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ABSTRACT 

The present study proposes a modification in one of the most frequently 

applied effect size procedures in single-case data analysis – the percent of 

nonoverlapping data. In contrast to other techniques, the calculus and 

interpretation of this procedure is straightforward and it can be easily 

complemented by visual inspection of the graphed data. Although the percent 

of nonoverlapping data has been found to perform reasonably well in N = 1 

data, the magnitude of effect estimates it yields can be distorted by trend and 

autocorrelation. Therefore, the data correction procedure focuses on removing 

the baseline trend from data prior to estimating the change produced in the 

behavior due to intervention. A simulation study is carried out in order to 

compare the original and the modified procedures in several experimental 

conditions. The results suggest that the new proposal is unaffected by trend 

and autocorrelation and can be used in case of unstable baselines and 

sequentially related measurements.   

 

Key words:  percent of nonoverlapping data, single-case designs, effect size, 
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Single-case designs are useful for obtaining scientific evidence about 

intervention effectiveness in different behavioral fields of knowledge (Crane, 

1985; Gedo, 2000; Tervo, Estrem, Bryson-Brockman, & Symons, 2003). 

Recent methodological research on single-case data analysis has centered on 

effect size measures instead of on statistical techniques yielding exclusively p-

values. This might be due to the recommendations for reporting studies’ 

results (Wilkinson & The Task Force on Statistical Inference, 1999) based on 

the advantages of effect sizes over statistical significance, such as the focus on 

the strength of relationship between the intervention and behavior of interest, 

the possibility to establish different degrees of treatment effectiveness and the 

avoidance of the sample size dependence (Cohen, 1990; 1994; Kirk, 1996; 

Kromrey & Foster-Johnson, 1996; Rosnow & Rosenthal, 1989). The 

importance of effect size measurements in single-case designs has been 

reflected in the increased amount of recent publications answering the need of 

evidence-based interventions in the behavioral sciences (Jenson, Clark, 

Kircher, & Kristjansson, 2007; Schlosser & Sigafoos, 2008; Shadish, 

Rindskopf, & Hedges, 2008). 

From the perspective of an applied researcher in clinical, educational or 

social settings, a potentially useful effect size index needs to meet several 

criteria: 1) to perform well in short data series, producing low estimates in 

absence of treatment effect and higher ones in its presence; 2) to be easy to 

interpret in applied rather than in statistical terms; 3) related to the previous, it 

is desirable that the procedure is designed specifically for N = 1 data in order 



to avoid interpretations based on group designs terminology; 4) to be simple to 

compute, not requiring expertise, commercial statistical software packages or 

excessive amount of time; 5) to be easily complemented by visual inspection 

considering its utility (Parker, Cryer, & Byrns, 2006) and its frequent 

application (Kratochwill & Brody, 1978; Parker & Brossart, 2003).  

As regards the first criterion mentioned, several regression-based 

techniques have been found to have unacceptable statistical properties 

(Beretvas & Chung, 2008; Manolov & Solanas, 2008; Parker & Brossart, 

2003). These prcedures also require a greater amount of knowledge and of 

calculus in comparison to the indices related to visual analysis proposed. 

Considering these latter procedures, Ma’s (2006) percentage of data points 

exceeding the median and Parker, Hagan-Burke, and Vannest’s (2007) 

percentage of all non-overlapping data (PAND) were designed to improve the 

performance of the percent of nonoverlapping data (PND; Scruggs, 

Mastropieri, & Casto, 1987), but it has been shown that this is not always the 

case (Manolov, Solanas, & Leiva, in press). Additionally, the magnitude of 

effect estimate produced by PAND has a less straightforward interpretation, 

whereas the Pearson’s Phi
2
 which can be obtained out of it requires several 

steps in different software (Schneider, Godlstein, & Parker, 2008). 

Taking into account these considerations, the percent of nonoverlapping 

data (PND) which was designed for single-case data can be regarded as a 

procedure performing well (i.e., better than its most similar alternatives, 

although not optimally), being simple to interpret and to compute and closely 



related to visual inspection. In recent studies, PND has been the most 

frequently applied procedure to quantify treatment effectiveness in single-case 

studies and also in meta-analyses (Schlosser, Lee, & Wendt, 2008). 

Nevertheless, despite its attractiveness to psychologists, PND is not a trouble-

free procedure (Allison & Gorman, 1994; Manolov & Solanas, 2008). 

Therefore, the main objective of the present investigation is to propose a 

modification of the PND procedure intended to overcome some of its 

limitations. The performance of the modified index is tested in the context of 

data sets with different characteristics such as presence or absence of 

confounding variables (i.e., trend, serial dependence) and of intervention 

effects. In order to contrast the percentages obtained against known data 

attributes, Monte Carlo methods were used to construct the data series.   

 

Overcoming the drawbacks of PND 

The present study proposes a data correction procedure to be implemented 

prior to applying the PND. The main aim of the procedure is to eliminate from 

data a possible preexisting trend not related to the introduction of the 

intervention. Since the proposal is basically a modification of PND adding an 

initial data correction step, we refer to the procedure as the Percentage of 

nonoverlapping corrected data (PNCD). Before a treatment is introduced (i.e., 

in an AB design’s initial phase) it can be reasonably assumed that the behavior 

of the individual (y) or group studied is randomly fluctuating around a certain 

value, that is, yt = εt. If there is a trend in the behavior, then yt = β ∙ t + εt, 



where β is the trend coefficient (equal to zero in absence of trend) and t is the 

value of the time variable. The original phase A consists of nA data points, 

which when differenced, lead to a new series of nA−1 values:  Δyt+1 = yt+1 − yt. 

In case there is trend in data Δyt+1 = [β ∙ (t+1) + εt+1] − [β ∙ t + εt] = β ∙ t+ β + 

εt+1 − β ∙ t − εi = β + εt+1 − εt. εt+1 and εt are supposed to be independent and 

randomly and identically distributed, their mathematical expectancy is 

assumed to be zero. Given that 1t tE    
   
 

, an estimate of β can be 

obtained averaging the differenced data series, that is y  is used as  . After 

the trend in the baseline phase is estimated, the whole series (both phase A and 

B) can be corrected subtracting t    (the trend estimate multiplied by the 

measurement time) from the original data points. This operation is expected to 

remove trend from data and, thus, avoid inflation in the percentages obtained 

by means of PND. Trend is not estimated from the whole data series, since a 

change in level between the phases may be confounded for trend and such a 

correction may remove intervention effect. The steps necessary for computing 

both PND and PNCD are illustrated in a following section. Additionally, R 

codes were developed for computing both indices and are presented in the 

Appendices I and II for interventions aiming to increase and decrease the 

response rate, respectively.     

As regards autocorrelation, a difference needs to be established between 

positive serial dependence and negative one. Higher degrees of positive 

autocorrelation can be represented by upward or downward trends and, 



therefore, it can be conjectured that a correction focusing on trend may also 

have influence on it and attenuate its impact on the effect size index. Negative 

autocorrelation, however, is related to alternations of dissimilar measurements. 

It this case the effect of the correction procedure proposed cannot be foreseen 

and needs to be explored.  

Outliers represent another data feature that can distort the magnitude of 

effect estimates provided by PND. For instance, a single extremely high value 

in phase A can mask a behavioral change taking place after the treatment is 

introduced. Outliers can be detected using statistical calculi and can be 

controlled by means of elimination, winsorization, etc. However, it has to be 

taken into account that in a single-case study the applied researcher possesses 

a thorough knowledge of the client and is able to identify which measurement 

is an extreme and potentially anomalous one and interpret it (e.g., seek for its 

reason) from a clinical, educational, social, etc. point of view. Such a 

theoretical interpretation may be more meaningful than an arbitrary statistical 

treatment of the unexpected datum.  

 

 

Method 

 

AB series’ lengths  

Short data series (N = nA + nB) were included in the present study, since those 

are more feasible in applied settings:  a) N = 10 with nA = nB = 5; b) N = 15 



with nA = 5; nB = 10; c) N = 15 with nA = 7; nB = 8; d) N = 20 with nA = nB = 

10; e) N = 30 with  nA = nB = 15; and f) N = 40 with nA = nB = 20. 

 

Data generation 

For each combination of nA and nB data were according to the model proposed 

by Huitema and McKean (2000; 2007a):   

yt = β0 + β1 ∙ Tt +  β2 ∙ Dt + β3 ∙ SCt + εt,  

where yt is the value of the dependent variable at moment t, β0 is intercept set 

to zero, β1, β2, and β3 are the coefficients associated with trend, level change, 

and slope change, respectively, Tt is the value of the time variable at moment t 

(taking values from 1 to N), Dt is a dummy variable for level change (equal to 

0 for phase A and  to 1 for phase B), SCt is the value of the slope change 

variable being equal to 0 for phase A, and taking values from 0 to (nB − 1) for 

phase B, and εt is the error term. 

The error term (εt) was generated following two different models. The 

commonly used first-order autoregressive model εt = φ1 ∙ εt–1 + ut, with φ1 

ranging from –.9 to .9 in steps of .1. Since there is evidence that other models, 

especially a first-order moving average, can be used to represent behavioral 

data (Harrop & Velicer, 1985), the MA(1) model εt =  ut − θ1 ∙ ut-1 presented in 

McCleary and Hay (1980) was studied using 19 values of θ1: −.9(.1).9. 

According to the formula φ1 = −θ1/(1 + θ1
2
), this meant that the degrees of 

autocorrelation ranged from −.4972 to .4972.  



For both models the random variable ut was generated following N(0,1) 

and, additionally, an exponential and a uniform distribution with the same 

mean and standard deviation, since normal distribution are not always 

appropriate models for behavioral measurements  (Bradley, 1977; Micceri, 

1989). The abovementioned distributions are relevant since they differ in 

terms of skewness and kurtosis from the Gaussian distribution.  

The values of β1, β2, and β3 (.06, .3, and .15, respectively) were chosen by 

trial and error, a procedure also followed by Parker and Brossart (2003) and 

Brossart, Parker, Olson, and Mahadevan (2006), aiming to avoid floor and 

ceiling effects in the percentages obtained (Manolov & Solanas, 2008). In 

addition, the values of those coefficients were determined in a way to produce 

equivalent mean shifts in the case of trend, change in slope, and change in 

level for nA = nB = 5 data series. In any case, the specific beta-values are not 

essential, since they only serve to construct data series with and without trend 

or intervention effect and, thus, create a common background for comparing 

PND and PNCD.   

 

Analysis 

Prior to presenting in detail the steps needed to carry out the two effect size 

procedures included in the present study, an example of a fictitious data set is 

presented. Consider a psychological single-case study educating parent to 

interact with children diagnosed with autism counting a child’s desirable 

behavior of interest (e.g., communication) in each session (Symon, 2005). The 



data gathered using the AB design structure (4, 4, 5, 3, and 7 positive 

communications during baseline and 7, 8, 9, 7, and 9 during treatment phase) 

can be represented graphically as shown on Figure 1. In following section, the 

original and the proposed procedures are applied to the data set presented in 

order to illustrate their calculus. 

 

INSERT FIGURE 1 ABOUT HERE 

 

Percent of nonoverlapping data: 

1) Identify the highest measurement in phase A. In the example it is 7 

positive communications corresponding to baseline day 5. 

2)  Calculate the number of phase B data points that exceed the value 

identified in the previous step. The measurements corresponding to days 

7, 8, and 10 are greater than 7, so there are 3 values exceeding phase A’s 

highest value.  

3) Divide the value obtained in step 2 by the number of observations in 

phase B. The number of phase B observations is 5 and the result of the 

division is 3/5 = .6. 

4)  Multiply the value obtained in step 3 by 100 in order to convert the 

proportion into a percentage. The percentage obtained for the example is 

.6 ∙ 100 = 60%. 

 

Percent of nonoverlapping corrected data: 



1) Difference the phase A data points and obtain the differenced series with 

length nA−1. In the example the differenced series has the following 5−1 

= 4 data points: 0 (4−4), 1 (5−4), −2 (3−5), and 4 (7−3). 

2) Compute the mean of the differenced series. The average of 0, 1, −2, and 

4 is 0.75. 

3) Compute the trend-correction factor for each data point: the mean of the 

differenced series multiplied by Tt. In the example the value of the 

correction factor are: .75 ∙ 1, .75 ∙ 2, …,.75 ∙ 10.     

4) Perform the data correction subtracting the corresponding correction 

factor from each original data point. After the correction phase A 

consists of 3.25 (4−.75 ∙ 1), 2.5 (4−.75 ∙ 2), 2.75 (5−.75 ∙ 3), 0 (3−.75 ∙ 

4), and 3.25 (7−.75 ∙ 5) and phase B the following data points: 2.5 (7−.75  

∙ 6), 2.75 (8−.75 ∙ 7), 3 (9−.75 ∙ 8), .25 (7−.75 ∙ 9), and 1.5 (9−.75 ∙ 10). 

5) Apply PND: None of the phase B data points is greater than the phase A 

highest value (3.25) and, therefore, PNCD = 0%.  

 

Simulation 

The specific steps that were implemented in the Fortran programs (one for 

each of the six series’ length) were the following ones:  

1)  Systematic selection of each of the 19 values of φ1 or θ1. 

2)  Systematic selection of the (β1, β2, and β3) parameters for data generation, 

leading to 8 different data patterns – autoregressive or moving average 

model with no effect or trend; trend; level change; slope change; trend 



and level change; trend and slope change; combined level and slope 

change; trend and combined level and slope change. 

3)  100,000 iterations of steps 4 through 15. 

4)  Generate the ut term according to an exponential, a normal, or a uniform 

distribution, eliminating the first 50 random numbers using the next N 

ones.  

5)  Establish ε1 = u1. 

6)  Obtain the error term εt out of the random variable ut using the AR(1) 

model εt = φ1 ∙  εt–1 + ut or the MA(1) model εt =  ut − θ1 ∙ ut-1. 

7)  Obtain the time array Tt = 1, 2, …, N.  

8)  Obtain the dummy treatment variable array Dt, where Dt = 0 for phase A 

and Dt = 1 for phase B. 

9) Obtain the slope change array according to: SCt = [Tt – (nA + 1)] ∙ Dt. 

10) Obtain the yt array containing measurements (i.e., dependent variable): yt 

= β0 + β1 ∙ Tt + β2 ∙ Dt + β3 ∙ SCt + εt.  

11) Calculate PND on the original data (i.e., the yt array). 

12) Correct data according to the procedure proposed.  

13) Calculate PNCD on correct data. 

14) Average the obtained percentages from the 100,000 replications of each 

experimental condition.   

For data generation NAG libraries nag_rand_neg_exp, nag_rand_normal, 

and nag_rand_uniform were used. In order to guarantee suitable simulated 

data, the 50 values previous to each simulated data series were eliminated in 



order to reduce artificial effects (Greenwood & Matyas, 1990) and to avoid 

dependence between successive data series (Huitema, McKean, & McKnight, 

1999). 

 

Results 

 

When the data series represent solely random fluctuation (i.e., there is no 

trend, autocorrelation, or treatment effect), the percentages provided by PNCD 

are systematically larger than the ones provided by PND, as illustrated by 

Figure 2. This finding implies that PND may be a better filter for ineffective 

interventions in absence of trend and serial dependence. In the 

abovementioned conditions, higher effect size estimates were also obtained for 

PNCD in comparison to PND when treatment effects existed.  However, if 

data are present trend, the PND estimates increase and may become superior 

to the PNCD estimates for both independent (Figure 2) and serially related 

(Figure 3) data series, as the within-figure comparisons show.  

 

INSERT FIGURES 2 AND 3 ABOUT HERE 

 

 

Trend effect 

In order to quantify the distortion of effect size estimates produced by trend, 

the ratio between percentages with and without trend in data was computed. 



Therefore, a ratio close to 1 would indicate that trend does not introduce 

distortion, whereas values greater than 1 imply overestimation of the 

magnitude of effect. In the experimental conditions with no treatment effect 

simulated (Table 1) ratios > 1 entail an increment in false alarms, which is the 

case for PND in contrast with PNCD which maintains approximately the same 

magnitude estimates in presence and in absence of trend. This finding is 

applicable to all series lengths and errors’ distributions tested.    

 

INSERT TABLE 1 ABOUT HERE 

 

When there is treatment effect (slope change, level change or both), the 

presence of trend leads to overestimation of the effect size obtained through 

PND, as Table 2 shows. In contrast, the estimates provided by PNCD are not 

affected by the confounding variable.  

 

INSERT TABLE 2 ABOUT HERE 

 

The ratios presented in Tables 1 and 2 show that the PND estimates 

become more distorted by trend when the number of measurements N 

increases. PNCD seems to deal effectively with trend for both shorter and 

longer data series.   

 

Autocorrelation effect 



The distortion of effect size estimates produced by serial dependence was 

quantified by means of the ratio between percentages computed for 

autocorrelated and independent data. Once again ratios of 1 imply no 

distortion and values greater than 1 are indicative of elevated false alarm rates 

in absence of intervention effect. In the case of exponential errors, for both 

AR(1) and MA(1) models PNCD performs worse than PND when there is 

negative autocorrelation, only slightly better for positive serial dependence. In 

contrast, for the normal and uniform errors, PNCD outperforms PND. For 

these two error distributions and AR(1) processes (Table 3) with φ1 > 0 the 

difference between PNCD and PND increases for longer data series, whereas 

for φ1 < 0 PNCD performs better only for N ≤ 20. For the MA(1) processes 

(Table 4) with negative values of θ1 (i.e., positive autocorrelation) PNCD 

shows less distortion than PND, whereas for θ1 > 0 it outperforms PND only 

for N ≤ 15, always referring to normal and uniform errors.     

 

INSERT TABLES 3 AND 4 ABOUT HERE 

 

Combined effect  

In addition to the individual effects of each of this data features, their 

combined effect was studied following the same procedure for quantifying 

distortion. Table 5 shows that for AR(1) processes with trend, PNCD is much 

less affected by the confounding variables than PND, whose effect size 



estimate is quintupled in certain experimental conditions. For MA(1) 

processes (Table 6), the findings are similarly favorable for PNCD.       

 

INSERT TABLES 5 AND 6 ABOUT HERE 

 

Discrimination between data patterns  

In general the desirable characteristics of an effect size procedure are to be 

sensitive to intervention effects and not to be affected, for instance, by trend or 

serial dependence. Hence, an optimal performance (illustrated by Figure 4) 

would imply: a) low effect size estimates in absence of treatment effect; b) 

low effect size estimates when there is only general trend; c) higher estimates 

when there are actual changes in the response rate due to intervention. 

 

INSERT FIGURE 4 ABOUT HERE 

 

Comparing this ideal discrimination to the estimates obtain by means of 

PND and PNCD, it can be seen that there is a greater resemblance in the case 

of the latter procedure. That is, a combined effect (both change in level and in 

slope) yields a greater effect size estimate than an individual effect and the 

percentage obtained in absence of intervention effect is even lower. 

Additionally, trend does not shift estimates up as is the case for PND, which 

detects trend as an intervention effect. Figure 5 illustrates these findings for 

the shortest series length studied.    



 

INSERT FIGURE 5 ABOUT HERE 

 

 

Discussion 

 

The present investigation proposes a data correction step to be introduced 

prior to applying the percent of nonoverlapping data as a technique for 

quantifying treatment effectiveness. The modified procedure is compared with 

the original in the context of data sets generated with known attributes such as 

trend, autocorrelation and treatment effect. For applied researchers, the results 

obtained suggest that PNCD is an effective method to deal with trend and can, 

therefore, be used in situations when pre-intervention measurements are not 

pure random fluctuation. Unstable baselines have been regarded as 

undesirable, but they can be common in applied settings where the 

introduction of the treatment is subjected to factors that cannot always be 

controlled by the practitioners. Although a professional might be reluctant to 

initiate the intervention when there is trend in data, treatment administration 

may be imposed by institutional time schedules, client’s availability, etc. In 

such case, some kind of statistical control is advisable (Kazdin, 1978) and it 

can be achieved by means of the procedure proposed here. Apart from 

behavioral data with baseline trends, another potential context for application 

of PNCD are studies in which the data points are not sufficiently spaced in 



time and can present a sequential relation. PNCD ought to be preferred to 

PND in these cases, due to the fact that autocorrelation is more problematic for 

latter.  

Whenever the behavioral measurements are not serially dependent and do 

not present trend, PND may be a better option than PNCD, since it produces 

lower magnitude of effect estimates. This difference in the estimates implies 

that in the abovementioned cases PND is less likely to label an intervention as 

effective when it is not. It has already been discussed that different effect size 

procedures may lead to different conclusions about the degree of treatment 

effectiveness for the same data set (McGrath & Meyer, 2006; Parker et al., 

2005). In the particular case of PND and PNCD, the difference in estimates 

implies that the interpretation benchmarks proposed by Scruggs and 

Mastropieri (1998) cannot be applied directly to PNCD. On the other hand, 

there is evidence that PND is a conservative as compared to other procedures 

for estimating magnitude of effect (Jenson et al., 2007). Therefore, the effect 

size estimates provided by PNCD may resemble more the ones obtained by 

other models. 

From a methodological perspective, PNCD can be regarded as an attempt 

to improve a procedure that is attractive to applied psychologists and is 

frequently employed by them. The aim is not only to achieve a better 

performance but also to maintain the simplicity of the technique. Therefore, 

we consider that the modifications balancing statistical properties 

improvements and low levels of calculus/interpretative complexity have to be 



encouraged. Furthermore, the present study follows the practice of offering 

data analysis programs for single-case designs in freeware like R (e.g., Bulté 

& Onghena, 2008); a practice we deem ought to be promoted.      

The current investigation only focused on AB designs, although the results 

are potentially applicable to multiple-baseline designs (Busse, Kratochwill, & 

Elliott, 1995). The data sets used in the present study were constructed using 

permanent linear trend, constant variance and constant autocorrelation 

throughout the whole series. This data assumptions are common to simulation 

studies on N = 1 designs (e.g., Huitema & McKean, 2007a; 2007b; Matyas & 

Greenwood, 1990; Brossart et al., 2006; Parker & Brossart, 2003). Thus, 

future studies may explore the performance of PNCD for ABAB designs with 

curvilinear trends computing the percentage for each change in the condition 

as suggested by Kromrey and Foster-Johnson (1996). Additionally, 

comparative studies such as the present one which center on finding the 

technique that performs better need to be complemented by precision studies 

in order to identify techniques that perform well, that is, yield accurate 

estimates of the effect sizes simulated.     
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Appendix I 

 

R code computing PND and PNCD as output. The input required from the user 

is: 1) the data for phase A in the expression phaseA <- c(1:10), replacing 

“1:10” with the measurements obtained separated by commas; and 2) the data 

for phase B placed instead of “11:20” in the expression phaseB <- c(11:20). 

After introducing the behavioral measurements, the text is copied and pasted 

into the R console and the estimates are printed out. 

---------------------------------------------------------------------------------------------- 
# Data input 

phaseA <- c(1:10) 

phaseB <- c(11:20) 

n_a <- length(phaseA) 

n_b <- length(phaseB) 

 

# Data correction: phase A 

phaseAdiff <- c(1:(n_a-1)) 

for (iter1 in 1:(n_a-1)) 

phaseAdiff[iter1] <- phaseA[iter1+1] - phaseA[iter1] 

phaseAcorr <- c(1:n_a) 

for (iter2 in 1:n_a) 

phaseAcorr[iter2] <- phaseA[iter2] - mean(phaseAdiff)*iter2 

 

# Data correction: phase B 

phaseBcorr <- c(1:n_b) 

for (iter3 in 1:n_b) 

phaseBcorr[iter3] <- phaseB[iter3] - mean(phaseAdiff)*(iter3+n_a) 

 

# PND on corrected data 

countcorr <- 0 

for (iter4 in 1:n_b) 

if (phaseBcorr[iter4] > max(phaseAcorr)) countcorr <- countcorr+1 

pndcorr <- (countcorr/n_b)*100 

print ("The percentage of nonoverlapping corrected data is"); print(pndcorr) 

 

# PND on original data 

count <- 0 

for (iter5 in 1:n_b) 

if (phaseB[iter5] > max(phaseA)) count <- count+1 

pnd <- (count/n_b)*100 

print ("The percent of nonoverlapping data is"); print(pnd) 

---------------------------------------------------------------------------------------------- 

 



Appendix II 

 

R code computing PND and PNCD as output used as described in Appendix I. 

Useful when the objective of the behavior of interest is an undesirable one and 

the treatment pretends to eliminate or reduce it.  

---------------------------------------------------------------------------------------------- 

# Data input 

phaseA <- c(1:10) 

phaseB <- c(11:20) 

n_a <- length(phaseA) 

n_b <- length(phaseB) 

 

# Data correction: phase A 

phaseAdiff <- c(1:(n_a-1)) 

for (iter1 in 1:(n_a-1)) 

phaseAdiff[iter1] <- phaseA[iter1+1] - phaseA[iter1] 

phaseAcorr <- c(1:n_a) 

for (iter2 in 1:n_a) 

phaseAcorr[iter2] <- phaseA[iter2] - mean(phaseAdiff)*iter2 

 

# Data correction: phase B 

phaseBcorr <- c(1:n_b) 

for (iter3 in 1:n_b) 

phaseBcorr[iter3] <- phaseB[iter3] - mean(phaseAdiff)*(iter3+n_a) 

 

# PND on corrected data 

countcorr <- 0 

for (iter4 in 1:n_b) 

if (phaseBcorr[iter4] < min(phaseAcorr)) countcorr <- countcorr+1 

pndcorr <- (countcorr/n_b)*100 

print ("The percentage of nonoverlapping corrected data is"); print(pndcorr) 

 

# PND on original data 

count <- 0 

for (iter5 in 1:n_b) 

if (phaseB[iter5] < min (phaseA)) count <- count+1 

pnd <- (count/n_b)*100 

print ("The percent of nonoverlapping data is"); print(pnd) 

---------------------------------------------------------------------------------------------- 

 



Tables 

Table 1. Distortion due to trend in independent data series – the values 

represent the ratio between presence of trend / absence of trend in 

experimental conditions without treatment effect. 

Phase length Ratio trend / 

nA nB random fluctuations 

exponential PND PNCD 

5 5 1.336 .996 

5 10 1.576 1.002 

7 8 1.570 1.003 

10 10 1.807 .999 

15 15 2.431 1.000 

20 20 3.293 .995 

  normal PND PNCD 

5 5 1.429 .998 

5 10 1.674 1.000 

7 8 1.772 .997 

10 10 2.279 1.000 

15 15 3.601 1.003 

20 20 5.511 1.005 

uniform PND PNCD 

5 5 1.517 1.002 

5 10 1.747 .997 

7 8 2.003 .995 

10 10 2.761 1.005 

15 15 4.590 .991 

20 20 6.952 .993 

 



Table 2. Distortion due to trend in independent data series – the values 

represent the ratio between presence of trend / absence of trend in 

experimental conditions with single or combined treatment effect. 

Phase length Ratio trend & level / Ratio trend & slope / Ratio trend & both 

nA nB level change only slope change only effects / both effects 

exponential PND PNCD PND PNCD PND PNCD 

5 5 1.338 .999 1.340 .996 1.301 1.004 

5 10 1.547 1.003 1.380 .994 1.298 1.002 

7 8 1.544 .991 1.507 1.003 1.433 1.002 

10 10 1.803 .992 1.723 1.005 1.605 1.000 

15 15 2.433 1.001 1.962 .999 1.782 .998 

20 20 3.240 .998 1.992 .998 1.808 1.007 

  normal PND PNCD PND PNCD PND PNCD 

5 5 1.353 1.002 1.348 1.002 1.287 .995 

5 10 1.546 1.010 1.385 .999 1.301 1.002 

7 8 1.627 1.005 1.523 1.005 1.413 .995 

10 10 2.016 .999 1.703 1.003 1.547 .998 

15 15 2.985 1.004 1.779 .996 1.601 1.003 

20 20 4.220 .998 1.681 1.003 1.525 .997 

uniform PND PNCD PND PNCD PND PNCD 

5 5 1.325 1.001 1.339 .998 1.246 .998 

5 10 1.506 .996 1.354 .997 1.276 .997 

7 8 1.596 .995 1.456 .996 1.350 1.005 

10 10 1.909 1.008 1.562 .997 1.432 .998 

15 15 2.530 .996 1.611 1.003 1.473 1.001 

20 20 3.119 .989 1.505 1.000 1.374 .994 

 



Table 3. Distortion due to an AR(1) process – the values represent the ratio 

between serially dependent data and independent series with no trend or 

intervention effect. 

Phase length Ratio φ1=−.3 / Ratio φ1=.3 / Ratio φ1=.6 / 

nA nB random fluctuations random fluctuations random fluctuations 

exponential PND PNCD PND PNCD PND PNCD 

5 5 .941 .926 1.135 1.121 1.302 1.250 

5 10 .948 .943 1.169 1.110 1.422 1.234 

7 8 .955 .943 1.167 1.147 1.482 1.365 

10 10 .958 .940 1.164 1.157 1.559 1.455 

15 15 .956 .950 1.138 1.157 1.591 1.511 

20 20 .981 .953 1.141 1.152 1.614 1.545 

normal PND PNCD PND PNCD PND PNCD 

5 5 .933 .953 1.158 1.065 1.379 1.121 

5 10 .933 .968 1.167 1.042 1.441 1.093 

7 8 .946 .955 1.171 1.067 1.503 1.173 

10 10 .944 .953 1.174 1.069 1.579 1.207 

15 15 .965 .954 1.178 1.075 1.637 1.221 

20 20 .983 .957 1.168 1.065 1.634 1.212 

uniform PND PNCD PND PNCD PND PNCD 

5 5 .929 .961 1.158 1.060 1.378 1.114 

5 10 .929 .967 1.166 1.032 1.428 1.079 

7 8 .936 .954 1.185 1.050 1.497 1.130 

10 10 .932 .946 1.195 1.050 1.561 1.146 

15 15 .949 .920 1.189 1.006 1.602 1.088 

20 20 .971 .912 1.188 .994 1.619 1.035 

 



Table 4. Distortion due to an MA(1) process – the values represent the ratio 

between nonnull and null θ1 parameters in series with no trend or intervention 

effect. 

Phase length Ratio θ1=−.5 / Ratio θ1=.5 / 

nA nB random fluctuations random fluctuations 

exponential PND PNCD PND PNCD 

5 5 .913 .887 1.232 1.177 

5 10 .903 .914 1.242 1.151 

7 8 .912 .886 1.248 1.190 

10 10 .915 .882 1.257 1.196 

15 15 .925 .910 1.240 1.206 

20 20 .947 .920 1.235 1.196 

normal PND PNCD PND PNCD 

5 5 1.203 1.077 .887 .927 

5 10 1.217 1.063 .880 .947 

7 8 1.226 1.080 .901 .919 

10 10 1.221 1.077 .910 .902 

15 15 1.207 1.067 .931 .905 

20 20 1.197 1.058 .945 .899 

uniform PND PNCD PND PNCD 

5 5 1.194 1.066 .882 .938 

5 10 1.200 1.046 .868 .951 

7 8 1.207 1.047 .881 .925 

10 10 1.205 1.038 .906 .894 

15 15 1.218 .990 .929 .860 

20 20 1.179 .947 .940 .842 

 



Table 5. Distortion due to combined presence of trend and an AR(1) process – 

the values represent the ratio between serially dependent data with trend and 

independent series with no trend. 

Phase length Ratio trend & φ1=−.3 / Ratio trend & φ1=.3 / Ratio trend & φ1=.6 / 

nA nB random fluctuations random fluctuations random fluctuations 

exponential PND PNCD PND PNCD PND PNCD 

5 5 1.267 .929 1.518 1.131 1.671 1.239 

5 10 1.484 .942 1.785 1.116 2.007 1.240 

7 8 1.489 .941 1.793 1.140 2.012 1.284 

10 10 1.734 .939 2.074 1.164 2.566 1.459 

15 15 2.336 .951 2.734 1.150 3.368 1.524 

20 20 3.211 .960 3.679 1.141 4.369 1.520 

normal PND PNCD PND PNCD PND PNCD 

5 5 1.325 .953 1.581 1.056 1.783 1.126 

5 10 1.565 .969 1.839 1.036 2.043 1.089 

7 8 1.663 .950 1.961 1.068 2.223 1.170 

10 10 2.130 .944 2.457 1.068 2.763 1.210 

15 15 3.359 .944 3.768 1.068 3.961 1.200 

20 20 5.100 .955 5.594 1.075 5.585 1.215 

uniform PND PNCD PND PNCD PND PNCD 

5 5 1.370 .959 1.600 1.054 1.765 1.115 

5 10 1.587 .968 1.826 1.032 1.980 1.076 

7 8 1.795 .952 2.056 1.049 2.205 1.133 

10 10 2.415 .945 2.711 1.054 2.758 1.139 

15 15 4.027 .917 4.360 1.015 4.033 1.092 

20 20 6.132 .904 6.590 .995 5.766 1.037 

 



Table 6. Distortion due to combined presence of trend and an MA(1) process 

– the values represent the ratio between moving average data with trend and 

data series with θ1 = 0 and no trend. 

 Phase length Ratio trend & θ1=−.5 /  

random fluctuations 

Ratio trend & θ1=.5 / 

random fluctuations nA nB 

exponential PND PNCD PND PNCD 

5 5 1.217 .888 1.597 1.174 

5 10 1.406 .910 1.837 1.153 

7 8 1.418 .892 1.874 1.196 

10 10 1.658 .877 2.153 1.184 

15 15 2.268 .910 2.839 1.201 

20 20 3.099 .920 3.727 1.182 

normal PND PNCD PND PNCD 

5 5 1.608 1.075 1.253 .924 

5 10 1.850 1.062 1.462 .947 

7 8 1.962 1.078 1.562 .919 

10 10 2.412 1.072 1.970 .909 

15 15 3.619 1.066 3.074 .900 

20 20 5.231 1.052 4.601 .895 

uniform PND PNCD PND PNCD 

5 5 1.602 1.082 1.271 .933 

5 10 1.831 1.054 1.485 .949 

7 8 1.974 1.056 1.617 .924 

10 10 2.539 1.039 2.150 .891 

15 15 3.938 .992 3.503 .857 

20 20 5.815 .949 5.281 .836 



Figures 

 

 

Figure 1. A fictitious example of an AB data series with nA = nB = 5. 



 

Figure 2. Distribution of the percentages provided by PND and PNCD in 

absence (the two box plots on the left) and presence of trend (the two box 

plots on the right). 100,000 samples of independent nA = nB = 5 data with no 

treatment effect simulated and normal error. 



 

Figure 3. Distribution of the percentages provided by PND and PNCD in 

absence (the two box plots on the left) and presence of trend (the two box 

plots on the right). 100,000 samples of nA = nB = 20 data with level change 

simulated and uniform error in moving average processes with autocorrelation 

of .5. 
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Figure 4. Ideal discrimination between data patterns. 



Independent 5+5 series with normal error and phi = .3
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Independent 5+5 series with uniform error and theta = -.5

0

20

40

60

80

100

No effect

or trend

Slope

change

Level

change

Level &

Slope

Trend Trend &

Slope

Trend &

Level

Trend,

Slope &

LevelData pattern

P
e
rc

e
n

ta
g

e

PND

PNCD

 

Figure 5. Discrimination between data patterns for both indices in different 

experimental conditions. Upper panel: N = 10 series generated from an AR 

process with normal error and φ1=.3. Lower panel: N = 10 series generated 

from an MA process with uniform error and θ1=−.5. 

 

 


