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Abstract 

 

This paper examines statistical analysis of social reciprocity at group, dyadic, and 

individual levels. Given that testing statistical hypotheses regarding social reciprocity 

can be also of interest, a statistical procedure based on Monte Carlo sampling has been 

developed and implemented in R in order to allow social researchers to describe groups 

and make statistical decisions. 

 

Resumen 

 

El presente artículo revisa el análisis estadístico de la reciprocidad social a nivel grupal, 

diádico e individual. Puesto que es también necesario el contraste de hipótesis respecto 

a la reciprocidad social, se ha desarrollado un procedimiento estadístico implementado 

en R, basado en muestreo Montecarlo, que permite a los investigadores describir y 

tomar decisiones respecto a un determinado grupo. 
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1. Introduction 

 

The present paper focuses on quantifying social reciprocity at descriptive and inferential 

levels on the basis of dyadic discrepancies. Two statistics for measuring the degree of 

reciprocation in social interactions are reviewed and their calculus is illustrated on 

psychological data. Given that there is no statistical software available to researchers in 

order to apply the procedures of social reciprocity based on dyadic discrepancies here 

reviewed, an R package has been developed incorporating the indices and statistical 

tests at individual, dyadic, and global levels of analysis. 

 

Social reciprocity, defined as the exchange of similar behaviour (Hemelrijk, 1990a, 

1990b; Kenny, Kashy, & Cook, 2006; Solanas, Salafranca, Riba, Sierra, & Leiva, 2006; 

Warner, Kenny, & Stoto, 1979), is a topic of interest when analysing social interaction 

in the context of areas such as social psychology, ethology, organisational psychology, 

family assessment, or health psychology. Although social researchers have traditionally 

associated reciprocity to helping behaviour (Gouldner, 1960), this social phenomenon 

includes a wider set of possible social behaviours and provides unique information 

about mutual influence in social systems. Maintaining a reciprocal interaction pattern 

has positive effects on individual health (Liang, Krause, & Bennet, 2001; Väänänen, 

Buunk, Kivimäki, Pentti, & Vahtera, 2005), on organisational functioning (Dabos & 

Rousseau, 2004; Wayne, Shore, Bommer, & Tetrick, 2002), and on family dynamics 

(Cook, 1994; Howe & Recchia, 2005). The study of reciprocity, as any social issue, 

requires dealing with several levels of analysis. These levels involve focusing on 

individuals, on pairs of individuals (dyads), or on groups (Kenny & Judd, 1986; Kenny 

& La Voie, 1984; Malloy & Albright, 2001; Wasserman & Faust, 1994). Research on 

social reciprocity implies studying the social influence between individuals. Many 

social researchers have focused on mutual influence between pairs of individuals (i.e., 

dyads) in order to explain social interaction (Cook 2005; Cook & Kenny, 2004; Howe 

& Recchia, 2005; Kenny, Albright, & Malloy, 1988). Apart from dyads, other possible 

units of analysis are triads or other larger subgroups (Lashley & Bond, 1997; 

Wasserman & Faust, 1994). 

 

Several designs have been proposed to analyse dyadic data (Kenny et al., 2006). The 

present paper centres on round-robin designs, which require all individuals to be able to 

interact with their partners in the group (Gill & Swartz, 2001; Kenny, Mohr, & 

Levesque, 2001). One way of representing social interaction data in a round-robin 

design is by means of sociomatrices in which each element xij of that matrix denotes the 

amount of behaviour (e.g., frequency, duration) that individual i addresses to individual 

j. Self-addressed behaviour is not commonly studied in round-robin research and, 

therefore, all the xii elements in the matrix are often equal to 0. When the research 

interest is in measuring links among individuals, binary sociomatrices should be used 

(Wasserman & Faust, 1994). 

 

The first section of the current review presents several indices for quantifying social 

reciprocity in round-robin designs. The second section focuses on the statistical test 

associated with these measures, explaining the Monte Carlo procedure on which it is 

based. The third section explains the functioning of the R package that includes these 

measures and tests. In the final section, the techniques are illustrated by an example 

taken from an empirical behavioural research.  

 



2. Quantifying social reciprocity at different levels of analysis 

 

Several procedures have been developed in order to quantify social reciprocity in groups 

(Hemelrijk 1990a, 1990b; Solanas et al., 2006; Warner et al., 1979). Two main 

approaches can be followed when measuring social reciprocity: a) correlational 

procedures such as Mantel’s (1967) Z statistic and the reciprocity indices proposed 

within the Social Relations Model (SRM; Kenny & La Voie, 1984; Kenny & Nasby, 

1980; Lashley & Bond, 1997; Warner et al., 1979) measure association between the 

amounts of behaviour addressed and received in dyadic interactions and, thus, offer a 

quantification of reciprocity only at the global level; b) the dyadic discrepancies 

approach is based on differences between addressing and receiving any social behaviour 

within dyads and is represented by procedures like the directional consistency (DC; van 

Hooff & Wensing, 1987) and the skew-symmetry (Φ; Solanas et al., 2006) indices 

which are the focus of the present paper. Both indices can be positioned in the actor-

receiver model as they assume that actors in dyads compare what is given and received 

from their partners, without taking into account what is given and received from the 

others. The actor-receiver model is a parsimonious approach to study social reciprocity, 

since it does not require individuals to have complex cognitive abilities such as the ones 

assumed by the actor-reactor model (Hemelrijk, 1990a). Three types of reciprocity can 

be studied by means of the actor-receiver model: absolute, relative, and qualitative. A 

group shows absolute reciprocity when there is exact matching between the amounts of 

behaviour individuals interchange. Relative reciprocity requires data to be ranked within 

each individual, while qualitative reciprocity means that comparisons are made on a 

binary scale (for more details see Hemelrijk, 1990a). Both the DC and the Φ indices 

focus on absolute reciprocity, since that they measure symmetry of a sociomatrix, 

defined as the balance in the number of behaviours given and received among 

individuals within dyads.  

 

The DC index was developed in order to quantify the directionality of behaviour in 

social interactions and has been widely used by biologists (e.g., Côté, 2000; Pelletier & 

Festa-Bianchet, 2006; Stevens, Vervaecke, de Vries, & van Elsacker, 2005; Vogel, 

2005). The DC index is obtained by dividing the difference between the number of 

interactions in the most frequent (H) and in the less frequent direction (L) by the total of 

interactions performed by all the individuals in the group (H+L). The index can be 

computed from sociomatrices through the sum of absolute dyadic discrepancies divided 

by the total number of interactions in the group:  
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where xij is the amount of behaviour that individual i addresses to the individual j, xji is 

the number of behaviours that agent i receives from agent j, N is the total number of 

interactions in the group, and n is the number of individuals.  The index ranges from 0, 

maximum social reciprocity, to 1, indicating unidirectional dyadic interactions.  

 

The Φ index focuses on absolute differences between the amount of behaviour that 

individuals address to others and the amount of behaviour they receive from their 

partners in the group and permits describing social systems at individual, dyadic, and 

group level. A two-way matrix, called matrix X, contains the number of behaviours that 



each individual addresses to their partners and the behaviours that he/she receives from 

them in return. By means of the partitioning proposed by Constantine and Gower 

(1978), this sociomatrix X is additionally decomposed into its symmetrical and skew-

symmetrical parts (matrices S and K, respectively): X = S+K, where S = (X+X’)/2 and 

K = (X−X’)/2, being X the original sociomatrix and X’ its transpose. The elements of 

matrix S and K are denoted by sij and kij, respectively. The kij elements correspond to 

the skew-symmetrical part within each dyadic social interaction (i.e., the dyadic average 

of differences for all dyads). The sij elements represent the dyadic reciprocity, in other 

words, the average of total behaviour within dyads. Φ is computed taking into account 

the ratio between the sum of squared values due to skew-symmetry and the total sum of 

squared values. The computation of the global symmetry index Φ is as follows: 
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Φ denotes the proportion of skew-symmetry, ranging from 0, maximum social 

reciprocity, to .5, lack of dyadic reciprocity in the social system.  

 

The computation of the global symmetry index Ψ, which is complementary to Φ, 

since Ψ + Φ = 1, is as follows: 
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The whole contribution to the symmetry (ψj) can be obtained as follows: 
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However, these measures are affected by the degree of agents’ activity. Therefore, a 

normalized measurement is required. In order to obtain it, Solanas et al. (2006) 

recommend calculating a standardized skew-symmetry and symmetry measures as a 

result of dividing the φj and ψj agents’ contributions by their total contribution (ηj = ψj + 

φj). Now the individual contribution to the skew-symmetry (υi) and symmetry (λi) can 

be written as follows: 
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Social reciprocity can also be quantified at dyadic level. In the following expression, 

the ratios λi←j and υi←j correspond to the symmetry and skew-symmetry parts of agent j 

assigned to agent i, respectively:  
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Researchers can study patterns of reciprocity in groups using group measures as the 

DC or Φ statistics, as well as individual and dyadic contributions to asymmetry by 

means of the Φ statistic. Inferences represent a natural follow-up to description, testing 

null hypothesis as, for instance, complete reciprocation among individuals. The 

following section refers to a statistical technique enabling social researchers to make 

decisions on testing social reciprocity at group, dyadic and individual levels. 

 

3. A statistical procedure for testing social reciprocity  

 

As regards statistical decision making, the main problem of the DC and Φ statistics is 

that their exact sampling distributions are unknown and it should be derived for each 

particular group size and dyadic interaction frequency and there is no one-to-one 

correspondence between the sociomatrix configurations and the values of the statistics. 

It is only feasible to compute exact sampling distributions with small group sizes and 

small dyadic interaction frequencies, since with the increment of n and Nij (i.e., the 

number of behaviours in dyad ij), the number of possible configurations increases 

exponentially. Monte Carlo procedures can be used to estimate the sampling 

distribution of the statistics and to test the null hypothesis that a sample was randomly 

drawn from a specified population (Noreen, 1989). The mathematical model underlying 

the Monte Carlo procedure entails several assumptions. First, it is assumed that the 

probability of the event “individual i addresses behaviour to individual j” does not 

change (i.e., pij is constant), since round-robin designs imply aggregating different 

occasions of interaction across time in a single sociomatrix (Boyd & Silk, 1983; Tufto, 

Solberg, & Ringsby, 1998). Second, the outcomes of the consecutive interactions during 

the observation period are assumed independent (Appleby, 1983; Boyd & Silk, 1983), 

since aggregation  makes impossible the estimation of potential dependence and there is 

no strategy for controlling order effects is currently not available (Kenny et al., 2006). 

The assumption permits modelling the distribution of Xij by a binomial distribution with 

parameters Nij and pij, a probabilistic approach used in social interactions studies (Tufto 

et al., 1998). Third, dyads are assumed independent. The last two assumptions are also 

needed in the SRM (Kenny et al., 2006; Warner et al., 1979). 

 

The Monte Carlo procedure generates sociomatrices according to parameter pij, 

which arises from the specific null hypothesis of the applied researcher. Statistical 

significance (i.e., a p value) is obtained locating statistics’ values for the original data in 

the respective sampling distributions. This objective is achieved following nine steps: 

 

1) Select a test statistic: DC and the Φ statistics at group level, as well as the dyadic 

and individual contributions to the asymmetry. 

 

2) Define the population: Specify matrix Π with the parameters pij corresponding to 

the symmetry levels in each dyad. The procedure is flexible and can be applied to any 

null hypothesis. For instance, the null hypothesis of complete reciprocation stating that 



dyadic relations are symmetrical among all individuals can be represented as H0: pij = pji 

=.5. The corresponding matrix Π will be specified as follows: 

 

 

 

 

 

 

 

3) Input the original sociomatrix, from which the matrix N that contains the 

parameters Nij (number of behaviours in a dyad) can be obtained. Since the behaviours 

in a dyad are complementary (i.e., Nij = xij + xji), matrix N is a symmetrical one. The 

size of the original sociomatrix determines n (group size). 

 

4) Compute the outcome: the statistics values corresponding to group, dyadic, and 

individual levels are computed for the original sociomatrix. 

 

5) Set NS, the number of simulated sociomatrices used to estimate the sampling 

distributions for all the statistics. For instance, NS can be set to 99,999.  

 

6) Set the iterations controlling counters iter and nge counters to 0.  

 

7) Draw a sample from the specified population and compute its pseudostatistic: 

indices at different levels of analysis are computed for this drawn sociomatrix. Then 

compare these pseudostatistics with the original statistics. A detailed description of the 

measures and the computation of their corresponding nsc is shown in Table 1. For 

instance, in the case of the DC statistic, if pseudostatistic is as large as or larger than the 

original value then add 1 to the nge counter and then go to step 8). Otherwise, if a 

pseudostatistic is lower than the original value then go directly to step 8). 

 

 

Statistics 
Level of 

analysis 
Computation of nsc 

DC Group Greater than or equal 

Φ Group Greater than or equal 

Ψ Group Less than or equal 

λj Individual Less than or equal 

υj Individual Greater than or equal 

υi←j/υj Dyadic Greater than or equal 

 

Table 1. Summary of some of the measures of social reciprocity provided by the R package, 

their corresponding level of analysis and an explanation of the computation of the significant 

cases (nsc). 

 

8) Add 1 to the iter counter and repeat step 7) till iter counter equals NS. In the 

example the step 7) will be iterated till iter equals 99,999. 

 

9) Compute the significance level: the p value is computed as (nge + 1)/(NS + 1), 

where NS equals the number of the generated matrices and nge is the number of 

significant cases. This is a valid statistical test as it ensures that the original statistic is 
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among the set of simulated statistics, thus, the p value can never be smaller than 1/rep 

(Noreen, 1989; Onghena & May, 1995). 

 

4. An R package for testing social reciprocity 

 

An R package (reciprocity v.0.1, available upon request) has been developed in order to 

compute social reciprocity statistics and obtain their statistical significance by means of 

a Monte Carlo test. This software can be useful for social psychologists and ethologists 

as it includes indices that allow them to measure social processes and make decisions 

about dyadic interactions in groups at group, dyadic, and individual levels.  

 

Firstly, the sociomatrix to analyse has to be specified following a predefined format. 

If the matrix is in a text file, data can be loaded in a matrix called X. The name of the 

file has to be specified as well as the number of rows as it is shown below:  

 
X <- matrix(scan("<filename>"),nrow=<number>,byrow=T) 

 

Secondly, researchers can choose the number of matrices they want to generate 

(rep). Afterwards, the matrix Π of probabilities of the event of interest has to be defined 

according to the null hypothesis of interest. If this matrix of pij, called pi in the R 

program, is in a file, then it has to be loaded as follows: 

 
pi <- matrix(scan("<filename>"),nrow=<number>,byrow=T) 

 

The function reciptest has been developed in order to carry out the Monte Carlo 

sampling. It yields p values for social reciprocity statistics at group, dyadic and 

individual levels depending on the options selected: 

 
reciptest(X,pi,rep,overlev=<TRUE/FALSE>,indivlev=<TRUE/FALS

E>,dyadlev=<TRUE/FALSE>,names,label=<TRUE/FALSE>) 

 

  To generate sociomatrices (called matgen), a C program (recip.c) is called by the 

reciptest function. The simulation steps are as follows: a) group size is defined 

according to the size of the original matrix; b) a random number a is generated from a 

binomial distribution with parameters Nij and pij, specifically dyadc and pi; c) the 

random number is assigned to the element on the upper triangular matrix (xij) and the 

value on the lower triangular matrix is obtained by the formula xji = Nij – xij; d) if the 

element belongs to the principal diagonal, a 0 value is assigned; e) steps b) to c) are 

repeated for each element in the matrix; f) once the matgen has been generated, the 

program computes the social reciprocity statistics associated to this simulated 

sociomatrix; and g) steps b) to f) are repeated according to the number of iterations 

previously specified (rep). In order to obtain statistical significance, the p value is 

obtained by means of the formula shown above and the criteria of Table 1. 

 

5. An illustrative example 

 

In this section the procedure is applied to data collected in the context of aggression in 

children research (Kenny et al., 2007). A group of six third-grade children is observed 

in order to quantify the dyadic aggression in play context. Table 2 shows the round-

robin design data. Each cell contains the amount of aggressive behaviours addressed 



and received. Rows represent number of aggressions initiated by individuals and 

columns show the number of aggressions that each child receives from their partners. 

 

Partner 

Actor Ch1 Ch2 Ch3 Ch4 Ch5 Ch6 

Ch1 0 17 12 57 11 14 

Ch2 15 0 6 95 18 128 

Ch3 20 59 0 89 19 59 

Ch4 30 38 47 0 83 294 

Ch5 25 8 4 140 0 36 

Ch6 6 87 11 272 31 0 

 

Table 2 Round-robin design in which aggression among third-grade children is studied. 

Extracted with permission from Kenny et al. (2007). 

 

Researchers can be interested in detecting how symmetrical children’s aggressions 

are in order to apply a more effective psychological technique directed to a specific 

child. Although the empirical values for the DC (.236) and Φ (.034) seem to suggest 

that the group is close to complete reciprocation, an asymmetrical pattern in the 

aggressive behaviour of the group was found significant (p value = .00001 for both 

statistics). The results of the Monte Carlo sampling using 99,999 replications shown in 

Table 3 confirm that fact – the means for both statistics under the hypothesis of 

complete reciprocation are lower than the empirical values. The non reciprocal pattern 

of aggressive behaviour in the group means that there will be at least one individual 

who mainly behaves more aggressively than the others. 

 

 DC Φ 

Original Statistical value .236 .034 

p value .00001 .00001 

N simulations 99,999 99,999 

Mean .0656 .0036 

Variance .000212 .000004 

Maximum .143 .023 

Minimum .0191 .0002 

25th Percentile .0549 .0022 

50th Percentile .0641 .0032 

75th Percentile .0745 .0045 

 

Table 3. Some results of the Monte Carlo test for aggressive behaviour data for the 6-children 

group under null hypothesis pij = .5. Both indices were significant (DC = .236, p value = 

.00001; Φ = .034, p value = .00001). 

 

As regards individual contributions to symmetry (quantified by λ) and skew 

symmetry (υ), the results presented in Table 4 show a significant skew-symmetrical part 

for all individuals (p value < .01). Individuals 2 (υCh2 = .101) and 3 (υCh3 = .197) show a 

larger skew-symmetrical pattern in comparison to the one shown by the other children 

in the group. The original sociomatrix shows that both address an important amount of 

aggression to their partners and receive less aggressive behaviour from them. 

Additionally, all children contribute significantly (p value < .01) to the symmetry in a 

high degree, being child 6 the main contributor to the symmetry part (λCh6 = .988). 

Her/his high level of aggression with individual 4 is highly remarkable. 



 

Membership λj  υj 

Ch1 .915
**

 .085
**

 

Ch2 .899
**

 .101
**

 

Ch3 .803
**

 .197
**

 

Ch4 .978
**

 .022
**

 

Ch5 .937
**

 .063
**

 

Ch6 .988
**

 .012
**

 

 

Table 4. Standardized individual contributions to the skew symmetry (υj) and to the symmetry 

(λj) for each the 6 children in the sociomatrix. ** = p value < .01. 

 

The dyadic decomposition of the skew-symmetrical part is shown in Table 5. There 

is only one dyadic relation for which the skew-symmetry of a child can be mainly 

explained by her/his relation to another. Specifically, the skew-symmetrical pattern 

shown by child 6 can mainly be assigned to her/his interactions with child 3 

(υCh3←Ch6/υCh6 = .506; p value = .044).  

 

Agent j 

Agent i Ch1 Ch2 Ch3 Ch4 Ch5 Ch6 

Ch1 0 .001
ns

 .009
ns

 .077
ns

 .052
ns

 .014
ns

 

Ch2 .004
ns

 0 .392
ns

 .343
ns

 .026
ns

 .369
ns

 

Ch3 .061
ns

 .358
ns

 0 .186
ns

 .059
ns

 .505
*
 

Ch4 .690
ns

 .414
ns

 .246
ns

 0 .856
ns

 .106
ns

 

Ch5 .185
ns

 .013
ns

 .031
ns

 .343
ns

 0 .005
ns

 

Ch6 .061
ns

 .214
ns

 .322
ns

 .051
ns

 .007
ns

 0 

TOTAL 1 1 1 1 1 1 

 

Table 5. Dyadic decomposition of the skew-symmetrical part in the aggression among 6 

children (υi←j/ υj). Ns = non significant; * = p value < .05. 

 

6. Discussion 

 

The present paper focuses on the quantification of social reciprocity, specifically on two 

overall indices, the DC index (van Hooff & Wensing, 1987) and the Φ index (Solanas et 

al., 2006). The Φ index also allows researchers to measure social reciprocity at different 

levels of analysis, specifically at individual and dyadic levels. Both DC and Φ are based 

on dyadic discrepancies, rather than on correlation, and present similar statistical 

properties (Leiva, Solanas, & Salafranca, 2008; Solanas, Leiva, & Salafranca, in press). 

Given that most researchers require procedures not only for describing social systems as 

a whole but also for making statistical decisions, an overall statistical technique based 

on Monte Carlo sampling is proposed. A potentially interesting null hypothesis to test is 

the one of complete reciprocation, although the statistical procedure allows testing other 

hypotheses regarding reciprocity and it is appropriate for a wide set of conditions. 

 

The proposed procedure requires several assumptions to make statistical decisions. 

Specifically, it is assumed that pij values are constant for each observation time, 

outcomes of successive interactions are independent and dyads are independent from 

each other. These assumptions are common to most of the statistical models for 

analysing social interaction (de Vries, 1995; Hemelrijk, 1990a; Kenny et al., 2006). 

 



An implementation in free software for the measures and statistical tests here 

presented has been developed in order to be used by applied researchers. Nevertheless, 

some other programmes can be found in order to measure and make decisions regarding 

several social aspects as dyadic nonindependence, social dominance, and hierarchy 

(Alferes & Kenny, 2009; Campbell & Kashy, 2002; de Vries, Netto, & Hanegraaf, 

1993; O’Connor, 2004).  

 

To sum up, an overall procedure for testing social reciprocity by means of several 

measures founded on dyadic interactions has been reviewed and illustrated. This 

procedure could be useful in fields like social psychology and ethology in order to study 

group dynamics. An R program that allows social researchers to analyse any 

sociomatrix and make statistical decisions under different null hypotheses regarding 

social reciprocity has been developed.  
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