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ABSTRACT 

If single case experimental designs are to be used to establish guidelines for 

evidence-based interventions in clinical and educational settings, numerical 

values that reflect treatment effect sizes are required. The present study 

compares four recently developed procedures for quantifying the magnitude of 

intervention effect using data with known characteristics. Monte Carlo 

methods were used to generate AB designs data with potential confounding 

variables (serial dependence, linear and curvilinear trend, and 

heteroscedasticity between phases) and two types of treatment effect (level 

and slope change). The results suggest that data features are important for 

choosing the appropriate procedure and, thus, inspecting the graphed data 

visually is a necessary initial stage. In the presence of serial dependence or a 

change in data variability, the Nonoverlap of All Pairs (NAP) and the Slope 

and Level Change (SLC) were the only techniques of the four examined that 

performed adequately. Introducing a data correction step in NAP renders it 

unaffected by linear trend, as is also the case for the Percentage of 

Nonoverlapping Corrected Data and SLC. The performance of these 

techniques indicates that professionals’ judgments concerning treatment 

effectiveness can be readily complemented by both visual and statistical 

analyses. A flowchart to guide selection of techniques according to the data 

characteristics identified by visual inspection is provided.   

 

Key words:  single-case, effect size, autocorrelation, trend  
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Single-case experimental designs (SCEDs) have been shown to be useful for 

evaluating intervention effectiveness in several behavioral fields (Blampied, 

2000), including educational (Horner, Carr, Halle, McGee, Odom, & Wolery, 

2005; Parker & Brossart, 2006) and clinical psychology settings (Callahan & 

Barisa, 2005; Perdices & Tate, 2010). Evidence-based guidelines in relation to 

treatment interventions can be established by collating data from multiple 

SCEDs (Kratochwill & Levin, 2010). Some form of measure is needed to 

summarize the results of the study, not only to meet a quality criterion for N=1 

research (Horner et al., 2005), but also for accountability (Chambless & 

Ollendick, 2001), communication between researchers, and particularly to 

enable conducting meta-analyses (Busse, Kratochwill, & Elliott, 1995). The 

latter are fundamental to evidence-based practice, given that the clinician who 

wants to select the correct treatment is interested in syntheses (i.e., meta-

analysis) of data rather than in individual studies (Kratochwill, 2007). 

Although the call for evidence-based practice has emphasized the importance 

of summary measures (Shadish, Rindskopf, & Hedges, 2008), one should not 

lose sight of the fact SCED studies provide important information on 

individual participant characteristics, time course of interventions, setting, and 

behavior measured (Reichardt, 2006) that may address the question of what  

treatments are useful in particular situations (Chambless & Ollendick, 2001).   

Single-case investigation and statistical reasoning are clearly not 

incompatible (White, Rusch, Kazdin, & Hartmann, 1989). In fact, over the last 

decades a considerable number of methods of analyzing SCED data have been 
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proposed (Allison & Gorman, 1993; Borckardt, Nash, Murphy, Moore, Shaw, 

& O’Neil, 2008; Center, Skiba, & Casey, 1985-1986; Ma, 2006; Manolov & 

Solanas, 2009; Parker, Hagan-Burke, & Vannest, 2007; Parker & Vannest, 

2009; Parker, Vannest, & Brown, 2009; Scruggs, Mastropieri, & Casto, 1987; 

Solanas, Manolov, & Onghena, 2010). Despite the proliferation of methods, 

there is currently no clear consensus on which is the most appropriate one for 

analyzing SCED data. For the present study four recently developed 

techniques were selected and compared: Improvement Rate Difference (IRD; 

Parker et al., 2009), Nonoverlap of All Pairs (NAP; Parker & Vannest, 2009), 

Percentage of Nonoverlapping Corrected Data (PNCD; Manolov & Solanas, 

2009), and Slope and Level Change (SLC; Solanas et al., 2010). There were 

several reasons for the selection of these techniques. Firstly, they have not yet 

been subjected to extensive testing in order to establish their appropriateness 

for a variety of data. Some of the techniques are modifications of previously 

presented methods and were designed to improve upon them. For example, 

PNCD was selected instead of the Percent of Nonoverlapping Data (Scruggs et 

al., 1987) as a previous study had shown PNCD to be superior to PND 

(Manolov & Solanas, 2009). Another related method, the Percentage of data 

points Exceeding the Median (Ma, 2006) was excluded due to poor results 

(Parker & Hagan-Burke, 2007; Wolery, Busick, Reichow, & Barton, 2010). 

IRD was chosen instead of its related original method, Percentage of All 

Nonoverlapping Data (Parker et al., 2007), since it has been argued that the 

latter is too complicated for routine use (Parker & Vannest, 2009; Schneider, 
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Goldstein, & Parker, 2008). The second reason for choosing IRD, NAP, 

PNCD, and SLC is that they share two features that make them potentially 

attractive to and useful for applied researchers – ease of computation and ease 

of interpretation of their values (see Appendix 1 for details). Straightforward 

techniques are preferred since they require less effort from professionals and 

are less likely to be used inappropriately. Finally, the four techniques selected 

can readily be used to complement visual inspection, a synergy that has 

repeatedly been called for (Fisch, 2001; Parker, Cryer, & Byrns, 2006).  

The objective of the present study is to extend the existing evidence on the 

performance of IRD, NAP, PNCD, and SLC and compare them directly in 

terms of a) the degree to which they are affected by potential confounding 

variables (i.e., serial dependence, heteroscedasticity, and trend) and b) the 

degree to which they detect different types and magnitudes of treatment effect. 

Thus, the context of comparison of the four approaches to analysis of SCED 

data is simulated data with known characteristics. IRD and NAP have 

previously been tested with real behavioral data in terms of typical values, 

discriminability, and relatedness to other effect size methods (Parker & 

Vannest, 2009; Parker et al., 2009) and the present study intends to 

complement this information. As regards PNCD and SLC, for which 

simulation studies have already been carried out (Manolov & Solanas, 2009, 

and Solanas et al., 2010, respectively), the novelty consists in introducing two 

previously unstudied potential confounding variables – heteroscedasticity and 

curvilinear quadratic trend. 
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Although both new data features studied are conceptualized here as 

confounding variables, some comments are necessary. Regarding variability, it 

should be pointed out that in some cases the aim of a treatment may be to 

decrease the variability of client’s behavior. As regards quadratic trend (i.e., a 

progressive change with an increasing rate), according to the moment in which 

the intervention is introduced such a curve can have different interpretations. 

For instance, if the situation is like the one depicted on the left panel of Figure 

1, visual inspection may suggest that the data represent a change in slope or a 

delayed treatment effect. For the case shown on the right panel of Figure 1 it 

seems clearer that the behavior is experiencing a trend not related to the 

treatment and, therefore, the assessment of intervention effectiveness would 

have a different outcome. Interpretations become more difficult if the 

intervention point is approximately in the middle of a similar data pattern.  

 

INSERT FIGURE 1 ABOUT HERE 

 

Thus the main aims are: a) to determine whether autocorrelation, unequal 

variances, and trends distort the magnitude of effect quantifications and to 

what extent; and b) to test which of the techniques is most sensitive to several 

degrees of change in level and change in slope in the data. A secondary goal is 

to test the relevance of phase length, data generation processes, and random 

variable distributions for both distortion and effect detection.  
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Method 

Design and series lengths studied 

The procedures are tested in the context of the AB design (a baseline phase 

followed by treatment introduction), but the conditions also represent pairs of 

adjacent AB phases within a more complex structure (e.g., multiple-baseline 

and ABAB). Relatively short data series (n = nA + nB) were included in the 

present study, reflecting the typical length of data collection periods in applied 

settings: a) n = 10 with nA = nB = 5; b) n = 20 with nA = nB = 10; and c) n = 30 

with nA = nB = 15. 

 

Data generation 

Monte Carlo methods were used to generate data with different types of 

effects with different magnitudes, as well as potential confounding factors in 

order to compare these known features to the values yielded by the techniques. 

To the best of our knowledge, heteroscedasticity and curvilinear trend have 

not previously been simulated in studies on magnitude of effect techniques.  

The data generation model used was (Huitema & McKean, 2000):   

yt = β0 + β1 ∙ Tt +  β2 ∙ LCt + β3 ∙ SCt + εt, 

where yt is the dependent variable measurement at moment t, β0 is intercept set 

to zero, β1, β2, and β3 are the coefficients associated with trend, level change, 

and slope change, respectively, Tt is a dummy variable for trend at moment t 

taking values from 1 to n for linear trend and from 1
2
 to n

2
 for quadratic 

curvilinear trend, LCt is a dummy variable for level change (0 for phase A and  
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to 1 for phase B), SCt is a dummy variable for slope change (0 for phase A and 

taking values from 0 to nB−1 for phase B), and εt is the error term.  

Following the discussion by Harrop and Velicer (1985) on the most useful 

models to represent behavioral data, the error term (εt) was generated by a 

first-order autoregressive process, AR(1), εt = φ1 ∙ εt–1 + ut with φ1 ranging 

from –.3 to .6 in steps of .3 and by a first-order moving average process, 

MA(1), εt = ut − θ1 ∙ ut-1 (McCleary & Hay, 1980) with θ1 ranging from –.9 to 

.3 in steps of .3. In the latter case, the values of θ1 correspond to φ1 from –

.2752 to .4972, since φ1 = −θ1/(1 + θ1
2
).  

For both processes three different distributions (exponential, normal, and 

uniform) were used for generating the random variable ut in order to represent 

a wider range of real behavioral data (Bradley, 1977; Micceri, 1989) and, 

specifically, due to the differences among the distributions in terms of 

skewness and kurtosis. All distributions had a zero mean and a unity standard 

deviation for both phases for homoscedastic conditions. For the 

heteroscedastic conditions, two cases were specified – an increased (a standard 

deviation of 2) or decreased (a standard deviation of .5) phase B variability.   

The β1, β2, and β3 coefficients were set to vary from 0 to .3 in steps of .1 in 

order to permit studying the detection of different magnitudes of effect. For 

testing the effect of curvilinear trend β1 was set to .01. The specific values 

were chosen by trial and error (Brossart, Parker, Olson, & Mahadevan, 2006; 

Parker & Brossart, 2003) to avoid floor and ceiling effects in the indices. It 

should be noted that a slope change of say .2 represents a greater effect than a 
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constant level change of .2 (more so for longer data series), since the former is 

progressive and thus increasing the average level with each measurement time. 

 

Simulation 

Fortran programs were used to carry out the following steps: 1) Vary 

systematically φ1 or θ1. 2) Vary systematically β1, β2, and β3. 3) Iterate 100,000 

times steps 4 through 9. 4) Generate the ut term according to a negative 

exponential, a normal, or a uniform distribution. 5) Set ε1 = u1. 6) Obtain the 

error term εt out of the random variable ut using the AR(1) or the MA(1) 

model. 7) Obtain the dummy variables for trend, level and slope change. 8) 

Obtain the yt array representing behavioral measurements. 9) Apply the four 

procedures to the generated data array yt.10) Average the obtained techniques’ 

values from the 100,000 replications of each experimental condition.   

For data generation NAG libraries nag_rand_neg_exp, nag_rand_normal, 

and nag_rand_uniform were used, making individual calls for each specific 

experimental condition. As a control against artificial effects (Greenwood & 

Matyas, 1990) and dependence between successive data series (Huitema, 

McKean, & McKnight, 1999), the first 50 data generated at each call to the 

libraries were eliminated in step 4. 

 

Data analysis 

The comparisons among the procedures were carried out in terms of the 

distorting effect of the confounding variables studied (i.e., autocorrelation, 
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heteroscedasticity, and general trend) and in terms of detection of the two 

types of intervention effect (i.e., level change and slope change). To quantify 

the amount of change in the indices associated with these data features ratios 

were computed, maintaining constant the features not included in the calculi: 

a) for the degree of distortion due to autocorrelation, a ratio was computed 

between the magnitude of effect quantification for conditions with serially 

related data (in the numerator) and independent data (in the denominator);   

b) for the degree of distortion due to unequal variability, a ratio was 

computed between the magnitude of effect quantification for hetero-

scedasticity (in the numerator) and homoscedasticity (in the denominator);  

c) for the degree of distortion due to either type of trend, a ratio was 

computed between the magnitude of effect quantification for presence (in the 

numerator) and absence (in the denominator) of trend;  

d) for the degree of detection of treatment effects, a ratio was computed 

between the magnitude of effect quantification for presence (in the numerator) 

and absence (in the denominator) of effect.  

Regarding distortions, ratios close to 1 indicate that the confounding 

variable does not affect the value yielded by the procedure; a desirable 

characteristic. Ratios greater than 1 suggest that the magnitudes of effect are 

overestimated, whereas ratios smaller than 1 are indicative of underestimation. 

As regards effect detection, a ratio of 1 implies that an existing change in the 

measurements is missed by the procedure, which does not discriminate 
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between absence and presence of effect. Ratios greater than 1 are expected as 

indicators of the sensitivity to (different magnitudes of) treatment effects.   

 

Results 

 

Distortion due to autocorrelation 

SLC is not affected by the presence of the degrees of autocorrelation tested, as 

the values of its estimators do not change regardless of the values of φ1 for 

AR(1) processes and θ1 for MA(1) processes. This result may be related to the 

data correction step, which has been shown to attenuate the affection by serial 

dependence in PNCD in comparison to PND (Manolov & Solanas, 2009), and 

considering that when a linear trend is present, data are positively serially 

related. However, these findings are restricted to the conditions tested – 

homogeneous AB data in which autocorrelation is constant in both phases. For 

low levels of positive and negative serial dependence the underestimation and 

overestimation of the remaining three indices is only slight, as shown on 

Tables 1 and 2. For φ1 ≥ .5 NAP maintains the desirable performance, whereas 

IRD and PNCD show greater distortion, with the latter being somewhat less 

affected for normal and uniform random variable (ut) terms. These findings 

are common to both AR(1) and MA(1) processes. When treatment effect was 

simulated (results not shown here), the distortions occur in IRD and PNCD for 

the highest degrees of serial dependence tested. 
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INSERT TABLES 1 AND 2 ABOUT HERE 

 

Distortion due to heteroscedasticity 

NAP remains unaffected by heteroscedasticity, except for conditions with an 

exponential ut term. SLC is also not affected by unequal variability, since the 

values of its estimators equal zero in the absence of treatment effect regardless 

of the variability in the series. Greater phase B variability results in an increase 

in the magnitude of effect calculated by PNCD and IRD, the latter being more 

affected (see Table 3). In contrast, lower phase B variability is only associated 

with higher values of IRD, while it leads to lower values for PNCD. The 

affection of IRD becomes more obvious for larger n. 

 

INSERT TABLE 3 ABOUT HERE 

 

The decrease in the variability of a behavior of interest after an 

intervention is potentially an important and desirable result and an index 

sensitive to such an effect might be useful for practitioners. This is not the 

case for NAP or SLC. The results for IRD and PNCD also suggest that neither 

of the procedures is suitable. PNCD marks the reduced variability with lower 

percentages, which may be misleading as such values are also indicative of a 

lack of effect. IRD yields greater values for both increased and decreased data 

variability and, thus, is not useful for discriminating between these conditions.      
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Distortion due to trend 

PNCD and SLC are practically unaffected by the presence of linear trend in 

data, which is indicates that the data correction step is effective for data 

exhibiting such a pattern. The values of SLC’s slope and level change 

estimators are not presented in the tables, since they are equal to zero (for β2 = 

β3 = 0), regardless of the value of β1. For NAP, and to a greater extent for IRD, 

linear trend is associated with an inflation of the magnitude of effect 

quantifications, especially for exponential ut term (Table 4). Thus, considered 

alone the values from these procedures may lead to an incorrect conclusion 

that an intervention is effective. Curvilinear trend affects all four procedures, 

particularly IRD (see Table 5). In the case of PNCD and SLC, these results 

suggest that the data correction step is only useful for linear trends. For both 

types of trend, the distortion in the procedures affected is greater for longer 

data series. 

 

INSERT TABLES 4 AND 5 ABOUT HERE 

 

Simulated treatment effect detection  

Prior to discussing the results, it should be noted that for NAP ratios can only 

become as large as 2, since 1 is the maximum value of the index and .5 is the 

value expected (and actually obtained) for absence of effect.   

IRD is the method that shows greater relative increment for both level 

change (Table 6) and slope change quantifications (Table 7). NAP and PNCD 
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perform similarly detecting level change, whereas for slope change the latter is 

more sensitive. For SLC the results showed that the average slope change 

estimate is equal to β3 and the average level change estimate is equal to β2, an 

indication of the lack of bias. Ratios were not computed, since the estimate 

obtained by either estimator in the absence of an effect (β2 = β3 = 0) is zero.  

 

INSERT TABLES 6 AND 7 ABOUT HERE 

 

For level change, NAP yields approximately the same values irrespective 

of n, in contrast with the results for IRD, which discriminates better between 

presence and absence of effect for longer data series. For this kind of effect 

IRD shows greater sensitivity for exponential ut terms. Slope change was 

better detected by all three procedures, which is emphasized for greater sample 

sizes, as progressive effects become more evident with each measurement. 

Another result to be highlighted in relation to series length is that the values 

yielded by PNCD and IRD become smaller as n increases, ceteris paribus.  

 

Discussion 

 

The present study compared four procedures for quantifying effect size in N=1 

designs in order to help applied researchers choose among them when 

assessing intervention effectiveness. In the following section the main results 

will be summarized and used to make recommendations to practitioners. 
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Afterwards, the place of quantitative procedures in professionals’ decision 

making process will be discussed. Finally, the limitations of the study will be 

pointed out alongside questions that need further investigation.   

 

 

Performance of the techniques studied 

The somewhat simplified summary presented in Table 8 shows that the effect 

size quantifications provided by some techniques (i.e., IRD) are distorted by 

all of the confounding variables studied, whereas others (NAP and SLC) are 

affected only by trend. Taking into account the results on NAP, the 

introduction of an initial data correction step identical to SLC’s first step is 

proposed in order to deal with linear upward or downward trend. Simulations 

support this proposal (referred to as NAPcorr) and R code is presented in 

Appendix 2 for carrying out the necessary computations. The information on 

distortion needs to be complemented considering the sensitivity of the 

procedures which is higher for IRD. Among the remaining techniques, PNCD 

is more sensitive than NAP to slope changes. Although not directly 

comparable, SLC detects the effects and estimates them precisely. 

 

INSERT TABLE 8 ABOUT HERE 

 

Focusing on IRD, a limitation is that there is not a single approach to 

computing the index, since when k data points need to be eliminated in order 

to reach a complete nonoverlap, there may be several possible ways of 
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selecting k data points across phases A and B. Parker and his colleagues 

(2009) recommend balancing the amount of data points to eliminate from each 

phase. While performing the present study it was found that the solution in 

which k/2 values are eliminated from each phase leads to a median value of 

IRD compared to eliminating more data points from either phase. Hence, 

Parker et al.’s recommendation would lead to avoiding extreme (i.e., too low 

or too high) values of the magnitude of effect. It should be pointed out that 

when nA = nB, the specific bipartitioning of the k necessary eliminations does 

not affect the value of IRD. These considerations, in conjunction with the 

distortion by confounding variables, suggest that among the percentage 

indices, it is more advisable to use NAP and PNCD than IRD.   

Concerning the secondary goals of the study, generating data from AR(1) 

or MA(1) processes with either of the random variable distributions did 

neither alter the general findings on the degree of distortion or sensitivity, nor 

the ranking among the most affected or sensitive procedures. Nonetheless, 

some particularities for the ut terms were pointed out and the dependence of 

IRD and PNCD on series length was underlined.  

 

Intervention effectiveness assessment 

When assessing intervention effectiveness, quantification only complements 

the substantive criteria related to the field of expertise. Practical significance 

can be assessed considering both social and clinical clues, such as the 

perceptions of the client and of significant others (Kratochwill & Levin, 2010) 
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and moving from dysfunctional to functional ranges of behavior (Perdices & 

Tate, 2010), considering a variety of factors and indicators (Kazdin, 1999).  

In order to improve objectivity and results documentation, suitable 

complements to psychologists’ judgments have to be identified. Reviews 

suggest that visual inspection is most frequently applied (Parker & Brossart, 

2003), although in some areas of psychology it is common to combine both 

statistical and visual analysis (Perdices & Tate, 2010). Visual inspection 

allows considering simultaneously several data attributes such as the 

immediacy of treatment effects, the presence of trends, and data variability 

within and between phases (Horner et al., 2005; Parker et al., 2006). 

Furthermore, plotting each measurement as it is obtained allows understanding 

better the behavioral processes and interrupting immediately undesired 

situations (Fahmie & Hanley, 2008). The whole data series can also be 

assessed visually in order to judge whether the data pattern corresponds to the 

expected one considering the design structure, which would be indicative of 

experimental control. Finally, the results presented here suggest that visual 

inspection may aid choosing the appropriate quantitative procedure.  

Nonetheless, visual inspection used on its own does not provide formal 

decision rules. Therefore, the third pillar of effectiveness assessment (apart 

from substantive knowledge and visual inspection) should be a quantification 

of the strength of association between intervention and behavior. In the 

following section we provide guidance on selecting the appropriate technique 

and highlight the importance of initial visual inspection in that process. 
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Choosing among the techniques studied 

On the basis of the results on distortion due to confounding variables and 

sensitivity to intervention effects, a quantitative procedure can be selected 

according to the data features identified by visual analysis (see Figure 2). In 

the case of autocorrelation, judgments need to be based on theoretical or data 

collection considerations (e.g., the interval between measurements), since 

estimation is biased in short series (Huitema & McKean, 1991).  

 

INSERT FIGURE 2 ABOUT HERE 

 

Several explanations are needed regarding the flowchart. For quadratic 

trend, visual inspection has to reveal where the greatest progressive change in 

the behavior starts. If a quadratic trend is identified during baseline, the 

practitioner would need to postpone the intervention until greater stability in 

the behavior measured is reached. Conversely, when the data pattern 

resembles a change in slope or a delayed effect is present, in which case the 

professional’s familiarity with the client is critical. This in-depth knowledge is 

crucial, since the detection of delayed effects has been shown to be 

troublesome with fictitious data (Lieberman, Yoder, Reichow, & Wolery, 

2010). For autocorrelated and/or heteroscedastic data NAP and SLC can be 

employed given that they provide different information. The same is the case 

for NAPcorr and SLC when a linear trend in the measurements is identified.    
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Limitations and future research 

In the present simulation the curvilinear trend simulated was quadratic, since 

in short data series it is not likely to clearly identify higher order trends (e.g., a 

cubic trend implies a pattern with two marked apices). Outliers were not 

incorporated in the data generation model and future studies need to explore 

their effect. If outliers prove to have an impact on statistical procedures, visual 

analysis would be appropriate for detecting extreme values, while expert’s 

knowledge on the particular case would be necessary for interpreting them. It 

would also be interesting to investigate the performance of the techniques in 

case of a different degree of autocorrelation across phases. There is evidence 

in some fields of this phenomenon (e.g., Robey, Schultz, Crawford, & Sinner, 

1999), and, in fact, it would be logical to expect greater autocorrelation in 

phase B in cases of upward or downward trends (i.e., a progressive change in 

the behavior which makes it more homogeneous). Finally, the 

recommendation to use NAP and SLC is based on the experimental conditions 

studied and it does not exclude the utility of other techniques not tested here.  

As no single procedure is superior in all conditions and the choice of 

technique depends on the nature of the data (e.g., presence of trend), the 

comparability between studies using different magnitude of effect measures is 

compromised and this represents an obstacle for performing meta-analyses. A 

possible solution is to combine studies in terms of small/medium/large effect 

sizes. Conventions on the meaning of each of these labels in a specific field 

and in relation to each statistical technique therefore need to be established. 
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Appendix 1 

Calculation of the four procedures tested: word explanations and application to 

fictitious data with three phase A scores (5, 6, and 8) and three phase B scores 

(11, 8, and 11). Note that the example and the computation comments refer to 

interventions aiming increase in the behavior of interest. Formulae and further 

information can be found in the original papers introducing the indices.    

 

Improvement rate difference (Parker et al., 2009) 

The procedure compares two proportions – the improvement rate in phase A 

(IRA) and improvement rate in phase B (IRB). This index is closely related to 

the Percentage of All Nonoverlapping Data (Parker et al., 2007) and is based 

on the identification of the smallest number of data points that have to be 

removed from either phase in order to eliminate all overlap. It is important to 

consider whether a data point is removed from the baseline, and counted as 

improved (increasing IRA), or from the treatment phase, and counted as not 

improved (reducing IRB) in order to construct the corresponding 2x2 table, 

which is basic for the computation. The calculation procedure described in 

Parker et al. (2009) is applied to the example data (phase A: 5, 6, 8; phase B: 

11, 8, 11). One alternative for achieving complete nonoverlap is to remove the 

third score from the baseline. Thus, there would be one improved in phase A 

and IRA would be equal to 1/3 ≈ .33. Since no data are removed from phase B, 

there are three improvements in this phase and IRB = 3/3 = 1.0. The IRD is 1 − 
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.33 = .67. An alternative way for eliminating overlap is to remove the second 

score from the treatment phase, so that there are no improvements in phase A 

and two improvements in phase B. In this way, the computation is IRD = IRB 

− IRA = 2/3 – 0/3 ≈ .67, the same value as obtained previously. The summary 

of the two alternative ways of computing IRD is provided in Table 1. 

 

Table 1. Results of the analysis of the data regarding data points needing 

removal to eliminate overlap between phases.  

 Computational alternative 1 Computational alternative 2 

Data points Phase A Phase B Phase A Phase B 

Improved 1 3 0 2 

Not improved 2 0 3 1 

Total 3 3 3 3 

 

An IRD value of 1.00 reflects lack of overlap, whereas .50 indicates that half 

of the scores are overlapping and is interpreted as chance level improvement. 

In the current example the amount of overlap, and the treatment effect, can be 

labeled arbitrarily as “moderate”.  

 

Nonoverlap of all pairs (Parker & Vannest, 2009) 

The procedure compares each baseline score with each treatment phase score 

and, therefore, nA · nB comparisons are made. A nonoverlapping pair is one in 

which the treatment score is greater than the baseline score. This quantity is 
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divided by nA · nB and the obtained value is interpreted as “the probability that 

a score drawn at random from a treatment phase will exceed that of a score 

drawn at random from a baseline phase” (Parker & Vannest, 2009, p.359). 

Using the example data, only the pair formed by the third baseline score and 

the second treatment phase score does overlap. Thus, only 1 of the 3 · 3 pairs 

overlaps and since ties count as half of an overlap - NAP = 8.5/9 ≈ .94. This 

result may indicate that it is quite probable that a randomly selected phase B 

data point would be greater than a randomly selected phase A data point.   

 

Percentage of nonoverlapping corrected data (Manolov & Solanas, 2009) 

The procedure applies PND (Scruggs et al., 1987) after introducing a data 

correction step intended to remove baseline linear trend from the whole data 

series. Firstly, the phase A data are differenced. In the example baseline, this 

operation leads to 6 − 5 = 1 and 8 − 6 = 2. The mean of the differenced scores, 

which are now nA − 1 instead of nA, is computed (1.5 in the example) and it 

represents an estimate of the linear trend present in the baseline. Afterwards, 

trend is removed from both baseline and treatment data subtracting the trend 

estimate multiplied by the dummy variable representing time (ranging from 1 

to nA + nB) from each original score. Therefore, the original number of 

measurements in each phase is maintained. In the example, the trend estimate 

1.5 is multiplied by the measurement time (1) and subtracted from the first 

score (1), thus, 5 − 1.5 · 1 = 3.5. For the second score, 6 − 1.5 · 2 = 3, and so 

on till the last score where 11 − 1.5 · 6 = 2. Finally, PND is applied to the 
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differenced data. In the differenced fictitious data (3.5, 3, and 3.5 in phase A 

and 5, .5, and 2 in phase B), only the first treatment phase differenced score is 

greater than all baseline differenced scores and, thus, PNCD ≈ 33% indicating 

a somewhat smaller effect than the previous indices.     

 

Slope and level change (Solanas et al., 2010) 

The procedure removes baseline linear trend from the whole data series prior 

to estimating slope and level change separately and in that order. In that sense, 

the procedure can be considered parametric taking into account that it is 

designed to estimate the β1, β2, and β3 parameters which are assumed to be in 

the basis of the data generation process (Huitema & McKean, 2000), although 

no statistical decision is made (e.g., testing the null hypothesis that β2 = 0). 

The only assumption made is that trend, if present, is approximately linear. 

Therefore, the application of the procedures is recommended only in cases 

when baseline data show relative stability or the data pattern resembles 

visually a linear upward or downward trend.   

The first trend elimination step is identical to the one in PNCD and thus 

values used from now on are 3.5, 3, and 3.5 for phase A and 5, .5, and 2 for 

phase B. In a second step, the treatment phase data are differenced and their 

average is computed. Differencing in the example leads to .5 − 5 = −4.5 and 2 

− 0.5 = 1.5. The average quantifies the phase B trend and represents the 

change in slope, given that the baseline is assumed to have a zero slope after 

the first step. In this case the average is −1.5 indicating a negative change in 
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slope, i.e., the slope becomes less steep in the treatment phase by 1.5 

measurement units at each observation. Afterwards, the phase B trend is 

removed from treatment data subtracting the trend estimate multiplied by a 

dummy variable ranging from 0 to nB − 1 from each original score. Removing 

trend from the phase B in the example leads to 5 − (−1.5) · 0 = 5, .5 − (−1.5) · 

1 = 2, and 2 − (−1.5) · 2 = 5. After this manipulation phase B is also assumed 

to have zero trend and the means of the two phases are compared. Phase A 

data from which baseline trend was removed in the initial step are 3.5, 3, and 

3.5 and their mean is approximately 3.33. Phase B data from each both 

baseline and treatment phase trends are removed are 5, 2, and 5, and their 

mean is 4. Therefore, the level change is 4 − 3.33 = .67. This value suggests 

that, after controlling slope change, there is a slight positive level change – in 

average, the scores in the treatment phase are higher with less than a 

measurement unit (i.e., the unit used to quantify the behavior). 
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Appendix 2 

R code for correcting linear trend prior to applying the Nonoverlap of All 

Pairs index. The input required from the user is a “info.dat” archive with the 

vector of measurements, read using the expression info <- 

array(scan(“info.dat”) and the phase A length specified after n_a <-. The 

remaining code is pasted in the R console as it appears to obtain NAP-s value. 

---------------------------------------------------------------------------------------------- 
# Data input 

info <- array(scan("info.dat")) 

n_a <- 3 

 

#Function 

napcorr <- function(info,n_a)  { 

slength <- length(info) 

n_b <- slength-n_a 

phaseA <- info[1:n_a] 

phaseB <- info[(n_a+1):slength] 

# Estimate phase A trend 

phaseAdiff <- c(1:(n_a-1)) 

for (iter in 1:(n_a-1)) 

phaseAdiff[iter] <- phaseA[iter+1] - phaseA[iter] 

trendA <- mean(phaseAdiff) 

# Remove phase A trend from the whole data series 

phaseAdet <- c(1:n_a) 

for (timeA in 1:n_a) 

phaseAdet[timeA] <- phaseA[timeA] - trendA * timeA 

phaseBdet <- c(1:n_b) 

for (timeB in 1:n_b) 

phaseBdet[timeB] <- phaseB[timeB] - trendA * (timeB+n_a) 

# Compute overlaps 

overlap <- 0 

for (iter1 in 1:n_a) 

for (iter2 in 1:n_b) 

{if (phaseAdet[iter1] > phaseBdet[iter2]) overlap <- overlap + 1; 

if (phaseAdet[iter1] == phaseBdet[iter2]) overlap <- overlap + 0.5} 

# Compute and print corrected NAP 

nap <- ((n_a*n_b - overlap) / (n_a*n_b))*100 

print ("NAP = "); print(nap) 

overlap <- 0 

list(nap)} 

 

# Magnitude of effect estimates 

results <- napcorr(info,n_a) 

---------------------------------------------------------------------------------------------- 
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Figures 

 
 

 

Figure 1. Ideal quadratic trend in an AB design, with nA = 3 and nB = 12 in the 

left panel and nA = 12 and nB = 3 in the right panel. 
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Figure 2. Flowchart for choosing among techniques according to the data 

characteristics identified by visual inspection. IRD denotes Improvement Rate 

Difference; NAP denotes Nonoverlap of All Pairs; NAPcorr denotes 

Nonoverlap of All Pairs with initial data correction step; and SLC denotes 

Slope and Level Change. 
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Tables 

 
Table 1. Distortion due to autocorrelation for an AR(1) process – the values 

represent the ratio between serially dependent data (φ1 ≠ 0) and independent 

series (φ1 = 0) in experimental conditions with no trend (β1 = 0) or intervention 

effect (β2 = 0 and β3 = 0). The two values of Slope and Level Change 

estimators (not presented here) are equal to zero, regardless of the value of φ1.  

Phase length Ratio φ1=−.3 / φ1=0 Ratio φ1=.3 / φ1=0 Ratio φ1=.6 / φ1=0 

nA nB    

exponential IRD
1
 NAP

2
 PNCD

3
 IRD NAP PNCD IRD NAP PNCD 

5 5 1.00 1.01 .94 1.07 .99 1.12 1.14 .96 1.25 

10 10 1.01 1.00 .94 1.12 1.00 1.16 1.39 .99 1.48 

15 15 1.03 1.00 .96 1.14 1.00 1.16 1.50 .99 1.53 

  normal IRD NAP PNCD IRD NAP PNCD IRD NAP PNCD 

5 5 .97 1.00 .95 1.08 1.00 1.06 1.19 1.00 1.12 

10 10 .97 1.00 .94 1.13 1.00 1.06 1.40 1.00 1.20 

15 15 .98 1.00 .96 1.13 1.00 1.07 1.47 1.00 1.22 

uniform IRD NAP PNCD IRD NAP PNCD IRD NAP PNCD 

5 5 .96 1.00 .95 1.05 1.00 1.05 1.14 1.00 1.10 

10 10 .96 1.00 .94 1.11 1.00 1.05 1.34 1.00 1.14 

15 15 .98 1.00 .92 1.14 1.00 1.02 1.44 1.00 1.09 

1
 Improvement Rate Difference. 

2
 Nonoverlap of All Pairs. 

3
 Percentage of Nonoverlapping Corrected Data. 
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Table 2. Distortion due to autocorrelation for an MA(1) process – the values 

represent the ratio between serially dependent data (θ1 ≠ 0) and independent 

series (θ1 = 0) in experimental conditions with no trend (β1 = 0) or intervention 

effect (β2 = 0 and β3 = 0). The two values of Slope and Level Change 

estimators (not presented here) are equal to zero, regardless of the value of θ1. 

Phase length Ratio θ1=.3 / θ1=0 Ratio θ1=−.3 / θ1=0 Ratio θ1=−.9 / θ1=0 

nA nB (Ratio φ1≈−.27 / φ1=0) (Ratio φ1≈.27 / φ1=0) (Ratio φ1≈.49 / φ1=0) 

exponential IRD
1
 NAP

2
 PNCD

3
 IRD NAP PNCD IRD NAP PNCD 

5 5 .99 1.01 .91 1.06 .99 1.11 1.16 .98 1.25 

10 10 .99 1.00 .93 1.08 1.00 1.12 1.27 .99 1.31 

15 15 1.01 1.00 .92 1.09 1.00 1.11 1.29 .99 1.30 

  normal IRD NAP PNCD IRD NAP PNCD IRD NAP PNCD 

5 5 .96 1.00 .96 1.07 1.00 1.05 1.17 1.00 1.12 

10 10 .96 1.00 .94 1.09 1.00 1.05 1.24 1.00 1.08 

15 15 .97 1.00 .94 1.10 1.00 1.05 1.26 1.00 1.06 

uniform IRD NAP PNCD IRD NAP PNCD IRD NAP PNCD 

5 5 1.05 1.00 .96 1.14 1.00 1.05 1.23 1.00 1.11 

10 10 .94 1.00 .94 1.08 1.00 1.03 1.18 1.00 1.03 

15 15 .95 1.00 .92 1.09 1.00 1.01 1.18 1.00 .95 

1
 Improvement Rate Difference. 

2
 Nonoverlap of All Pairs. 

3
 Percentage of Nonoverlapping Corrected Data. 
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Table 3. Distortion due to increased or decreased variability in phase B – the 

values represent the ratio between heteroscedasticity and homoscedasticity in 

independent data series (φ1 = 0 or θ1 = 0) with no treatment effect (β2 = 0 and 

β3 = 0). The values of the two Slope and Level Change estimators (not 

presented here) are equal to zero, regardless of the variability in the series. 

Phase length Ratio increased variability / Ratio decreased variability / 

nA nB homoscedastic data series homoscedastic data series 

exponential IRD
1
 NAP

2
 PNCD

3
 IRD NAP PNCD 

5 5 .91 .81 1.01 1.80 1.19 1.00 

10 10 1.12 .81 1.20 2.89 1.19 .88 

15 15 1.34 .81 1.37 4.08 1.19 .82 

normal IRD NAP PNCD IRD NAP PNCD 

5 5 1.21 1.00 1.12 1.22 1.00 .94 

10 10 1.60 1.00 1.29 1.60 1.00 .86 

15 15 2.00 1.00 1.89 2.00 1.00 1.07 

uniform IRD NAP PNCD IRD NAP PNCD 

5 5 1.33 1.00 1.16 1.33 1.00 .93 

10 10 2.02 1.00 1.35 2.02 1.00 .84 

15 15 2.76 1.00 1.46 2.77 1.00 .79 

1
 Improvement Rate Difference. 

2
 Nonoverlap of All Pairs. 

3
 Percentage of Nonoverlapping Corrected Data. 
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Table 4. Distortion due to linear trend – the values represent the ratio between 

β1 ≠ 0 and β1 = 0 in independent data series (φ1 = 0 or θ1 = 0) with no effect (β2 

= 0 and β3 = 0). The values of the two Slope and Level Change estimators (not 

presented here) are equal to zero, regardless of the value of β1. 

Phase length Ratio β1=.1 / β1=0  Ratio β1=.2 / β1=0 Ratio β1=.3 / β1=0 

nA nB    

exponential IRD
1
 NAP

2
 PNCD

3
 IRD NAP PNCD IRD NAP PNCD 

5 5 1.98 1.38 1.01 2.57 1.60 1.00 2.95 1.73 1.00 

10 10 3.96 1.60 1.00 5.20 1.81 .99 5.79 1.90 1.00 

15 15 6.46 1.73 1.01 8.17 1.90 1.00 8.86 1.95 1.02 

  normal IRD NAP PNCD IRD NAP PNCD IRD NAP PNCD 

5 5 1.58 1.27 1.01 2.16 1.50 1.00 2.65 1.67 1.00 

10 10 2.86 1.50 .99 4.62 1.78 1.00 5.55 1.89 1.00 

15 15 4.75 1.67 1.01 7.53 1.89 1.00 8.54 1.95 1.00 

uniform IRD NAP PNCD IRD NAP PNCD IRD NAP PNCD 

5 5 1.60 1.26 .99 2.11 1.48 .99 2.55 1.64 .99 

10 10 3.00 1.48 1.00 4.50 1.77 1.00 5.46 1.89 1.00 

15 15 4.92 1.65 1.00 7.49 1.89 1.00 8.51 1.95 1.00 

1
 Improvement Rate Difference. 

2
 Nonoverlap of All Pairs. 

3
 Percentage of Nonoverlapping Corrected Data. 
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Table 5. Distortion due to quadratic trend – the values represent the ratio 

between β1 ≠ 0 and β1 = 0 in independent data series (φ1 = 0 or θ1 = 0) with no 

effect (β2 = 0 and β3 = 0).  

Phase length Ratio β1=.01 / β1=0 

nA nB  

exponential IRD
1
 NAP

2
 PNCD

3
 SLC-LC

4
 SLC-SC

4
 

5 5 1.99 1.40 1.14 .04 .10 

10 10 5.05 1.82 1.91 .10 .20 

15 15 8.59 1.95 3.66 .16 .30 

normal IRD NAP PNCD SLC-LC SLC-SC 

5 5 1.64 1.30 1.13 .05 .10 

10 10 4.68 1.78 1.80 .10 .20 

15 15 8.59 1.95 3.23 .16 .30 

uniform IRD NAP PNCD SLC-LC SLC-SC 

5 5 1.66 1.29 1.11 .05 .10 

10 10 4.64 1.77 1.77 .10 .20 

15 15 8.55 1.95 2.98 .14 .30 

1
 Improvement Rate Difference. 

2
 Nonoverlap of All Pairs. 

3
 Percentage of Nonoverlapping Corrected Data. 

4
 Level change (LC) and slope change (SC) estimators of the Slope and Level Change. The 

values for the distortion are expressed as absolute differences from the values for β1=0, since 

the latter are equal to zero and a ratio cannot be computed.  
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Table 6. Detection of level change – the values represent the ratio between β2 

≠ 0 and β2 = 0 in independent data series (φ1 = 0 or θ1 = 0) with no trend (β1 = 

0) or slope change (β3 = 0). The average value yielded by the level change 

estimator of Slope and Level Change is equal to β2 (.1, .2, and .3) and the 

slope change estimator average is equal to β3 = 0.  

Phase length Ratio β2=.1 / β2=0  Ratio β2=.2 / β2=0 Ratio β2=.3 / β2=0 

nA nB    

exponential IRD
1
 NAP

2
 PNCD

3
 IRD NAP PNCD IRD NAP PNCD 

5 5 1.24 1.10 1.06 1.46 1.18 1.13 1.67 1.26 1.20 

10 10 1.45 1.10 1.08 1.90 1.18 1.16 2.33 1.26 1.23 

15 15 1.69 1.10 1.08 2.40 1.18 1.17 3.08 1.26 1.25 

  normal IRD NAP PNCD IRD NAP PNCD IRD NAP PNCD 

5 5 1.11 1.06 1.06 1.22 1.11 1.11 1.35 1.17 1.16 

10 10 1.14 1.06 1.07 1.30 1.11 1.15 1.48 1.17 1.23 

15 15 1.16 1.06 1.09 1.35 1.11 1.18 1.56 1.17 1.27 

uniform IRD NAP PNCD IRD NAP PNCD IRD NAP PNCD 

5 5 1.13 1.06 1.05 1.26 1.11 1.10 1.39 1.17 1.15 

10 10 1.24 1.05 1.07 1.48 1.11 1.15 1.70 1.17 1.23 

15 15 1.35 1.06 1.09 1.68 1.11 1.18 2.01 1.16 1.26 

1
 Improvement Rate Difference. 

2
 Nonoverlap of All Pairs. 

3
 Percentage of Nonoverlapping Corrected Data. 
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 Table 7. Detection of slope change – the values represent the ratio between β3 

≠ 0 and β3 = 0 in independent data series (φ1 = 0 or θ1 = 0) with no trend (β1 = 

0) or level change (β2 = 0). The average value yielded by the slope change 

estimator of Slope and Level Change is equal to β3 (.1, .2, and .3) and the level 

change estimator average is equal to β2 = 0. 

Phase length Ratio β3=.1 / β3=0  Ratio β3=.2 / β3=0 Ratio β3=.3 / β3=0 

nA nB    

exponential IRD
1
 NAP

2
 PNCD

3
 IRD NAP PNCD IRD NAP PNCD 

5 5 1.39 1.18 1.12 1.66 1.30 1.23 1.88 1.40 1.35 

10 10 2.19 1.34 1.37 2.87 1.52 1.79 3.45 1.63 2.25 

15 15 3.09 1.46 1.69 4.35 1.65 2.60 5.44 1.75 3.53 

  normal IRD NAP PNCD IRD NAP PNCD IRD NAP PNCD 

5 5 1.23 1.11 1.10 1.45 1.22 1.20 1.68 1.31 1.30 

10 10 1.74 1.25 1.33 2.60 1.44 1.70 3.40 1.58 2.06 

15 15 2.48 1.36 1.66 4.35 1.60 2.40 5.80 1.72 3.08 

uniform IRD NAP PNCD IRD NAP PNCD IRD NAP PNCD 

5 5 1.25 1.11 1.08 1.48 1.21 1.18 1.68 1.30 1.29 

10 10 1.95 1.24 1.33 2.74 1.42 1.68 3.49 1.57 2.03 

15 15 2.99 1.35 1.62 4.75 1.58 2.28 6.23 1.71 2.86 

1
 Improvement Rate Difference. 

2
 Nonoverlap of All Pairs. 

3
 Percentage of Nonoverlapping Corrected Data. 
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Table 8. Summary of effect size quantification for β2 = β3 = 0. “ND” denotes 

no distortion in the quantification; a desirable feature. “U” and “O” denote 

underestimation and overestimation, respectively, being both considered as 

drawbacks.  

Procedure Autocorrelation Phase B variability Trend 

tested negative positive increased reduced linear quadratic 

IRD
1
 U O O O O O 

NAP
2
 ND ND ND ND O O 

PNCD
3
 U O O U ND O 

SLC
4
 ND ND ND ND ND O 

1
 Improvement Rate Difference. 

2
 Nonoverlap of All Pairs. 

3
 Percentage of Nonoverlapping Corrected Data. 

4
 Slope and Level Change. 

 

 

 

  

 

 

 

 


