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Abstract 

In this paper we obtain the main results of the Markowitz mean-variance model 

from the inverse of the covariance matrix, following a shorter and 

mathematically rigorous path. We also obtain the equilibrium expression of 

Sharpe’s capital asset pricing model (CAPM). 

 

JEL Classification: G11, G12 
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Resumen: 

En este artículo, a partir de la inversa de la matriz de varianzas y covarianzas 

se obtiene el modelo Esperanza-Varianza de Markowitz siguiendo un camino 

más corto y matemáticamente riguroso. También se obtiene la ecuación de 

equilibrio del CAPM de Sharpe.  
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1. INTRODUCTION 

 

Consider a financial market in which there are N assets with expected returns 

given by the following row vector: 

  

               ( ) ( )1 2 1
, , ... , N i xN

µ µ µ µ=
 

 

and the following variance-covariance matrix:  

             

( )
11 12 1

21 22 2

1 2

...

...

... ... ... ...

...

N

N
ij NxN

N N NN

σ σ σ
σ σ σ

σ

σ σ σ

 
 
  =
 
  
   

 
In this paper, we obtain the main results of the Markowitz mean-variance model 

(1991) from the inverse of the covariance matrix, following a shorter and 

mathematically accurate path. We also obtain the equilibrium expression of 

Sharpe’s CAPM (1964). 

 

This paper consists of several sections. In Section 2, we calculate the minimum 

variance point. In Sections 3 and 4, we obtain the critical line and the efficient 

frontier. Section 5 introduces the riskless asset, which allows for the market 

portfolio. In Section 6, we develop the CAPM model. Finally, in Section 7 we 

apply the M-V model to Spanish real estate mutual funds. 

 

 

2 THE MINIMUM VARIANCE POINT (MVP) 

 

We will determine a portfolio consisting of N assets that have the minimum of all 

possible variances. The vector: 

             ( ) ( )1 2 1
, , ..., N i xN

w w w w=
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represents the weight per unit that is held by each asset in the portfolio. The 

sum of the components of this vector must be one (in principle, components can 

be negative or greater than 1, which means that short selling can be carried 

out). 

 

 

To obtain the minimum variance portfolio, we propose a program with one 

equality constraint:  

             
( ) ( ) ( )1 1

1 1

 · · ·
N N

i ij j ij i jxN NxN Nx
i j

Min w w Min w wσ σ
= =

= ∑∑
 

subject to:  
1

1
N

i
i

w
=

=∑                     

( 0iw <  or 1iw >  is possible, as borrowing is allowed). 

 

The Lagrangian is:    

1 2
1 1 1

( , ,....., ; ) · · · 1
N N N

N ij i j i
i j i

L w w w w w wα σ α
= = =

 = + − 
 

∑∑ ∑
 

Partially deriving with respect to the first N variables and equating to 0 gives: 

         
1

2· · 0                                   (j=1,2,...,N)
N

ji i
ij

L
w

w
σ α

=

∂ = − =
∂ ∑                      

The previous N equalities can be expressed using the following matrix: 

    
( ) ( ) ( )1 1

· 2ij jNxN Nx Nx
w ασ =

 

By calculating the inverse matrix of ( )ij NxNσ , represented by ( )ij NxNd , we obtain: 

( ) ( ) ( ) ( ) ( )1 1 1
· = ·                                              [1]2 2i ij ijNx NxN NxNNx Nx

w dα ασ=  

In addition, when these values are replaced in the constriction, the following is 

obtained: 

1 1 1 1 1

1 · · ·    
2 2 2

2
                                                                                                       [2]

N N N N N

i ij ij
i i j i j

A

w d d A

A

α α α

α

= = = = =

= = = = ⇒

⇒ =

∑ ∑∑ ∑∑
14243  
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That is, A represents the sum of all the elements in the inverse of the variance- 

covariance matrix. With this notation and by substituting [2] in [1] we obtain: 

( ) ( ) ( ) 1 1
i1 1

1 1

1· = =                                      [3]
A

N N

ij ij
j j

i ij N NNx NxN Nx

ij
i j

d d

w d wA
d

= =

= =

= ⇒
∑ ∑

∑∑
 

Expression [3] provides the composition, on a unit basis, of the portfolio that 

corresponds to the minimum variance point. 

 

In essence, the composition of the minimum variance point is obtained by 

adding the rows (or columns) of the inverse of the variance-covariance matrix, 

divided by the sum of all the elements of this matrix. 

 

The expected return corresponding to the minimum variance point is: 

1 1 1*

1

·

· =
A

N N N

ij ij iN
j i j

i
i

d d
B

t
A A

µ
µ= = =

=

= =
∑ ∑∑

∑
 

where 

1 1

·
N N

i ij
i j

d Bµ
= =

=∑ ∑
 

The minimum variance is: 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( )

*

1 1 1 1

2 21 1

1 1 1 1· · · · · ·

1 1
· 1 · · 1

ij ij ij ijNxN NxN NxN NxNxN Nx xN Nx

ijxN NxNxN

V d d dA A A A

A
d

A A A

σ= = =

= = =
 

 

 

3. THE CRITICAL LINE (CL) 

 

The expected return of the portfolio is given by the expression: 

                                
( ) ( )1 1

1

( ) · ·
N

p i i i ixN Nx
i

E r w wµ µ
=

= =∑
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It can easily be shown that any expected positive or negative return can be 

obtained by appropriately weighting the various assets ( ( )pE r−∞ < < +∞ ). 

 

Now we are about to obtain the optimal portfolio for each expected t return, i.e. 

the portfolio that has the least variance possible. To do this, we propose the 

following program with two equality constraints:  

( ) ( ) ( )1 1
1 1

 · · · ·
N N

i ij j ij i jxN NxN Nx
i j

Min w w Min w wσ σ
= =

= ∑∑
 

subject to:         

             1

1
N

i
i

w
=

=∑
 

             1

·
N

i i
i

w tµ
=

=∑
 

 

The Lagrangian is: 

1 2
1 1 1 1

( , ,....., ; , ) · · · 1 · ·
N N N N

N ij i j i i i
i j i i

L w w w w w w t wα β σ α β µ
= = = =

   = + − + −   
   

∑∑ ∑ ∑
 

Partially deriving with respect to the first N variables and equating to 0 gives: 

     
1

2· · · 0                                  (1,2,..., )
N

ji i j
ij

L
w j N

w
σ α β µ

=

∂ = − − = =
∂ ∑                         

The previous N equalities can be expressed using the following matrix: 

( ) ( ) ( )
1 1

1
· ·

2ij j jNx NxNxN
wσ α β µ= +

   

We can obtain the following by calculating the inverse of the variance-

covariance matrix and using the same notations that have been used to obtain 

the MVP: 

( ) ( ) ( )
1 1

1
· · ·                                                                      [4]

2j ij jNx NxN Nx
w d α β µ= +  

When these are replaced in both restrictions the following is obtained: 
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1 1

1 1

1 1 1 1

1 1 1 1

1
· ·( · ) 1

2

1
· · ·( · )

2

· · · 2

                       

· · · · · 2·

N N

ij j
i j

N N

i ij j
i j

N N N N

ij i ij
i j i j

N N N N

i ij i j ij
i j i j

d

d t

d d

d d t

α β µ

µ α β µ

α β µ

α µ β µ µ

= =

= =

= = = =

= = = =

+ = 
 ⇔
+ =


  
+ =  

   
 

    + =    
    

∑∑

∑ ∑

∑∑ ∑ ∑

∑ ∑ ∑∑
                  [5] 

To simplify thel resolution of the previous system, we use the following 

notations: 

1 1

1 1

1 1

·

· ·

N N

ij
i j

N N

i ij
i j

N N

i j ij
i j

d A

d B

d C

µ

µ µ

= =

= =

= =

=

=

=

∑∑

∑ ∑

∑∑
 

A represents the sum of the elements of the inverse variance-covariance matrix. 

B is the weighted sum, determined from the expected returns of the sum of the 

elements of the columns (or the rows) in the inverse variance-covariance 

matrix. 

C represents the sum of the elements of the inverse weighted variance-

covariance matrix by the expected returns. 

With the above notations, the system [5] remains: 

2

2

· · 2

· · 2·

2

2· ·
2·

·

2

2· ·
2·

·

A B

B C t

B

t C C B t
A B A C B

B C

A

B t A t B
A B A C B

B C

α β
α β

α

β

+ = 
⇒+ = 


 − = =
 −



⇒ 

 −= =

−

  
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and by substituting in [4], we get: 

( ) ( ) ( )

( ) ( ) ( ) ( )
2Nx1 NxN Nx1

2 2NxN Nx1 NxN 1

1
= · · ( · ) ( · )·  = 

·
1 1

= · · · ·t+ · · ·
· ·

i ij j

ij j ij j Nx

w d C B t A t B
A C B

d A B d C B
A C B A C B

µ

µ µ

− + −
−

− −
− −  

In essence, we find that the set of points of RN corresponding to the optimal 

portfolios for each expected return t is a line within that space. We will call this 

the critical line (CL). This line has an efficient segment and an inefficient 

segment. The efficient segment corresponds to the values t < t*. The direction 

vector of the critical line and the crossing point are given respectively by:  

( ) ( ) ( )21 1

1
· · ·

·i ij jNx NxN Nx
v v d A B

A C B
µ= = −

−

r

 

( ) ( ) ( )21 1

1
· · ·    

·i ij jNx NxN Nx
a a d C B

A C B
µ= = −

−  

The crossing point “a” has coordinates that correspond to the optimal portfolio 

among all those with zero expected return. 

 

 

4. THE EFFICIENT FRONTIER (EF) 

 

4.1 The efficient frontier with no constraints on the weights of assets  

The MVP and the CL are in an N-dimensional space within the hyper plane: 

1

1
N

i
i

w
=

=∑
.  

Now we will relate the expected return t with the variance V for each point of the 

critical line. The expected return t will be the independent variable, and variance 

V the dependent variable. This will lead to a real function of a real variable 

whose graphic representation is on the plane R2. 
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( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( )
( ) ( ) ( )

( )
( ) ( ) ( )

( )
( )

2 1 1

2 1 1

2
2 1 12

2 1 12

22

1
· · · · · · · ·

·
1

· · · ·
·

1
· · · · · ·

·

2
· · · · · ·

·

1
· ·

·

i ij i ij ijxN xNNxN NxN NxN

ij j ij jNxN Nx NxN Nx

i ij jxN NxN Nx

i ij jxN NxN Nx

i

V t A B d C B d
AC B

d A B t d C B
AC B

A B d A B t
AC B

C B d A B t
AC B

C B
AC B

µ µ σ

µ µ

µ µ

µ µ

µ

 = − + −
 −

 − + − = − 

= − − +
−

+ − − +
−

+ −
−

( ) ( )1 1
· · ·ij jxN NxN Nx

d C Bµ− =

 

( )
( ) ( ) ( )

( )
( ) ( ) ( )

( )
( ) ( ) ( )

2
2 1 12

2 1 12

2 1 12

2 2
2 2 2

1
· · · · · ·

·

2
· · · · · ·

·

1
· · · · ·

·

2·
· · a·t +b·t+c                                          

· · ·

i ij jxN NxN Nx

i ij jxN NxN Nx

i ij jxN NxN Nx

A B d A B t
AC B

C B d A B t
AC B

C B d C B
AC B

A B C
t t

AC B AC B AC B

µ µ

µ µ

µ µ

= − − +
−

+ − − +
−

+ − − =
−

= − + =
− − −

[ ]6  

 

where: 

2

2

2

·
2·

                                                                                                      [7]
·

·

A
a

AC B
B

b
AC B

C
c

AC B

=
−

−=
−

=
−

 

(The coefficient c corresponds to the minimum variance among all the portfolios 

with zero expected return.) 

 

This shows that the function relating the expected return t to the variance V 

along the critical line is a quadratic function. We can also ensure that the 

second-degree coefficient “a” is positive, since the inverse of the variance-

covariance matrix is defined as positive. Therefore, the graphical representation 

will be an upward opening parabola, with a minimum at the vertex that 

corresponds to the MVP. 

The expected return on the MVP is given by: 
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*

2

b B
t

a A

−= =

 

and substituting in [6] gives: 

( )

( )

2
*

2 2 2

2

2 2 2

2

2

2·
· ·

· · ·

1 2· ·
· ·

· · · ·

· 1

· ·

A B B B C
V

A C B A A C B A A C B

B B B C A

A C B A A C B A A C B A

B C A

AA C B A

 = − + = − − − 

= − + =
− − −

− += =
−

 

These results agree with those obtained in Section 2. 

 

 

5.2 Derivability of the efficient frontier when there are constraints on the 
weights of assets  

 

When there are no constraints on the weights of assets that may make up a 

portfolio the efficient frontier in the space t V−  has the shape of a parabola and 

the feasible set is not bounded. However, when there are constraints on the 

weights of assets, the efficient frontier is formed by a continuous succession of 

a finite number of parabolic arcs. In addition, it can be seen that two 

consecutive arcs are tangents to the point of intersection. 

When there are constraints on the weights of assets, the efficient set has an 

explicit equation ( ( )) ( )V f E r f t= =%  defined by bands, in such a way that each 

band has a distinct second-degree polynomial. These polynomials are such that 

the lateral limits of the function ( ( )) ( )V f E r f t= =%  coincide at the points of 

intersection. The lateral derivatives also coincide at these points of intersection, 

which indicates the derivability of the function f. Esteve (1995) presented a 

rigorous proof of this property. Nonetheless, in the demonstration of this 

property, there is a special case in which derivability cannot be guaranteed. 

This occurs when the Minimum Variance Point (MVP) coincides with a vertex of 
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the feasible set in the n-dimensional space. Next, we present an example with 

three assets and demonstrate that the efficient frontier does not admit a 

derivative at the minimum point.  

Counterexample Below we outline an example which proves non-derivability in 

a specific case. Let us suppose that three assets A, B and C have expected 

returns 

                  ( ) ( )1
0.10, 0.12, 0.08i xN

µ =  

 of 0.10, 0.12 and 0.08 respectively and the following variance and covariance 

matrix: 

                 ( )
0.0005852 0.0008364 0.0007692

0.0008364 0.0012348 0.0011244

0.0007692 0.0011244 0.0010332
ij NxN

σ
 
 =  
 
 

 

We assume that the weights 1 2 3, ,w w w  of assets A, B and C, respectively, are 

always real numbers between 0 and 1. If we create combinations of 

investments A, B and C with non-negative weights, the expected returns on all 

possible portfolios will be between 0.08 and 0.12. Under these conditions, the 

critical line will be formed by the infinite points ( )1 2 3, ,w w w , which are the 

solution of the program:  

1

1 2 3 1 2 3 2

3

0.0005852 0.0008364 0.0007692

 ( , , ) ( , , )· 0.0008364 0.0012348 0.0011244 ·          [8]

0.0007692 0.0011244 0.0010332

w

MIN V w w w w w w w

w

   
   =    
   
   

 

conditional on:  

1 2 3

1 2 3

       w        w        w 1                                                                       [9]

 0.10· 0.12· 0.08·                                                                      w w w t

+ + =
+ + =

1 2 3

  [10]

  w 0,     w 0        w 0              




 ≥ ≥ ≥

 

for [ ]0.08,0.12t ∈ .  
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Attempts to obtain the critical line by solving this program for the infinites 

[ ]0.08,0.12t ∈  would be highly problematic.  

In this example, it can be verified that:  

 The critical line is constituted by two line segments 1 (0,0,1), (1,0,0)S =  and 

2 (1,0,0), (0,1,0)S =  in the increasing direction of the parameter ( )t E r= % .  

The segment 1 (0,0,1), (1,0,0)S =  is constituted by points in the form ( )1 1,0,1w w− , 

which verifies that the expected return on the portfolio corresponding to these 

points is: 

            

1 1 1( ) 0.10· 0.08·(1 ) 0.02· 0.08                                            [11]t E r w w w= = + − = +%  

Specifically, for 1 0w =  we have that t = 0.08 and for 1 1w =  we have that t = 

0.10.  

If we remove 1w  and 3w  from the expressions [9] and [10], which correspond to 

two planes, and express them as a function of 2w  and t we obtain:  

                          

( )1 22· 25· 2                                                                                         [12] w w t= − +

3 2  w 50· 5                                                                                            [13] w t= − +  

Substituting [12] and [13] in expression (8) gives us:  

( )
( )

2

2

2 2 2 2

2

2 2
2 2

( , )

0.0005852 0.0008364 0.0007692 2· 25· 2 

(2· 25· 2 , , 50· 5)· 0.0008364 0.0012348 0.0011244 ·

0.0007692 0.0011244 0.0010332 50· 5

0.0004352· 0.2· 0.0184· · 0.0

V w t

w t

w t w w t w

w t

w t w t

=

− +  
  = − + − + =  

   − +   

= + − − 2584· 0.0027104· 0.0044252                            [14]t w+ +
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A partial derivation with respect to 2w  and t  gives:  

2
2

2

0.0008704· 0.0184· 0.0027104                      

0.0184· 0.40· 0.0584             

V
w t

w

V
w t

t

∂ = − +
∂
∂ = − + −
∂

 

For 2 0 and [0.08,0.10]w t= ∈ , we can show that:  

2

0 and 0   
V V

w t

∂ ∂> <
∂ ∂

                                                           

The positive sign of the first of these partial derivatives shows that the points of 

segment 1S  belong to the critical line; while the negative sign of the second 

partial derivative indicates that this segment is contained within the non-efficient 

part of the critical path.   

The segment 2 (1,0,0), (0,1,0)S =  is constituted by points in the form 1 1( ,0,1 )w w−  

which verifies that the expected return on the portfolio corresponding to these 

points is: 

2 2 2( ) 0.10·(1 ) 0.12· 0.02· 0.10                                                  [15]t E r w w w= = − + = +%  

Specifically, for 2 0w =  we have that t = 0.10 and for 2 1w =  we have that t = 

0.12. If we remove w1 and w2 from the expressions [9] and [10] and express 

them as a function of 3w  we obtain:  

 ( )1 32· 25· 3                                                                                     [16]w w t= − − +  

 2 3  w 50· 5                                                                                          [17] w t= + −  

Substituting [16] and [17] in expression [8] gives us: 
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( )
( )

3

3

3 3 3 3

3

2 2
3 3

( , )

0.0005852 0.0008364 0.0007692 2· 25· 3 

( 2· 25· 3 , 50· 5, )· 0.0008364 0.0012348 0.0011244 · 50· 5

0.0007692 0.0011244 0.0010332

0.0004352· 0.368· 0.02512· ·

V w t

w t

w t w t w w t

w

w t w

=

− − +  
  = − − + + − + − =  

  
  

= + + 20.04848· 0.0016146· 0.04848044252          t t w− + +
 

and a partial derivation with respect to w3  and t  gives:  

3
3

3

0.0008704· 0.02512· 0.0016416                  

0.02512· 0.736· 0.04848          

V
w t

w

V
w t

t

∂ = − +
∂
∂ = − −
∂

 

For 3 0 and [0.10,0.12]w t= ∈  it can be show that: 

3

0 and 0                                           
V V

w t

∂ ∂> >
∂ ∂

 

The positive sign of the first of these partial derivatives shows that the points of 

segment 2S belong to the critical line, while the positive sign of the second 

partial derivative also indicates that this segment is contained within the efficient 

part of the critical line.  
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If we substitute the point ( )1 1 1,0,1w w S− ∈  in expression [1] we obtain: 

1

1 1 1

1

2
1 1

0.0005852 0.0008364 0.0007692

( ) ( ,0,1 )· 0.0008364 0.0012348 0.0011244 · 0

0.0007692 0.0011244 0.0010332 1

0.00008· 0.000528· 0.0044252                                      

w

V w w w

w

w w

   
   = − =   
   −   

= + +                    [18]

 

If for expression [11] corresponding to segment 1S  we remove the expected 

return t and substitute in [18] we obtain: 

2( ( )) ( ) 0.20· 0.0584· 0.0044252    (0.08 0.10)    [19]V f E r f t t t t= = = − + ≤ ≤%  

This is the expression of the efficient frontier in its decreasing section. 

 

Similarly, if we substitute the point ( )2 2 21 , ,0w w S− ∈  in expression [8] we obtain: 

2

2 2 2 2

2
2 2 2

0.0005852 0.0008364 0.0007692

( ) ( ,1 ,0)· 0.0008364 0.0012348 0.0011244 · 1

0.0007692 0.0011244 0.0010332 0

0.001472· 0.0005024· 0.0005852     (0 1)                       

w

V w w w w

w w w

   
   = − − =   
   
   

= + + ≤ ≤        [20]

 

If for expression [15] corresponding to segment 2S  we remove the expected 

return t and substitute in [20] we obtain:  

2( ( )) ( ) 0.368· 0.04848· 0.0017532    (0.10 0.12)          [21]V f E r f t t t t= = = − + ≤ ≤%  

This is the expression of the efficient set in its increasing section. Combining 

[19] and [21] in a single expression gives us:  

2

2

0.20· 0.0584· 0.0044252    (0.08 0.10)
( ( )) ( )  

0.368· 0.04848· 0.0017532    (0.10 0.12)   

t t t
V f E r f t

t t t

 − + ≤ ≤= = = 
− + ≤ ≤

%

 

  



 

16 

 

 

 

 

            Graph.2. Feasible set and efficient frontier 

 

We can see that:  

                               0.10 0.10
(0.10) lim ( ) lim ( ) 0.0005852

t t
f f t f t

− +→ →
= = =

 

 This proves that f is continuous in t = 0.10 and, consequently, it will be 

continuous for ( )0.08,0.12t ∈ .   

Moreover, if we derive f taking into account the two expressions that lead to its 

determination, we obtain: 

                               
0.40 · 0.05840    (0.08 0.10)

'( )  
0.736· 0.04848    (0.10 0.12)   

t t
f t

t t

− ≤ <
=  − < ≤

 

If we calculate the lateral limits of f'(t) in t = 0.10 we obtain: 

                               0.10 0.10
lim '( ) 0.0184 lim '( ) 0.02512

t t
f t f t

− +→ →
= − ≠ =

 

This proves that f(t) cannot be derived at the point t = 0.10, since it has different 

lateral derivatives at this point. Consequently, we have to do the following.  

At the point t = 0.10, it can be shown that the function V = f(t) is continuous, but 

not derivable.  
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The function V = f(t) can be derived in the set (0.08,0.10) (0.10,0.12)∪ . 

Bearing in mind the sign of f'(t), we have that f(t) is decreasing for (0.08,0.10)t ∈  

and increasing for (0.10,0.12)t ∈ . Given that f(t) is continuous in the interval  

[0.08,0.12]  we have that f(t) shows a minimum at the point  t = 0.10.  

 

 

5. THE RISK-FREE ASSET AND THE MARKET PORTFOLIO 

 

Now suppose that in addition to the N risk assets there is an additional asset 

with an expected return constant R0 < t*. We will call this a risk-free asset. Since 

its return is always constant, the variance of its return and the covariances with 

the returns on risky assets will always be zero. 

 

Now suppose the existence of a portfolio p with a proportion 1-w of risk-free 

asset and a share w of a portfolio p’ formed by a fixed basket with the N risky 

assets ( 0w ≥ ). Suppose the expected return and the variance of portfolio p’ are 

tp’ and Vp’ respectively. 

 
The expected return of portfolio p is: 

                       

0 '(1 )· ·                                                                                            [22]pt w R w t= − +                                                                  

 

and its variance: 

 

                     

( ) 2
'

'

0 0 1
1 , · · ·                                                          [23]

0 p
p

w
V w w w V

V w

−   
= − =   

  
                                 

 

If we clear w in [22] and substitute in [23], we get: 



 

18 

 

            

2

0
'

' 0

·                                                                                               [24]p
p

t R
V V

t R

 −=   − 
                                        

 

This expression, as well as the efficient frontier [6], produces a graphical 

representation of a parabola.  

 

To combine risky and risk-free assets efficiently, portfolio p’ must be on the 

efficient frontier obtained in Section 4. However, among the infinite portfolios, 

there is one optimal portfolio on the efficient frontier. This is portfolio M, which is 

located at the tangency point of parabola [6] with parabola [24], which is the 

result of equating p` = M. Since M is an optimal portfolio, all investors will 

choose it to perform combinations of risky assets with the risk-free asset. Any 

other composition of risky assets will be rejected for not being optimal. As all 

investors will choose the same portfolio M, this portfolio is called the market 

portfolio1. By making p’ = M the expression [24] becomes: 

 

                       

2

0

0

· M
M

t R
V V

t R

 −=  −                                                                     [25] 

 

The parabola which corresponds to the graph of [25] is a new efficient frontier 

EF ' that dominates the efficient frontier [6] obtained in Section 4, since for every 

expected return t provides a minor variance V, except at the point t = tM (w = 1), 

which corresponds to the M portfolio in which the two parabolas are tangents 

and hence the variances obtained by [6] and [25] are identical. 

 

 

                                                 
 
1 The weight M

iw of the i-asset within the market portfolio is the stock-exchange capitalization of this 

asset divided by the sum of the risky N assets. The market capitalization of an asset is derived by 
multiplying the number of shares (into which the capital of the company is divided) by their price. 
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                            R0                                        t
*                          tM 

Graph 3. The parabolas [6] and [25] with the values Ro = 0.05, tM = 0.15 and VM 

= 0.005 

 

We are now going to determine the point of tangency t = tM of [6] and [26]. By 

differentiating and equating both expressions, we obtain: 

                                       ( )
0

2

0

2( )
· 2· ·M

M

t RdV
V a t b

dt t R

−= = +
−

 

And by replacing t with tM: 

 

( )
( ) ( )

20
2

00

2
0

2 2
0 0

0 0 0 0

2( ) 2
· 2· · ·( · · ) 2· ·

2·( · · ) 2· · ·

2· · 2· · 2· 2· · 2· · · · ·

2· · 2· 2· · · · · ( 2· · )· 2· ·

M
M M M M M

MM

M M M M

M M M M M

M M M M

M

t R
V a t b a t b t c a t b

t Rt R

a t b t c a t b t R

a t b t c a t a R t b t b R

b t c a R t b t b R b a R t c b R

t

− = + ⇔ + + = + ⇔
−−

⇔ + + = + − ⇔

⇔ + + = − + − ⇔
⇔ + = − + − ⇔ + = − − ⇔

⇔ = 0

0

2· ·

2· ·

c b R

b a R

− −
+  

 

When the coefficients a, b and c are substituted by their values determined by 

[7] we get: 

0 0 0

0 0 0

2· · 2· 2· · ·

2· · 2· 2· · ·M

c b R C B R B R C
t

b a R B A R A R B

− − − + −= = =
+ − + −                                                       [26] 
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Once the expected return tM of the market portfolio has been determined, we 

will calculate its composition. However, to facilitate this calculation we need a 

definition and two previous results: 

 

Definition 1. For each of the N risky assets, the risk premium is defined as: 

                               0 0( )                (1 i N)i í iPR E r R Rµ= − = − ≤ ≤%  

 

The risk premium is the excess expected return of the asset i over the certain 

return of the risk-free asset. 

 

Similarly, the risk premium is defined as follows for a portfolio p: 

                              0( )p pPR E r R= −%
 

 

In particular, for the market portfolio we have: 

                              0( )M MPR E r R= −%  

 

Lemma 1:  

 

( ) ( ) 2
0 0

0 0

· · · ( · )·( · ) ·
·

· ·
i i

i

A B C B R C B B A R A C B
PR

B A R B A R

µ µ− − + − − −=
− −  

 

Proof: 

 

( ) ( )

( ) ( ) ( )

0 0

0

2 2
0 0 0 0

0

2 2 2 2
0 0

0 0 0

· · · ( · )·( · )

·

· · · · · · · · · · · · · ·

·

· · · · · ·( ) ·
·

· · ·

i i

i i i i

i i

i

A B C B R C B B A R

B A R

A C A B R B C B R C B C A R B A B R

B A R

A C B A C B R A C B R A C B
PR

B A R B A R B A R

µ µ

µ µ µ µ

µ µ

− − + − −
=

−

− − + + − − += =
−

− − − − − −= = =
− − −  
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Lemma 2:      

( ) ( ) ( )0 1 1
· 1 · ·ij jxN NxN Nx

B A R d PR− =
 

Proof: 

( ) ( ) ( )

0 0 0
1 1 1 1 1 1 1 1

0
1 1 1 1 1 1

1 1

· · · ·

( )· · ·

1 ·

N N N N N N N N

i ij ij i ij ij
i j i j i j i j

N N N N N N

i ij i ij ji i
i j i j j i

ij jxN NxN Nx

B A R d R d d R d

R d PR d d PR

d PR

µ µ

µ

= = = = = = = =

= = = = = =

− = − = − =

= − = = =

=

∑ ∑ ∑∑ ∑ ∑ ∑ ∑

∑ ∑ ∑ ∑ ∑∑

 

(In this demonstration, the variance-covariance matrix and its inverse are 

assumed to be symmetric.) 

 

With the two previous results, we can now tackle the problem of calculating the 

composition of the market portfolio M. To achieve this, we replace the tM 

expression obtained in [26] in the vector equation of the CL at the end of 

paragraph 2: 

( ) ( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

( ) ( )
( ) ( ) ( )

M2 11

0
2 1

0

2

2 1
0 01

1

1 1

1
· · ·t + ·

·

·1
· · · + ·

· ·

1 · 1
· · · · ·

· · ·

·
        

1 · ·

M
i ij j jNxN NxNx

ij j jNxN Nx

ij j ij jNxN NxN Nx
Nx

ij jNxN Nx

ij jxN NxN Nx

w d A B C B
A C B

B R C
d A B C B

A C B A R B

A C B
d PR d PR

A C B B A R B A R

d PR

d PR

µ µ

µ µ

 = − − = −
 −= − − = − − 

 −= = = − − − 

=                                           

 

In essence, the composition of the market portfolio is obtained by applying the 

inverse variance-covariance matrix ( )ij NxN
d  to the risk premium vector ( ) 1i Nx

PR . 

Finally, the components of the resulting vector are divided by the sum of the 

same (in this way, the sum of the resulting vector components has a value of 1). 

( ) ( )
( ) ( ) ( ) [ ]1

1 1

·
                                                                                    27

1 · ·

ij jNxN Nx

ij jxN NxN Nx

d PR

d PR
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6. THE CAPITAL ASSET PRICING MODEL (CAPM) 

 

Definition 2. We call β -Sharpe of asset i the regression coefficient 2 of returns 

from this asset with respect to the return from the market portfolio 

 

                                       
2

iM
i

M

σβ
σ

=                                                             [28] 

 

The capital asset pricing model relates iβ  to the respective iPR  risk premiums 

and to the MPR market portfolio risk premium (called simply the market risk 

premium).  

 

To obtain this relation, we develop the definition [28] and apply the formula for 

the composition of the market portfolio from [27] 

( ) ( )
( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( )

( )
( ) ( ) ( )

( ) ( ) ( )
( ) ( )

1
2

1 1

1
1 1

1 1

1

1 11 1

1 1

·

·

· · ·
1 · · ·

· · · ·

·

·· · ·
1 · ·

M
i ij jNxNiM Nx

i M M
M i ij jNxNxN Nx

i ij ij jNxN NxN Nx
ij jxN NxN Nx

i ij ij ij jxN NxN NxN NxN Nx

i j Nx i i

i ii ij j xN NxxN NxN Nx j j

ij jxN NxN Nx

e w

w w

e d PR
PR

PR d d PR

e PR PR PR

PR wPR d PR PR w
PR

σσβ
σ σ

σ
σ

σ

σ

= = =

= =

= = =

r

r

r

0
1 1

0
0 0

1 1 1

( )·

( ) ·1· · ( ) ·

i
N N

j j
j j

i i i i
N N N

M M
j j j M j

j j j

PR

R w

PR PR PR PR

E r R PR
w R w E r R w

µ

µ

= =

= = =

= =
−

= = = =
−− −

∑ ∑

∑ ∑ ∑
%

%

 

 

(In the previous demonstration, the ie
r

 vector is the i-th vector of the canonical 

basis of NR , i.e. the vector that is null for all the components except the i-th 

component, which is equal to 1.) 

 

                                                 
2 Regression line slope of the i asset returns over the market portfolio M returns. 
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In essence, the CAPM states that the β -Sharpe of asset i is equal to the 

quotient between the PRi risk premium of the corresponding asset and the 

market risk premium PRM. 

 

The expression that summarizes the CAPM is usually presented in several 

ways: 

         

0 0
2

0 0

( )

( ) ( )
iM i i i

i
M M M M

PR R E r R

PR E r R E r R

σ µβ
σ

− −= = = =
− −

%

% %  

By passing the denominator to multiply the Beta, the following expression is 

obtained: 

    0 0( ) ·( ( ) )i i ME r R E r Rβ− = −% %  

This is how the final expression of CAPM in the literature on the subject is most 

frequently presented3.  

 

 

7. APPLICATION TO SPANISH REAL ESTATE MUTUAL FUNDS 

 

During the entire period 1-2002 to 12-2008 there were only 3 Spanish real 

estate mutual funds4. Of these, we obtain the following information (Fernández, 

2010):  

• Expected returns: ( ) ( )1
0.004652,0.00359,0.006217i xN

µ =  

(Mean returns for 84 months from 1-2002 to 12-2008.) 

• Returns variance-covariance matrix: 

           ( )
0.0000183 0.000008187 0.0000081135

0.000008187 0.00004505 0.0000002182

0.0000081135 0.0000002182 0.00004273
ij NxN

σ
 
 =  
 
 

 

                                                 
3 Sharpe, W. (2000) 
4 SCH inmobiliario 1 FII, BBVA propiedad, Segurfondo 
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We take as the free-asset return: 0 0.002704R =  

(Geometric mean monthly returns of the Euribor to 1 year.)5 

 

When we apply the mean-variance model, we obtain:  

• Constant terms: A = 71368; B = 340.7;  C = 1.709 

• MVP: * *( , ) (0.004774,0.00001401)t V =  

• Efficient frontier: 212.14· 0.1159· 0.0002907V t t= − +  

• Market portfolio: (0.4977,0.0404,0.4619)M =  

                            ( , ) (0.005332,0.00001779)M Mt V =  

• Betas:                  
1

2

3

0.7712

0.3371

1.3368

β
β
β

   
   =   
   
   

 

 

 
                                                         R0                                                                            t

*              tM 

Graph 4. The parabolas [6] and [25] for the Spanish real mutual funds in the period 2002-2008 

 

Si all investors choose an optimal combination of risky assets with a risk-free 

asset, then M is the market portfolio and the vector (0.4977,0.0404,0.4619) 

would give the relative proportion of their assets. 

  

                                                 
5European Central Bank (2002-2008)   
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