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Introduction

In this work we study Lorentz spaces LP4. That is, let (R, i) be a o-finite complete
measure space, and suppose p > 1 and 1 < ¢ < co. The Lorentz space LP(R, i)
consist of all f in My(R, ) for which the quantity

1

[fllzra = {fooo[tpf*(mq%} , (0<g<o0),

l *
SUPg<r<oott? [ (1)} (q = 00),
is finite.
The motivation comes from the Marcinkiewicz interpolation theorem, which
says:

Let T be a bounded linear operator from L to LP° and from LP* to LP' with
po # p1 and 0 < pg, p1 < oo. Then

T: LP9 — [P,

is a bounded linear operator for all 0 < ¢ < oo and p such that

1 1-60 4
= +—, 0<fd<1l
p Po P1

This theorem is very important, because it studies the boundedness of operators,
which is fundamental to solve many mathematical problems of real life arising for
example in physic.

I have specially enjoyed the mathematical Analysis courses and hence I did Real
Analysis, Fourier Analysis and the Functions Theory optional subjects. Then I
decided to relate my final work with something related with this matter. Maria
Jesus Carro expose me some issues and I chose the topic of Lorenz spaces. One
of the reasons was because in Fourier analysis we saw a weaker version of the
Marcinkiewicz theorem. Moreover, I was also interested in initiating myself into
research.

In order to study the Lorentz spaces, we introduce all the necessary theory to
define them well, we see their most basic properties and we study their normability.
Our main reference has been [1].

The work is structured in six chapters, for which I'll give a little summary:



Contents

e In the first chapter we introduce all the necessary notation so there’s no con-
fusion, we study the most important results about convergences and we also
see some classic inequalities about L” spaces. These last two things will be
fundamental because we’ll be using them very often through all the work.

e In the second chapter we study three fundamental theorems from functional
analysis, such as the analytic version of the Hanh-Banach Theorem 3.29, the
Baire Theorem 2.14 and the open map Theorem 2.24. These three theorems
are the key ingredients for the separation theorem proof, which we’ll see in
chapter three.

e In the third chapter we introduce the topological vectorial spaces, their most
basic properties and we will prove the separation theorem. This theorem will
be used in the Lorentz-Luxemburg theorem 4.18 proof, in chapter four.

e In chapter four, we introduce the Banach function spaces, their most impor-
tant properties and their associated space. All these will be the basic tools to
construct the Lorentz spaces.

e In the next chapter we will study the involved tools in their definition, such
as the decreasing-rearrangement f* (Definition 5.5) and the maximal func-
tion f** (Definition 5.16). We will study their main properties which will be
essential to study the Lorentz spaces.

e Finally, in the last chapter we introduce the Lorentz spaces and study their
most important properties such as the normability.

When I was studying the Lorentz-Luxemburg theorem, I found a big problem
that I didn’t expected and it was the Hanh-Banach theorem. This is one of the
most important theorems in Functional Analysis. It was a problem for me because
I hadn’t coursed the functional analysis subject, where this theorem was explained,
that’s why Maria Jesis and I decided that we had to work deeply with it as it is so
important. I also had to study other important theorems such as the Baire theorem
and the open map. But, at the end, this has really been a solution more than a
problem since it has helped me to review some forgotten concepts. It’s been perfect
to introduce myself so much in the functional analysis too.

Then, my conclusion is really positive for many reasons: To know what a research
work is, to refresh forgotten concepts, to help me with topics related to my future, to
learn about Lorentz spaces and to introduce myself in Functional Analysis, because
without this work, I would probably hadn’t done it.

Thanks

I thank my tutor, Maria Jestis Carro, how she’s carried on this work and her support
in those moments in which it was difficult for me to go forward. Apart from these,
I also thank her for being honest in all the doubts I had, related to the work and
personal ones, which have pooped out during these four months.



Chapter 1

Notation and previous results

In this chapter, we shall fix the notation used in the work. We shall also present the
three main convergence theorem: monotone convergence theorem, Fatou’s lemma
and dominated convergence theorem and we see some of the most classical inequal-
ities of LP spaces: Holder’s inequality, Minkovsky’s inequality.

1.1 Notation

Let (R, u) be a o-finite complete measure space.

M is the set of p-measurable functions on R.

M is the set of non-negative p-measurable functions on R.

e The characteristic function of a u-measurable subset F of R will be denoted
by xg. The function is defined by

(z) 1, zek,
€Tr) =
e 0, z¢E.

My C M is the set of finite functions p-a.e., that is, if f € Mg, the set
F={zeR: f(x) =00}

has measure 0.

e If 1 < p < oo, we denote by p’ the conjugate exponent; that is,
1 1
p P

If z € C, then its real part will be denoted by Rz and its complex part will
be denoted by 3z.

Definition 1.1. A sequence (f,), C M is said to converge to f in measure if given
e >0, there is an N € N such that for alln > N,

plr € R [fulz) = f(2)| 2 e} <&
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Definition 1.2. A sequence (f,), C M is said to converge pointwise to f if for all
rE€R,

lim f,(x) = f(x).

n—oo

Definition 1.3. A sequence (f,), C M is said to converges p-a.e. to f if there is
E CR a set with u(E) =0 such that

Tim [ (@) = f(2),

for each x € E*.

Definition 1.4. A sequence (f,), C M is said to converge in My, if for every
n(E) < oo,
p{e € B |fu(z) — f(x)] > e} — 0.

Definition 1.5. S is the space of simple functions, that is, f € S if only if

k
=1

where a; € R and 0 < p(E;) < oo for each i.

1.2 Main Convergence Theorems

Let (f,)n be a sequence of M. We say that f, 1 f if
fi@) < folw) < ful@) <0< limfr(e) = f(2),

for each z € R. This symbol f, T f can be used for p-a.c., that is, f, 1 f p-a.c., if
filz) < fola) < o fulz) < oo < lim fr(2) = f(),

n—o0

for each x € R\ F', where u(F) = 0.

Theorem 1.6. [Monotone convergence theorem] Let (f,), be a sequence of M™
such that f, 1 f. Then f € M™ and

i [ f(o /f Vdjs(z

n—o0

Proof. Since 0 < lim,,_,, fn(z) = sup,, fu(z) = f(z) and the supreme of measurable
functions is also a measurable function, we have that f is a measurable function.

For all n,
| hwin@) < [ s@inta

in [ fo /f Jdpu(a

n—oo

and hence,
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Let s € S such that 0 < s(z) < f(z) for all x € R. We define, for all n € N,

Ap={z € R: fulz) > as(x)},

with 0 < a < 1.
We have that A,, is a measurable set and

[ @ina / ful)du(z) > o / s(2)du().

If s(x) = Z?Zl Bixs, (),

/An Z/ B, (2)dp(s ZﬁguBﬂA)

Thus,

[ h@nte) > @3 (B0 4,)

We observe that the sequence (A4,), is non-decreasing, that is, A,, C A, 41 for all n.
re A, = fulx)>as(zx).
Since (f,)n is a non-decreasing sequence,
for1(@) 2 fu(@) 2 as(z) = @ € Ania.

We also observe that R = J>°, A,,. Ifz ¢ |J 7, A, then x ¢ A, for all n. Therefore
fo(z) < as(x) < af(zx) for all n, then

lim f,(x) < af(x) < f(x).
which is a contradiction.

If we fix 1 <j <k, (Bj N A,), is a non-decreasing sequence.

UJBinA4,) =5Bn (UAH) = B,NR = B,.
n=1 n=1

Thus, lim,,_, (A, N B;) = u(B;). Therefore,

n—oo

- aiﬁj /B du(r) = aiﬁj [ v, @iuta) = [ asta)auta).

Using now that [, f(2)du(z) = supges.o<s<sy [ 5(2)du(x) and letting a — 1,

k k
lim fn( )du(z) > JEQO&ZBM(BJ' NAL) =a) BiuB;) =
j=1 Jj=1

n—oo

lim | fu(w)du(r) > /R £(w)du().
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Lemma 1.7. [Fatou’s Lemma/ Let (f,), be a sequence of functions of M™. Then

/liminffn(x) <11m1nf/ fr(x)du(x
R

n—o0 n—oo

Proof. We have that

liminf f,(z) = lim (inf f,(z)) = sup in§€ fu(z).
K nZ

n—00 n—oo “n>k

We define Fi(z) = inf,,>x fn(z) and then clearly Fi(z) < Fyy1(z) for every z € R.
Therefore Fy, T liminf, . f, and F} < fi. Consequently,

| A < [ @it

By Theorem 1.6, we obtain that

/ lim Fy(z)dp(x) = / liminf f,(x)du(z)
R R

k—o00 n—00

— lim [ Fy(a)du(r) < liminf /R Fo(@)dp(z).

k—o0 R

[]

Theorem 1.8. [Dominated Convergence Theorem] Let (fn). be a sequence of M
and let f € M such that fn, — f p-a.e. Let g € M* such that [, g(x)dp(z) < co.
Suppose that for every n and for every x € R we have that |f,(x)| < g(x) p-a.e.
then

i [ f(o /f Jaju(

n—oo

Proof. Since |f,(z)| < g(z) p-a.e. then

/an(x)du(:c) < oo Vn, and /Rf(:c)du(x) < 00

For the same reason, clearly, g + f,, > 0 p-a.e. and g — f,, > 0 p-a.e.
By Lemma 1.7 and since lim inf,,,, — f,,(z) = —limsup,,_, . fn(2), we have that

AAWM@+AﬂMMMng§A@+MWMM>

—/g(x) +hm1nf/ fo(x)dp(z
R n—oo

Aqmwm—zjmmmnwgg/@—mmwmm

=/ g(@)dp(z —hmsup/fn )dp(x
R n—00

and
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Therefore,
limsup/fn Ydu(x /f Ydu(x <hm1nf/fn Ydp(z
n—oo

Hence,

limsup/ fo(z)dp(z) = lim inf fn( Ydp(z)

n—»00 n—o0

=l [ @ /f e
n—oo

1.3 Inequalities of L” Spaces

Now, we define the L spaces that will be very important for us.

Definition 1.9. The L? = LP(R,u) space consists of all f in M for which the
quantity
l .
1 f]|zr = (fn |f($)|pd:u(x))pa if 1 <p < oo,
esssup,er | f(2)], if p= oo.

is finite.

Now, we see some important inequalities for LP spaces. But before, we see a
necessary technical lemma.

Lemma 1.10. Let o, 3 >0 and 0 < X < 1. Then o' < aX+ (1 — \)B.

Proof. We define ¢(t) = (1 — \) + M\t —t* for t > 0. Then ¢'(t) = A = M1 =0
when ¢ = 1. It is easy to prove that 1 is a minimum. Therefore ¢(t) > ¢(1) =0
then (1 — ) + At > t*. Doing ¢ = §, the result follows. O

Theorem 1.11. [Holder’s inequality] For every 1 < p < oo,

[ 1#@a@dn(@) < 115l

Proof. Let A = ||f|lrr|| and B = ||g||;»». We can assume the A, B are finite. If
A=00 B =0 the inequahty is clearly true. So, let us assume that A, B > 0.
Let a = ‘f(ﬁ'p, B = ‘g( and A = 7. Then, by Lemma 1.10,
\f(flf)g(x)l < |f(l’)|p N ()"
AB  — App Br'y

Therefore,

/R|f(:f4)é(x)‘d”(x)— |ff(1p})9|pdlu(x)+ %du(@,

R R
and since,

@) /muw 1 L
d d < — AP BY =1
[ dnta) [ () < o B =1,

the result follows. O
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Theorem 1.12. [Minkovsky’s Inequality] If f,g € LP, then f 4+ g € LP and

If + gl < \[fllee + llglle-

Proof. The case p = 1 follows trivially since |f + g| < |f| 4+ |g|- The case p = oo
follows from esssup |[A+ B| < esssup |A| + esssup |B|. For the case 1 < p < oo, we
use that z? is a convex function therefore

(L (@) + (1= D)g(@))” < (@) + (1 — )g(x).

In particular,

(370 + 300)) < 37607 + j9(er
and hence,
(F(a) + o) <27 (51 + ooy ) =27 (7P + 960,

Since f,g € LP, we obtain that f + g € LP.
Let us now prove the desired inequality.

IS+ gllZs /|f +g(x)[Pdulz /|f )+ 9(@)|If (@) + g(@)[" dpu(z)

< [ @I+ la@DIf (@) + ala) P~ dita)
= [ @@ +o@P @)+ [ 17(e)+ gl ot ldnta),

We now prove that |f + g[P~! € L¥ . Since p' = ﬁ and f+g € LP,

([ 1)+ gt anto) )’

By Theorem 1.11,

=

1
o

~ ([ 1+ sriuta)) " <o

1f +gllTe < (1fllze + gllz)ICf + 9l
then since |[(f +9)* !l = IIf + gl

1f +gllze < (fllee + Ngllzo)lI(F + 9)lE

and the result follows. O]



Chapter 2

Main Functional Analysis
Theorems

In this chapter, we prove the main functional analysis theorems used in the work.
In Section 1 and 2, we prove the analytic version of the Hahn-Banach theorem. In
Section 3, we prove the Baire theorem, and in the section 4, we prove the open map
theorem.

Each one of them will also take an important role in the next chapter.

2.1 Hahn-Banach Theorem

First, we introduce the Zorn’s Lemma.

Definition 2.1. A partial order is a binary relation R in a set X such that for all
a,b,ce X :

e aRa. (reflexive)
e aRb and bRa then a = b. (antisymmetric)
e aRb and bRc then aRc. (transitive)
Definition 2.2. A set with a partial order is called partially ordered set.

Definition 2.3. A total order (<) in X is a partial order with the totality property:
foralla,be X, a<borb<a.

Definition 2.4. Let ® be a subset of X. ® is called a chain if it has a total order.

Definition 2.5. Let (X, <) be a partially ordered set. M € X is a mazimal element
if it is an element of X that it is not smaller than any other element in X.

Lemma 2.6. [Zorn’s lemma/] Suppose a partially ordered set X has the property
that every chain has an upper bound in X. Then the set X contains at least one
mazimal element.

11



2.1. Hahn-Banach Theorem 12

Definition 2.7. A linear functional u is a linear map from a vector space E to its
field of scalars K, that is, for every x,y € E and o, € K.

u(ax + By) = au(z) + fu(y).

Definition 2.8. Let E be a vector space, p is a convex functional if for all x,y € E
and a > 0:

e p(z+y) < plx)+py).
* plaz) = ap(z).

Theorem 2.9. [First Hahn-Banach theorem] Let E be a real vector space, and p a
convex functional in E. Let u be a linear functional of a vector subspace F' of E. If
u(z) < p(z) for all z € F, then there exists an extension of u to a linear functional
v in E such that v(z) < p(x) for all z € E.

Proof. The proof has two parts:
(a) If 2,2’ € F, by Definition 2.8, we have that:

u(z) —u(?) =u(z — 2') <p(z — 2) <plz +y) +p(—2" —y).

So —p(—2' —y) —u(z') < p(z+y) —u(z). Since z, 2 € F are arbitrary, there exists
s € R such that:

j}é};[—p(—% —y) —u()] < s < infp(z +y) —u(2)] (2.1)

Let y € E\ F and s as in (2.1). Over FF + [y] = F & {ty|] t € R}, we define
v(z + ty) := u(z) + ts with z € F and t € R. Then v is a extension of u and it
is well defined, since F' + [y] is a direct sum. Let us prove that v(z) < p(x) for all
r e F+y.

If z € F + [y], then x = z + ty. We consider two cases, t > 0 and ¢ < 0.

o Ift>0, by (2.1), s <p(z/t +y) — u(z/t), and hence,
1 1
s+¥u(z) < gp(z%—ty) — v(z+ty) = tstu(z) < p(z+ty) = v(z) < p(x),

for all z € F' + [y].

o If t < 0, we consider « = —t. By (2.1), —p(z/a —y) — u(—=z/a) < s, and
hence

1 1
L ay) = —u(—2) <5 = —pls+1ty) —u(—2) < —ts =
a (0%

v(z +ty) =ts +u(z) <p(z +ty) = v(z) < p(),
for all z € F' + [y].
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(b) We say that (H, h) is an extension of (F,u) if F C H C E, and h is a linear
functional on H, which is an extension of u, and h(x) < p(z) for all x € H.

We define ® as the set of all the extensions of (F,u). We define an order (<) in
¢ such that (H,h) < (K, k), if H C K and k is an extension of h.

By Definition 2.1, we have to prove three properties about (<). We suppose
that (H,h),(L,h), (K, k) are extensions of (F,u).

e The reflexive property is obvious.

e The antisymmetric property follows easily, since H C L and L C H implies
L = H, and clearly h(z) = ().

e The transitive property follows from H C L and L. C K implies H C K.
Since h(z) = k(z) in H, then (H,h) < (K, k).

Let U C ® be a chain. We define K := (¢ H and we also define k(z) := h(x) if
x € H and (H,h) € V.

K is a vector subspace: If x1,zo € K, then there exist (Hi, hy), (Hs, he) € ¥
such that x1 € Hy and a9 € Hy. If H; C H,, then 21 + x5 € Hy C K. In the same
way, if z € K and A € R, then \xr € K.

k is well defined: If x € Hy, + € Hy and (Hy,hy) < (Ha, hs), then hy is a
extension of hy, therefore hy(z) = ho(x).

k is linear: If z,y € K, then there exist (H,h),(H',h') € ¥ such that z € H
and y € H'. Suppose that (H,h) < (H', k'), then z € H'. Since h’ is linear, we
obtain that

k(z+y) =NM(z+y)=N(2)+ K (y) = k(z) + k).

(K, k) is an upper bound of W. For each (H,h) € ¥, we have that H C K and
k(x) := h(z) < p(x), therefore (H,h) < (K, k).

By Zorn’s Lemma 2.6, there exists a maximal element (V) v) of ®. Let us prove
that V = E, and v is an extension of u.

If there exists y such that y € E'\ V, by (a) we could find an extension of (V,v).
But since (V,v) is a maximal element, we have a contradiction. ]

2.2 Analytic Version of the Hahn-Banach Theo-
rem

Definition 2.10. Let v be a map such that v : E — C. We say that v is real linear
functional, if v(ax) = av(x) for every x € E and o« € R. We say that v is complex
linear functional , if v(ax) = av(x) for every x € E and a € C.

Definition 2.11. Let E be a vector space. p is a seminorm if for all x,y € E and
a e R:

o p(z+y) <plx)+py).

e plazx) = |alp(z).
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Theorem 2.12. [Analytic version of the Hahn-Banach theorem] Let E be a real or
complex vector space, and p a seminorm in E. Let u be a linear functional in a
vector subspace F' of E. If |u(z)| < p(2) for all z € F, then there exists an extension
of u to a linear functional v in E such that |v(z)| < p(x) for all z € E.

Proof. We consider the real case and the complex case.

(a) Real case. We observe that a seminorm is a convex functional. By Theorem
2.9, we obtain that v is an extension of u such that v(x) < p(z) for all z € E. Since
v is linear,

—v(z) = v(-z) < p(—z) = p(x),

therefore |v(z)| < p(z).

(b) Complex case. We consider E as a real vector space. Since |Ru(z)| <
lu(z)| < p(z), by (a), there is an extension f of Ru such that |f(x)| < p(z).

We define v(z) := f(z) —if(iz). Then v : E — C is a real linear functional.
Let us see thay v is also a linear complex functional, that is, v(iz) = iv(x),

v(iz) = f(iz) —if(—x) = f(iz) +if(x) = iv(z).
Let us prove that v is an extension of u. If z € F|
o Ru(z) = f(z) = Ru(z).
e Since u is complex linear and iu(z) = iRu(z) — Su(z), we obtain that

Sv(z) = —f(iz) = —Ru(iz) = —Riu(z) = Su(z).

Finally, we have to prove that |[v(x)| < p(z). We write |v(z)| = pv(z) with |u] =1
(polar form of v(x)).
Since f(z) = v(x) +if(iz), then |v(z)| < |f(x)|. Therefore,

()| = v(px) < |f(px)] < p(px) = p(z).

2.3 Baire’s Theorem

This theorem is the key to prove the open map theorem.

Definition 2.13. Let (X,d) be a metric space. We say that X is complete if every
Cauchy sequence in X 1is convergent in X.

Theorem 2.14. [Baire’s Theorem] If X is a complete metric space, then the in-
tersection of every countable collection of open dense subsets of X is dense in X.

Proof. Suppose {G,;n € N} is a sequence of dense open sets. Let A =), G,. We
have to prove that every open set GG of X intersects A.
Let a; € G1 N G. We consider the closed ball B(ay,r1) C G1NG. Let B(ay,r)

be its open ball.
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Similarly, let a; € B(ay,r1) N Ga. We consider B(ag,r2) C Blay, 1) N Gy with
o < %
By recurrence, we build (a,), C X and (r,), C (0,00) such that

Tn—1 r

n< an )
" 5 " on

and
B(an,mn) C Blan—1,7m-1) NGy C B(ap_1,7n-1) N Gy.

The sequence (a,,), is a Cauchy sequence. If p, g > m, then
d(aP7 aq) S d(azh am) + d(aqa &m),

but since a,, a; € B(am, ), then

1

d(ap’ (lq) = d(ap’ am) + d(alJ7 am) < 2Tm < F

Therefore (a,), is convergent since X is complete. Let a = lim,_, a, and let us
see that « € ANG.
By recurrence, we know that a,, € B(a,, ) for every m < n. Therefore

a € ﬂ?(am,rm) C ﬂGn = A.

Moreover, a € G because B(ai,r1) C G, and hence G N A # (), as we wanted to
see. O

Corollary 2.15. Let X be a complete metric space. If X =, F,, is the union of
a sequence of closed sets (Fy,),, then at least there is n € N such that F,, is a closed
set which has interior points.

Proof. If F is a closed set such that it has no interior points, then G = X \ F' is
open and dense. It is clearly open. Let us see that GG is dense, that is, for every
open set of X its intersection with GG is not empty.

Since F' has not interior points, then there does not exist an open set U such
that U C F. Therefore U NG # 0.

For all n, we suppose that F,, has no interior points. Let G,, = X \ F,,, then

(G =(X\F.=X\|JF. =0,
which is a contradiction, since by Theorem 2.14, () G,, = 0 is dense in X. ]

2.4 Open Map Theorem

Definition 2.16. X is called a Banach space if X is a complete normed vector
space.
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Definition 2.17. A series Y -, x, in X is absolutely convergent if

o
D lzallx < oo
n=1

Proposition 2.18. X is a Banach space if only if all absolutely convergent series
are convergent.

Proof. Let X be a Banach space and let be a sequence (z,,), such that > >°  x, is
absolutely convergent. We define the partial sums

N N
Sv=3 a0 v =3 lzalx.
n=1 n=1

(ry)n is a convergent sequence, therefore it is a Cauchy sequence. Let us prove
that (Sx)n is also a Cauchy sequence:

M M
1Sv = Sullx =1{[ D @al| < D llwallx = lrar — rul-
n=N+1 X n=N-+1

Since X is complete, then (sy)y is a convergent sequence, that is, there exists x
such that z =37 | z,,.
Now, we suppose that all absolutely convergent series is convergent. Let (z,),
be a sequence of X. We choose n; € N such that for all n > ny,
1

Hxn - meX < 9

Now, we choose ny > ny such that for all n > na,

1
|20 — @, [|x < 22
By recurrence, we obtain a subsequence such that

1
||xnk+1 - :BnkHX < ?

Therefore

o0 00 1
Z Hmnkﬂ - xnkHX < Zﬁ < 0.
k=1

1

k=
Then > 77, (Zn,,, — Zn,) is absolutely convergent, and hence, it is a convergent
sequence. If

N
r = lim T — Xp, )= lim (z — Ty, ) = lim (x -
N—>ook 1( Nkt1 nk) N—)oo( NN 41 nl) N—>oo< TLN) n1y
then (x,,) is a convergent subsequence. Since (x,), is a Cauchy sequence and it
contains a convergent subsequence, then (x,), is a convergent sequence. ]
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Definition 2.19. T is a linear operator if T s a linear map between two vector
spaces X and Y .

Definition 2.20. Let T be a linear operator. A bounded linear operator T is a
linear map between normed vector spaces X and Y such that for all x € X,

[Ty < Mllx|lx.

Proposition 2.21. Let T be a linear operator. T is continuous if only if T is a
bounded linear operator.

Proof. Let xz,2" € X such that ||z — 2/||x < J. Since T' is bounded and linear,
1Tz = Ta'ly < ||IT(x—2)lly < Mz —2'lx < M.

Now, we have that T" is continuous, in particular, is continuous in 0. Taking ¢ = 1,
there exists § > 0 such that ||[Tz|ly < 1 when ||z||x < 6. For all x # 0 € X, we

define
T

]l

Then ||Z||x < § and therefore || TZ|y < 1. Since T is linear, we obtain that

T=0

lllx e
IT2lly = =5=IT7]ly < Mllz]x.
Taking M = %, we obtain that 7" is a bounded linear operator. O

Remark 2.22. Let X be a complete metric space. Let E,F be two subsets of X.
Then E+F C E+F.

Proof. If z € E and y € F, there exist (z,,), C F and (y,), C F such that z,, — z
and y, — y. For all n, x,, +y, € E + F, therefore

Tp+yp —orx+ye B+ F.
O

Definition 2.23. A map T is said to be an open map if for every open set U, T(U)
1S open.

Theorem 2.24. [Open Map Theorem/] If T : E — F is an exhaustive bounded
linear operator between two Banach Spaces, then T is an open map.

Proof. We prove it in three steps:

(1) We suppose that T(B(0,7)) are neighbourhoods of 0 in F, then let us see
that T is open.

We consider G an open set of F and z € T(G), then there exists a such that
Ta=zand a € G. Let B(a,r) =a+ B(0,7) C G. Let us prove that

Ta € T(B(a,r) =Ta+T(B(0,r)) C T(G). (2.2)

o First, let us see that T'(B(a,r)) = Ta+ T(B(0,r)).
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— If = € T(B(a,r)), there is € B(a,r) such that T(z) = z. Since
B(a,r) = a+ B(0,r), then x = a + 2’ with 2’ € B(0,r). Since T is a
linear operator, we obtain that

T(z)=Ta+T(z') € Ta+T(B(0,7)).

—1If 2 € Ta+ T(B(0,r)), then z = Ta + Tz with z € B(0,r). Since
a+x € B(a,r) and T is linear, we obtain that

z=Ta+Tr=T(a+z) € T(B(a,r)).

e Let us see that T'(B(a,r)) C T(G). If z € T(B(a,r)), there is = € B(a,r)
such that z = T'(x). Since « € B(a,r) C G, then z = Tz € T(G).

Thus T'(G) is open. For every point of T'(G), there is a neighbourhood such that it
is contained in T'(G).

(2) Let us prove that for every r > 0, T(B(0,r)) is a neighbourhood of 0 in F.
That is, there is an open set B(0,0) such that B(O,U) C T(B(0,7)). Now, let us
see some observations.

e Since ||y||g = d(y,0), we observe that
nB(0,r) = B(0,nr).
— If 2 € nB(0,r), then x = ny with y € B(0,r). Therefore
d(z,0) = d(ny,0) = nd(y,0) < nr.

Thus x € B(0, nr).

— If x € B(0,nr), then

d(z,0) <nr = d(%,O) <r

Therefore = € B(0,r) and hence x € nB(0,7).

e Let us see that

E = G nB(0,7).
n=1

If x € E, there is n € N such that d(z,0) < nr. Therefore x € B(0,nr).
e Finally, let us see that
F= U T(B(0,nr)

To prove it, we need to note three facts.

— (a) Since T is exhaustive, then T'(E) = F, that is,

=T7(|J B(0,nr))
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— (b) Let us see that

T(U On'r’ UT (0,nr))

« If y € T(U>2, B(0,nr)), there exists z € (J;-, B(0,nr) such that
Tz =y. Hence, there exists n € N such that z € B(0,nr). There-
fore,

y="Tz¢eT(B(0,nr)) UT (0,nr))

« If y € U, T(B(0,nr)), there is n € N such that y € T(B(0,nr)).
Hence, there exists z € B(0,nr) such that Tz = y. Therefore,
z € U,~, B(0,nr), and hence,

y=Tz¢€ T( U B(O,nr)).

— (c) Since F =J.;2, T(B(0,nr)) C U2, T(B(0,nr)), we obtain that

F = UT (0,mnr))

By Corollary 2.15, there is a closed set T'(B(0,nr)) = nT'(B(0,r)) which has
interior points. For all n, T(B(0,nr)) are homeomorphic each other, therefore we
obtain that T'(B(0,r)) has interior points.

Let By = B(0,7/2). Since T'(By) has interior points, there is y € T'(By) such that
B(y,0) C T(By). Writing B(y, o) = y+B(0, 0), we obtain that y+B(0,0) C T'(By).
Consequently, we have that

Bl = —B1 — T(Bl) = —T(Bl) - T(Bl) = —T(Bl),

and By + By C B(0,r). By Remark 2.22, we obtain that

B(0,0) C —y+T(By) C T(By) + T(By) C T(B + By) € T(B(0, 7).

(3) In the finally part of the proof, let us prove that 7'(B(0, s)) is a neighbour-
hood of 0. We will see this, using (2), then by (1), 7" will be open.

Let r < s. We consider y € B(0, o), therefore |ly||p < 0. We write s =) . 7,
with r; = r. We take a sequence (0,), such that o, | 0 and 01 = 0. Furthermore,
this sequence must hold B(0,0,) C T(B(0,7,)), as in (2).

e Since y € B(0,0), we choose z; € E such that ||z1]|g < rand ||y—T2||r < 02.
Therefore, y — T'z; € B(0, 03).

e We choose z; € F such that ||z2||g < re and ||y—Tz1 —T2||r < 03. Therefore,
y—"Tz — Tz € B(0,03).
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e By recurrence, y — T2y — ... — T'z,_1 € B(0,0,). We choose z, € E such that
lznlle < rmand ||y — T2y — .. = Tzy||Fp < 0py1-

Since ||z,||g < rn, then > ., z, is convergent, by Theorem 2.18. Since E is com-
plete, then there exists
= lm (21 + ... + z,).
n—oo
Moreover, since > ||znl|g < D2, rn = s, then x € B(0, s).
By Proposition 2.21,

Tex=1lim T(z1+ ...+ 2,) = im (Tz; + ... + Tz,) =y € T(B(0, s)).

n—oo n—oo



Chapter 3

Topological Vector Spaces

In this chapter, we introduce the topological vector space concept and its most
important properties. The motivation of this is to prove a separation theorem
which will be fundamental to prove the Lorentz-Luxemburg theorem in Chapter 5.

3.1 Introduction to Topological Vector Spaces

Definition 3.1. Let 7 be a topology on a vector space X with ® its field of scalars
such that:

e Fvery point of X s a closed set.
e The vector space operations are continuous respect to the topology T.

In these conditions, we say that T is a vector topology on X, and X s a topological
vector space.

Proposition 3.2. The sum application
+:XxX —X

(z,y) — x4y

s continuous: if x,y € X and V is a neighbourhood of x + y, then there exist V,
and V, neighbourhoods of x and y respectively such that:

Ve+V, CV.

The scalar multiplication
O x X — X
(v, 2) — ax

1s continuous: if x € X, a € ® and V s a neighbourhood of ax, then for some
r >0 and some neighbourhood W of x it holds than BW CV as |5 —a| <r.

Proof. A function f : X — Y between two topological spaces X and Y is con-
tinuous in = € X if for every neighbourhood U C Y of f(z), then there exists V a
neighbourhood of x such that f(V) C U.

21
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e The open sets of X x X are arbitrary unions of U x V where U and V are
open sets of X. Let (z,y) € X x X and U a neighbourhood of = + y. Then
there exists V' = V, x V, a neighbourhood of (z,y) such that +(V) C U,
where V,,, V,, are neighbourhoods of x,y respectively. Therefore

+(V)=+Vex V) =Vo+V, CU

o Let (o,z) € & x X and let U be a neighbourhood of ax. Then there exists
V =V, x V, a neighbourhood of (o, z) such that (V) C U, where V,, V, are
neighbourhood of o and x respectively. Let » > 0 such that

Vo=A{B€®:|f—a|<r},
taking § € V,, we obtain that -(5 x V) = gV, C U.
O

Remark 3.3. E C X s bounded if for every neighbourhood V of 0 there exists
s > 0 such that E C tV for allt > s.

Definition 3.4. Let X be a topological vector space, a € X and X # 0 then:
o T,(z) = a+ x is a translation operator.
o My (x) = Az is a multiplication operator.

Proposition 3.5. Let A # 0. T, and M, are homeomorphisms of X onto X.

Proof. The applications T, and M) are bijective from X to X with 7", and M%
their inverse applications, respectively. By Proposition 3.2, T_,, M1 T, and M) are
continuous, therefore T, and M, are homeomorphisms from X to X. O

Corollary 3.6. 7 is invariant under translation. E is an open set if only if for all
a € X, a+ FE is a open set.

Corollary 3.7. 7 is completely determined by any local base 3 of 0. The open sets
of X are precisely those that are unions of translates of members of (3.

Proof. Taking = {U open : 0 € U}, we have a local base of 0.

Let V' be an open set. We consider V, =V — z for every x € U. Then V, is a
neighbourhood of 0, by Corollary 3.6.

Since 3 is a local base of 0, there exists 8, € f such that 5, C V, =V — .
Thus 8, + 2 C V. Therefore (J, o {4+ G-} C V.

Consequently, we obtain that

U{x‘i_ﬂx}zu

zeV

since trivially, V' C U, {2 + B2} O
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3.2 Basic Results of Topological Vector Spaces

Definition 3.8. Let X be a topological vector space and let U be a subset of X.
We say that U is symmetric if U = —U.

Lemma 3.9. If W is a neighbourhood of 0, then there is a neighbourhood U of 0
which s symmetric and satisfies U +U C W.

Proof. To see this, note that 0+0 = 0, that addition map is continuous by Definition
3.2, so that 0 has V} and V5 as neighbourhoods, and moreover, V1 +V, C W. Taking

U=VinVan (=) N (=Vz),
we see that U has the required properties. O

Remark 3.10. Applying Lemma 3.9 to U, there is neighbourhood U’ of 0 which is
symmetric and satisfies U'+U' C U. SinceU+U C W, thenU'+U'+U'+U" C W.
We also note that U C U + U.

Remark 3.11. Let A, B,C C X. If B is symmetric,

A+Bc(C = AcC+ B.

Proof. If t € A+ B, then x = a4+ b € C, where a € A and b € B. Therefore
a=x—be(C—-B=C+B. m

Proposition 3.12. Suppose K and C' are two subsets of a topological vector space
X such that K is compact, C is closed and KNC = (). Then there is a neighbourhood
V' of 0 such that

(K+V)n(C+V)=0.

Proof. If K = (), then K +V = () since ) + V = (), so the proposition is true.
Therefore we assume that K # () and consider a point x € K. Since C' is closed,
then C°is an open and x € C°.

We define V,, = C° — x. Then V, is a neighbourhood of 0. By Lemma 3.9 and
Remark 3.10, there is a symmetric neighbourhood U, of 0 such that

v,+U,+U0,cU,+U,+U,+U, CV,=C"—z,

therefore
xr+U,+U, +U, CC".

Since U, is symmetric,

(x+U,+U,)N(C+U,) =0. (3.1)

Let us consider the covering K C |J,.® + V. Since K is a compact set, there
exists a finite subcover of K. Therefore, there are finitely many points x1, zs, ....x,
in K such that

KC(fEl‘f"/xl)U(mQ_’_‘/l?)U ..... U(Zlfn"’vxn)a
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where V,, is a neighbourhood of 0 for each i.
Taking V =V, NV, N...NV, we obtain that:

n

K+V=J@i+ Ve, +V) @i + Vo, +Va),

i=1 i=1

and no terms in this last union intersects C' + V, by (3.1). This completes the
proof. O

Definition 3.13. Let X be a topological vector space. C C X is a balanced set if
for every |a] <1 € @,
aC C C.

Proposition 3.14. Let X be a topological vector space. Then every neighbourhood
of 0 contains a balanced neighbourhood of 0.

Proof. Let U be a neighbourhood of 0. By Proposition 3.2, there exist 6 > 0 and a
neighbourhood V' of 0 such that oV C U for |a| < 4. We define W =, sV If
x € W and |A| < 1, then

Az €AW = U)\aVCW

|a| <8
because |a)| < 9. O

Proposition 3.15. Let V' be a neighbourhood of 0 in a topological vector space X .
Ifri<ry <...<r, — o0 asn — oo, then

X = O r,V.
n=1

Proof. Fix x € X. Since a — ax is a continuous map of the scalar field into X, let
us see that the set W = {a : ax € V'} is an open set. By Proposition 3.2, for every
a € W, there is a neighbourhood V,, of a such that for all 5 € V,,, Sz € V.

W contains 0, hence it contains Ti for all large n. Thus %x € V for large n,
and hence, x € r,V, for large n. " " O

Proposition 3.16. Let X and Y be two topological vector spaces. If A : X —
Y s linear and continuous at 0, then A is continuous. In fact, A is uniformly
continuous, in the following sense: To each neighbourhood W of 0 in'Y" corresponds
a neighbourhood V' of 0 in X such that

y—zeV = Ay)—Alx)eW

Proof. Once W is chosen, the continuity of A at 0 shows that AV C W for some
neighbourhood V' of 0. If y — x € V| the linearity of A shows that A(z) — A(y) =
ANy—z)eW.

Then A maps the neighbourhood x + V' of x into the preassigned Az + AV C
Ax + W, which says that A is continuous at z. n
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Definition 3.17. Let X and Y be two topological vector spaces. If A : X — Y s
linear, then we define:

N(A)=A(0)={z € X : A(x) =0}

Proposition 3.18. Let A be a linear functional on a topological vector space X.
Assume A(z) # 0, for some x € X. Then each one of the four properties implies
the other three:

(a) A is continuous.

(b) N(A) is a closed set.

(c) N(A) is not dense in X.

(d) A is bounded in some neighbourhood V' of 0.

Proof. e (a) = (b): Since A is continuous, N(A) = A71(0) is a closed set
since 0 is a closed set.

e (b) = (c): Since N(A) is closed and for some x, A(z) # 0, then
X #N(A) =N(A).
Therefore N(A) is not dense in X.
e (¢) = (d). Since N(A) is not dense in X, there exits U an open set such

that U N N(A) = 0. Then N(A)¢ has not empty interior.

Let z € N(A)°. Let U be a neighbourhood of x such that U C N(A)¢. Then
W = U — z is a neighbourhood of 0. By Theorem 3.14, there is a balanced
neighbourhood V' of 0 such that V. C W = U — x, and hence, V +x C U,

therefore
(x+V)NN(A) =0, (3.2)

Let us see that AV is a balanced subset of the field ®. If @ € AV, then exists
z € V such that o = Az. Let |A| < 1. Since V is a balanced set then

Aa = A\ (z) = A(Xz) € AV.

Thus either AV is bounded, in which case (d) holds, or AV is not bounded.

Let us see that if AV is not bounded then AV = ®&. Since AV is a neigh-
bourhood of 0, for every o € ®, then there is a interval I of 0 such that
0 € I € AV. Therefore, there is |3| < 1 such that fa € AV. Since AV is
balanced, a € AV.

But, if AV = @, then there exists y € V such that Ay = —Ax. Therefore
x +y € N(A) which is a contradiction (3.2).

e (d) = (a), if (d) holds, then |Az| < M for every x € V' and some M < oc.
If r >0and W = (r/M)V, then |Az| < r for all x in W. Therefore, A is
continuous at 0. By Proposition 3.16, we have (a).

O
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3.3 Convexity

In this section, we introduce the concept of convexity, and we study the Minkovsky
functional and its properties which will also be very important for us.

Definition 3.19. Let A be a subset of a topological vector space X. We say that A
is a convex set if only if for all a,b € A

at + (1 —t)b € A,
for all t €0, 1].

Definition 3.20. Let A be a convex subset of a topological vector space X. We say
that A is an absorbing set if only if for all x € X, there exists t, € ® such that
x € t,A. Consequently, 0 € A.

Definition 3.21. Let A be an absorbing convex subset of a topological vector space
X. We define the Minkovsky functional q of A as:

pa(x) =inf{t >0:t 'z € A},
for all x € X. Since A is an absorbing set, then pa(z) < oo for all x € X.

Proposition 3.22. Let A be an absorbing convex subset of a topological vector space
X. Then

(a) pa(z +y) < palx) + pay).
(b) pa(te) =tpa(x) if t > 0.
(c) If B={x: ua(x) <1}, then B C A.

Proof. For every x € X, we define
Huy(r)={t>0:t"'z € A}.

Suppose t € Ha(z) and s > t. Since 0 € A and A is convex, then

1 t
S = (—)f+<1—f)0€A,
S s/t S

therefore s € Hy(x). Therefore, H4(z) is a half line whose left end point is pa(x).
Let us prove (a). Suppose pia(z) < s, pa(y) <t and u=1t+s. Then s~'z € A,
t~ly € A. Since A is convex,

Wzt y) = (g) (s7'2) + (3> (1) € A.

u
Therefore pa(x +y) < u. Let € > 0. Let s = pa(x) + e and t = pa(y) + € then
pa(@ +y) < palz) + paly) + 2.

Letting ¢ — 0, this gives us (a).
It is clear that (b) holds.
(c) If x € B, then pa(z) < 1, therefore 1 € Ha(x), and hence, z € A. O
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Remark 3.23. Let C' be an absorbing convex subset of X. If uc(x) > 1, then
x ¢ C.

Proof. If uc(z) > 1, then 1 ¢ Ha(x) = {t > 0:t'z € C}. Hence, x ¢ C. O
Remark 3.24. If C is an absorbing convex open subset of X, then for each x € C,
pe(x) < 1.

Proof. It C' is open, for every z € C' there is a neighbourhood V' of x such that
x € V C C. Therefore, there exists o« > 1 such that ax € V C C.

If we suppose that puc(x) = 1, then pc(ax) > 1. Therefore, by Remark 3.23,
ax ¢ C which is a contradiction. O

Remark 3.25. If A, B are two convex subsets of X, then A+ B is convex.
Proof. We have to prove that

tr+(1—t)ye A+ B, Vtel0,1].

Let x,y € A+ B. Then x = a; + b, and y = a, + b, with a,,a, € A and b,, b, € B.
Since A, B are convex, we obtain that:

(az + by)t + (1 —t)(ay + by) = [ta, + (1 —t)a,] + [thy + (1 — t)b,] € A+ B.
O

3.4 Third Hahn-Banach Theorem

Definition 3.26. The dual space of a topological vector space X is the vector space
X* whose elements are the continuous linear functional on X .

Definition 3.27. X is locally convex if there is a local base 5 of 0 whose members
are convez.

Remark 3.28. If A is a convex subset of X and f is a linear continuous functional,
then f(A) is a convez set.

Proof. It o, 8 € f(A) then a = f(x) and 5 = f(y) for some z,y € A. If t € [0,1]
then
ta+(1=)8 = tf(z) + (1 =) f(y) = f(te+ (1= t)y) € f(A).
[

It will be necessary to use the fact that every complex vector space is also a real
vector space. If u is the real part of a complex linear functional f on X, then w is
a real linear functional and

f(z) =u(z) —iu(iz) (x€ X).

Since z = Rz — iR(iz) for every z € C. Conversely, if u : X — R is a real linear
functional on a complex vector space X, and if f is defined by f(x) = u(z) —iu(ix),
then f is a complex linear functional. This was seen in the proof of Theorem 2.12.

The above facts imply that complex linear functional f on X is in X* if only if
its real part is continuous. This observation shows that in the next theorem we can
suppose that R is the scalar field of X.
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Theorem 3.29. [Third version of Hanh-Banach theorem] Suppose A and B are
disjoints, nonempty, convex sets in a Banach space X.
(a) If A is open, then there exist A € X* and v € R such that

RAx < v < RAy,

for each x € A and y € B.
(b) If A is compact, B is closed, then there exist A € X*, v1 € R and v € R
such that
RAz < 71 < 79 < RAy,

for each x € A and for each y € B.

Proof. (a) Fix ag € A, by € B. Put g = by — ag, and C = A — B + xy. Then C is
a convex neighbourhood of 0, by Remark 3.25. Let p be the Minkovsky functional
of C. By Proposition 3.22 (a) and (b), p is a convex functional.

Since AN B = (), then zg ¢ C. If zg € C, this means that there exists x € A
and x € B such that zg = v — x + zg, therefore AN B # () which is a contradiction.

Therefore, by Proposition 3.22 (c), p(zo) > 1.

Now, we define f(tzg) =t on the subspace M of X generated by z,. If ¢ > 0,

f(trg) =t < tp(wo) = p(two).

If t <0, then f(txg) <0 < p(txg). Thus f < pin M. By Theorem 2.9, f extends
to a linear functional A on X that also satisfies A < p.
In particular, A <1 on C, hence A > —1 on —C: If y € —C,

therefore A(y) > —1.
We obtain that |A| < 1 on the neighbourhood C'N (—C') of 0. Thus A € X*, by
Theorem 3.18.
Let a € A and b € B. Noting that A(zg) = f(lzg) =1 and a — b+ z € C, we
have that:
Aa—Ab+1=Ala—b+ ) < pla—b+ xp).

Since C' is open, by Remark 3.24, we obtain that p(a — b+ x¢) < 1. Thus Aa < Ab.

A(A) and A(B) are disjoint subsets of R. By Remark 3.28, they also are convex
subset, with A(A) to the left of A(B). Also, A(A) is an open set since A is an
open map, by Theorem 2.24. Since A(A) is an open convex set, then A(A) = (¢, d).
Taking v = d, we obtain the conclusion of (a).

(b) By Theorem 3.12, there is a convex neighbourhood V' of 0 in X such that
(A+V)N(B+V)=0. Since B C (B+ V), we obtain that (A + V)N B = 0.

Using (a) with A 4+ V in place of A, we obtain that there exists A € X* such
that A(A+ V) and A(B) are disjoints convex subsets of R, with A(4 + V') to the
left of A(B). That is, for eacha € A+ V and b€ B

Aa <+ < Ab.
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Since A is compact, then A(A) = [c,d] is also compact. Therefore,
AA) =[e,d] CAA+V) = (e, ).
Taking d < v; < f, we have that for all a € A and b € B,
Aa < v <+ < Ab.

Choosing 79 so that 73 < 72 <7/, we have the conclusion of (b). O
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Chapter 4

Banach Function Spaces

In this chapter, we introduce the definition of Banach Function Spaces and their
most important properties, such as the fact of being complete.

4.1 Definition of Banach Function Spaces

Definition 4.1. A map p : MT — [0,00] is called Banach function norm or
simply function norm if, for all f,g, fn,n = (1,2,3...) in M™, for all constants
a > 0, and for all p-measurable subsets £ of R, the following properties hold:

e P1p(f)=0% f=0p-ae ; plaf)=ap(f); p(f+9) <p(f)+pg)
e P20<g<fp-ae = p(g)<p(f)
P30< fu? f pu-ae. = p(fa) T p(f)

P4 u(E) <00 = p(xe) < .

P5 (E) < 0o = [, f(z)du(z) < Cgp(f) for some constant 0 < Cy < o0,
depending on E and p, but independent of f.

The classic examples of Banach function norms are those associated with the
Lebesgue spaces LP, 1 < p < o0.

Theorem 4.2. If f € M™, then ||f|lr = pp(f) are function norms for every
1 <p<oc.

Proof. Case 1 < p < oo.

o P1:

pp(f) =0 = /fp Ydu(z) =0 = f? =0 p-a.e. = f=0 p-ae.,

/ Payu(e) | — apy(f) = pofaf).

By Theorem 1.12, we also have the triangle inequality.

31
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e P21f0 < g < f p-a.e. then
¢xﬂwﬂe=>/f@@@g/f%%%@=>%@s%ﬁ
R R

o P31If
T f = TS,
then by Theorem 1.6, we obtain that p,(f,) T pp(f)-

e P41If0 < pu(F) < oo,
LX%(SC)CZM(%) = /RxE(x)du(:c) = u(E) < .

e P5 If 4(E) < oo, then by P4, we obtain that yz € L and hence,

e

Amwmwmm{@mmwﬁﬂéﬁwwm}:%m%.

Case p=o0,
e P1If poo(f) = esssup,er f(2) =0 p-a.e. and f € M™T, then f =0 p-a.e.
Since esssup,cg af(r) = aesssup,cr f(z), then po(af) = ape(f).
Since esssup,er (f(x) + g(x)) < esssup,er f(x) + esssup,cr g(), then
Poo(f +9) < poo(f) + Poc(9)-
e P2 If f < g pae., then esssup,.i f(x) < esssup,cr g(z), and therefore
Poc(f) < poc(9).

e P3If f, 1 f p-a.e., then (poo(fn))n is a increasing sequence, so that
K = lim peo(fn) = sup po(fa) < poo(f)-
n—o0 neN

Therefore

K =supinf{c: f, < c p-a.e.}.
neN

Then, for all n, poo(fn) < K p-a.e. Therefore, sup,cy poo(fn) < K p-ace.
Since poo(f) = Sup,en Poo(fn), we obtain that po(f) < K p-a.e. Therefore
Poo(f) < K. We conclude that po(fn) T poo(f)-

o P4 If i(E) < 0o, then poo(XE) = esssup,er Xp(T) = 1.
o P51If u(E) < oo,

‘/Qlf(m)dﬂ(w)fél/;esssur>f(x)du(w)

zER

— [ olnt@) = () [ duta) = prlPulE).
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]

Definition 4.3. Let p be a function norm. The collection X = X (p) of all functions
fin M for which p(|f]) < oo is called a Banach function space. For each f € X,
we define

1f|lx = p(LfD)-

4.2 Basic properties of Banach Function Spaces

To prove the next theorem, we need a previous result:

Proposition 4.4. Let (f,), be a sequence of measurable functions such that con-
verges in measure to f. Then there is a subsequence (f,, )k which converges to f
a.e.

Proof. By Definition 1.2, we have that given v there is a n, € N such that for all
n>n,.

p{z: [f(z) = fulz)] 2 277}) <277
We consider E, := {x : |f,, (x) — f(z)| > 27"}, and let

xgéA:ﬂUEl,.

k=1v=k

Therefore, there exists k' such that for all v > ¥/, = ¢ E,, and hence

ve{z:|fn(2) - fR) <277}
Thus | f,, (z) — f(x)| = 0. Therefore f,, (x) — f(x). Let now us see that pu(A) = 0.

0o 00 00 _k
u) <u(UB) < Yuis) =S o =2y oo
v=~k v=~k v=~k 2

Letting k — oo, we obtain that p(A) = 0. By Definition 1.2, (f,,), converges to f

a.e. [
Theorem 4.5. Let p be a function norm and let X = X(p) and || - ||x be as in
Definition 4.3. Then, under the natural vector space operations, (X, | - ||x) is a
normed space for which the inclusions

hold. In particular, if f, — f in X, then f, — f in measure on sets of finite
measure, and hence some subsequence converges pi-a.e. to f.

Proof. Let us prove that X < M. Let E be a measurable such that u(E) < oco.
If felX,byP5,

Lﬂ@wwiCﬂﬂx<w

Suppose now that f € X and is not in M. Then the set F' = {z : f(z) = oo} has
positive measure. Let us consider two cases:
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e Case 1: If pu(F) = f with 0 < 3 < oo then [, f(x)du(x) = co. Using P5,

/F F(@)du(z) < Crllfllx < oo,

which is a contradiction.

e Case 2: If y(F) = oo and since p is a o-finite measure then F' = (J;~ | Fy with
wu(Fy) < oo for all k. Therefore if we fix F}, we have that ka f(z)du(x) = oo.
Using P5 as in case 1, we have a contradiction.

Let us see that S C X. Let f(z) =Y i ,oxg(z) € S. By properties P1 and

P4,
) Sp(ZIaiin) <
=0

<> pllaixel) =Y lailp(xel) < oo
i=0 i=0

11l =11 = (13 v
=0

Let us now see that X is a normed space.
o Let feX. If||fllx = p(|f]) =0, then |f| =0 p-a.e., and hence f =0 p-a.e.

o Let f,g € X, then using P1:

leef + Byllx < plleef + Bgl) < lelp(f]) + 18lp(lg]) < lafllfllx + |Bllgllx-

Let us now prove that every convergent sequence in X is also convergent in M.
If f, = fin X, then p(|f — fu]) — 0. Let ¢ > 0 and let E be a set with finite
measure. We define A, = {z € E: |f(z) — f.(x)] > €}. By P5,

ua) = [ 1< [ 215w = foldue) < [ Z15@ - h@ldut)

< Cen( 217 = o) = CoZollf = 1) (42)

Thus p(A,) — 0 as n — oco. That shows that f, — f in measure on every set of
finite measure. By Definition 1.4, f, — f in M.

Since p is a o-finite measure, similarly to Proposition 4.4, there is a subsequence
(fn,)x which converges to f u-a.e. ]

The next lemma will be very important for us.

Lemma 4.6. [Fatou’s lemma] Let X = X(p) be a Banach function space and
suppose f, € X for all n.

o (i) If0 < fu 1 [ p-a.e., then either f ¢ X and || fu]|x T o0, or f € X and
[ fallx T 1 £l x-
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o (ii) If fr, = [ p-a.e. and if liminf, . || fu|lx < oo, then f € X and

[fllx < Timinf [ £,[|x.
n— o0

Proof. 1) If f ¢ X then || f|lx = co. By P3, ||fullx T oo. If f € X, then ||f|lx T

f1lx-
ii) We define h,,(z) = inf,,,>, | fm(x)]. Since f, — f p-a.e., then |f,| — |f] p-a.e.
Thus 0 < h,, 1 |f| p-a.e. By P3 and P2:

1fllx = p(If]) = Lm p(|h,[) < lim (inf p(|fm]) = liminf || f, ]l x < oc.
n—o00 n—oo m>n n—00

Since p is a complete measure and f is limit of a sequence of measurable functions,
then f is a measurable function. Since || f||x < oo, then f € X. O

Theorem 4.7. [Riesz-Fischer property] Let (f,), be a sequence of X. If

D fallx < oo,
n=1
then > 0| fn converges in X to a function f in X and
1Al <7 1 allx
n=1

Proof. Let t = 3.°° | fa] and let tx = S22 | f,| therefore 0 < ty 1 t. Since

N 00
lexllx <D fallx <D lfallx <00, (N =1,2,..).
n=1 n=1

Since ty Tt p-a.e. and ||t||x < oo, by Lemma 4.6 (i), ¢ belongs X.
Thus t € My, by Theorem 4.5. Hence t = > ° | |f,| is finite p-a.e. Therefore
> o | fal converges p-a.e. and hence so does > >, fu(z). If

[e's) N
fizzjz:jha SN’::EE:j%7 (PJ::172“J7
n=1 n=1

then sy — f p-a.e. Hence, for any M, we have that sy — syy — f — sy p-a.e. as
N — oo. Furthermore, if N > M:

N 00
liminf [lsy — sy llx < lminf Y [fullx = D llfallx < oo
N—oo N—o0
n=M+1 n=M+1

Using the Fatou’s lemma to sy — sps, we have that f — sj; belongs to X and

[e.9]

If=sullx < > Ifallx

n=M-+1

Consequently, || f — su|lx — 0 as M — oc.

M
1£1x < I = sarllx + lsallx < N = sallx + D I fllx
n=1

Letting M — oo, we obtain the inequality. O
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Corollary 4.8. If X is a Banach function space, then X is complete.
Proof. Tt follows from Proposition 2.18. O]

Theorem 4.9. Let X and Y be Banach function spaces over the same measure
space. If X C Y, then in fact X — Y.

Proof. Suppose X C Y but X — Y fails. Then there exist functions f,, in X for
which

lfulx <1, [fully >0, (n=1,2,..).

Replacing each f, with its absolute value, we may assume f,, > 0 for all n. Since
> 7
n=1

we obtain that Y > n~2f, converges in X to some function f in X, by Theorem
4.7. Since X C Y, then f belongs to Y and hence, || f|y < oc.
But this is impossible, because 0 < n2f, < f, and therefore

1flly = 72 fully > n,

for all n. We conclude that f ¢ Y, which is a contradiction. n

0
< ZnisznHX < 00,
X n=1

The next theorem summarizes for future references the basic properties of Ba-
nach function spaces.

Theorem 4.10. Suppose p is a function norm and let
X ={feM:p(|f]) <oo}.

For each f € X, let ||fllx = p(|f]). Then (X,| - |lx) s a Banach space and the
following properties hold for all f, g, fn, (n = 1,2,3...) in M and all measurable
subsets E of R:

o (i) If|g| < |f| p-a.e. and f € X, then g € X and ||g||x < ||f|lx; in particular,
a measurable function f belongs to X if and only if | f| belongs to X, and in
that case [ and |f| have the same norm in X.

o (i) If 0 < f, 1 f p-a.e., then either f ¢ X and ||fn]|x T oo, or f € X and
I fullx T fx

o (iii) If fr, — [ p-a.e. and if iminf, . ||fa|lx < oo, then f € X and

[fllx < Tim inf [ £, [ x.
n—oo

e (iv) Every simple function belongs to X.

o (v) If n(E) < oo then [, f(x)du(z) < Cgl|fllx for some constant 0 < C <
0o, depending on E and p but independent of f.

o (vi) If f,, = f in X, then f, — f on every set of finite measure; in particular,
some subsequence of (fy)n converges to [ u-a.e.
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4.3 The associate space

In this section, we introduce the associate space X’ of the Banach function space
X and its properties.

Definition 4.11. If p is a function norm, its associate norm p' is defined on M™
by

#a)=sww{ [ folataduto) 1 e Mol <1},

Theorem 4.12. Let p be a function norm. Then the associate norm p' is a function
norm.

Proof. We have to prove all properties of a function norm.
e Pl and P2: If p(f) < 1, then f is finite p-a.e., by Theorem 4.5. If g = 0 p-a.e.,

we obtain that [, f(x)g(z)du(z) = 0 for f € M*. Therefore p'(g) = 0.

We now suppose that p'(g) = 0. Let E be a measurable set of R such that
0 < u(F) < oo, then p(xg) < 0o, by P4. Moreover, p(xg) > 0. If p(xg) =0,
then xg = 0 p-a.e. Therefore, we have that u(E) = 0, which is a contradiction.

Taking f(x) = xg(z)/p(xE), we have that p(f) = 1. Then

0— /R F@)gl@)duta) = [ YEW) () = plxe) ™ /E g(@)du(x),

= P(XE)

and hence g = 0 p-a.e. on E. Since E is an arbitrary measurable set of finite
measure and p is o-finite measure, then we obtain that g = 0 u-a.e.

The other properties of P1 and P2 follow from the linearity of integral.
e P3: We suppose that g,,g € M for alln € Nand 0 < g, 1 g p-a.e. By
P2, the sequence p'(g,) increases with n and p'(g,) < p'(g) for all n. Then, if

p'(gn) = oo for some n, that implies p'(g) = oo. Therefore, we may suppose
p'(gn) < oo for all n.

Let £ be any number satisfying £ < p'(g). By Definition 4.11, there is a
function f in M* with p(f) < 1 such that [, f(z)g(x)du(z) > €.

Since 0 < g, T¢g p-ae., then 0 < fg, 1 fg p-a.e. Theorem 1.6 shows that

/R £(2)ga()dp(z) 1 /R F(@)g(x)dp(z),

and hence, there exists N € N such that [, f(z)gn(z) > £ for all n > N.
Therefore

2(9) > 0(ga) > /R £(2)gn(@)dp(z) > €.

for all n > N. This shows that p'(g,) T p'(g), because if, p/'(g,) T z where
z < p'(g), then taking z = £ we have a contradiction.
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e P4: Let E be a measurable set with u(E) < oo and let f € M™ such that
p(f) < 1. By P5 of p, we have that

/ vel(@) f () du(z) = / F(@)du(x) < Cp(f) < O,
R E

with 0 < Cg < 0o. By Definition 4.11, we obtain that p/'(yg) < Cg.

e P5: We fix F a measurable set such that pu(F) < co. If u(F) = 0 there is
nothing to prove so we may assume p(F) > 0. We know that 0 < p(xg) < oo

and f(z) = X(E(x) satisfies that p(f) = 1. For any g € M™,

[E o) du(z) = /R ve(@)g(@)du(z) = plxz) /R F(@)g(x)du(x).

By Definition 4.11,

[ st@uta) = ptxe) | F@pt@inta) < pixe)io)
which shows that P5 holds for p'.

O

Definition 4.13. Let p be a function norm and let X = X(p) be the Banach
function space determined by p as in the Definition 4.1. Let p' be the associate norm

of p. The Banach function space X (p') determined by p' is called the associate space
of X and is denoted by X'.

By Definition 4.3, if g € M then
gllx = £'(lg]) = sup { /Rf(:v)!g(x)ldu(ﬂf) L feMTp(f) < 1}
_ sup{ / @9 dulz) : 1f] € M, p(lf]) < 1}

—sup{/|f Dldu(z) : fEXyllfllxél}.

Theorem 4.14. [Holder’s inequality] Let X be a Banach function space with asso-
ciate space X'. If f € X and g € X', then fg is integrable and

/ F@g(@)du() < 1 Flxlgllx

Proof. If ||f||x =0, then f =0 p-a.e., so both sides of the inequality are zero. We
suppose that ||f||x > 0. Then f(x)/| f|lx has a norm 1. By Definition 4.13, we
have that:

f(z)

Xg(l’)

from which the result follows. O

dp(r) < lgllx,
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Theorem 4.15. L? is the associate space of LP.

Proof. We have to prove that

ngw—sup{ / F(@)g(@)ldu(), feLp:||f||Lp§1}.

By Theorem 1.11, we obtain that
ol 2 s { [ 17@g0lduta). 7€ 27 1l <1},

We define h(z) = M Then we observe that

-1
llg ||p

/ Ih(@)g(@)|du(z) = llgll,-

Let us see that ||h||zr = 1,

g p(p’'—1) %
Il = | W%du@)
Since p’ = p(p' — 1),
il = [/Lq W du(a } _1
9ll7,

Thus
9]l L < sup{/ |f () g(z)|du(x), f€LP | fll < 1}

]

Lemma 4.16. [Landau’s resonance theorem/ In order that a measurable function g
belongs to the associate space X', it is necessary and sufficient that fg be integrable
for every f in X.

Proof. The necessity follows from Theorem 4.14. Because if f € X and fg is not
integrable then

Therefore g ¢ X'.

In the other direction, we suppose that ||g||x» = p(|g]) = oo but that fg is
integrable for every f in X. By Definition 4.11, there exist non-negative functions
fn satisfying

Iullx < 1. /Ifn Dldu(z) > b, WneN.
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By Theorem 4.7, we obtain that f(z) = >.°° , n?f,(z) belongs to X because

IAllx < 3202 n™* < oo
However, the product fg cannot be integrable because

[ r@ataluta) = 07 [ (feo@ldute) > n, (0 =1,2.),

This contradiction establishes the sufficiency. O

Proposition 4.17. The norm of a function g in the associate space X' is given by

ol =suw | [ @] 1 ex1flx < 1}
Proof. By Definition 4.13 and |fR f(x)g( ! < [ |f(@)g(z)|dp(z), it follows
that

9]l > SUP{‘ /Rf(ﬂﬁ)g(l‘)dlt(%) (fe X lfllx < 1}‘

Hence, we need only to establish the reverse inequality, which, by Definition 4.13,
may be written
[ rgte)in)|,

where both supreme extended over all f in the unit ball S of X, that is, || f||x < 1.
We define

sup/ |f(x)g(z)|dp(x) < sup

fes fes

E={zeR:g(x)+#0}.

We may write g(x) in polar form g(z) = |g(z)|¢(z), where |¢p| = 1. Hence, |g(x)| =

g(z)é(z) on E, because |¢(z)| = ¢(x)¢(x) = 1. For any f € S, we thus have

[ 1t@e@in) = [ 15@a@ldnte) = [ 11@E@@dne).

We define h(z) = |f(z)|¢(z) on E and h =0 off E. Then |h| < |f| on R and so h
belongs to S. Hence,

/R 1 (@)9(2)|(@)du(z) = /E (@) B@) () du(z) = /E h(z)g(e)du(z)
/R h(a)g(x)dp / F(2)g(@)dpu(a)|.

Taking the supreme on the left over all f in S, we obtain that

lollx < p{] [ 1ws@ante)

<

< sup
fes

Je Xk < 1}.
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Theorem 4.18. [Lorentz-Luzemburg Theorem] Every Banach function space X
coincides with its second associate space X". In other words, a function f belongs
to X if ond only if it belongs to X", and in that case

1/ 1lx = 1 llx

Proof. By Theorem 4.14, if f € X, then fg is integrable for every g € X'. If we
apply Lemma 4.16 to X’ instead of X, we obtain that f € X”. Hence X C X”.
We also obtain from Definition 4.13 that

||f||X~—sup{ / F(2)g(@)|du(z) : ||g||X,g1}.

By Theorem 4.14

/ F@)g(@)ldu(z) < | Flxllglx < [1f]lx-

Therefore || f|lx» < || fllx-
Hence, in order to complete the proof we need only show X” C X and

1f1lx < [1f [l

e First, we choose an increasing sequence of sets Ry such that u(Ry) < oo for
all N and UN21 Ry = R. This is possible because p is a totally o—finite
measure. For each N and each f € X” we define

fn(a) = min([f (@), N)xry (2).

By Theorem 4.10 (iv) and since fy(z) < Nxgy(2), we obtain that || fy|lx <
INXRy|x < 0o. Therefore fxn belongs to X and to X”.

e Let us see that fy T f. Let N € N such that z € Ry and N > |f(x)].
Thus fy(z) = |f(x)|. For all N > N we have that fy/(z) = |f(x)|. Since
Ry C Ry.1, then 0 < fy 1 |f|. Therefore

Il T s e 0L e
by Fatou’s Lemma.

e Now, it will suffice to show that

Ifnllx < fnllxn, (N=1,2,.),
to obtain that || f|lx < || f|lx~-

For the remainder of the proof, we suppose therefore that f and N are fixed. Clearly,
we may assume || fy||x > 0 since otherwise there is nothing to prove.

e Let LY, be the space of yu—integrable functions on R having a supports in Ry.
With norm g — fRN lg|du, it is clear that L} is a Banach space.
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e Let S={f € X :|f|lx <1}, then the set U = SN L} is a convex subset,
because if, f,g € U then |[tf+(1—t)g||x <t+(1—t) <1lsotf+(1—t)ge S.
It is obvious that tf + (1 — t)g € L}, by linearity of the integral.

e Let us see that U is a closed subset of LY. If h,, € U for all n and h,, — h in
L}, there is a subsequence A, converges to h p—a.e. on R,(view in(4.2)).

Since every hy,) belongs to S, Fatou’s Lemma then shows that

[Bllx < Timinf [l lx < 1,

therefore h € S. Since h € L) and h € S, we have that h € U. Tt follows
therefore that U is a closed convex set of L. Hence, U is a convex closed set
of L.

For every A > 1, the function g(z) = )‘IIJ}]\JIV(\:\?( belongs to L} but not to U. We

remember that the dual space of L' is L. Since U is closed and {g} is compact,
by Theorem 3.29, we obtain that there exists a nonzero ¢ € L*(R, i), which may
be chosen with support in Ry because g and all h € U have support in Ry, such
that

n( N oehla)inla) ) <7 <R[ N o()g(a)inlo) ) (43)

for some real number v and all h in U.
Let us now see some observations to prove that

A

Jollxe < o /R 1ol ()

o Writing ¢(z) = |¢[¢(z) in polar form and observing that h = t|h| belongs to
U if only if h does (using Theorem 4.10 (i) and [¢p| = 1). We observe that

[ 1owm@lantr) = ¢<x>M|h<x>|du<x>=éR( ¢<x>ﬁ<x>du<x>).
Ry RN Ry

e Taking the supremum over h € U in (4.3) we obtain that

sup [ Joon(alidute) =swpR( [ oo <o

heU EGU

<§R( [ ¢<m>g<x>du<x>) < [ lo@g)ldute) (4.4)

e Let h be a function in S, when restricted to Ry, is the pointwise limit of the
increasing sequence of truncations

hn(2) = min(h(z), n)x gy (),
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that is, h, T h. We have that h, € X by the argument used when we define
fn. Let us see that each h,, is in LY. It follows from

/ h(@)dpi(z) < Cryllhnllx < oo.
Ry

Since ||h,||x < ||h||x < 1, we obtain that h, € S and hence h,, € U.

e Now, by the monotone convergence theorem we obtain that

/R $@)h(@)|du(z) = tim [ 6@ ha(@)|dpu(z)

n—oo RN

< sup / 16(2) £ ()| ds(x).

helU

Therefore,

I6]lx = sup /R 6(2)h(a)|du(x) < sup / 16(2) ()| dp().

heS heU

Finally, by (4.4) and g(z) = A{X <|’|”j( we obtain that

A
[0l = Sup/RN |o(x)h(@)|dp(z) <~ < Tivlx /RN |0(2) [ () dp().

heS
Equivalently,

A
1]

A
1]l

[fnllx <

/ 16(2) fov (@) dpa() <
Ry

:A/R

By Theorem 4.14, we obtain that

I xllx < A /R

Letting A — 1, we obtain that

/ 16(2) fv (@) dpu(a)
R

¢(z)

Tole @)

dp(x).

MfN(ﬂf/‘)

1l dp(x) < A fwllx.

Inllx < Lfnllxer
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Chapter 5

Rearrangement-Invariant Banach
Function Spaces

The objective of this chapter is to introduce all the necessary tools to define the
Lorentz spaces.

5.1 Distribution Function

Definition 5.1. The distribution function puy of a function f in My is given by

prA) = p{e e R:|f(z)] > A}, (A =0).

Observe that pr depends only on the absolute value |f| of the function f, and
fty may assume the value +oo.

Definition 5.2. Let (S,v) be a complete o-finite measure space. Two functions
f e Mo(R,pn) and g € My(S,v) are said to be equimeasurable if they have the
same distribution function, that is, if 1y (X) = v,(\) for all X > 0.

Proposition 5.3. Suppose f, g, fn, (n = 1,2,...) belong to My(R, i) and let a be
any non-zero scalar. The distribution function py is a non-negative, decreasing,
and right-continuous function on [0,00). Furthermore,

lg| < |flp-a.e. = pg < pyp; (1)

faf(N) = pr(Nlal), (A =0);  (2)
PprgA 4 A2) < pp(Aa) + pg(X2), (A, A2 > 0); 0 (3)

|f| <lminf |f,|p-a.e. = pp <liminfpug; (4.1)
n—oo n—oo

wm particular,
[ful TSl p-ace. = pg, Ty (42)

Proof. First, let us prove that i is a non-negative, decreasing, and right-continuous
function on [0, 00).

45
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o It is clear that 11y is non-negative. Let us see that py is decreasing, let
Er={zeR:[f(x)|> M}, Ex={zeR:|f(z) >},

then if Ay > Ay, Ey C Es. Thus pp(A) < pp(Ae).

e Let us prove that s is right-continuous, let
EQ) ={z eR:|f(x)[> A}, (A=0),
and fix A\g > 0. The sets E()\) increase as A decreases, and we have that
= 1
E(\) = go E(\) = nL:Jl E ()\0 + 5) .

Let us prove it:

— E(Mo) = Uyan, EQA). If 2 € E()o), then [f(x)] > Xo. Let A > 0 such
that |f(z)| > A > A\¢g. Then x € E(X). Thus

E(N) C | EW).

A> Ao

Clearly, Uy.y, E(A) C E(No).

— Now, we prove that (J,.,, E(\) = Uy— E(Ao + 2). If 2 € U,.,, E(V),
then there exists a A > X such that |f(z)] > A. Since A > A and
1/n — 0, then there exists n € N such that A > Ay + % Hence,

> 1
U e cl E(AO + 5).
A> Ao n=1

Clearly, |~ , E()\O + %) - U)\>/\0 E(N).

Hence, since the sets E(\) increase as A decreases, by monotone convergence
theorem,

1 1
s (Ao " 5) - u(E (Ao n 5)) t (B )) = 1 0\o),
and this establishes the right-continuity.

e Let us prove (1). For any A > 0 such that |g(x)| > A we have that |f(z)| >
lg(z)] > A. Therefore p, < ps. The property (2) is clear.

e Let us prove (3). If |f(z) + g(x)] > A1 + Ao, then either |f(x)] > A or
lg(z)| > Xo. Therefore

{zreR:[f(x) +g(@)] > + A}

Cl{zeR:|f(x)>M}U{zeR:|g(x) > A},
and thus fip16(A1 + A2) < pp(A1) + pg(A2).
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e Let us see (4.1). Fix A > 0 and let
E={zeR:|f(zx)|> A}, E,={xeR:|fulx)]>A}, (n=12..).

Since |f| < liminf, o | fn| = sup,sg (infgsy | fn|), we obtain that

E C liminf £, = D () En (5.1)
m=1n>m

Hence, for each m =1,2, ... :

[L( ﬂ En> < inf pu(E,) <sup inf p(FE,) = liminf u(E,) (5.2)
nom n>m m n>m n—00

By (5.1), we obtain that

) = () < 0N E).

m=1n>m

We observe that (,,.,, En increases with m. Let m, m’ € N such that m > m/.
If v € (,2,y En then x € E, for all n > m’. Consequently, z € E, for all

n > m., therefore x € (,.,, £,. This observation shows that we can apply

the monotone convergence theorem, so that

o) =B < (U () ) = () 22)

m=1n>m n>m

and by (5.2)

pr(A) < nh_)rgo/vc( O En) < h,?;};}f“(En) = 117£g£fﬂfn(/\)-

e Let us prove (4.2):
— Since |f,| T |f], then lim, o |fu| = |f| p-a.e, and
|f] < lim |f,| = liminf |f,| yu-a.e.
n— o0 n—oo

By (4.1), we obtain that pp <liminf, . puy,.
— But, on the other hand, since (f,), is increasing, by Property (1),
. -
m g, < gy
Finally, we obtain that
: < e < T
dim pp, < pop < liminf e,

so that pg, T 1y
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]

Remark 5.4. It will be worthwhile to formally compute the distribution function
iy of a nonnegative simple function f.

Suppose

n

f@) =Y ajxg(x), (5.3)

J=1

where the sets FE; are pairwise disjoint subsets of R with finite py-measure and
ay > as > ... > a, > 0.

If A > ay, then |f(x)| < A, therefore pus(A) = 0. However, if as < A < ay,
then f(x) exceeds A precisely on the set Ey, and so pr(A) = p(Ey). Similarly, if
as < X\ < ag, then f(z) exceeds A precisely on £y U Es, an so ji(A) = p(E1 U Ey) =
w(Eq) + p(Esy). In general, we have

pr(A) = ijX[%‘ﬂ,aj)()‘)u (A=0), (ant1 =0). (5:4)

where ,
J

my =Y uE), (j=12.n)
=1

See Appendix Figure 6.1 and Figure 6.2.

5.2 Decreasing Rearrangement

Definition 5.5. Suppose [ belongs to M. The decreasing rearrangement of f is
the function f* defined on [0,00) by

7)) =inf{A>0:pur(N) <t}, (t>0).

Observe that f* depends only on the absolute value |f| of the function f. Let
us observe five consequences of the definition of f*.

Remark 5.6. If f and g belongs to My and they are equimeasurable, then f* = g*.

Remark 5.7. f*(t) = sup{A > 0 : ps(A) > t} = my,(t), where m is Lebesgue
measure.

Proof. Since 5 is right-continuous and decreasing, then
7)) =inf{A > 0: pr(X) <t} =sup{A>0: pup(A) >t}
The set {A > 0: pp(A) >t} = [0,sup{\ > 0: py(\) > t}). Then

My, (1) = m{X >0 pp(A) >t} =sup{A > 0: pp(\) > t}.
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Remark 5.8. We compute the decreasing rearrangement of the simple function f

as (5.3).

Referring to Definition 5.5 and Figure 1, we see that f*(t) = 0 if ¢ > mg3. Also,
if mg >t > mo, f*(t) = ag, and if mg >t > my, f*(t) = as. If 0 <t < my, then
f*(t) = ay. Hence,

n

f*(t) - Zan[mjfhmg')(t)? (t > 0)7

=1

where mg = 0.
See Appendix Figure 6.1 and Figure 6.3.
Since m([m;_1,m;)) = p(E;), f and f* are equimeasurable, that is, mp- = puy.

Remark 5.9. If f as (5.3), then it may be represented also as follows:

f@) =3 boxn (@), (5.5)

where the coefficients by, are positive and for every k the sets Fj, has finite measure.
Moreover, Fi C F, C ... C F,.

This follows from
k
bk:ak—akﬂ, Fk: UE]', (1{321,2,71)
j=1

n

f(z) = ZkaFk<$) = Z(ak - ak+1)X[U?21Ej] (z) = Z(&k - ak+1)(z XE; (93))

k=1 k=1
= xe (#) Y (ar — apin) + oo+ X (2) Y (@ — api1)
k=1 k=1

=Xp (T)ar + ...+ X, (T)a, = Z%‘XEJ» ().
j=1

Thus,
£ = bxpou (0)-
k=1

See Appendix Figure 6.1 and Figure 6.4.
Remark 5.10. If f is right-continuous and decreasing, then f = f*.

Proposition 5.11. Suppose f, g, fn,(n =1,2,...) belong to My(R, i) and let a be
any non-zero scalar. The decreasing rearrangement f* is a non-negative, decreasing,
and right-continuous function on [0,00). Furthermore,

lg| < |flp-a.e. = g" < f55 (1)
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(af) = lalf* (@)
(f +9) (i +t2) < f7(l) +97(t2),  (t1,2220); (3)
| f] §lirginf|fn|,u—a.e. = f" Slirginff:; (4)

wmn particular,

[ful T1f pmae. — fr 1 f7.
FlugQ) <A (pp(A) <o0)  (5.1); pe(f7(1) <8, (f7(t) <o0) (5.2);

f and f* are equimeasurable (6);
(FP)y = (), (0<p<oo), (7).

Proof. Since f* is a distribution function, by Remark 5.7, then f* is a non-negative,
decreasing, right-continuous function on [0, c0), and (1), and (4) hold.

e Let us establish (2). We observe that, by Proposition 5.3 (2),

(af) () = inf{\ > 0: prap(N) <t} = inf {)\ >0 Mf<i> < t}

al
= |a|inf{z > 0: ps(2) <t} = |a|f*(2),

e Let us establish (5.1). Fix A > 0 and suppose t = () is finite. By Definition
5.5, we obtain that

frlupN) = () =mf{N 20y (N) <t =pp(N)} < A

e Let us establish (5.2), fix t > 0 and suppose A = f*(¢) is finite. By Definition
5.5 and py is decreasing, there is a sequence A, | A such that pur(A,) <
pr(A) <t so the right continuity of iy gives

pr(f* @) = pr(A) = T pp(An) < 2.

e Let us prove (3). We may assume that A = f*(t1) + ¢*(¢2) is finite since
otherwise there is nothing to prove. Let t = pusi,(N). Since |f(z) + g(z)| >
f5(t1) + g*(t2), then |f(z)] > f*(t1) or |g(x)| > ¢g*(t2). Therefore,

t=p{r e R:|f(x)+g(x)| > f(t1) + 9" (t2)}

<p{z e R:|[f(x)] > [ ()} + p{z € R [g(2)] > g°(t2)},
then by (5.2),
t< pp(f*(t) + pg(g™(t2)) <ty + 1o,

This shows in particular that ¢ is finite. Hence, using that (f + ¢)* is decreas-
ing, we obtain that

(f+9) (0 +12) < (f +9)7() = (f +9)" (1s19(N),

by (5.1), we have that

(f+9) (t +t2) < (f +9) (1r+9(N) S A= (1) + g7 (L2).
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e Let us establish (6). For an arbitrary function f in M, we can find a sequence
of non-negative simple functions (f,),, such that f, 1 |f|. By Remark 5.8, for
each n the functions f, and f are equimeasurable, that is,

fr,(A) =mp(A), (A =>0).

Since f, T1fl, fx 1T |f*| by (4). By Proposition 5.3 (4), we have that
pr(X) =mgp(A), (A>0).

e Let us see (7). We have that

[
-

(X)) = ppAr) = myp-(Ar) = mpep(A), (A = 0).
By Definition 5.8, we obtain that
(17" = ((F)")"
Since (f*)P is decreasing and right-continuous, by Remark 5.10, we have that
(LAY = ()"
O

The next result gives alternative descriptions of the LP-norm in terms of the
distribution function and the decreasing rearrangement.

Proposition 5.12. Let f € M. If0 < p < oo, then

/R |f(x)[Pdu(z) = p /O N NP (N)dh = /0 h FE(t)rdt.

Furthermore, in the case p = oo,

esssup (@) = f{A > 0: () = 0} = £°(0).

Proof. First, we prove it to arbitrary non-negative simple function f. Let f as (5.3).
Since p(E;) = m([m;_1,m;)), we obtain that

/]f ) Pdp(x Za,u Zam mj_y,m;) :/Ooof*(t)pdt.

By (5.4), we have that

p/ )\plluf()\)d)\—pij/J AP LA

0 j=1 Aj+1

=Z ey =SBy = [ 1f@)lduta)
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The third equality follows from:

n

Z<a§—a§+1>mj=j;aj ~a0(Sme)

Jj=1

n n

= u(E) Z(a? - a?—&-l) + o () Z(a? - a?—&-l)

j=1 j=1
= w(E)a} + ..+ p(Ey)ab =Y alp(E;)

If f € My, we can find a sequence of non-negative simple function (f,,), such that
fn T |f|. Then, since f,, and f} are equimeasurable we obtain that f* 1 f*. By the
monotone convergence theorem,

/ f(@)Pdp(a) = Tim / f@)dp(r) = im Gim [ (£ (de = / TP,

n—00 N—>00 0

If fe My,
[ 1s@Pduta) =p [0 an
R 0

follows from Proposition 5.3 (4) and the monotone convergence theorem.
Now, we prove the case p = co. Remember that

esssup | f(a)| = nf{M > 0: | f(x)] < M}.

TER

Since pf in non-negative, then

inf{A > 0: ps(A) =0} =inf{A > 0: pur(N) <0} = f*(0).

Let A > 0 such that pir(X\) = 0. Then, the set {x € R : |f(x)| > A} has measure
equal 0, so that |f(z)| < A p-a.e. Therefore,

inf{A > 0: ps(A) =0} =inf{A > 0:|f(z)| < A} = esssup|f(z)].

TER

5.3 Hardy-Littlewood Inequality

Lemma 5.13. Let g be a nonnegative simple function on (R, p) and let E be an
arbitrary measurable subset of R. Then

/E g(x)dp(z) < /0 " g (s)ds.
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Proof. Let g be a simple function as (5.5), therefore ¢*(s) = > ,_; beXjo.u())(5), by
Remark 5.9. Consequently,

/Eg<w>du<x> = D byu(E N Ey) < 3y min(u(B), p(Fy))
= nE) u(E)
- ij/o X(0u(y) (8)ds = /0 g (s)ds.

Observe that if p(E) < p(F;) then

w(E)
/0 X(0.u(Fy)) (8)ds = p(E) = min(u(E), u(Fy)).

The case u(E) > pu(F}) is analogue. O

Theorem 5.14. [Hardy-Littlewood Inequality] If f and g belong to My = My(R, u),

then
@t < [

Proof. Since f* and ¢* depend only on the absolute values of f and g, it is enough
to establish the inequality for non-negative functions f and g. Therefore, we can
prove the theorem for non-negative simple functions f and ¢ (view the proof of
Proposition 5.12).

Let f a simple function as (5.3). By Remark 5.9,

S) = Z an[mjfhmj)(S)
j=1

Hence, by Lemma 5.13,

[ 1@t =Z/ i:: / o (5)ds
/Zamu ses= [ s

Definition 5.15. A totally o-finite measure space (R, i), is said to be resonant, if,
for each f and g in M, the identity

/ F( dt—sup/|f 2)\du(z),

holds, where the supremum is taken over all functions g on R equimeasurable with
qg.

]
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5.4 Maximal Function

Definition 5.16. Let f belong to Mo(R,pn). Then f** will denote the mazimal
function of f* defined by

CEE W CTA !

Proposition 5.17. Suppose f,g, fo,(n = 1,2,...) belong to Mo(R,pn) and let a
be any non-zero scalar. Then f** is a non-negative, decreasing, and continuous
function on (0,00). Furthermore,

f**E(){:}f:O'u_a'e'; (1)
< (2
9l < [flp-ae. = g < 5 (3)
(af)y™ = lalf™;  (4)
Fal P f e, = 5157 (5).

Proof. First, we observe that f** is finite for any one value of t if and only if it is
finite for every ¢ > 0. In other words, the function f** is either everywhere finite or
everywhere infinite. Since (o) is continuous, f** is continuous. It is obvious that
f** is non-negative.

e Let us see (1). If f** =0, then f* = 0 p-a.e. Note that, if f*(t) = 0 then
pr(0) =p{zr e R:|f(z)| >0} <t. Since f* =0 p-ae.,

15(0) = e € R+ |f(@)] > 0} <0,
then f =0 p-a.e.

e Let us see (2) follows from the fact f* is decreasing,
1/t 1 [t
=7 [ res= oy [ as= o
0 0
Consequently, f* is decreasing so f*(v) < f*(tv/s) if 0 <t < s. Hence,

kk _l B * 1 B * t_v
Fre =3 [ rows [ ()d

Doing a change of variables, u = t;”, we obtain that

=1 [ rews [ (W)= [ w0

Therefore, f** is decreasing.

e Let us establish (3). If |g| < |f| p-a.e., then g* < f*, by Proposition 5.11 (1).
Hence, g** < f**.



55 Chapter 5. Rearrangement-Invariant Banach Function Spaces

e The property (4) follows from by Proposition 5.11 (2).

e Let us see (5). If |f,| T |f| p-a.e., then f* 1 f* by Proposition 5.11 (4). By
monotone convergence theorem, f* 1 f**.

O

Proposition 5.18. Let (R, p) be a resonant space. If f € My(R,p) and t is in
the range of u, then

7o) = pwnd [ 1F@ldnte) () = 1},

Proof. Since t is in the range of p, there exist a measurable set F' such that pu(F') = t.
Let g(x) = Xp(x), so g*(s) = xp(s), by Remark 5.8.

We must observe that § is equimeasurable with g if only if |g| is p-a.e. equal to
the characteristic function of some set F with measure u(E) = u(F) = t.

o If g is equimeasurable with ¢ = X5, then p, = pg. Then

0, ifA>1
5 >\ — bl -_ b
#a(N) {a FO<A<1.

If A > 1, then p3(\) = p{z € R : |g(z)| > A} = 0, therefore, |g(z)| <1 p-a.e.

If 0 < A <1, then puz(A) = p{z € R : |g(z)| > A\} = t. Therefore, there exists
a set E such that u(E) =t and [g(x)] > \.

Therefore on F,
A< gl <1

for all 0 < A < 1. Thus |[§| =1 on E and 0 off.

e Suppose that |g| = xg p-a.e. , where u(FE) = t. Since a distribution function
depends only on the absolute value of the function,

0, ifA>1,

fg(A) = pi5/(A) = pg(A) = {t if0< <1

Thus g and g are equimeasurable.

Since (R, u) is resonant,

P =5 [ reas= [ e =1 [T e e

By previous observation, the supremum is taken over all functions g on R equimea-
surable with g.

oo = s [ @il } = s d [ 1@l i) =t}
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Remark 5.19. If (R, ) is resonant, then
(f+9)" @) < f7() + 97 (). (5.6)
In fact, it can be proved that (5.6) holds without the resonant condition on (R, ).

Proof. We have that

¢ [ 1@+ g@dnte < 5 [ 11@ldut) + 5 [ lot)linta

Since (R, p) is resonant, taking the supremum over all measurable sets E such that
w(E) = t, then the result follows. O

Consequently, we have the next result.

Remark 5.20. Let (R, u) be a complete o-finite measure space. Then for allt > 0,

[eareas< [ ress [ g

5.5 Rearrangement-Invariant Spaces

Definition 5.21. Let p be a function norm over a totally o-finite measure space
(R, ). Then p is said to be rearrangement-invariant (r.i.) if p(f) = p(g) for every
pair of equimeasurable functions f and g in M{ (R, ). In that case, the Banach
function space X = X(p) generated by p is said to be a rearrangement-invariant
space.

Remark 5.22. The Lebesque space LP(R, u) are rearrangement-invariant.

Proof. Let f,g € M{ (R, ) which are equimeasurable. Thus f* = g*, by Remark
5.6. By Proposition 5.12,

| 1t@pinte / F (et = / s erat = [ low)rduta)

Hence, || f|lr = |||l ze- -

Proposition 5.23. Let p be a rearrangement-invariant function norm over a reso-
nant measure space (R, p). Then the associate norm p' is also r.i. Furthemore, the
norms p and p' are given by

—sup{/ F(s)g (s)ds < | € M, <f>s1}, (g€ M),
and

—Sup{/ F(s)g"(s)ds : g € MZ, ()§1}, (f € MD).
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Proof. Let g € Mg. We have that if p(f) < 1, then f is finite and therefore

—mm{/f () fewﬁmU%s%

-ww{/f (0): f € M, Lﬂs§.

Since (R, 1) is resonant, we have that by Definition 5.15,

—sup{/ F(s)g*(s)ds : f € M, (f)g1}.

Since any two equimeasurable g and g function have the same decreasing rearrange-
ment, then

(o) =swn{ [0S € Miplh) <1 = 0)
0
Thus p is rearrangement-invariant. Similarly,

—sup{/ [ (8)g*(s)ds : g € M, ()<1}.

By Theorem 4.18, we have that p” = p. Thus

f) = sup { /OOO f(s)g*(s)ds : g € MG, p'(g) < 1}.

Corollary 5.24. Let X be a Banach function space over a resonant measure space.
Then X is rearrangement-invariant if and only if the associate space X' is also r.1.,
and in that case the norms are given by

O

ol =sup{ [ P Il <1, (7 € x)

and

|UM=am{Awﬁ®f®%meél} (g€ X').

Proof. If X is rearrangement-invariant, then p is a r.i. Hence p’ is also r.i., by
Proposition 5.23. Therefore, X’ is r.i. The other direction is analogous.

We observe that since iy only depends |f|, then iy = ju5. Therefore f* = |f]*.
Since || f||x = p(|f]) and f* = |f|*, by the Proposition 5.23, we obtain that

Hﬂu—mwﬂ-—wp{/'f msp<><1}

Since g € My, then ||g|lx = p'(|g]) = p'(g9) and the result follows.
The other result is analogous. O]
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Chapter 6

The Lorentz Spaces

6.1 Hardy’s Lemmas

Lemma 6.1. Let & and & be non-negative measurable functions on (0,00) and

suppose
/fl(s)dsgf & (s)ds, (6.1)
0 0

for all t. Let n be any non-negative decreasing function on (0,00). Then

/O " asn(s)ds < / " & (s)n(s)ds

Proof. First, we taken a non-negative decreasing simple function. In that case, n
may be expressed in the form

n

n(s) = Z a;X(0,,)(8), (6.2)

J=1

where the coefficients a; are positive and 0 < ¢; < ... <t,,. Clearly, n is non-negative
and decreasing. Using (6.1), we obtain that

/51 s)ds = aj/ & (s d5<Za]/ &a(s ds_/ & (s

Let (1,), be a sequence of non-negative decreasing simple functions as (6.2) such
that 0, 1 1. Using the Monotone convergence theorem as in the proof of Proposition
5.12, the result follows. O

Lemma 6.2. Let ¢ be a non-negative measurable function on (0,00) and suppose
—oc0o<A<landl <q<oo. Then

(74 [ o)) < 2 [Tevorg}

29
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=2
q

\\y

Proof. Writing 1(s) = s
1 L[ :
3 ( d) (7 [ +Fworas)”

%/Otw(s)ds <(1— A)l_qt%_i (/Ot SA(Q—l)w(S)qu) q.

Hence, by an interchange in the order of integration,

[ foom) <t [ [

= 1=\ q/o s %(S)q/wt”dtds: (1— X" /OO Py (s)1 L

s 0
The result follows. O

s71)(s) and applying Holder’s inequality, we obtain that

Since ¢’ = =5

6.2 Definition of Lorentz Spaces

Definition 6.3. Let (R, i) be a complete o-finite measure space, and suppose p > 1
and 1 < q < oo. The Lorentz space LP1(R, u) consist of all f in Moy(R, ) for the
which quantity

ot fr(£)]9dt E, 0<q<o0),
s = LB TORE L 0<a<o0
SUP)<; <o {17 (1)}, (g = 00),
s finite .
Remark 6.4. If p > 1 then LPP = LP, that is,
[f1lzre = 1fllze-

Proof. Let 1 < p < oo. By Proposition 5.12,

Iflere = { [Tt pdt} ~{ [ rrdnte }—||f||m

Let p = 0o. By Proposition 5.12 and f* decreasing,

[fllzoee = sup f*(t) = f7(0) = esssup [f(x)] = || f[| =

0<t<oo TER

O

Remark 6.5. The Lorentz space L>1, for finite q, contains only the zero-function.
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Proof. Let f € My(R, p) different of 0. Let s > 0. Since f* is decreasing,

/Ooo[f*(t)]"@ > /Os[f*@)]q@ > [f*@)]q/os .

t t
Therefore || f||p=.a = 0o. If f =0, therefore f* = 0. So that, || f||zx.e =0 O

The next result shows that, for any fixed p, the Lorentz spaces LP? increase as
the second exponent ¢ increases.

Proposition 6.6. Suppose 1 < p < oo and1<q<r <oo. Then
1fllzrr < el fllLoa,
for all f in My(R, i), where ¢ is a constant depending only p,q and r.
Proof. We divide the proof in four cases:
e The case p = 0o, there is nothing to prove, by Remark 6.5.
e The case ¢ = r, it is obvious.
We may assume p < oo and ¢ < r.
e The case r = 0o. Using the fact that f* is decreasing, we have that

b= {2 t[sif*m]q@};

q S

P gds @ p @
S{E/O[Spf (5) } < (q) T

Hence, taking the supremum over all £ > 0, we obtain that

1l < (g)qllﬂlm- (6.3)

e The case r < oo. We have that

© it 00 1 Ak
e = { [T reponh < [T ig s ot

1. r
1-4 I dt)aa 14 q
1A [T} = U

By (6.3),

A
1A llzrr < (5) || fllzpa-
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6.3 Normability of Lorentz Spaces

Theorem 6.7. Suppose 1 < q < p < oo orp=q=o00. Then (LP? | - || 1ra) is a
rearrangement-invariant Banach function space.

Proof. The result is clear when p = ¢ = 1 or p = ¢ = 0o because by Remark 6.4,
LP4 reduces to the Lebesgue spaces L' and L™, respectively. By Remark 5.22,
(LYY - ||zrr) and (L% || - || . ) are rearrangement-invariant Banach function
space. Hence, we may assume that 1 <p < oocand 1 < ¢q < p.

Let us now prove the triangle inequality. In that case, with ¢ = q%l. We have
from Definition 6.3

1F + glns = { / [t%—é<f+g>*<t>14dt}q T 4 9 e

Since t'/P=1/4(f 4 g)* is a decreasing function and L7 is a rearrangement-invariant
Banach function space, we obtain that

1_1 .
1f +gllzea =[P a(f +9)" || e

—sup{ [T 40 O Ot il < 1 (6.4

By Remark 5.20,

/Ooté—é(f + ) (t)dt < /ooti‘éf*(t)dt + /Ooti‘ég*(t)dt.

0 0 0

But applying Lemma 6.1 and since h* is decreasing , we obtain that
/ tra(f + g) (t)h (t)dt S/ traf (t)h (t)dt+/ tr—ag*(t)h (t)dt.
0 0 0

By Holder’s inequality,

1
q

/oootéé(f +9)" ()R (t)dt < { /Ooo[téé(f)*(t)]th} Pl

i1, a
+{ / 4 <t>1th} Wl < (1F e+ lglom) Bl < 1fLome + liglzme

This, together with (6.4) establishes the triangle inequality for || - || ..
Now, let us see that || - ||zr. is a Banach function norm (Definition 4.1).

o P1: If ||f||zp.e = O, then f* = 0 p-a.e. Therefore f = 0 p-a.e. (view in the
proof property (1) of f**). If f = 0 p-a.e., then f* = 0 so that||f||zr.. = 0.
Then ||af| L = |a|||f||zr.a, follows from Proposition 5.11 (2).

e P2: It follows from Proposition 5.11 (1).
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e P3: It follows from Proposition 5.11 (4) and monotone convergence theorem.

e P4: We have to see that if u(E) = s then ||xg|/rre < 0o. If u(E) = s, then
XE = X(0,s)- Since p > ¢, we obtain that

xellne = { / tg_ldt} .
0

o P5: If y(E) < oo, then by Lemma 5.13,

st < [ o= [ psanl

S

by Holder’s inequality,

ranta < ([ st
/E (/0 s

Since p > ¢, then —% +¢ > 1. Hence,

L

neH , 7
/l()szﬂ,@ q'
0 S

Q=

[ 5@tz < | flznaCe.

Finally, ||-||r.« is a rearrangement function norm, because if g and § are equimea-
surable then ¢* = g*. O

Although the restriction ¢ < p in the previous result is necessary, it can be
missed in the case p > 1 by replacing || - || e« With an equivalent functional which
is norm for all ¢ > 1. The trick simply to replace f* with f** in the Definition 6.3
of || : ||Lp,q.

Definition 6.8. Suppose 1 <p < oo and 1 < g < oco. If f in Mo(R, ), let

I flzwn = {fooo[t;f**(t)]q%}qa (0 < g < o),
o<l 17 ()}, (g=00).

Lemma 6.9. If1 <p < oo and 1 < q < oo, then

1A lzea < N llpwar < P lzra,

fOT all f m MO(R, ,LL), where p/ — p%l In particular7 LP4 consists Of all f fOT which
| fllLwa is finite.

Proof. The first inequality is an immediate consequence of the fact that f* < f**,
by Proposition 5.17 (2). The second follows directly from Lemma 6.2 and Definition
5.16, taking A = i. O
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Theorem 6.10. If 1 <p < oo, 1 < qg< o0 orif p=q=o0, then (LP* | - || 00)
1s rearrangement-invariant Banach function space.

Proof. We have the case p < oo and ¢ < oo. First, we prove that || - || w0 is a
Banach function norm.

o P1: If || f||zwa = 0, then ||f|lzre = 0 by Lemma 6.9, then f = 0 p-a.e. by
Theorem 6.7. If f =0 p-a.e, then || f|| w0 = 0, by Proposition 5.17 (1).

Since f — f** is subadditive (Remark 5.19), the triangle inequality for || || .0
follows from Minkovsky’s inequality, that is,

ol { IR 9>**<t)]q%};

<{ [Tu 0+ i apal
0
= te =t g e < T e+ 1T g e = 1 o + 19l Lo
The other follows directly from Proposition 5.17 (4).
e P2: Tt follows from Proposition 5.17 (3).

e P3: It follows from Proposition 5.11 (4) and monotone convergence theorem.

e P4: If u(FE) < oo, then by Theorem 6.7 and by Lemma 6.9,
Ixell Lo < p/HXE”LM < 0.

e P5: If u(E) < oo, then by Theorem 6.7 and by Lemma 6.9,

/E F(@)du(z) < Callfllzme < Cot' I oo

Clearly, |||/ .0 is a rearrangement-invariant, because if f and g are equimeasurable,
f*=g", then f** = g*. Therefore | fl|,v0 = l9llLw.0-

Now we prove the case ¢ = oo and 1 < p < 00, the case ¢ = oo and p = o0 is
analogous.

e P1,P2: They follow from the properties of the supremum.
e P3: If f, 1T f p-a.e., then by Theorem 5.17,

1
DA = sup 001 sup /7
0<t<oo 0<t<oo

e P4, P5: They are analogous to above P4 and P5.
For the same above argument, || - || ) is a rearrangement-invariant. O

Remark 6.11. The Lorentz spaces are not always rearrangement-invariant spaces.
For example, the Lorentz space LY is not a rearrangement-invariant space.
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