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Abstract
An assignment game is defined by a matrix A, where each row represents

a buyer and each column a seller. If buyer i is matched with seller j, the
market produces aij units of utility. We study Monge assignment games,
that is bilateral cooperative assignment games where the assignment matrix
satisfies the Monge property. These matrices can be characterized by the
fact that in any submatrix of 2 × 2 an optimal matching is placed in its
main diagonal. For square markets, we describe their cores by using only the
central tridiagonal band of the elements of the matrix. We obtain a closed
formula for the buyers-optimal and the sellers-optimal core allocations. Non-
square markets are analyzed also by reducing them to appropriate square
matrices.

Key words: assignment game, core, Monge matrix, buyers-optimal core
allocation, sellers-optimal core allocation

JEL Code: C71

Resumen
Un juego de asignación se define por una matriz A, donde cada fila re-

presenta un comprador y cada columna un vendedor. Si el comprador i
se empareja a un vendedor j, el mercado produce aij unidades de utilidad.
Estudiamos los juegos de asignación de Monge, es decir, aquellos juegos bila-
terales de asignación en los cuales la matriz satisface la propiedad de Monge.
Estas matrices pueden caracterizarse por el hecho de que en cualquier sub-
matriz 2×2 un emparejamiento óptimo está situado en la diagonal principal.
Para mercados cuadrados, describimos sus núcleos utilizando sólo la parte
central tridiagonal de elementos de la matriz. Obtenemos una fórmula ce-
rrada para el reparto óptimo de los compradores dentro del núcleo y para el
reparto óptimo de los vendedores dentro del núcleo. Analizamos también los
mercados no cuadrados reduciéndolos a matrices cuadradas apropiadas.

Palabras clave: juego de asignación, núcleo, matriz Monge, reparto
óptimo para los vendedores, reparto óptimo para los compradores

Código JEL: C71

2



1. Introduction

The optimal (linear sum) assignment problem is that of finding an optimal
matching, given a matrix that collects the potential profit of each pair of
agents. Some examples are the placement of workers to jobs, of students
to colleges, of physicians to hospitals or the pairing of men and women in
marriage. Once an optimal matching has been found, one question arises:
how to share the output among the partners. This question, that has been
mainly addressed in the field of game theory, was first considered in Shapley
and Shubik (1972). They associate to each assignment problem a cooperative
game, or game in coalitional form.

In the assignment game, each coalition of agents must consider the max-
imum profit they could attain by themselves as the worth of this coalition.
The most relevant solution concept in cooperative games is the core. The
core of a game consists of those allocations of the optimal profit (the worth
of the grand coalition) such that no subcoalition can improve upon. Thus,
if we agree to share the profit of cooperation by means of a core allocation,
no coalition has incentives to depart from the grand coalition and act on
its own. Shapley and Shubik prove that the core of the assignment game
is a nonempty polyhedral convex set and it coincides with the set of solu-
tions of the dual linear program related to the linear sum optimal assignment
problem.

In this paper we study the assignment games, called Monge assignment
games, where the matrix satisfies what is called the Monge property. Roughly
speaking, the (inverse) Monge property is described by the fact that each 2×2
submatrix has an optimal matching in the main diagonal. This property can
also be identified as the supermodularity of the matrix, interpreted as a
function on the product of the set of indices with the usual order.

Monge matrices have been used in different fields in Operations Research,
such as combinatorial optimization (see Burkard et al., 1996 or Burkard,
2007), coalitional game theory (see Okamoto, 2004), algorithmic issues (see
Bein et al., 2005), or statistics (see Hou and Prékopa, 2007).

For square Monge assignment games, the central tridiagonal band of the
matrix, that is the main diagonal, the sub-diagonal and the super-diagonal,
is sufficient to determine the core. As a result, and differently to the general
case, not all inequalities are necessary to describe the core explicitly, and
in this case the buyer-seller exact representative of the matrix (Núñez and
Rafels, 2002b) can be computed by a closed formula. Two important points
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of the core, the buyers-optimal and the sellers-optimal core allocations, are
computed and related to specific 2×2 submarkets. The last part of the paper
is devoted to the non-square Monge assignment games.

The paper is organized as follows. In Section 2 we describe the assignment
game and the results on it we will need later. In Section 3, the Monge
assignment markets are defined. We describe the core of the square Monge
assignment game, and give a way to compute easily its buyer-seller exact
representative matrix and in Section 4 we compute the buyers-optimal and
the sellers-optimal core allocations and give a formula to obtain them. We
conclude in Section 5 by analyzing non-square Monge assignment markets,
their core and the buyers-optimal and sellers-optimal core allocations.

2. Preliminaries on the assignment game

A bilateral assignment market (M,M ′, A) is defined by a nonempty finite
set of agents, usually named buyers M , a nonempty finite set of another
type of agents, usually named sellers M ′ and a nonnegative matrix A =
(aij)(i,j)∈M×M ′ . Entry aij represents the profit obtained by the mixed-pair

(i, j) ∈M ×M ′ if they trade. Let us assume there are |M | = m buyers and
|M ′| = m′ sellers. If m = m′, the assignment market is said to be square.
Let us denote by M+

m×m′ the set of nonnegative matrices with m rows and
m′ columns.

A matching µ ⊆M ×M ′ between M and M ′ is a bijection from M0 ⊆M
to M ′

0 ⊆ M ′, such that |M0| = |M ′
0| = min {|M | , |M ′|}. We write (i, j) ∈ µ

as well as j = µ (i) or i = µ−1 (j) . The set of all matchings is denoted by
M (M,M ′). A buyer i ∈ M is unmatched by µ if there is no j ∈ M ′ such
that (i, j) ∈ µ. Similarly, j ∈ M ′ is unmatched by µ if there is no i ∈ M
such that (i, j) ∈ µ.

A matching µ ∈M (M,M ′) is optimal for the assignment market (M,M ′, A)
if for all µ′ ∈ M (M,M ′) we have

∑
(i,j)∈µ aij ≥

∑
(i,j)∈µ′ aij, and we denote

the set of optimal matchings by M∗
A (M,M ′).

Shapley and Shubik (1972) associate to any assignment market a game
in coalitional form (assignment game) with player set N = M ∪ M ′ and
characteristic function wA defined by A in the following way: for S ⊆M and

T ⊆ M ′, wA (S ∪ T ) = max
{∑

(i,j)∈µ aij | µ ∈M (S, T )
}

, where M(S, T ) is

the set of matchings from S to T and wA(S ∪ T ) = 0 if M(S, T ) = ∅.
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The core of the assignment game3,

Core (wA) =

(x, y) ∈ RM+ × RM
′

+

∣∣∣∣∣∣
x(S) + y(T ) ≥ wA (S ∪ T ) ,
for all S ⊆M and T ⊆M ′, and
x(M) + y(M ′) = wA (M ∪M ′)

 ,

is always nonempty and, if µ ∈M∗
A(M,M ′) is an arbitrary optimal matching,

the core is the set of nonnegative payoff vectors (u, v) ∈ RM+ ×RM
′

+ such that

ui + vj ≥ aij for all (i, j) ∈M ×M ′, (1)

ui + vj = aij for all (i, j) ∈ µ, (2)

and the payoff to unmatched agents by µ is null. It coincides (see Shapley
and Shubik, 1972) with the set of solutions of the dual of the linear program
related to the linear sum assignment problem.

Moreover, the minimum payoff that a mixed-pair (i, j) ∈M×M ′ obtains
in the core of a square assignment market (M,M ′, A) (see Theorem 2 in
Núñez and Rafels, 2002b) is given by:

min
(x,y)∈C(wA)

[xi + yj] = aiµ(i) + aµ−1(j)j −wA(N) +wA(N \ {µ(i), µ−1(j)}), (3)

where µ ∈M∗
A(M,M ′) is an arbitrary optimal matching.

3. Monge assignment games

The Monge property on a matrix was named this way by Hoffman (1963)
recovering the works of the 18th-century French mathematician G. Monge,
who used the property in a context of a soil-transport problem. This property
has been applied in many different areas such as operations research, coding
theory, computational geometry, greedy algorithms, computational biology,
statistics or economics. We refer to the surveys in Burkard (2007) or Burkard
et al. (1996) for references, specific applications or properties. Our work
addresses the following question posed in page 151 in Burkard et al. (1996):
“Are there other fields where Monge matrices play a role?”

We try to contribute to this general question with a partial but interesting
answer, mixing Monge matrices and assignment problems. Our main interest

3For any vector z ∈ RN , with N = {1, . . . , n} and any coalition R ⊆ N we denote by
z(R) =

∑
i∈R zi. As usual, the sum over the empty set is zero.
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is to describe the core and the two sectors-optimal core allocations in an
easy and practical way, when dealing with Monge assignment cooperative
games. Roughly speaking, our results agree with the “flavor” that adding
the Monge conditions to the assignment game simplifies a lot the analysis of
the aforementioned solutions. Finally, this class of assignment markets have
an important economic meaning, especially when we deal with agents that
can be ordered according some trait such as age, education, income, etc. (see
Becker, 1973).

Definition 3.1. An assignment market (M,M ′, A) is called a Monge assign-
ment market if any 2 × 2 submarket has an optimal matching in its main
diagonal, i.e.

aij + akl ≥ ail + akj for all 1 ≤ i < k ≤ m, and 1 ≤ j < l ≤ m′.

This Monge property has to be checked only for consecutive 2 × 2 sub-
markets (adjacent rows and columns). That is, a matrix A ∈ M+

m×m′ satisfies
the Monge property4 if and only if

aij + ai+1 j+1 ≥ ai j+1 + ai+1 j for all 1 ≤ i ≤ m− 1, and 1 ≤ j ≤ m′ − 1,

and then it can be tested easily. Obviously any of their submarkets is also a
Monge assignment market. In case of equality it is a modular matrix.

For square Monge assignment markets (see, e.g., Burkard et al., 1996)
one optimal matching, maybe not unique, is placed in the main diagonal.
Then the worth of the grand coalition is given by

wA (M ∪M ′) =
m∑
k=1

akk.

We want to analyze the core of a Monge assignment game. In particu-
lar, we want to characterize the buyers-optimal and the sellers-optimal core
allocations in an easy way. To obtain them we must compute the marginal
contribution of a player, and therefore it is crucial how to compute an optimal
matching for a non-square Monge matrix.

The next proposition gives some insights on where an optimal matching
is to be searched. The simple proof can be found in Aggarwal et al. (1992)

4This property is known in the literature as inverse Monge, anti-Monge, contra-Monge,
or supermodular.
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or in Lin (1992). It generalizes the fact that the main diagonal is an optimal
matching if we deal with square Monge assignment markets.

Proposition 3.1. For any Monge assignment market (M,M ′, A), with |M | ≤
|M ′|, at least one optimal matching µ ∈M∗

A(M,M ′) is monotone, i.e.

for all i1, i2 ∈M, with i1 < i2, then µ(i1) < µ(i2).

Monotone matchings can be seen as generalized main diagonal matchings,
since they coincide with the matching given by the main diagonal entries
of the square submarkets of maximal order. When the Monge assignment
market is square, there is only one monotone matching, which is placed in
the main diagonal. Therefore, if necessary, to distinguish the agents from
the two sides of the market we will denote by k′ ∈ M ′ the partner of player
k ∈M by this optimal matching.

Now we are in position to give an easy description of the core of a square
Monge assignment game.

Theorem 3.1. Let (M,M ′, A) be a square Monge assignment market. Then
(u, v) ∈ RM+ × RM

′
+ belongs to the core of the market, C(wA), if and only if

ui + vi = aii for i = 1, 2, . . . ,m, (4)

ui + vi+1 ≥ ai i+1 for i = 1, 2, . . . ,m− 1, (5)

ui+1 + vi ≥ ai+1 i for i = 1, 2, . . . ,m− 1. (6)

Proof. The ’only if’ part is obvious by the definition of the core of an assign-
ment game, see (1) and (2), and the fact that one optimal matching is placed
in the main diagonal.

Now to prove the ’if’ part, consider for i + 1 < j, the square submarket
formed by {i, i+ 1, . . . , j − 1}×{i′ + 1, . . . , j′} . One optimal matching in the
square Monge submarket is placed in the main diagonal of the submatrix,
that is, µ = {(i, i+ 1), (i+ 1, i+ 2), . . . , (j − 1, j)} , and then:

j−1∑
k=i

ak k+1 ≥ aij +

j−1∑
k=i+1

akk.

Now, considering (4) and (5), we obtain

ui + vj =

j−1∑
k=i

uk +

j∑
k=i+1

vk −
j−1∑
k=i+1

akk ≥
j−1∑
k=i

ak k+1 −
j−1∑
k=i+1

akk ≥ aij.
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If j + 1 < i, just take the submarket {j + 1, . . . , i} × {j′, . . . , (i− 1)′} , and
repeat a similar argument.

The above result makes a great reduction in terms of the number of in-
equalities needed to obtain or check the core of a square Monge assignment
market. Apart from the positivity restrictions and the equalities in the op-
timally matched pairs, we only need to check 2m − 2 inequalities, that are
m2 −m in the general case. Moreover, if we denote by

Ai,i+1 =

(
aii ai i+1

ai+1 i ai+1 i+1

)
, for i = 1, . . . ,m− 1,

the consecutive 2 × 2 submarkets centered at the main diagonal, we have
obtained the following characterization result:

Corollary 3.1. Let (M,M ′, A) be a square Monge assignment market. The
following statements are equivalent:

1. (u; v) ∈ C(wA),

2. (ui, ui+1; vi, vi+1) ∈ C(wAi,i+1
), for i = 1, . . . ,m− 1.

Also as a consequence of the above theorem we obtain that two square
Monge assignment markets have the same core if and only if they have the
same principal band, that is, the elements of the main diagonal and the upper
and lower sub-diagonals.

Proposition 3.2. Let (M,M ′, A) and (M,M ′, B) be two square Monge as-
signment markets. The following statements are equivalent:

1. C(wA) = C(wB),

2. aij = bij for all (i, j) ∈M ×M ′ such that |i− j| ≤ 1.

Proof. 1. −→ 2. Since both matrices are square Monge assignment games,
each one has one optimal matching in its main diagonal, and therefore aii =
bii for all i = 1, . . . ,m. Moreover from (3), and taking into account that the
main diagonal is an optimal matching, for all (i, j) ∈M ×M ′, with j = i+ 1
and i = 1, . . . ,m− 1,

min
(u,v)∈C(wA)

[ui + vi+1] = aii+ai+1 i+1−wA(M ∪M ′)+wA(M ∪M ′ \{i′, i+1}).
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We can compute wA(M ∪M ′ \ {i′, i+ 1}), for i = 1, 2, ...,m− 1, since it is a
square Monge assignment submarket, which implies that its main diagonal
is optimal, or equivalently:

wA(M ∪M ′ \ {i′, i+ 1}) =
i−1∑
k=1

akk + ai i+1 +
m∑

k=i+2

akk.

Therefore, we obtain

min
(u,v)∈C(wA)

[ui + vi+1] = ai i+1. (7)

This equality implies the existence of an allocation (u, v) ∈ C(wA) such
that ui + vi+1 = ai i+1. By the hypothesis of the equality of the cores we
obtain that ai i+1 ≥ bi i+1. A symmetric argument leads to ai i+1 = bi i+1 for
i = 1, 2, ...,m− 1.

The equality between ai+1 i and bi+1 i is proved analogously.
2. −→ 1. It is straightforward from Theorem 3.1.

We want to point out that Proposition 3.2 requires that both matrices
are square and satisfy the Monge property. The consequence is that only the
elements of the principal band matter to determine the core (Theorem 3.1
and Proposition 3.2). Moreover, each of these matrix entries is attainable by
a core element (see (7)). From these results we see in the next section how
to simplify the calculation of the buyers-optimal and the sellers-optimal core
allocations for an arbitrary square Monge assignment market.

First we compute what is called the buyer-seller exact representative of
the original market. The buyer-seller exact representative Ar was introduced
in Núñez and Rafels (2002b) as the unique matrix which has two important
properties: (1) it has the same core as the original market, i.e. C(wA) =
C(wAr), and (2) all its entries are attainable by a core element, i.e. for each
(i, j) ∈M ×M ′ there exists (u, v) ∈ C(wAr) such that ui + vj = arij.

Moreover, entries in the matrix can be defined by using the core as:

arij = min
(u,v)∈C(wA)

(ui + vj), (8)

or by using the characteristic function (see Theorem 2 in Núñez and Rafels,
2002b) as:

arij = aiµ(i) + aµ−1(j)j − wA(M ∪M ′) + wA(M ∪M ′ \ {µ(i), µ−1(j)}), (9)
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for any optimal matching µ ∈M∗
A(M,M ′), when matrix A is square.

We want to introduce an easy and practical method to determine the
buyer-seller exact representative matrix, whenever we are in the presence
of a square Monge assignment matrix. In Section 4, the buyer-seller ex-
act representative matrix, Ar, is used to obtain the buyers-optimal and the
sellers-optimal core allocations of the original market. Basically we concen-
trate in the principal band and put zeros in all other entries and finally we
define a new matrix driven from the principal band elements in an additive
or modular way. Let us show first this process by an example.

Example 3.1. Let A be the following assignment matrix:

A =


8 7 4 2
5 6 5 4
1 2 2 1
0 1 2 3

 .

Matrix A is a square Monge assignment matrix, and therefore its principal
band has full information to determine the core C(wA). Let us denote by

Ab =


8 7 0 0
5 6 5 0
0 2 2 1
0 0 2 3


the matrix where all entries outside the principal band are zero.

To compute the buyer-seller exact representative matrix Ar we change
zero entries outside the band by the worths that make the Monge property
as additive, with respect the principal band elements. We use the entries in
matrix Ab or the ones we have constructed in previous steps, that is,

ar13 = ab12 + ab23 − ab22 = 7 + 5− 6 = 6

ar24 = ab23 + ab34 − ab33 = 5 + 1− 2 = 4

ar14 = ar13 + ar24 − ab23 = 6 + 5− 6 = 5.

A similar process can be performed for the lower part of the matrix, and we
obtain the buyer-seller exact representative matrix, Ar,

Ar =


8 7 6 5
5 6 5 4
1 2 2 1
1 2 2 3

 . (10)
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Notice that Ar turns out to be a Monge assignment matrix, and in fact,
it is modular for the consecutive 2× 2 submarkets when at least one player
is outside the principal band. Moreover since it has the same principal band
than the original matrix, we obtain that both matrices give rise to the same
core (Proposition 3.2). This is what now we develop in general.

Let (M,M ′, A) be a square Monge assignment market. We define a new
assignment matrix, that in Proposition 3.3 we will prove it is the buyer-seller
exact representative matrix of A, Ar = (arij)(i,j)∈M×M ′ in the following way:

arij =


∑j−1

k=i ak k+1 −
∑j−1

k=i+1 akk for 1 ≤ i < j ≤ m,
aii for 1 ≤ i = j ≤ m,∑i−1

k=j ak+1 k −
∑i−1

k=j+1 akk for 1 ≤ j < i ≤ m,

(11)

where the summation over an empty set of indices is zero.
Notice first that entries in the principal band do not change, that is,

arij = aij for |i− j| ≤ 1. (12)

Moreover, arij ≥ aij for all (i, j) ∈ M × M ′. To see it, just consider for
i < j the submarket of A formed by {i, i+ 1, . . . , j − 1} × {i′ + 1, . . . , j′} .
One optimal matching is placed in its main diagonal and then

∑j−1
k=i ak k+1 ≥

aij +
∑j−1

k=i+1 akk. The inequality follows. The case j < i is similar.
Secondly, there is a recursive and practical way to compute matrix Ar,

given in (11). The idea is to compute, as in the above numerical example,
the parallel diagonals to the principal band, starting by the closest one. To
get entries ari i+2 for i = 1, . . . ,m− 2, we compute them by using the formula
(11):

ari i+2 = ai i+1 + ai+1 i+2 − ai+1 i+1 for i = 1, . . . ,m− 2.

Now we continue with the elements of the next parallel diagonal:

ari i+3 = ari i+2 + ari+1 i+3 − ari+1 i+2 for i = 1, . . . ,m− 3.

The process is repeated until we complete the entries in the upper triangle.
Similarly, we can compute the entries in the lower triangle by the recursive
method,

ari+2 i = ai+1 i + ai+2 i+1 − ai+1 i+1 for i = 1, . . . ,m− 2, and

ari+k i = ari+k−1 i + ari+k i+1 − ari+k−1 i+1 for i = 1, . . . ,m− k,
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and all k = 2, . . . ,m− 1.
Thirdly, matrix Ar satisfies the Monge property, whenever the original

matrix does, just by its definition. As a consequence, square matrices A and
Ar have an optimal matching in the main diagonal, and by Proposition 3.2
and (12) both matrices have the same core, C(wA) = C(wAr). We are now
in disposition to state the following important result.

Proposition 3.3. For any square Monge assignment market (M,M ′, A),
matrix Ar defined by (11) is the buyer-seller exact representative of matrix
A, that is,

1. C(wA) = C(wAr),

2. For each pair (i, j) ∈ M ×M ′ there exists (u, v) ∈ C(wA) such that
ui + vj = arij.

Proof. We have already discussed that C(wA) = C(wAr). Let us check that
any entry of the matrix Ar is attainable by a point of the core of the market.

To this end, we introduce a new matrix A, which is no more than the
modular matrix generated only by the main diagonal and the super-diagonal.
Formally,

aij =


∑j−1

k=i ak k+1 −
∑j−1

k=i+1 akk for 1 ≤ i < j ≤ m,
aii for 1 ≤ i = j ≤ m,∑i

k=j akk −
∑i−1

k=j ak k+1 for 1 ≤ j < i ≤ m.

We claim that matrix A is modular, that is, aij + akl = ail + akj for all
1 ≤ i < k ≤ m, and 1 ≤ j < l ≤ m′. To see it, notice that aij = arij
for all 1 ≤ i < j ≤ m, the upper triangle, and for the lower triangle it
is enough to see that equality holds for any 2 × 2 consecutive submarkets.
It is a simple calculation to show that aij = ai−1 j + ai j+1 − ai−1 j+1 for
1 ≤ j < i ≤ m. Joining both observations, we have that A is modular. An
important consequence is that any matching is optimal in A.

Moreover, notice that5 A ≥ A, because the main diagonal entries have
been preserved, for 1 ≤ i < j ≤ m, we have aij = arij ≥ aij, and for

1 ≤ j < i ≤ m, we have aij =
∑i

k=j akk −
∑i−1

k=j ak k+1 ≥ aij since the square
submarket {j, j + 1, . . . , i} × {j′, j′ + 1, . . . , i′} has an optimal matching in
the main diagonal of the restriction of A.

5Let it be A, B ∈ M+
m×m′ . Then A ≥ B if aij ≥ bij for all (i, j) ∈M ×M ′.
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Summarizing, matrices A and A have the same main diagonal and it is
optimal, and from the above comments, we have C(wA) ⊆ C(wA). Moreover,
since A is modular, each of its entries is in some optimal matching (all of
them are optimal). This implies that for any (i, j) ∈ M ×M ′ with i ≤ j
there exists (u, v) ∈ C(wA) such that ui + vj = aij = arij. This finishes the
proof of statement 2 for the elements of the upper triangle. The proof for
the lower triangle is similar, but defining matrix A, which entries are defined
as:

aij =


∑j

k=i akk −
∑j−1

k=i ak+1 k for 1 ≤ i < j ≤ m,
aii for 1 ≤ i = j ≤ m,∑i−1

k=j ak+1 k −
∑i−1

k=j+1 akk for 1 ≤ j < i ≤ m.

It corresponds to the modular matrix associated to the main diagonal and
the sub-diagonal of matrix A.

Thus, combining statements 1 and 2 we have obtained that matrix Ar

defined by (11) is the buyer-seller exact representative of matrix A.

4. The buyers-optimal and the sellers-optimal core allocations

Among all core allocations of an assignment market, there exist two par-
ticular extreme core points: the buyers-optimal core allocation (uA, vA) where
each buyer attains her maximum core payoff and each seller his minimum one,
and the sellers-optimal core allocation (uA, vA) where each seller attains his
maximum core payoff and each buyer her minimum one. Demange (1982) and
Leonard (1983) prove that the maximum payoff of an agent is its marginal
contribution, and it can be attained for all agents of the same side at the
same core allocation. By Roth and Sotomayor (1990), for any assignment
market (M,M ′, A), we have

uAi = wA(M ∪M ′)− wA(M ∪M ′ \ {i}) for all i ∈M, and
vAj = wA(M ∪M ′)− wA(M ∪M ′ \ {j}) for all j ∈M ′.

(13)

Moreover, Demange et al. (1986) and Pérez-Castrillo and Sotomayor (2002)
give implementations of these optimal solutions.

Notice that, if µ is an arbitrary optimal matching of (M,M ′, A), we obtain
from the description of the core that uAi = aiµ(i)−vAµ(i) for all i ∈M assigned

by µ and vAj = aµ−1(j)j − uAµ−1(j) for all j ∈ M ′ assigned by µ, while agents
unmatched by µ have a fixed null minimum core payoff. Therefore, the
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minimum core payoffs for a sector are determined by knowing an optimal
matching and the maximum core payoffs of the other sector.

What can we say about these special core allocations, if we deal with
square Monge assignment markets? We show two results. The first one gives
an explicit formula to compute the maximum core payoffs of the agents. The
formula is easy to use and allows to reach an interpretation which relates the
maximum core payoff an agent can obtain with the maximum core payoff of
specific 2× 2 subgames.

Theorem 4.1. For any square Monge assignment market (M,M ′, A), and
any agents i ∈M and j ∈M ′, we have:

uAi = aii − max
t=1,...,m

(arti − att), (14)

vAj = ajj − max
t=1,...,m

(arjt − att), (15)

where matrix Ar is the buyer-seller exact representative of matrix A, defined
by (11).

Proof. Since matrix A is square and satisfies the Monge property, we know
that wA (M ∪M ′) =

∑m
k=1 akk. We need to compute, for all i ∈ M, the

worth of wA(M ∪M ′ \ {i}) to obtain uAi , by using (13). A similar reasoning
is applied to compute vAj for any player j ∈M ′.

Let it be i ∈ M and denote by A−i the resulting matrix from A when
we remove her row. We know that matrix A−i satisfies the Monge property.
By Proposition 3.1 at least one optimal matching of the submarket (M \
{i},M ′, A−i) has to be monotone, and since matrix A−i has m− 1 rows and
m columns, the monotone matchings can be described by µ1, . . . , µm, where,

for 1 ≤ t < i,
µt = {(1, 1), . . . , (t− 1, t− 1), (t, t+ 1), . . . , (i− 1, i), (i+ 1, i+ 1), . . . , (m,m)} ,

for t = i,
µi = {(1, 1), . . . , (i− 1, i− 1), (i+ 1, i+ 1), . . . , (m,m)} , and

for i < t ≤ m,
µt = {(1, 1), . . . , (i− 1, i− 1), (i+ 1, i), . . . , (t, t− 1), (t+ 1, t+ 1), . . . , (m,m)} .
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Therefore, for any i ∈M,

uAi = wA(M ∪M ′)− wA(M ∪M ′ \ {i})

=
m∑
k=1

akk − max
t=1,...,m

 ∑
k∈M\{i}

akµt(k)


= aii − max

t=1,...,m

 ∑
k∈M\{i}

(
akµt(k) − akk

) . (16)

Recall expression (11) of the buyer-seller exact matrix and notice now that
in expression (16),

∑
k∈M\{i}

(
akµt(k) − akk

)
becomes

i−1∑
k=t

(ak k+1 − akk) = arti − att, for 1 ≤ t < i,

0 = artt − att, for t = i,
t∑

k=i+1

(ak k−1 − akk) = arti − att, for i ≤ t < m.

The result follows.

Notice that any 2×2 assignment market satisfies the Monge property, up
to a reordering of the agents. From Theorem 4.1 we can compute easily the
buyers-optimal and the sellers-optimal core allocations.

Now it is easy to give a direct consequence. Consider for any agent, say
a buyer, the 2 × 2 submarkets formed by herself and any other buyer, with
their respective optimally matched sellers, in the buyer-seller exact matrix.
There are m − 1 possible submarkets. Then its optimal core allocation in
the original market is just the minimum of the optimal allocations for each
of these 2× 2 submarkets.

The formulae obtained in Theorem 4.1 to compute the maximum core
payoff for each player allow to make some comments and interpretations.
Firstly, once obtained the maximum core payoff, we also derive a formula to
obtain the minimum core allocations, by uAi = aii − vAi for all i ∈ M and
vAj = ajj−uAj for all j ∈M ′ since there is always an optimal matching in the
main diagonal. Therefore this is an easy and practical method to compute
the buyers-optimal (uA, vA) and the sellers-optimal core allocation (uA, vA).
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As a consequence we obtain an easy formula to compute the fair-division
point (Thompson, 1981), the midpoint between the optimal allocation for
the buyers and the optimal allocation for the sellers. In Núñez and Rafels
(2002a) it is proved that it coincides with the τ -value of the assignment game,
a single-valued solution defined by Tijs (1981) for arbitrary coalitional games.
That is, τ(wA) = 1

2
(uA; vA) + 1

2
(uA, vA).

Corollary 4.1. For any square Monge assignment market (M,M ′, A), and
any players i ∈M and j ∈M ′, the fair-division point is given by:

τi(wA) =
aii
2

+
maxt=1,...,m (arit − att)−maxt=1,...,m (arti − att)

2

τj(wA) =
ajj
2

+
maxt=1,...,m(artj − att)−maxt=1,...,m(arjt − att)

2

where matrix Ar is the buyer-seller exact representative of matrix A, defined
by (11).

A second remark comes directly from expressions (14) and (15). Note that
for any buyer i ∈ M and taking into account that maxt=1,...,m(arti − att) ≥
arii−aii = 0, we obtain by (14) that uAi ≤ aii, and that uAi = aii if and only if
maxt=1,...,m(arti− att) = 0, or equivalently att ≥ arti for all t = 1, . . . ,m. Going
now to expression (11) we obtain a characterization for the buyers-optimal
core allocation to be the optimal entries for the buyers.

Corollary 4.2. For any square Monge assignment market (M,M ′, A), the
following statements are equivalent:

1. The buyers-optimal core allocation is (uA, vA) = (a11, . . . , amm; 0, . . . , 0),

2. The following inequalities hold:

att ≥ at t+1 for 1 ≤ t < m, and
att ≥ at t−1 for 1 < t ≤ m.

Proof. 1. −→ 2. Since the buyers-optimal core allocation is in the core,
we know that

uAt + vAt+1 ≥ at t+1 for 1 ≤ t < m, and

uAt + vAt−1 ≥ at t−1 for 1 < t ≤ m.

The statement follows immediately.
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2. −→ 1. Let it be i ∈ M. By the conditions in statement 2 we have
that

i−1∑
k=t

akk ≥
i−1∑
k=t

ak k+1 for 1 ≤ t < i,

which implies, using (11), that att ≥ arti for 1 ≤ t < i. Moreover we have that

t∑
k=i+1

akk ≥
t∑

k=i+1

ak k−1 for i < t ≤ m,

which implies, using (11), that att ≥ arti for i < t ≤ m. Now from Theorem
4.1 and taking into account that aii = arii, we have finally obtained that
uAi = aii for all i ∈M.

Conditions in Corollary 4.2 (statement 2) have the advantage that they
can be applied directly on the matrix entries of the original square Monge
matrix A, without computing its buyer-seller exact representative Ar. In this
sense, they say that the optimally matched entries aii, for i ∈M have to be
larger than their respective predecessor (if any) aii ≥ ai i−1 and follower (if
any) aii ≥ ai i+1 row entries. Therefore, by simply looking these inequalities
from the square Monge matrix of Example 3.1,

A =


8 7 4 2
5 6 5 4
1 2 2 1
0 1 2 3

 ,

we obtain
(uA, vA) = (8, 6, 2, 3; 0, 0, 0, 0).

Similar conditions can be obtained to know when the sellers-optimal core
allocation coincides with the optimally matched entries for the sellers’ sector,
that is, (uA, vA) = (0, . . . , 0; a11, . . . , amm). Instead to compare the optimally
matched pairs given by the main diagonal entries with the precedessor or
follower entries in the same row, we have to compare by columns, that is,

att ≥ at−1 t for 1 < t ≤ m, and
att ≥ at+1 t for 1 ≤ t < m.
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We can easily see that (uA, vA) 6= (0, 0, 0, 0; 8, 6, 2, 3), since, for example,
a22 = 6 � a12 = 7 or a33 = 2 � a23 = 5. By using the buyer-seller exact
representative of matrix A, given in (10), and Theorem 4.1 we obtain

(uA, vA) = (4, 3, 0, 0; 4, 3, 2, 3).

5. Non-square Monge assignment markets

Assignment markets do not need to be square and we have left to this
section the analysis of the core, the buyers-optimal core allocation and the
sellers-optimal core allocation of a non-square Monge assignment market.
Recall that any assignment market where each 2×2 submarket has an optimal
matching in its main diagonal is called a Monge assignment market (see
Definition 3.1). We may assume from now on that there are less buyers than
sellers, that is, |M | ≤ |M ′|.

We try to maintain the exposition of this section as practical as possible.
The technique to solve the non-square markets will be the reduction to the
square cases already analyzed in the previous sections.

Moreover, we will use the following 3× 7 Monge assignment matrix A to
illustrate some ideas, to give explanations and to introduce motivations,

A =

 12 11 2 8 30 1 9
15 14 13 26 52 28 40
1 0 0 13 40 40 60

 . (17)

By Proposition 3.1 we know that matrix A has a monotone optimal
matching. In this case the optimal matching (unique) is µ = {(1, 1), (2, 5), (3, 7)}
and its entries are marked in boldface. The worth of the grand coalition is
wA(M ∪M ′) = 124, and notice that sellers 2, 3, 4 and 6 are not optimally
matched. The non-optimally matched sellers receive zero payoffs in any core
allocation, but they introduce significant bound payoffs for the buyers’ side,
since any core allocation (u, v) ∈ C(wA) must satisfy ui + vj ≥ aij, for all
(i, j) ∈M ×M ′. Since v2 = v3 = v4 = v6 = 0, we have,

u1 ≥ max
j=2,3,4,6

{a1j} = max{11, 2, 8, 1} = 11,

u2 ≥ max
j=2,3,4,6

{a2j} = max{14, 13, 26, 28} = 28,

u3 ≥ max
j=2,3,4,6

{a3j} = max{0, 0, 13, 40} = 40.
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In fact we have got a description of the core by simply adding to the
above inequalities the ones corresponding to the core of the square assignment
submarket formed by the optimally matched pairs.

Formally, let (M,M ′, A), be an assignment market with |M | ≤ |M ′|. For
any optimal matching (monotone or not) µ ∈ M∗

A(M,M ′) an allocation
(u, v) ∈ RM+ × RM

′
+ belongs to the core, C(wA), if and only if

ui + vj ≥ aij for all (i, j) ∈M × µ(M), (18)

ui + vj = aij for all (i, j) ∈ µ, (19)

ui ≥ ai := max
r∈M ′\µ(M)

{air}, for all i ∈M and (20)

vj = 0 for all j ∈M ′ \ µ(M). (21)

Notice that conditions (18) and (19) are equivalent to say that the projec-
tion of the allocation (u, v) on M ×µ(M) belongs to the core of the subgame
of wA restricted to M ∪µ(M). The above description of the core says that we
have to consider the core of the submarket formed by the optimally matched
agents (M,µ(M), A|M×µ(M)) and inside it those allocations that satisfy cer-
tain bound payoffs for the buyers, ui ≥ ai for i ∈ M, and no more than a
zero payoff for the non-optimally matched sellers, vj = 0 for j ∈M ′ \ µ(M).

What is really important for our purposes is that, departing from a non-
square Monge assignment market (M,M ′, A) with |M | ≤ |M ′|, the optimally
matched pairs form a submarket (M,µ(M), A|M×µ(M)) that is both square
and satisfies the Monge property. As a consequence we are able to apply all
the results given in the previous sections. Let us see first that the buyers-
optimal core allocation of the whole market always coincides with the buyers-
optimal core allocation of the square submarket of the optimally matched
pairs. This property holds even if the original assignment market do not
satisfy the Monge property6. Therefore, the maximum core payoffs for the
short side of the market only depend on the square submarket formed by
the optimally matched pairs. We include a simple proof for the sake of
comprehensiveness.

Proposition 5.1. Let (M,M ′, A) be an arbitrary assignment market with

6A classical way to analyze non-square assignment markets is to add rows or columns
formed by zeroes (dummy players) until we obtain a square matrix, but this process cannot
be used in our setting, since we can loose the Monge property.
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|M | ≤ |M ′|, and µ ∈M∗
A(M,M ′). Then, we have

uAi = u
Aµ
i for all i ∈M, where Aµ = A|M×µ(M).

Proof. Since the projection of the buyers-optimal core allocation of the whole
market (uA, vA) belongs to the core of the submarket Aµ we know u

Aµ
i ≥ uAi

for all i ∈M. To see the reverse inequality let us denote by (x′, y′) ∈ RM×RM ′

the extension of the buyers-optimal core allocation of the submarket to the
whole market, that is, x′i = u

Aµ
i for i ∈M, y′j = v

Aµ
j for j ∈ µ(M), and y′j = 0

for j ∈M ′ \ µ(M).
Note that (x′, y′) ∈ C(wA) since it satisfies (18), (19), (20) and (21),

where u
Aµ
i = x′i ≥ ai for i ∈ M holds because for any point (x, y) ∈ C(wA)

we have u
Aµ
i = x′i ≥ uAi ≥ xi ≥ ai for all i ∈M.

We can apply Proposition 5.1 to the matrix A given in (17) to obtain its
buyers-optimal core allocation (uA, vA). To this end, we isolate the square
Monge submatrix given by the optimally matched pairs, that is

Aµ =

 12 30 9
15 52 40
1 40 60

 .

The buyer-seller representative matrix can be easily computed by the process
described in (11) because it is a square Monge assignment market. This
process makes modular the 2 × 2 submarkets outside the principal band,
that is,

(Aµ)r =

 12 30 18
15 52 40
3 40 60

 .

From the description of (Aµ)r and applying expressions (14) we obtain

uA1 = u
Aµ
1 = a11 −max{0, ar21 − a22, a

r
31 − a33} = 12,

uA2 = u
Aµ
2 = a22 −max{ar12 − a11, 0, a

r
32 − a33} = 52− 18 = 34,

uA3 = u
Aµ
3 = a33 −max{ar13 − a11, a

r
23 − a22, 0} = 60− 6 = 54,

where aij and arij, for i, j ∈ {1, 2, 3} refers to entries of matrices Aµ and
(Aµ)r.
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Then, the buyers-optimal core allocation for the original 3×7 assignment
market is

(uA, vA) = (12, 34, 54; 0, 0, 0, 0, 18, 0, 6).

Note that departing from a non-square Monge assignment market (M,M ′, A)
with |M | ≤ |M ′|, and fixing a monotone optimal matching µ ∈M∗

A(M,M ′),
we can derive explicit expressions for its buyers-optimal core allocation. We
only have to apply Theorem 4.1 to the square market Aµ = A|M×µ(M). There-
fore, for any i ∈M

uAi = aiµ(i) − max
k=1,...,m

{arkµ(i) − akµ(k)}, (22)

vAj = aµ−1(j)j − uAµ−1(j), for j ∈ µ(M) and (23)

vAj = 0, for j ∈M ′ \ µ(M). (24)

The process to analyze and compute the sellers-optimal core allocation
will be divided in two parts. Firstly we try to reduce as much as possible the
number of columns of the original matrix. The magnitude of the reduction
depends on the distribution of the non-assigned sellers. Roughly speaking,
the rule is that we can merge contiguous non-optimally matched sellers into
one by taking the maximum for each row. In this way we preserve the Monge
property of the original matrix (see Proposition 5.2 below). Once we have
reduced the matrix, we can address the calculus of the sellers-optimal core
allocation by looking for some special matchings of the reduced matrix.

Next proposition shows that merging contiguous columns by the maxi-
mum operator preserves the Monge property.

Proposition 5.2. Let matrix D ∈ M+
m×(k+t+r) be

D =

 a11 . . . a1k b11 . . . b1t c11 . . . c1r
...

. . .
...

...
. . .

...
...

. . .
...

am1 . . . amk bm1 . . . bmt cm1 . . . cmr


and denote by D̃ ∈ M+

m×(k+1+r) the associated matrix defined by merging the
bij entries with the maximum operator, that is,

D̃ =

 a11 . . . a1k b̃1 c11 . . . c1r
...

. . .
...

...
...

. . .
...

am1 . . . amk b̃m cm1 . . . cmr


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where b̃i = maxl=1,...,t{bil} for i = 1, 2, . . . ,m. Then, if D satisfies the Monge

property, matrix D̃ does also.

Proof. We only have to prove that the 2× 2 submatrices of the form(
aik b̃i
ai+1 k b̃i+1

)
or

(
b̃i ci1
b̃i+1 ci+11

)
for i = 1, . . . ,m− 1.

have an optimal matching in its main diagonal.
We only prove the statement for the first type of submatrix, since the

other one can be proved similarly. Notice first that b̃i = bir∗ for some r∗, 1 ≤
r∗ ≤ t. Then,

aik + b̃i+1 = aik + max
l=1,...,t

{bi+1 l} ≥ aik + bi+1 r∗ ≥ ai+1 k + bir∗ = ai+1 k + b̃i,

where the last inequality comes from the fact that matrix D satisfies the
Monge property.

We can apply Proposition 5.2 to our 3×7 matrix A given in (17) to reduce
the sellers’ sector, merging sellers 2, 3 and 4 in a unique column obtaining a
3× 5 Monge assignment market (M, M̃ ′, Ã), with

Ã =

 12 11 30 1 9
15 26 52 28 40
1 13 40 40 60

 . (25)

As the original non-optimally matched sellers get a zero payoff in any
core allocation, we already know that vA2 = vA3 = vA4 = vA6 = 0. Let us
then concentrate on the rest of the sellers, that is, vA1 , v

A
5 and vA7 . These

worths now correspond, in the reduced matrix Ã with vÃ1 , v
Ã
3 and vÃ5 , and

vA1 = vÃ1 , v
A
5 = vÃ3 and vA7 = vÃ5 , since the core of the assignment markets

given by matrix A and Ã are alike, and differ just by the dimension spaces
where they are in and also in the numeration of the players. This is so because
we have merged non-optimally matched sellers of the original assignment
market by the maximum operator and this fact essentially does not change
the core, for the original optimally matched pairs (see (18), (19 ) and ( 20)).
Notice that the entries of the optimal matching will be preserved, from A to
Ã.
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Recall (13) to obtain the maximum core payoff for a seller, which is given
by his marginal contribution:

vÃj = wÃ(M ∪ M̃ ′)− wÃ(M ∪ M̃ ′ \ {j}) for j ∈ M̃ ′.

The worth of the grand coalition is known to be wÃ(M ∪ M̃ ′) = 124, and to

compute wÃ(M∪M̃ ′\{j}) we introduce the following notation. To any subset

of m elements from M̃ ′ = {1, . . . , m̃′}, that is, S = {j1, j2, . . . , jm}, we assume
that the elements are ordered, 1 ≤ j1 < j2 . . . < jm ≤ m̃′, and we associate
the sum of the main diagonal of the square submarket (M,S, Ã|M×S), that
is,

hÃ(j1, j2, . . . , jm) =
m∑
k=1

ãkjk . (26)

It is easy to argue that

wÃ(M ∪ M̃ ′ \ {j}) = max
j /∈{j1,j2,...,jm}

hÃ(j1, j2, . . . , jm). (27)

The reason is that when we drop out a seller j ∈ M̃ ′ from a Monge assignment
market, we obtain a (in general, non-square) Monge assignment market, and
by Proposition 3.1 one of its optimal matchings will be monotone. The
possible optimal matchings are precisely the main diagonals of its maximum-
size square submarkets, that is what is described in (26) and (27).

Therefore, from the reduced matrix Ã obtained in (25), we have
(
5
3

)
=

10 possible submarkets and their main diagonal sums correspond to all the
monotone matchings of matrix Ã. Some computations yield:

hÃ(1, 2, 3) = ã11 + ã22 + ã33 = 78,

hÃ(1, 2, 4) = ã11 + ã22 + ã34 = 78,

hÃ(1, 2, 5) = ã11 + ã22 + ã35 = 98,

hÃ(1, 3, 4) = ã11 + ã23 + ã34 = 104,

hÃ(1, 3, 5) = ã11 + ã23 + ã35 = 124,

hÃ(1, 4, 5) = ã11 + ã24 + ã35 = 100,

hÃ(2, 3, 4) = ã12 + ã23 + ã34 = 103,

hÃ(2, 3, 5) = ã12 + ã23 + ã35 = 123,

hÃ(2, 4, 5) = ã12 + ã24 + ã35 = 99,

hÃ(3, 4, 5) = ã13 + ã24 + ã35 = 118.
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From these data we obtain the sellers-optimal core allocation, by applying
(27):

vA1 = vÃ1 = 124−max{hÃ(2, 3, 4), hÃ(2, 3, 5), hÃ(2, 4, 5), hÃ(3, 4, 5)} = 1,

vA5 = vÃ3 = 124−max{hÃ(1, 2, 4), hÃ(1, 2, 5), hÃ(1, 4, 5), hÃ(2, 4, 5)} = 24,

vA7 = vÃ5 = 124−max{hÃ(1, 2, 3), hÃ(1, 2, 4), hÃ(1, 3, 4), hÃ(2, 3, 4)} = 20.

Joining all these results we obtain by the standard description of the core
(see (18), (19) and (20)) that the sellers-optimal core allocation of the 3× 7
assignment market given in (17) is:

(uA, vA) = (11, 28, 40; 1, 0, 0, 0, 24, 0, 20).

When we deal with non-square Monge assignment markets (M,M ′, A)
with |M | < |M ′|, where all the non-optimally matched agents are contigu-
ous, an interesting recursive formula to compute the sellers-optimal core al-
location can be provided under the hypothesis that the main diagonal of the
original non-square Monge assignment market, µ = {(1, 1), . . . , (m,m)} , is
the optimal matching for A.

This recursive formula consists of computing first the optimal core al-
location for the last assigned agent, vAm, taking into account the maximal
entry for the non-assigned sellers. The previous assigned seller has its op-
timal core allocation as the previous one adding the difference between the
two adjacent entries in the matrix in the row of its optimally assigned buyer,
vAm−1 = vAm + (am−1 m−1 − am−1 m). This process is repeated for all assigned
sellers. Non-assigned sellers get zero at any core allocation.

Proposition 5.3. Let (M,M ′, A) be a Monge assignment market with |M | <
|M ′|, with

A =

 a11 . . . a1m a1m+1 . . . a1m+k
...

. . .
...

...
. . .

...
am1 . . . amm amm+1 . . . amm+k


and µ = {(1, 1), . . . , (m,m)} ∈ M∗

A(M,M ′). Then, we have

vAm = amm −max{amm+1, . . . , amm+k},
vAj = vAj+1 + (ajj − ajj+1) for j = m− 1, . . . , 1, and

vAk = 0 for k = m+ 1, . . . ,m+ k.
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Proof. By Proposition 5.2 we can reduce matrix A to matrix Ã,

Ã =

 a11 . . . a1m ã1
...

. . .
...

...
am1 . . . amm ãm

 , (28)

and recall that ãi = max{aim+1, . . . , aim+k}, for i = 1, . . . ,m.
Notice that the matching µ = {(1, 1), . . . , (m,m)} is also optimal for

matrix Ã, which satisfies the Monge property.

We know that vAm = vÃm = wÃ(M ∪M̃ ′)−wÃ(M ∪M̃ ′ \{m′}). Notice now
that

wÃ(M ∪ M̃ ′) = a11 + · · ·+ amm and

wÃ((M ∪ M̃ ′) \ {m′}) = a11 + · · ·+ am−1m−1 + ãm,

where the second equality holds since Ã|M×M̃ ′\{m′} is a square Monge assign-
ment matrix. Therefore,

vAm = vÃm = amm − ãm.

Now, continuing in the same way, we obtain the desired expressions.

The hypothesis of Proposition 5.3 could be relaxed, because in the proof
what is really needed is the fact that matrix Ã in (28) satisfies the Monge
property and that µ = {(1, 1), . . . , (m,m)} is an optimal matching of matrix

Ã.
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[15] Pérez-Castrillo, D., Sotomayor, M., 2002. A simple selling and buying
procedure. J Econ Theory 103, 461–474.

[16] Roth, A., Sotomayor, M., 1990. Two-sided matching. Econometric So-
ciety Monographs, 18. Cambridge University Press.

26



[17] Shapley, L.S., Shubik, M., 1972. The Assignment Game I: The Core.
International Journal of Game Theory 1, 111–130.

[18] Tijs, S.H., 1981. Bounds for the core and the τ–value. In: Game Theory
and Mathematical Economics, O. Moeschlin and D. Pallaschke, eds.
North Holland Publishing Company, pp. 123–132.

[19] Thompson, G.L., 1981. Auctions and market games. In: Essays in Game
Theory and Mathematical Economics in honor of Oskar Morgenstern,
R. Aumann et al., eds. Bibliographisches Institute-Wissenschaftsverlag
Mannheim, pp. 181–196.

27


	282.pdf
	282.pdf



