Bioelectromagnetism

Basic Concepts

- 1- True or False: The magnitude of the force exerted on one charge by another charge is inversely proportional to the square of the distance between the two charges.
- 2- True or False: By definition, the *electric field strength* at point P is given by $\mathbf{E} = \mathbf{F}/\mathbf{Q}_{\text{test}}$.
- 3- True or False: The units of **E** are volts (V).
- 4- True or False: Because **E** fields exert forces on charges, work is required to move a charge from one point in space to another in the presence of an **E** field. The work done per unit charge is called *electric potential difference*.
- 5- True or False: When **E** does not vary with time, or when it varies slowly with time the frequency is low.
- 6- True or False: When charges are moving, they exert another kind of force on each other that is not along a line between the charges. Magnetic fields are used to account for this other kind of force.
- 7- True or False: Moving charges produce an electric current. This current **I** produces a magnetic field **B**.
- 8- True or False: Maxwell's equations, which are a fundamental set of equations that form the framework of all of classical electromagnetic field theory.
- 9- The shape of the wave as a function of time is called the *waveform*.
- 10-True or False: The simplest type of electrical waveform is constant with time. This is called *direct current* or *DC* (also called *static* fields).
- 11- True or False: Many applications in electromagnetics use waves that are single-frequency sine waves. These waves are often called *alternating current* or AC waves, because the current alternates from positive to negative and back again. A major characteristic of AC waves is that the electric and magnetic fields can

generate each other and are therefore coupled and cannot be analyzed separately.

- 12-Electromagnetic radiation of frequency f, when waves propagate in free space or in the human body wavelength is maintained. The wavelength does not depend on the medium where spreads.
- 13-Consider a signal of frequency f=2.45 GHz. Calculate its lambda in free space. Place it in the spectrum.
- 14-Consider a signal of frequency f=433 MHz. Calculate its lambda in free space. Place it in the spectrum.
- 15- What are ISM frequency bands?

EM Propagation in Biological Media

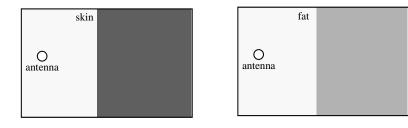
1. A plane wave travels from semi-infinite medium 1 to semi-infinite medium 2 and propagates normal to the boundary between the two media.

Show that the reflection coefficient of a plane wave with normal incidence on a flat boundary is given as:

$$\Gamma = \frac{\sqrt{\varepsilon_{r1}} - \sqrt{\varepsilon_{r2}}}{\sqrt{\varepsilon_{r1}} + \sqrt{\varepsilon_{r2}}}$$

2. A plane wave travels from semi-infinite air medium to semi-infinite skin medium. Find the reflection and transmission coefficients assuming an incident signal of f=1.8 GHz. Take into consideration permittivity and conductivity values from Table I.

ELATIVE FERMIT.	ATIVE PERMITIVITY $\varepsilon_{\rm R}$, CONDUCTIVITY σ (S/M) of the bo				
Frrequency		skin	fat	muscle	bone
10 MHz	ε _r	361.66	13.77	170.73	36.77
	σ	0.19	0.03	0.62	0.04
433 MHz	ε _r	46.08	5.57	56.87	13.07
	σ	0.70	0.04	0.80	0.09
0.9 GHz	ε _r	41.4	5.46	55.03	12.45
	σ	0.86	0.05	0.94	0.14
1.8 GHz	ε _r	38.87	5.35	53.55	11.78
	σ	1.18	0.08	1.34	0.27
2.45 GHz	ε _r	38.01	5.28	52.73	11.38
	σ	1.46	0,10	1.74	0.39
5 GHz	ε _r	35.77	5.03	49.54	10.04
	σ	3.06	0.24	4.04	0.96
10 GHz	ε _r	31.29	4.60	42.76	8.12
	σ	8.01	0.58	10.63	2.14
17 GHz	ε _r	24.54	4.15	34.06	6.49
	σ	16.09	1.07	20.71	3.48


TABLE I RELATIVE PERMITIVITY ε_{P} , CONDUCTIVITY σ (S/M) of the body tissues

- 3. Assume that a plane wave with $E_0=200V/m$ and f=1.8 GHz is propagating in the z direction though the air and arrives to our body. How much field will be transmitted?
- 4. Repeat problem 2 for frequencies of 10 MHz, 433 MHz, 900 MHz, 2.45 GHz, 5 GHz and 17 GHz. Discuss the results.
- 5. Find the penetration depth for the media of problem 2 at the specified frequency.
- 6. Repeat problem 5 for frequencies of 10 MHz, 433 MHz, 900 MHz, 1,8 GHz, 2.45 GHz, 5 GHz, 10 GHz and 17 GHz. Discuss the results.
- 7. The complex permittivity of skin, fat, and muscle at 915 MHz, 2.45 GHz and 10 GHz, respectively, is given in the following table:

	915 MHz		2.45 MHz		10 GHz	
	ε'	ε''	ε'	ε''	ε'	ε''
skin	41.5	17	38	11	31	14.5
fat	11.3	2.2	10.9	2	8.8	3.1
muscle	55	19	53	12.5	43	19

Calculate the loss tangent at the specified frequencies.

- 8. Find the reflection coefficients of the skin-fat and fat-muscle interfaces at the specified frequencies of problem 7.
- 9. Assume that a plane wave with frequency of 1.8 GHz is propagating in the z direction through the air and arrives to a skin or fat tissue. Which tissue will absorb more energy? Take into consideration permittivity and conductivity values from Table I.

- 10. Assume that a plane wave with $E_0=200V/m$ and f=1.8 GHz is propagating in the z direction though the air and arrives to the skin tissue of problem 9. Calculate the electric field strength 1 cm below the air-skin interface. Take into consideration permittivity and conductivity values from Table I. Repeat the calculation for a signal of 17 GHz.
- 11. Assume that a plane wave with frequency of 1.8 GHz is propagating in the z direction though the air and arrives to the following tissue sequence:

Which tissue will now absorb more energy? Take into consideration permittivity and conductivity values from Table I.

12. Consider now a plane wave with $E_0=50V/m$ and f=1.8 GHz is propagating in the z direction though the air and arrives to the tissue sequence of problem 11. If we assume a skin and fat thicknesses of 3 mm and 5 mm respectively, calculate the electric field maximum amplitude that could reach the muscle tissue. Ignore the influence of standing waves.

Dosimetry

1. A plane wave with $E_0=100$ V/m travels from semi-infinite air medium to semiinfinite skin medium. Find the maximum local SAR in the skin assuming an incident signal of f=1.8 GHz. Take into consideration constant values from Tables I and II.

ELATIVE PERMITIVITY ϵ_{R} , CONDUCTIVITY σ (S/M) of the B					OF THE BO
Frrequency		skin	fat	muscle	bone
10 MHz	ε _r	361.66	13.77	170.73	36.77
	σ	0.19	0.03	0.62	0.04
433 MHz	ε _r	46.08	5.57	56.87	13.07
	σ	0.70	0.04	0.80	0.09
0.9 GHz	ε _r	41.4	5.46	55.03	12.45
	σ	0.86	0.05	0.94	0.14
1.8 GHz	ε _r	38.87	5.35	53.55	11.78
	σ	1.18	0.08	1.34	0.27
2.45 GHz	ε _r	38.01	5.28	52.73	11.38
	σ	1.46	0,10	1.74	0.39
5 GHz	ε _r	35.77	5.03	49.54	10.04
	σ	3.06	0.24	4.04	0.96
10 GHz	ε _r	31.29	4.60	42.76	8.12
	σ	8.01	0.58	10.63	2.14
17 GHz	ε _r	24.54	4.15	34.06	6.49
	σ	16.09	1.07	20.71	3.48

 $TABLE \ I$ relative permitivity $\ \epsilon_{R}$, conductivity σ (s/m) of the body tissues

TABLE II					
DENSITY OF THE BODY TISSUES (kg/m ³)					
skin	fat	muscle	bone		
1100	916	1041	1990		

2. A plane wave with $E_0=100$ V/m travels from semi-infinite air medium to semiinfinite skin medium. Find the maximum local SAR in the skin assuming incident signals of frequencies 10 MHz and 5 GHz. Take into consideration constant values from Tables I and II.

3. A plane wave with $E_0=100$ V/m travels from semi-infinite air medium to semiinfinite skin medium. Find the 1 g average SAR in the skin assuming an incident signal of f=1.8 GHz. Take into consideration constant values from Tables I and II. Repeat the calculation for with $E_0=100$ V/m an incident signal of f=5 GHz.