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2Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain, 3Molecular Medicine
Laboratory, International Centre for Engineering and Biotechnology (ICGEB), 4Department of Biomedicine,
Faculty of Medicine, University of Trieste, Italy, 5Instituto de Biologı́a Molecular de Barcelona, Consejo
Superior de Investigaciones Cientı́ficas (CSIC) and 6Parc Cientı́fic de Barcelona, Barcelona, Spain

Received March 31, 2009; Revised and Accepted September 3, 2009

ABSTRACT

Cyclin dependent kinases (cdks) regulate cell
cycle progression and transcription. We report
here that the transcriptional co-activator PCAF
directly interacts with cdk2. This interaction is
mainly produced during S and G2/M phases of the
cell cycle. As a consequence of this association,
PCAF inhibits the activity of cyclin/cdk2 complexes.
This effect is specific for cdk2 because PCAF does
not inhibit either cyclin D3/cdk6 or cyclin B/cdk1
activities. The inhibition is neither competitive with
ATP, nor with the substrate histone H1 suggesting
that somehow PCAF disturbs cyclin/cdk2 com-
plexes. We also demonstrate that overexpression
of PCAF in the cells inhibits cdk2 activity and
arrests cell cycle progression at S and G2/M. This
blockade is dependent on cdk2 because it is
rescued by the simultaneous overexpression of
this kinase. Moreover, we also observed that PCAF
acetylates cdk2 at lysine 33. As this lysine is essen-
tial for the interaction with ATP, acetylation of this
residue inhibits cdk2 activity. Thus, we report here
that PCAF inhibits cyclin/cdk2 activity by two differ-
ent mechanisms: (i) by somehow affecting cyclin/
cdk2 interaction and (ii) by acetylating K33 at the
catalytic pocket of cdk2. These findings identify a
previously unknown mechanism that regulates
cdk2 activity.

INTRODUCTION

Cyclin dependent kinases (cdks) are key enzymes for the
regulation of cell cycle progression and transcription (1).

Their activities are firstly regulated by their binding to
regulatory subunits called cyclins (2). A specific subset
of cyclin/cdk complexes participates in the control of cell
cycle progression by being activated at different stages of
the cell cycle, thus driving the cells through its different
phases. It is now clear that cdk1 bound to cyclins A and B
governs G2/M transition (3). G1 progression is primarily
under the control of cyclin D/cdk4/6 (4). Finally, cyclins E
and A paired to cdk2 are required for G1/S transition and
progression through S phase (1,5).

Cyclin/cdk complexes are additionally regulated by
a number of mechanisms including phosphorylation and
binding to inhibitory proteins. Thus, in addition to cyclin
binding most cdks require phosphorylation at a conserved
residue (Thr 160 in human cdk2) to achieve full kinase
activity. The enzyme responsible for this phosphorylation
is CAK, that consists in the cdk7/cyclin H/Mat 1 trimer
(6). Major cdks can also be inhibited by phosphorylation
at a conserved tyrosine (Tyr 15) and at its adjacent
threonine (Thr 14). These phosphorylations are carried
out by Wee1 and Myt1 in vertebrate cells and can be
removed by the phosphatase cdc25 (7). Finally, cdk
activity is also regulated by binding to members of two
families of inhibitors (CKIs): the Ink4 family (p16ink4a,
p15ink4b, p18ink4c and p19ink4d) and the Cip/Kip family
(p21Cip1, p27Kip1 and p57Kip2) (8). The members of the
Ink4 family only interact with cdk4 and cdk6 inhibiting
their activities. In contrast, the Cip/Kip members bind to
all known cyclin/cdk complexes. These proteins are potent
inhibitors of cyclin/cdk2, but they also inhibit the other
cyclin/cdk complexes, although in a less extension.

Apart from participating in cell cycle regulation
cyclinA/cdk2 also plays a role in the control of the
transcriptional activity of steroid receptors (9). For
instance, both the estrogen receptor (ER) and the
progesterone receptor (PR) are activated by cyclin
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A/cdk2. In the first case, this complex directly
phosphorylates ER, thus potentiating its transcriptional
activity (10). In the second case, cyclin A/cdk2 phos-
phorylates the co-activator SRC-1, fact that enhances its
affinity for PR and thus increases gene expression (11).
Thus, in the promoters regulated by these receptors
cyclin A/cdk2 participates in multi-protein complexes
that also contain transcription factors, co-repressors and
co-activators including acetyltransferases.

During the last decade a growing number of evidences
indicate that acetylation, a post-translational modification
occurring at the Ne-amino-group of lysines, might
regulate protein functions in many different ways as, for
instance, protein-protein interaction, protein association
to DNA and protein stability (12). Recently, it has been
shown that cdk9, a member of the cdk family involved in
transcriptional regulation, is acetylated by Gcn5 and
PCAF at lysines 44 and 48 that are located at the catalytic
pocket of the enzyme (13). In particular, K48 is essentially
involved in orienting the ATP phosphate residues within
the catalytic pocket and thus, acetylation of this lysine
residue inactivates the enzyme (13,14). Therefore,
acetylation of cdk9 at these specific lysines is a new mech-
anism involved in transcriptional regulation. Lysine K48
is conserved in all the members of the cdk family and this
fact suggests that other cdks may be susceptible to be
acetylated at this site. For this reason, we aimed to
explore whether acetylases might participate in the regu-
lation of cdk2 activity. Recently, we observed that the
acetyltransferase PCAF can acetylate cyclin A at specific
lysines, leading to its degradation (15). PCAF is homolo-
gous to GCN5 and in vertebrate cells both proteins are
subunits of the SAGA-type multiprotein complexes. These
complexes are co-activators that stimulate transcription in
part via acetylation and modification of nucleosomes, in
cooperation with nucleosome remodeling enzymes and by
physically recruiting the mediator complex (16,17).

We report here that PCAF directly binds to cdk2,
acetylates K33 and as a consequence inhibits its kinase
activity. Moreover, our results also revealed that merely
the interaction of PCAF with cyclin/cdk2 complexes, in
the absence of acetylation, inhibits cdk2 activity. This
effect is specific because PCAF does not inhibit the
activities of either cyclin B/cdk1 or cyclin D3/cdk6
complexes. Therefore, PCAF can regulate cdk2 activity
by two different mechanisms: acetylation of K33 of cdk2
and disturbing cyclin/cdk2 complexes independently of
acetylation.

MATERIALS AND METHODS

Plasmids

cDNA of wild-type cdk2 was cloned into pGEX2T and
pECFP-C1 vectors. pUHDP1-Flag-cdk2 WT and K33R
and pGEX2T-cdk2 K33R were a generous gift from R.
Poon (Hong Kong). pECFP-C1-cdk2 K33R, pUHDP1-
Flag-cdk2 K33Q and pGEX2T-cdk2 K33Q were
generated by site-directed mutagenesis. All the vectors
harboring different acetylases or their fragments used in

this work were provided by MA. Martı́nez-Balbás and
M. Giacca.

Antibodies and reagents

Antibodies against cyclin A (H-432), PCAF (E-8), cdk2
(M-2) and cdk2 (D-12) were purchased from Santa Cruz
Biotechnology. Anti-phospho-histone H3 (Ser 28) (#9713)
and anti-acetylated lysines (#9441) were from Cell
Signaling. Anti-acetylated cdk9 was from M. Giacca’s lab-
oratory. Antibodies against SPT3 were a kind gift from
E. Martinez (California). Antibodies against FLAG
(F7425) and PCAF (P7493) were obtained from Sigma.
For immunoprecipitation, we used monoclonal anti-
FLAG M2 affinity gel from Sigma. For pull-down
experiments, we conjugated purified proteins to CNBr-
sepharose beads (Pharmacia). Thymidine and
Nocodazole used in cell synchronization were from
Sigma. [32P]ATP used in kinase assays was purchased
from Amersham and [14C]acetylCoA used in the in vitro
acetylation experiments was from Perkin Elmer.

Cell culture, transfection and synchronization

Cells were grown in Dulbecco’s modified Eagle’s medium
supplemented with 10% fetal calf serum. Transfection
experiments were performed using Lipofectamine 2000
from Invitrogen. Transfected synchronized cells were
obtained as described (18).

Immunocytochemistry and fluorescence microscopy

For intracellular localization analysis of PCAF and cdk2,
cells were grown on coverslips and fixed in 4%
paraformaldehyde-phosphate-buffered saline (PBS) for
15min at room temperature. Coverslips were then
washed three times (5min each) in PBS, permeabilized
and blocked with 1% bovine serum albumin
(BSA)+0.1% Triton X-100 in PBS for 15min at room
temperature, and then incubated for 1 h at 37�C in a
humidified atmosphere with a monoclonal anti-PCAF
antibody (E-8, Santa Cruz Biotechnology) at a 1:100
dilution and a polyclonal cdk2 antibody (M2, Santa
Cruz Biotechnology), at a 1:200 dilution. Coverslips
were then washed three times (5min each) in PBS and
incubated for 45min at 37�C with an Alexa 594 anti-
mouse antibody and an Alexa 488-conjugated anti-
rabbit antibody (dilution 1:500 in both cases; Jackson).
Coverslips were washed, mounted on glass slides with
Mowiol (Calbiochem) and analyzed by fluorescence
microscopy. For intracellular localization analysis of
CFP and YFP fusion proteins, transfected cells were
grown on coverslips and fixed as described above, then
washed 3 times in PBS and mounted.

Protein purification, pull-down and immunoprecipitation

Protein expression and purification was performed as
described (19). For pull-down experiments, cells were
lysed in RIPA buffer (50mM Tris�HCl pH7.5, 150mM
NaCl, 1% NP-40, 0.5% Sodium deoxycholate, 0.1% SDS,
1mM EDTA, 1mM DTT, 1mM PMSF, 0.1mM
Na3VO4, 0.5 mg/ml aprotinin, 10 mg/ml leupeptin) for
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30min on ice. Lysates (0.2–2mg of protein) were
incubated with CNBr-sepharose beads conjugated with
purified GST, GST-HAT(PCAF) or GST-PCAF (full
length) in the case of pull-down, or with anti-FLAG M2
affinity gel in the case of immunoprecipitation, for 2 h at
4�C. After three washes with RIPA buffer, Laemmli buffer
was added to the samples and they were subsequently
electrophoresed.

Surface plasmon resonance experiments

The Surface plasmon resonance (SPR) analysis is a
method that permits to analyze the direct interaction
between two proteins. SPR detects binding interactions
by monitoring the reflection of a beam of light off the
interface between an aqueous solution of potential
binding molecules and a biosensor surface carrying an
immobilized bait protein. The analysis of the interaction
between PCAF and cdk2 was performed at room temper-
ature using a Biacore T100 (Biacore International AB).
Purified recombinant proteins GST-PCAF and
GST-cdk2 were cleaved with Thrombin protease (Sigma)
to remove GST. Then, PCAF was immobilized on a
carboxymethylated dextran sensor chip (CM5) using the
amine coupling method as described by the manufacturer.
A blank immobilization was performed using the same
method and was used as the reference surface. Purified
full-length cdk2 was diluted in HBS-EP buffer (Biacore
International AB) and was injected over the flow cells at
a flow rate of 30 ml/min for 60 s. Following a dissociation
time of 120 s, final regeneration of the surface was
performed with a short pulse of 0.05% (w/v) SDS. The
interaction between PCAF and cdk2 was detected and
presented as a sensorgram by plotting resonance units
against time.

Kinase assays

Purified active cyclin A/cdk2, cyclin E/cdk2, cyclin B/cdk1
and cyclin D3/cdk6 were purchased from Upstate
Biotechnology. Purified recombinant proteins were
resuspended in a final volume of 30 ml of kinase buffer
(50mM Hepes pH7.4, 2.5mM EGTA, 10mM MgCl2)
containing 12.5mM ATP, 1 mCi of [32P]ATP, 2mM
dithiothreitol and 2 mg of histone H1. Then, they were
incubated for 30min at 30�C. Samples (25ml) were
spotted on the center of a 2 cm� 2 cm P81 paper square.
After three washes with 1% phosphoric acid, papers were
left to dry, then transferred to vials with 10ml scintillation
cocktail and activity was measured in a liquid scintillation
counter (Wallac 1409). In some experiments, reactions
were stopped by adding Laemmly buffer and samples
were electrophoresed in 12% SDS-polyacrylamide gels
and then stained with Coomassie Blue and dried. The
radioactivity associated to the gels was detected with a
PhosphorImager. Experiments involving immunopre-
cipitation followed by cdk activity assays were performed
as described in (19).

Cell proliferation assays

Cells were transfected with Flag-PCAF or empty vector
then counted and seeded in 6 well-plates. Measurements of

the number of cells were performed at different times
after transfection and represented in a graph. Cell prolif-
eration was also measured using inducible cell lines
expressing C-terminus-PCAF�HAT (Cterm�HAT,
352–832, �527–547). This cell line was provided by M.
Ventura (Barcelona)

Flow cytometry analysis

Cells were fixed with 70% cold ethanol for 2 h at 4�C,
washed with PBS, and finally incubated with 2 mM
TOPRO-3 (Invitrogen) and 200 mg/ml RNase for 30min
at room temperature. Analysis of DNA content was
carried out in a BD Biosciences FACS Canto II. Data
was analysed with WinMDI 2.9 software.

In vitro acetylation

Acetylase assays were performed as described (20). For
cdk2 acetylation assays, 1–10ml of the different acetylases
(5000–10 000 c.p.m. activity on histones) were incubated
with 6 mM of purified GST or GST-cdk2 and 0.02mCi
[14C]acetylCoA for 30min at 30�C. Reactions were
stopped by addition of Laemmli buffer. Then, samples
were electrophoresed and transferred onto a nitrocellulose
membrane. After that, the membrane was subjected to
autoradiography. For the spot-mapping experiment, the
membrane containing the spotted peptides was incubated
in 3ml of HAT buffer (50mM Tris�HCl pH 8, 500mM
NaCl, 0.1mM EDTA, 5% glycerol, 0.1% NP-40) in the
presence of GST-HAT(PCAF) and [14C]acetylCoA, for
30min at 30�C. Then the membrane was washed, dried
and subjected to autoradiography.

RESULTS

Cdk2 interacts with the acetyltransferase PCAF

With the aim to analyze the putative interaction between
cdk2 and the acetylase PCAF, we first studied the
intracellular distribution of both proteins in C2C12 cells
by immunofluorescence using specific antibodies against
PCAF and cdk2. Figure 1A shows that both proteins
co-localized in the nucleus. Supplementary Figure S1A
and B show single staining for PCAF or cdk2. Nuclear
co-localization of both proteins was also observed by flu-
orescence confocal microcopy of cells transfected with
YFP-PCAF and CFP-cdk2 (Supplementary Figure S1C).
Pull-down experiments using the full length GST-PCAF
or the catalytic domain of PCAF (HAT domain) revealed
that cdk2 binds to both of them (Figure 1B). In contrast,
no binding of cdk2 to the control GST-beads was
observed.

To analyze the in vivo interaction between endogenous
cdk2 and PCAF, cells were subjected to immunopre-
cipitation (IP) with anti-cdk2 and the immunoprecipitates
were analyzed by western blot (WB). Results showed that
PCAF associates with cdk2 in the cells (Figure 1C).
Interestingly, these complexes contain SPT3, a protein
subunit of the GCN5/PCAF multiprotein complexes
(21). A similar interaction was observed with ectopic
YFP-PCAF and Flag-cdk2 proteins (Figure 1D). These
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complexes also contain cyclin A (Figure 1D). To further
investigate the putative direct interaction between cdk2
and PCAF, Surface Plasmon Resonance analyses were
performed. As observed in Figure 1E results indicate
that cdk2 directly interacts with the acetylase.

The interaction between cdk2 and PCAF during cell
cycle was subsequently determined. Thus, cells were
synchronized at different phases of the cell cycle by a
double thymidine block or by a nocodazole treatment as
described in the methods section. To check whether syn-
chronization was correct we analyzed the levels of cyclin
A, and phosphorylated histone H3 in the cell extracts. It is
known that cyclin A levels are high at S and G2/M,
whereas they remain low at G1 and mitosis and that

phosphorylated histone H3 is considered to be a mitotic
marker. As shown in Figure 1F the levels of cyclin A and
those of phosphorylated H3 behaved as expected. We also
observed that cdk2 remained constant along cell cycle,
whereas the levels of PCAF were high at S and G2/M,
slightly lower at metaphase and much lower at G1

(Figure 1F). The interaction between cdk2 and PCAF at
these different stages of the cell cycle was determined by IP
with anti-cdk2 followed by WB with anti-PCAF. Results
indicate that cdk2 was preferentially associated with
PCAF during G2/M, whereas the association decreased
at S phase and metaphase and was almost undetectable
at G1 (Figure 1G). Similar results were observed when the
interaction between overexpressed proteins was analyzed.

A

B C

D E

F G

Figure 1. Cdk2 interacts with the acetyltransferase PCAF. (A) C2C12 cells were fixed and stained with antibodies against PCAF and cdk2 and
colocalization of both proteins was studied by fluorescence microscopy. (B) CNBr-sepharose beads coupled to GST, GST-HAT (PCAF) or GST-
PCAF (full length) were incubated with HCT-116 cell extracts and pull-down experiments were performed. The presence of cdk2 in the precipitates
was analysed by WB. NB, not bound; B, bound. (C) C2C12 cell extracts were subjected to IP with IgG as a control and anti-cdk2 in order to
immunoprecipitate the endogenous protein. Then, WB was performed to detect endogenous cdk2, PCAF and SPT-3. A sample of cell lysate (input) is
shown in the first lane. (D) HeLa cells were transfected with YFP-PCAF and Flag-cdk2. Cell extracts were subjected to IP using anti-Flag or IgG as
a control followed by WB with antibodies against Flag, PCAF or cyclin A. A sample of cell lysate (input) was used as a control. (E) The putative
direct interaction between PCAF and cdk2 was studied by Surface Plasmon Resonance as described in ‘Materials and Methods’ section. PCAF was
fixed on the matrix and cdk2 was left to circulate on the chip. The interaction was represented in the sensorgram. (F) C2C12 cells were synchronized
by a double-thymidine block or nocodazole as described in ‘Materials and Methods’ section. Then, the levels of endogenous PCAF, cyclin A and
cdk2 were determined by WB. To confirm the time of mitosis a WB with antibodies against phosphorylated histone H3 was performed. (G) Cell
extracts from synchronized cells described in (F) were subjected to IP with anti-cdk2 or IgG as a control and the amount of PCAF and cdk2 was
analyzed by WB.
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However, in this case the association of PCAF with cdk2
at S phase is much higher than that observed in the case of
the endogenous proteins (Supplementary Figure S1D).

PCAF inhibits cyclin A/cdk2 activity

Because of the direct interaction between PCAF and cdk2,
we aimed to study whether PCAF might affect cyclin/cdk2
activity. Thus, in vitro cyclin A/cdk2 and cyclin E/cdk2
kinase assays were performed in the presence of different
PCAF concentrations. Results showed that PCAF inhibits
the activity of both complexes with an IC50 of around
300 nM (Figure 2A). This effect is specific, because
PCAF only slightly affected the activities of other cyclin/
cdk complexes as cyclin D3/cdk6 or cyclin B/cdk1 deter-
mined in similar in vitro experiments (Figure 2A). As a
control, we determined the effect of GST on the activity
of these different cyclin/cdk complexes and as shown in
supplementary Figure S2, GST did not modify the activity
of any of them. Therefore, these results indicate that
PCAF specifically inhibits with high affinity the in vitro
activity of cyclin/cdk2 complexes. We also observed that
PCAF is able to inhibit cyclin/cdk2 complexes in vivo.
As shown in Figure 2B cdk2-associated kinase activity
was significantly decreased in cells transfected with
YFP-PCAF.
To further identify the domain of PCAF involved in the

inhibition of cyclin/cdk2 activity we first generated two
different PCAF fragments: the N-terminus (aa 20–654)
and the C-terminus (aa 352–832) (Figure 3A). Then,
their effect on cyclin A/cdk2 activity was determined.
Results indicate that the C-terminus fragment but not
the N-terminus was able to significantly inhibit the
kinase activity (Figure 3B). An inactive C-terminus
fragment of PCAF that lacks a 20 amino acids region
(aa 527–547) inside of its catalytic domain (Ct�HAT)
(22) also inhibited cyclin A/cdk2 activity as efficiently as
Ctwt PCAF did (Figure 3B). These results indicate that
the inhibitory effect of PCAF on cyclin A/cdk2 is indepen-
dent of its acetylase activity.
We further analyzed four different domains belonging

to the PCAF C-terminus fragment for their ability to
inhibit cyclin A/cdk2 kinase activity. These domains
were: HAT (aa 352–658), ADA fragment (aa 581–695,
involved in the interaction with ADA2 cofactor),
bromodomain (aa 782–832, involved in the interaction
with acetylated lysines), and ADA-bromodomain (aa
658–832) (Figure 3A). As it can be observed in Figure
3C none of these fragments significantly inhibited the
kinase activity of cyclin A/cdk2. Figure 3D shows a
typical experiment of the effect of the different PCAF
constructs on cyclin A/cdk2 activity. Altogether, these
results indicate that an intact C-terminus region is
needed to efficiently inhibit cyclin A/cdk2 activity and
that the acetylase activity of PCAF is not required for
the inhibition.
In order to analyze the mechanism of the inhibition of

cdk2 activity by PCAF we performed kinetic analysis of
cyclin A/cdk2 activity in the presence of increasing
amounts of ATP or substrate (histone H1). Results
indicate that the inhibition of cyclin A/cdk2 by PCAF

follows a non-competitive kinetics in both cases, with
ATP (Figure 4A) or with the substrate (Figure 4B).
Kinetic analyses of cdk2 activity in the presence of
PCAF and growing amounts of cyclin A were also per-
formed. We observed that again, inhibition by PCAF
follows a non-competitive kinetics with cyclin A (Figure
4C) meaning that likely PCAF does not separate the
components of cyclin A/cdk2 complex, but rather
disturbs the complex in some way thereby inducing the
inhibition of its kinase activity.

PCAF overexpression blocks cell cycle progression

As PCAF inhibits cyclin A/cdk2 activity, that is necessary
for cell cycle progression, we aimed to study the effect of
PCAF overexpression on cell proliferation. Thus, we first
transfected NIH3T3 cells with Flag-PCAF or with an
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empty vector and the number of cells in the cultures were
counted at different times after transfection. As showed in
Figure 5A the cell number is significantly lower in PCAF
overexpressing cells than in control cells. Similar results
were obtained when using a NIH3T3 stable cell line

expressing Ct�HAT-PCAF in the absence of tetracycline
(Tet-off system). Also in this case, a block of cell prolifer-
ation was observed (Figure 5B).
To better determine, at which cell cycle stage PCAF

blocks cell proliferation FACS analysis were carried
out in YFP-PCAF transfected cells. Supplementary
Figure S3A shows the expression of YPF-PCAF in
these transfected cells. Results indicate that in cells
overexpressing PCAF a block in S and G2/M was
produced (Figure 5C). This blockade is mediated by
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cdk2 because it is reversed by the simultaneous
overexpression of this kinase (Figure 5C). Interestingly,
the overexpression of the kinase dead mutant cdk2K33R
did not reverse this cell cycle block (Figure 5D and sup-
plementary Figure S3B), indicating that cdk2 activity is
essential to overcome the cell cycle arrest induced by
PCAF. FACS images of these studies are shown in sup-
plementary Figure S3C.

PCAF acetylates cdk2

The association of cdk2 with the catalytic domain of
PCAF suggested that cdk2 might be a substrate of the
acetylase. Thus, an in vitro acetyltransferase assay using
purified recombinant GST-cdk2 as a substrate and
purified GST-HAT as enzyme was performed. Results
revealed that cdk2 was acetylated by PCAF. In contrast,
other acetyltransferases as CBP or Tip60 were unable to
acetylate this kinase (Figure 6A and Supplementary
Figure S4A). To identify the acetylation sites of cdk2 we
first performed in vitro acetylation assays using three
GST-cdk2 fragments (including aa 1–106, 106–213 and
214–298) as substrates and GST-HAT as acetylase.

These fragments show different electrophoretic mobility
in SDS-acrylamide gels, as shown in Figure 6B, bottom
panel. Results indicated that only the cdk2 fragment
including aa 1–106 was acetylated in vitro by PCAF
(Figure 6B, upper panel).

This cdk2 fragment contains 12 lysine residues at
positions K6, K9, K20, K24, K33, K34, K56, K65, K75,
K88, K89 and K105. To identify the lysine/es that might
be acetylated by PCAF, in vitro ‘spot mapping’
experiments were performed. Thus, 14 peptides, each
one containing one or two of the lysines present in this
fragment, were synthesized and spotted on a nitrocellulose
membrane (Figure 6C, upper panel). A peptide from
histone H3 was used as a positive control (peptide 1).
Then, this membrane was subjected to an in vitro
acetylation assay using GST-HAT as acetylase. Results
indicated that the control peptide and peptides containing
K33 (spots 6 and 7) were clearly acetylated by PCAF
(Figure 6C, bottom panel). To analyze whether K33 was
the acetylation site in the full length cdk2 protein, a
mutational analysis was performed. Thus, a cdk2 protein
harboring the K33R substitution was used for an in vitro
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acetylation assay. Results revealed that the cdk2 K33R
mutant was not acetylated by PCAF (Figure 6D). These
results indicate that K33 of cdk2 is a specific acetylation
site for PCAF.

We further aimed to study the in vivo acetylation of
cdk2. Thus, cells were transfected with Flag cdk2 alone
or together with Flag PCAF, then cell extracts were sub-
jected to IP with anti-Flag and the immunoprecipitates

analyzed for the acetylation of cdk2 by WB with anti-
acetyl K. Results revealed that in cells non-transfected
with the acetylase cdk2 acetylation is not observed. In
contrast, in PCAF-transfected cells cdk2 acetylation is
clearly seen (Figure 7A). Similar experiments carried out
after transfection of cells with GCN5, an acetylase homol-
ogous to PCAF, revealed that this acetylase is also able to
acetylate cdk2 (Figure 7A). Experiments performed with
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the mutant cdk2 K33R, revealed that lysine 33 is also the
in vivo acetylation site of cdk2, because it was not
acetylated (Figure 7B). Finally, we aimed to determine
whether PCAF immunoprecipitated from cell extracts
was able to acetylate purified cdk2. Results indicated
that cdk2 is acetylated by immunoprecipitated PCAF
(Figure 7C). Interestingly, the immunoprecipitated
PCAF forms part of specific multiprotein complexes
that, as shown in Figure 7D, contain the protein spt3 (21).

Acetylation of cdk2 inhibits its kinase activity

Lysine 33 is located in the catalytic pocket of cdk2 and
it is involved in the binding of ATP. This lysine residue
is conserved in all the members of the cdk family
(Supplementary Figure S4B). It is well known that this
lysine is essential for the kinase activity of cdk2 and the
mutated form cdk2 K33R is fully inactive (23). To confirm
that acetylation at this specific lysine of cdk2 inactivates
the kinase we generated purified recombinant cdk2,

in which K33 was substituted by glutamine (K33Q
mutant) in order to mimic acetylation of this residue
(24,25). Thus, the activities of cdk2 K33Q and cdk2
K33R associated with cyclin A were determined in vitro.
Results indicate that whereas cyclin A/cdk2 WT was
active, the cyclin A complexes with the non-acetylatable
mutant cdk2 K33R or the pseudoacetylated mutant cdk2
K33Q were inactive (Figure 8A).

To further confirm that acetylation at lysine 33 of cdk2
inactivates its kinase activity we generated acetylated
GST-cdk2 in bacteria. To this aim, bacteria were trans-
formed with GST-cdk2WT alone, GST-cdk2WT plus
PCAF or with the mutant GST-cdk2 K33R plus PCAF.
Then, these different cdk2s were purified and subsequently
analyzed for their acetylation status by WB using an anti-
acetyl-K antibody. We observed that GST-cdk2WT in the
absence of PCAF was only slightly acetylated, GST-
cdk2WT in the presence of PCAF was highly acetylated
and GST-cdk2 K33R even in the presence of PCAF was
not acetylated at all (Figure 8B, upper panel). In such a

BA

C D

AcLys

Flag-cdk2

AcLys

Flag-cdk2

GST-cdk2

IP

PCAFHA

G
ST

G
ST

-c
dk

2

G
ST

-c
dk

2

75

50

37

25

100

IP

P
C

A
F

H
A

PCAF

spt3

* GST-cdk2

Flag-cdk2

p300

Flag-PCAF

HA-GCN5

+ + + +
+

+
+

Flag-cdk2

HA-GCN5

Flag-cdk2 K33R

+

IP Flag
IP Flag

IP

PCAFHA

G
ST

G
ST

-c
dk

2

G
ST

-c
dk

2

–
–
–

– – –

–
–
–

–
–
–

+
+
+

+
+–

–

– –

–
–
–

–
–

–

Figure 7. Cdk2 is acetylated by PCAF and GCN5 in vivo. (A) Cells were transfected with Flag-cdk2 alone or together with three different acetylases
(p300, PCAF or GCN5). Cell extracts were subjected to IP with anti-Flag and WBs were performed with anti-Flag and anti-Acetyl-K. (B) Cells were
transfected with Flag-cdk2 or Flag-cdk2K33R alone or together with HA-GCN5. Then, cell extracts were subjected to IP with anti-Flag followed by
WB with anti-Flag and anti-Acetyl-K. (C) C2C12 cell extracts were subjected to IP with anti-PCAF. The obtained immunoprecipitates were used as a
source of active PCAF and were used for in vitro cdk2 acetylation experiments. Autoradiography indicates cdk2 acetylation (top panel). A WB anti-
cdk2 of the membrane used for autoradiography is shown on the bottom panel. Asterisks indicates non-specific bands. (D) The immunoprecipitates
obtained in (C) were checked for the content of PCAF and SPT3 by WB.

7080 Nucleic Acids Research, 2009, Vol. 37, No. 21



way, we obtained cdk2 with different levels of acetylation
at K33. These purified cdk2 fractions did not contain
PCAF as checked by WB (data not shown). These
fractions were subsequently used for the determination
of their activity, when associated to cyclin A. Results
clearly indicated that the activity of acetylated cdk2 was
much lower than non-acetylated cdk2 (Figure 8B, bottom
panel). Finally, we also analyzed the in vivo activity of
the cdk2 mutants K33R and K33Q. Cells were transfected
with Flag-cdk2 WT, Flag- performed. The kinase activity
of the immunoprecipitates was analyzed and results
showed that in contrast to cdk2 WT, the cdk2 mutants
K33R and K33Q were inactive in vivo (Figure 8C).

To analyze the functional relevance of cdk2 acetylation,
we analyzed whether in addition to its inactivation, cdk2
acetylation could affect its interaction with other cell cycle
regulatory proteins. To this aim, cells transfected with

cdk2WT, cdk2K33R or cdk2K33Q were subsequently
subjected to IP and then analyzed for its interaction
with different cyclins and CKIs. Interestingly, it was
observed that the pseudoacetylated mutant cdk2 K33Q
lost its interaction with cyclin A and p27 but not with
p21 (Figure 8D). These results indicate that cdk2
acetylation also modulates its interaction with some
other cell cycle regulatory proteins.

DISCUSSION

Cdks are serine/threonine kinases that play a key role in
the regulation of cell cycle progression and transcription.
Those members of the family that participate in the regu-
lation of the G1 phase of the cell cycle act as integrators of
the extracellular mitogenic stimuli, that include growth
factors, interaction with the extracellular matrix and
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cell�cell interactions (26,27). These external factors, when
associate with specific plasma membrane receptors trigger
different signaling pathways that converge in the regula-
tion of the activity of the G1-operating cdks. In addition
to that, cdks also integrate the signaling emanated from
cell cycle checkpoints (28). Therefore, these kinases have
multiple regulatory mechanisms that allow them to coor-
dinate these different pathways and qualify cdks for doing
this complex integrative activity. As mentioned above, the
now classical general mechanisms that regulate cdk
activity include the interaction with cyclins, that
stimulates cdk activity, and with CKIs that, on the
contrary, inhibit cdk activity. Phosphorylation also
regulates positively and negatively the activity of cdks.
However, more recently, new mechanisms that specifically
regulate the activity of some cdks are emerging. For
example, it should be mentioned that the oncogene and
chromatin remodeling protein SET specifically inhibits
cyclin B/cdk1 activity by associating to this complex
(29). Other examples are that acetylation of K48 of cdk9
by PCAF and Gcn5 inactivates this enzyme (13) and that
acetylation of cyclin A at specific lysines promotes its deg-
radation (15).
We report here that the acetyltransferase PCAF inhibits

cyclin/cdk2 activity by two different mechanisms: (i) by
interacting with cyclin/cdk2 complexes in experimental
conditions that do not allow protein acetylation (absence
of the acetyl donor Acetyl-CoA) and (ii) by acetylating
K33 of the cdk2 sequence, similarly to that observed
for cdk9.
PCAF is a histone acetyltransferase homologous to

Gcn5, both belonging to the GNAT family (Gcn5
related N-acetyltransferases), which are important for
transcriptional initiation (30). PCAF participates in the
reversible acetylation of various transcriptional regulators
as the general transcription factors TFIIEb and TFIIF (31)
and the sequence-specific transcription factors E2F1 (20),
c-myc (32), myo D (33) and p53 (34,35) among others (36).
In the cell, PCAF is a subunit of multiprotein com-
plexes that posses global histone acetylation activity and
locus-specific co-activator functions together with acetyl
transferase activity on non-histone susbtrates (21,37).
Interestingly, PCAF possesses a domain with E3 ubiquitin
ligase activity in its N-terminal region (38).
We have recently observed that PCAF directly interacts

with and acetylates cyclin A (15). This acetylation is
produced at early mitosis and stimulates cyclin A degra-
dation at prometaphase with the consequent inactivation
of cyclin A/cdk2 complexes. These results together with
those reported here indicate that the mechanism involved
in the inhibition of cyclin A/cdk2 activity by PCAF is
quite complex and include at least three different
actions: alteration of cyclin A/cdk2 association, acetyla-
tion of cdk2 and acetylation of cyclin A (Figure 9). Likely,
these three actions of PCAF on cyclin A/cdk2 proceed in a
specific sequence in order to block the activity of this
complex during a given period of time. We propose that
after binding of PCAF to cyclin A/cdk2 the activity of
this complex is inhibited simply by the affectation of the
interaction between both subunits. Then, cdk2 could be
acetylated on K33 at the catalytic pocket, a fact that

would additionally inactivate the enzyme but also, and
probably most important, would provoke its separation
from cyclin A. This is suggested by the data reported
here revealing that the pseudoacetylated cdk2K33Q
mutant does not interact with cyclin A. Subsequently,
acetylated cdk2 would remain inactive and also protected
from the putative activation by other type of cyclins.

Kinetic analyses of cyclin A/cdk2 activity in the
presence or absence of PCAF reveal that it does not
compete either with ATP or with the substrate. As
PCAF directly interacts with both cyclin A and cdk2 it
is likely that this double interaction disturbs somehow
cyclin A/cdk2 association, thus reducing its enzymatic effi-
ciency. This is supported by the evidence that, to effec-
tively inhibit the activity of cyclin A/cdk2 complexes, the
integrity of a long fragment of PCAF is needed
(C-terminus including aa 352–382). Specific domains
within this C-terminus fragment of PCAF, as HAT,
ADA and Bromodomain, when tested alone, do not
inhibit the activity of the complex. Likely, this long
C-terminus fragment should contain specific domains
responsible for the specific interaction with cyclin A and
cdk2. However, the identity of these putative interacting
domains still remains unknown.

Overexpression of PCAF blocks cell cycle progression
at S and G2/M as observed by FACS analysis. This is
consistent with the evidence that at these stages of the
cell cycle the interaction of PCAF with cdk2 and also
with cyclin A (15) is high. Interestingly, this cell cycle
blockade is reversed, when cells are simultaneously
co-transfected with PCAF and cdk2. These results
indicate that overexpression of PCAF is affecting the
cellular availability of cdk2 and that by increasing the
amount of cdk2 in the cells, the cell cycle arrest is
overcome. We still do not know the role of PCAF on
the regulation of S phase but a recent report indicates
that GCN5 modulates S phase by regulating cdc6
phosphorylation by cyclin A/cdk2 complexes (39). In
this article authors describe that overexpression of
GCN5 generates a block in S phase similarly to that we
observed in cells transfected with PCAF. Because these
two acetylases are highly homologous it can be postulated
that PCAF can also play a role in regulating DNA syn-
thesis. The putative role of PCAF on G2/M could be
related to the inactivation of cyclin A/cdk2 complexes at
the G2 phase. However, to demonstrate this hypothesis it
is necessary to determine the endogenous acetylation of
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cdk2 along the cell cycle. Unfortunately, detection of
endogenous acetylated cdk2 in vivo has been widely
elusive until now.

PCAF acetylation of K33 of cdk2 is a similar event to
that occurring in cdk9. It has been previously reported
that this kinase can also be acetylated by PCAF and
Gcn5 at K48, which is the equivalent to K33 in cdk2
(13). As cdk9 is involved in transcription (40), authors
demonstrated that acetylation of this kinase specifically
inhibits cdk9 dependent transcriptional activity. As this
lysine is located in the catalytic pocket of all cdks but
also of many other kinases, one can speculate that
acetylation of this specific residue could be a more
general mechanism of the regulation of kinase activity.

PCAF also plays an important role in the DNA damage
checkpoint response by acetylating p53 and E2F1. After
DNA damage, PCAF acetylates and stabilizes E2F1 and
as a consequence complexes containing both proteins are
formed. These complexes re-localize from cell cycle
progression-genes to the promoters of pro-apoptotic
genes (41). Moreover, PCAF acetylates p53 at lysine 320
and induces the expression of selected p53 target genes as
PIG3 and NOXA under DNA damage conditions (42,43).
Results reported here allow us to speculate about the pos-
sibility that PCAF could also participate in the DNA
damage response by inhibiting cyclin/cdk2 complexes in
order to arrest cell cycle progression. Thus, PCAF activa-
tion after DNA damage would induce the acetylation of
both cyclin A and cdk2 leading to the inhibition of cdk2
activity and cell cycle arrest.

As cyclin A/cdk2 complexes are involved in the regula-
tion of steroid hormone mediated transcription, it appears
that the inhibition of these complexes by PCAF could
affect the activity of SR-mediated gene expression.
However, this possibility still remains to be explored.

As a summary, our results reveal a new mechanism for
the regulation of cell cycle progression by PCAF. This
acetylase controls cdk2 activity by a mechanism that
includes the direct binding to cyclin/cdk2 complexes that
might compromise the interaction between both proteins
and by acetylating an essential lysine located in the
catalytic pocket of the kinase.
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