R-YA> I t--t’ I 1 s VP+,,, +qL-,v--24&J 

x W,(t)), (A81 

and similar terms for Ru and RXY (which is identical to 
R)“). These discretized expressions reduce in the continu- 
ous limit to 

RYO, 1 t---t’] > 
a2W(r,t> > 

dx2 ; (A9) 

Operating as above and avoiding to write an extremely 
lengthy expression for the discrete model, we get, in the 
continuous limit, 

4D(t-t’)RX”(O, I t-t’] ) 
a2Wr,t> > 

ax2 , (All) 

including the second derivative of RXX(r, 1 t-t’ I ), at the 
origin, and similar expressions for RYY and RXy. 
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