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An axiomatization of the nucleolus of the assignment game

Abstract: On the domain of two-sided assignment markets, the nucleolus is axiomatized

as the unique solution that satisfies derived consistency (Owen, 1992) and complaint mono-

tonicity on sectors’ size. As a consequence, we obtain a geometric characterization of the

nucleolus by means of a strong form of the bisection propertythat characterizes the inter-

section between the core and the kernel of a coalitional gamein Maschler et al (1979).

Resum: En el domini dels jocs bilaterals d’assignació, es presenta una axiomática del

nucleolus com lúnica solució que compleix les propietatsde consistència respecte del joc

derivat definit per Owen (1992) i monotonia de les queixes dels sectors respecte de la seva

cardinalitat. Com a consequència obtenim una caracterització geomètrica del nucleolus

mitjançant una propietat de bisecció més forta que la quesatisfan els punts del kernel

(Maschler et al, 1979).
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1 Introduction

The assignment game is a coalitional game that represents a two-sided market situation. In

this market there exists a finite set of sellers, each one withan indivisible object on sell, and

a finite set of buyers willing to buy at most one object each. Each agent has a reservation

value that is what he or she obtains if not matched with an agent on the opposite side. Every

buyer-seller pair(i, j) is attached to a real numberai j that represents the value that this pair

can attain if matched together. From these valuations, we obtain the assignment matrixA.

The worth of each coalition is the total profit that can be obtained by optimally matching

buyers and sellers in the coalition. When reservation values are null and the assignment

matrix is non-negative, our game is the one introduced by Shapley and Shubik (1972).

Coalitional game theory analyzes how the agents can share the profit of an optimal

pairing, taking into account the worth of all possible coalitions. The most studied solution

concept in this model has been the core, the set of efficient allocations that are coalitionally

rational. Shapley and Shubik prove that the core of the assignment game is non-empty and

it can be described just in terms of the assignment matrix, with no need of the associated

characteristic function.

Other solutions have been considered for the assignment game: Thompson’s fair di-

vision point (1981), the kernel or symmetrically pairwise bargained allocations (Rochford

1984), the nucleolus (Solymosi and Raghavan 1994), the Shapley value (Hoffmann and

Sudhölter 2007) and the von Neumann-Morgenstern stable sets (Núñez and Rafels 2013).

However, as far as we know, axiomatic characterizations of solutions in this framework

have been focused on the core. Axiomatizations of the core ofassignment games are due

to Sasaki (1995) and Toda (2003 and 2005).

On the general class of coalitional games, the prenucleolus(that for the assignment

game coincides with the nucleolus) has been axiomatized by Sobolev (1975) by means

of covariance, anonimity and the reduced game property of Davis and Maschler (1965).

Potters (1991) also characterizes the nucleolus on the class of balanced games1 by means

of the above reduced game property. However, both aforementioned sets of axioms do not

characterize the nucleolus on the class of assignment gamessince the Davis and Maschler

1In fact Potters characterizes the nucleolus in a more general class of games.
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reduced game of an assignment game needs not remain inside this class. Moreover, it

seems desirable an axiomatization of the nucleolus of the assignment game in terms of

axioms that are not stated by means of the characteristic function but by means of the data

of the assignment market.

In the present paper, on the domain of assignment games, the nucleolus is uniquely

determined by only two axioms: derived consistency and complaint monotonicity on sec-

tors’ size. Derived consistency is based on the derived gameintroduced by Owen (1992).

Roughly speaking, complaint monotonicity on sectors’ sizeonly requires that at each solu-

tion outcome, the most dissatisfied agent on the short side ofthe market is at most as well

off as the most dissatisfied agent on the large side of the market, where we interpret the

dissatisfaction of an agent with a given outcome as the difference between his reservation

value and the amount that this outcome allocates to him.

As a by-product of the axiomatization of the nucleolus, we obtain a geometric charac-

terization of the nucleolus. Maschler et al (1979) provide ageometrical characterization for

the intersection of the kernel and the core of a coalitional game, showing that those alloca-

tions that lie in both sets are always the midpoint of certainbargaining range between each

pair of players. In the case of the assignment game, this means that the kernel can be deter-

mined as those core allocations where the maximum amount that can be transferred, with-

out getting outside the core, from one agent to his/her optimally matched partner equals the

maximum amount that he/she can receive from this partner, also remaining inside the core

(Rochford 1984; Driessen 1999). We now state that the nucleolus of the assignment game

can be characterized by requiring this bisection property be satisfied not only for optimally

matched pairs but also for optimally matched coalitions.

Preliminaries on assignment games are in Section 2. Section3 explores the property of

derived consistency. In Section 4 we prove the axiomatic characterization of the nucleolus

and deduce a geometric characterization.
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2 Preliminaries

Let U andU ′ be two countable disjoint sets, the first one formed by all potential buyers

and the second one formed by all potential sellers. Anassignment marketis a quintuple

γ = (M,M′
,A, p,q). The setsM ⊂U andM′ ⊂U ′ are two finite sets of buyers and sellers

respectively (the two sides of the market) of cardinality|M|=mand|M′|=m′, with M∪M′

non-empty. MatrixA= (ai j )(i, j)∈M×M′ is such that for all(i, j) ∈ M×M′, the real number

ai j denotes the worth obtained by the pair(i, j) if they trade. Finally,p∈ R
M andq∈ R

M′

where, for alli ∈ M, pi is the reservation value of buyeri if she remains unpaired with

any seller (and similarly forq j for all j ∈ M′). Notice that neitherai j nor pi or q j are

constrained to be non-negative. When the market has null reservation prices we will just

describe it as(M,M′
,A).

A matchingµ betweenS⊆ M andT ⊆ M′ is a bijection from a subset ofS to a subset

of T. We denote byDom(µ) ⊆ SandIm(µ)⊆ T the corresponding domain and image. If

i ∈ S and j ∈ T are related byµ we indistinctly write(i, j) ∈ µ, j = µ(i) or i = µ−1( j).

We denote byM (S,T) the set of matchings betweenSandT. Given an assignment market

γ = (M,M′,A, p,q), for all S⊆ M, T ⊆ M′ andµ ∈ M (S,T) we write

v(S,T; µ) = ∑
(i, j)∈µ

ai j + ∑
i∈S\Dom(µ)

pi + ∑
j∈T\Im(µ)

q j , (1)

with the convention that any summation over an empty set of indices is zero.

A matchingµ ∈M (M,M′) is optimalfor the assignment marketγ = (M,M′,A, p,q) if

for all µ ′ ∈ M (M,M′) it holdsv(M,M′; µ) ≥ v(M,M′; µ ′). The set of optimal matchings

for the assignment marketγ is denoted byM ∗
γ (M,M′).

With any assignment marketγ = (M,M′,A, p,q), we associate a game in coalitional

form (M ∪M′
,wγ) (assignment game) with player setM ∪M′ and characteristic function

wγ defined as follows: for allS⊆ M andT ⊆ M′,

wγ(S∪T) = max{v(S,T; µ) | µ ∈ M (S,T)} . (2)

Notice that by (1) and (2) we have thatwγ({i}) = pi for all i ∈ M andwγ({ j}) = q j for all

j ∈M′. This assignment game, that allows for agents’ reservationvalues, is a generalization

of the assignment game of Shapley and Shubik (1972) (that is,an assignment game with
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non-negative matrix and null reservation values) and was introduced by Owen (1992) and

also used by Toda (2003, 2005).

We denote byΓAG the set of all assignment marketsγ = (M,M′,A, p,q), and also, for

simplicity of notation, the set of their corresponding assignment games. Since we will deal

with consistency properties, we allow for the emptiness of one side of the market.2 The

set of assignment gamesΓAG is closed by strategic equivalence. In fact, it can be shown

that every assignment game inΓAG is strategically equivalent to an assignment game in the

sense of Shapley and Shubik.3 As a consequence, Shapley and Shubik’s results on the core

of the assignment game extend toΓAG.

Given an assignment marketγ = (M,M′,A, p,q), a payoff vector isx= (u,v) ∈ R
M ×

R
M′

whereui stands for the payoff to buyeri ∈ M andv j stands for the payoff to seller

j ∈ M′. We write x|S or (u|S∩M,v|S∩M′) to denote the projection of a payoff vectorx to

agents in coalitionS⊆ M∪M′. Also,x(S) = ∑i∈Sxi , with x( /0) = 0. An imputationof γ is a

payoff vector(u,v) that is efficient,u(M)+v(M′) = wγ(M∪M′), and individually rational,

ui ≥ pi for all i ∈ M andv j ≥ q j for all j ∈ M′. We denote byI(γ) the set of imputations of

the assignment marketγ.

The core of the assignment market is always non-empty and it is formed by those

efficient payoff vectors(u,v) ∈R
M ×R

M′
that satisfy coalitional rationality for mixed-pair

coalitions and one-player coalitions:

C(γ) =



















(u,v) ∈ R
M ×R

M′

∣

∣

∣

∣

∣

∣

∣

∣

∣

∑i∈M ui +∑ j∈M′ v j = wγ(M∪M′),

ui +v j ≥ ai j for all (i, j) ∈ M×M′
,

ui ≥ pi for all i ∈ M, v j ≥ q j for all j ∈ M′



















.

2If γ is an assignment market withM′ = /0, then it is easy to see that the associated assignment game

(M,wγ ) given by (2) is the modular game generated by the vector of reservation valuesp ∈ R
M, that is,

wγ(S) = ∑i∈Spi , for all S⊆ M. Similarly, if γ = (M,M′,A, p,q) with M = /0, thenwγ (T) = ∑ j∈T q j , for all

T ⊆ M′.

3Two games(N,v) and(N,w) are strategically equivalent if and only if there existα > 0 andd∈R
N such

that w(S) = αv(S)+∑i∈Sdi . Let γ = (M,M′
,A, p,q) be an assignment market whereA = (ai j )(i, j)∈M×M′ ,

p ∈ R
M, q ∈ R

M′
, and letγ̃ = (M,M′, Ã) be an assignment market with null reservation values and matrix

Ã = (ãi j )(i, j)∈M×M′ given by ãi j := max{0,ai j − pi − q j}, for all (i, j) ∈ M ×M′. Then, as the reader can

easily check,wγ (S∪T) = wγ̃ (S∪T)+∑i∈Spi +∑ j∈T q j , for all S⊆ M andT ⊆ M′.
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Moreover, ifµ is an optimal matching ofγ, any core allocation(u,v) ∈ R
M ×R

M′
satisfies

ui +v j = ai j for all (i, j) ∈ µ, (3)

ui = pi for all i ∈ M \Dom(µ), (4)

v j = q j for all j ∈ M′ \ Im(µ). (5)

One single-valued selection in the core of the assignment market is the nucleolus. This

solution, that was introduced for arbitrary coalitional games by Schmeidler (1969), only

relies on the worth of individual coalitions and mixed-paircoalitions when applied to the

assignment game. Given an assignent marketγ = (M,M′,A, p,q), with any imputation

(u,v)∈ I(γ)we associate a vectorθ(u,v) whose components areai j −ui−v j , for all (i, j)∈

M×M′, pi −ui for all i ∈ M andq j − v j for all j ∈ M′, non-increasingly ordered. Then,

the nucleolusof the assignment marketγ is the imputationη(γ) that minimizesθ(u,v)

with respect to the lexicographic order over the set of imputations:θ(η(γ)) ≤Lex θ(u,v)

for all (u,v) ∈ I(γ). This means that, for all(u,v) ∈ I(γ), eitherθ(η(v)) = θ(u,v) or

θ(η(v))1 < θ(u,v)1 or there existsk∈ {2, . . . ,mm′+m+m′} such thatθ(η(v))i = θ(u,v)i

for all 1≤ i ≤ k−1 andθ(η(v))k < θ(u,v)k.

3 Derived consistency and the core of the assigment game

In this section we consider a consistency property, with respect to a certain reduction of the

market, that will be satisfied not only by the core but also by the nucleolus. We begin by

introducing the concept of a solution on the domain of assignment markets. The next two

definitions follow Toda (2005).

Definition 1. Let γ = (M,M′
,A, p,q) ∈ ΓAG. A payoff vector(u,v) ∈ R

M ×R
M′

is feasible

if there existsµ ∈ M (M,M′) such that

(i) ui = pi for all i ∈ M \Dom(µ) , vj = q j for all j ∈ M′ \ Im(µ), and

(ii) ui +v j = ai j for all (i, j) ∈ µ.

In the above definition,µ is said to becompatiblewith (u,v). Notice that a matching

that is compatible with a feasible payoff vector need not be an optimal matching.
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Definition 2. A solutiononΓAG is a correspondenceσ that associates a non-empty subset

of feasible payoff vectors with eachγ ∈ ΓAG.

If γ = (M,M′,A, p,q) ∈ ΓAG, we write σ(γ) to denote the image of this assignment

market by a solutionσ .

Consistency is a standard property used to analyze the behavior of solutions with re-

spect to reduction of population. Roughly speaking, a solution is consistent if whenever

we reduce the game to a subset of agents and the excluded agents are paid according to

a solution payoff, the projection of this payoff to the remaining agents still belongs to the

solution of the reduced game. Different consistency4 notions depend on the different defi-

nitions for the reduced game, that is, the different ways in which the remaining agents can

reevaluate their coalitional capabilities. Probably, thebest known notion of consistency

is based on Davis and Maschler reduced game (Davis and Maschler 1965). Peleg (1986)

uses the above consistency notion to characterize the core on the domain of all coalitional

games. However, it turns out that the Davis and Machler reduced game of an assignment

game may not be an assignment game (see Owen 1992). To overcome this drawback,

Owen introduces the derived market.

Definition 3. Let γ = (M,M′,A, p,q) be an assignment market,/0 6= T ⊂ M∪M′, and x=

(u,v)∈R
M×R

M′
. Thederived assignment marketrelative to T at x isγT,x=

(

T ∩M,T ∩M′,AT , pT,x,qT,x
)

,

where AT = A|(T∩M)×(T∩M′) and

pT,x
i = max

{

pi , max
j∈M′\T

{ai j −v j}

}

, for all i ∈ T ∩M,

qT,x
j = max

{

q j , max
i∈M\T

{ai j −ui}

}

, for all j ∈ T ∩M′
.

Thederived assignment gamerelative to T at x is the coalitional game associated to the

derived assignment marketγT,x, that is(T,wγT,x).

The interpretation of the derived assignment market is as follows. Once agents not

in T have left the market taking their corresponding payoff inx, the agents inT interact

in the submarket defined by the submatrixAT = A|(T∩M)×(T∩M′) but must reevaluate their

reservation values, since the outside option has been modified. Each agenti ∈ T ∩M has

4For a comprehensive survey on the consistency principles, the reader is referred to Thomson (2003).
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the choice of remaining unmatched (thus getting the original reservation value) or matching

somebody, sayj, outsideT, which leaves an incomeai j − x j . The best of these choices

determines the new reservation value of agenti ∈ T ∩ M. Similarly, agents inT ∩M′

reevaluate their reservation value.

Next we define consistency with respect to this derived market. A solutionσ on ΓAG

satisfies

• derived consistencyif for all γ = (M,M′,A, p,q)∈ ΓAG, all /0 6= T ⊂ M∪M′ and all

x∈ σ (γ) , thenx|T ∈ σ
(

γT,x
)

.

The reader will find easily that, given an assignment marketγ = (M,M′,A, p,q) and any

optimal matchingµ ∈ M ∗
γ (M,M′), if we consider the derived assignment market relative

to a non-empty coalitionT ⊆ M ∪M′ and at a core elementz= (u,v) ∈ C(γ), then the

reservation value in the derived market of some agents inT can be expressed by:

pT,z
i = aiµ(i)−vµ(i) for all i ∈ M∩T matched toµ(i) ∈ M′ \T, (6)

pT,z
i = pi for all i ∈ M∩T unmatched byµ. (7)

Similarly,

qT,z
j = aµ−1( j) j −uµ−1( j) for all j ∈ M′∩T matched toµ−1( j) ∈ M \T, (8)

qT,z
j = p j for all j ∈ M′∩T unmatched byµ. (9)

Moreover, ifµ is an optimal matching of the initial marketγ, then its restriction toT is an

optimal matching forγT,z, that is,

µ|T = {(i, j) ∈ µ | i ∈ T ∩M, j ∈ T ∩M′} ∈ M
∗
γT,z(M∩T,M′∩T). (10)

The reader may make use of the above statements (6) to (10) to prove that the core of the

assignment market satisfies derived consistency.

As for the nucleolus, it is known from Potters (1991) that, inthe case of balanced

games, it satisfies consistency with respect to Davis and Maschler reduced game. For

assignment games, Owen (1991, page 76) proves that the derived game of an assignment

game relative to any coalitionT ⊆M∪M′ and at a core allocation is the superadditive cover

of the Davis and Maschler reduced game relative to the same coalition T and at the given
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core allocation. Besides that, if a game has the same efficiency level that its superadditive

cover, then both games have the same nucleolus (Miquel and N´uñez 2010). From the

above remarks, and taking into account (10), we easily conclude that also the nucleolus of

the assignment game satisfies derived consistency.

Proposition 4. On the domain of assignment marketsΓAG, the core and the nucleolus

satisfy derived consistency.

We prove in the next proposition that, on the domainΓAG, any solutionσ satisfying

derived consistency selects a subset of the core, that is,σ(γ)⊆C(γ) for all γ ∈ ΓAG. This

result is needed in the axiomatization theorem (Theorem 7),but it is also of interest on its

own.

Proposition 5. On the domain of assignment marketsΓAG, derived consistency implies

core selection.

Proof. Let σ be a solution onΓAG satisfying derived consistency. Letγ = (M,M′,A, p,q)

be an assignment market andz= (u,v)∈ σ(γ). If M 6= /0 andM′ = /0, then feasibility of the

solution (Definition 1) impliesz= p and sinceC(γ) = {p} we havez∈C(γ). Similarly, if

M = /0 andM′ 6= /0, thenz= q andC(γ) = {z}.

Assume now thatM 6= /0 andM′ 6= /0. For alli ∈ M consider the derived market relative

to T = {i} at z. By derived consistency ofσ , ui ∈ σ(γ{i},z) and by Definitions 1 and 2,

ui = p{i},z
i =max{pi ,maxj∈M′{ai j −v j}}, which implies that, for alli ∈M, ui ≥ pi andui+

v j ≥ ai j for all j ∈M′. Similarly, for all j ∈M′ let us consider the derived market relative to

T = { j} at z. Again by derived consistency ofσ , v j ∈ σ(γ{ j},z) and, by Definitions 1 and

2, v j = q{ j},z
j = max{q j ,maxi∈M{ai j −ui}} which impliesv j ≥ q j for all j ∈ M′. Hence,

z= (u,v) satisfies coalitional rationality for all mixed-pair and individual coalitions. It only

remains to check its efficiency, that is,z(M∪M′) = wγ(M∪M′).

Let µ ∈ M ∗
γ (M,M′) be an optimal matching andµ ′ ∈ M (M,M′) a matching that is

compatible withz= (u,v). Notice that suchµ ′ exists sincez= (u,v) is a feasible payoff

9



vector by Definition 2. Then,

∑
i∈Dom(µ)

aiµ(i) + ∑
i∈M\Dom(µ)

pi + ∑
j∈M′\Im(µ)

q j

≤ ∑
i∈Dom(µ)

(

ui +vµ(i)
)

+ ∑
i∈M\Dom(µ)

ui + ∑
j∈M′\Im(µ)

v j

= ∑
i∈Dom(µ ′)

(

ui +vµ ′(i)
)

+ ∑
i∈M\Dom(µ ′)

ui + ∑
j∈M′\Im(µ ′)

v j

= ∑
i∈Dom(µ ′)

aiµ ′(i)+ ∑
i∈M\Dom(µ ′)

pi + ∑
j∈M′\Im(µ ′)

q j ,

where the first equality follows by simply reordering terms.By optimality of the matching

µ, the above inequality implies

∑
i∈Dom(µ)

aiµ(i) + ∑
i∈M\Dom(µ)

pi + ∑
j∈M′\Im(µ)

q j

= ∑
i∈Dom(µ ′)

aiµ ′(i)+ ∑
i∈M\Dom(µ ′)

pi + ∑
j∈M′\Im(µ ′)

q j

and thus∑i∈M ui +∑ j∈M′ v j = wγ(M∪M′) which concludes the proof ofz= (u,v) ∈C(γ).

Toda (2005) gives two axiomatizations of the core of assignment markets by means of

a consistency property (that we will refer to as Toda’s consistency) and Pareto optimality,

pairwise monotonicity and individual monotonicity (or population monotonicity). To this

end, Toda proves that any subcorrespondence of the core thatsatisfies Toda’s consistency

selects the whole core. Now, as a consequence of Proposition5 above, it is straightforward

to characterize the core of assignment markets as the only solution that satisfies both afore-

mentioned consistency principles: derived consistency and Toda’s (2005) consistency.

4 Axiomatic and geometric characterizations of the nu-

cleolus

In this section, we characterize axiomatically the nucleolus on the class of assignment

games by means of two axioms, the first of them being derived consistency. Due to the

bilateral structure of the market, we look for a second axiomthat guarantees some bal-

ancedness between groups. As a by-product of the following axiomatization we will derive

a geometric characterization that determines the positionof the nucleolus inside the core.
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Given an assignment marketγ = (M,M′,A, p,q), if j ∈ M′ and(u,v) is a payoff vector,

q j − v j measures the difference between player’sj reservation valueq j and the amount

v j he has been paid. Thus, the higher this difference is, the more dissatisfied the agent is

with the payoff vector. SectorM′ as a whole can measure its degree of dissatisfaction by

maxj∈M′{q j − v j}, and in this way we define the complaint of a sector as the maximum

dissatisfaction of its agents. Analogously, the complaintof sectorM is maxi∈M{pi −ui}.

It is worth to remark that complaint monotonicity on sectors’ size, although defined by

means of excesses of individual coalitions, is far from the definition of the nucleolus since

it does never compare these excesses across different imputations.

A solutionσ on ΓAG satisfies

• complaint monotonicity on sectors’ sizeif for all γ = (M,M′,A, p,q) ∈ ΓAG with

|M| ≤ |M′| and all(u,v) ∈ σ(γ), then

max
i∈M

{pi −ui} ≤ max
j∈M′

{q j −v j}. (11)

And similarly, if |M| ≥ |M′|, then maxi∈M{pi −ui} ≥ maxj∈M′{q j −v j}.

Thus, an interpretation of the axiom of complaint monotonicity on sectors’ size is the

following: the less populated sector must be at least as satisfied as the most populated one.

That is, if for instance supply is shorter than demand, the sector of sellers has a better

position in the market and this fact should be recognized by the solution outcomes. It

follows straightforwardly that if a solution has the property above and|M|= |M′|, then, at

any solution outcome, both sides of the market have the same complaint.

Note that, when imposed on solution concepts that are a core selection, the above prop-

erty is not much demanding. Indeed, for those markets that are not square, that is, markets

that have a different number of buyers than sellers, inequality (11) holds trivially at any core

allocation. And for those markets with as many buyers as sellers, complaint monotonicity

on sectors’ size selects a hypersurface. For instance, in a square Shapley and Shubik’s as-

signment game(M,M′,A), imposing complaint monotonicity on sectors’ size is equivalent

to imposing mini∈M{ui}= minj∈M′{v j} to the solution outcomes, and in general there are

still infinitely many core allocations that satisfy this equality. Figure 1 depicts the core of a
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2×2-assignment game and the piece-wise linear curveA−B−C−D formed by the subset

of core allocations at which both sectors have the same complaint.

  A

D

u1

   u2

Figure 1:

A more formal geometric interpretation of complaint monotonicity on sectors’ size for

square markets will follow after the proof of Theorem 7. It isnot difficult to realize that the

midpoint between the buyers-optimal core allocation and the sellers-optimal core allocation

(point T in the figure), that is known as Thompson’s fair division point (Thompson 1981),

satisfies complaint monotonicity on sectors’ size. On the other hand, the Shapley value

(Shapley 1953) does not satisfy this property. Next we provethat the nucleolus (denoted

by N in Figure 1) also satisfies this complaint monotonicity property.

Proposition 6. On the domain of assignment marketsΓAG, the nucleolus satisfies com-

plaint monotonicity on sectors’ size.

Proof. Let γ = (M,M′,A, p,q) ∈ ΓAG and letη = η(γ) be the nucleolus of the assignment

marketγ. If |M| < |M′|, for any optimal matchingµ ∈ M ∗
γ (M,M′), there existsj∗ ∈ M′

12



that is unmatched byµ. Thus, sinceη ∈C(γ), we haveη j∗ = q j∗, that implies

max
i∈M

{pi −ηi} ≤ 0= q j∗ −η j∗ = maxj∈M′{q j −η j}.

Analogously if|M|> |M′|.

If |M|= |M′|, letε1=−maxi∈M{pi−ηi}=mini∈M{ηi−pi}≥0,ε2=−maxj∈M′{q j −

η j}= minj∈M′{η j −q j} ≥ 0 and assume, without loss of generality, thatε1 < ε2. Now de-

fine the payoff vectors

(u′,v′) = (η|M −ε1 ·e
M
,η|M′ +ε1 ·e

M′
) and(u′′,v′′) = (η|M +ε2 ·e

M
,η|M′−ε2 ·e

M′
), (12)

whereeM = (1, . . . ,1) ∈ R
M andeM′

= (1, . . . ,1) ∈ R
M′
.

It can be easily checked that(u′,v′),(u′′,v′′) ∈C(γ). Now takez= (u,v) = 1
2(u

′,v′)+

1
2(u

′′,v′′). By substitution from (12), for all(i, j) ∈ M×M′,

ai j −ui −v j = ai j −

(

ηi +
1
2
(ε2− ε1)

)

−

(

η j +
1
2
(ε1− ε2)

)

= ai j −ηi −η j .

Thus, to lexicographically minimize the vector of ordered excesses over the set of core

allocations, we only need to consider excesses of individual coalitions.5

First,

max

{

max
k∈M

{pk−uk},max
k∈M′

{qk−vk}

}

= max

{

max
k∈M

{pk−ηk}+
1
2
(ε1− ε2),max

k∈M′
{qk−ηk}+

1
2
(ε2− ε1)

}

= max

{

−ε1+
1
2
(ε1− ε2),−ε2+

1
2
(ε2− ε1)

}

=−
1
2
(ε1+ ε2).

Moreover, sinceε1 < ε2, we have

−ε1 = max

{

max
k∈M

{pk−ηk},max
k∈M′

{qk−ηk}

}

.

But then,

max

{

max
k∈M

{pk−uk},max
k∈M′

{qk−vk}

}

= −
1
2
(ε1+ ε2)<−ε1

= max

{

max
k∈M

{pk−ηk},max
k∈M′

{qk−ηk}

}

,

5The following property is well known (see Potters and Tijs 1992). For anyn ∈ N we define the map

θ : Rn −→R
n which arranges the coordinates of a point inR

n in non-increasing order. Take now anyz∈R
p.

Then,θ (x)≤Lex θ (y)⇐⇒ θ (x,z)≤Lex θ (y,z).

13



in contradiction withη = η(γ) being the nucleolus. Hence,ε1 = ε2 and this concludes the

proof.

We are now ready to state and prove the axiomatic characterization of the nucleolus.

Theorem 7.On the domain of assignment marketsΓAG, the only solution satisfying derived

consistency and complaint monotonicity on sectors’ size isthe nucleolus.

Proof. From Propositions 4 and 6 we know that the nucleolus satisfiesboth properties. To

show uniqueness assume there exists a solutionσ on ΓAG satisfying derived consistency

and complaint monotonicity on sectors’ size.

Let γ = (M,M′,A, p,q) ∈ ΓAG andz= (u,v) ∈ σ(γ). From Proposition 5,σ satisfies

core selection and thusz∈ C(γ). If M 6= /0 andM′ = /0 (or M = /0 andM′ 6= /0) from

Definition 2 we havez= η. Assume thenM 6= /0 andM′ 6= /0.

Let µ ∈ M ∗
γ (M,M′) be an optimal matching. Ifµ = /0, since bothz andη belong to

the core, we again havez= η. Assume then thatµ 6= /0 andz 6= η. For any /06= S⊂ M such

that|S|= |µ(S)| let us consider the derived market relative toT = S∪µ(S) atz. Notice that

under the current assumptions, such a coalitionSalways exists. By derived consistency of

σ , z|T ∈ σ(γT,z). Since|S| = |µ(S)|, by the complaint monotonicity on sectors’ size ofσ

applied to the derived marketγT,z, we have

max
i∈S

{pT,z
i −zi}= max

j∈µ(S)
{qT,z

j −zj}. (13)

From the definition ofpT,z, we obtain

max
i∈S

{

pT,z
i −zi

}

= max
i∈S

{

max

{

pi , max
k∈M′\µ(S)

{aik −zk}

}

−zi

}

= max
i∈S

k∈M′\µ(S)

{pi −zi ,aik −zi −zk}

(14)

Similarly, making use of the definition ofqT,z,

max
j∈µ(S)

{qT,z
j −zj}= max

j∈µ(S)
k∈M\S

{q j −zj ,ak j −zj −zk}, (15)

and, as a consequence, expression (13) is equivalent to

max
i∈S

k∈M′\µ(S)

{pi −zi ,aik −zi −zk}= max
j∈µ(S)
k∈M\S

{q j −zj ,ak j −zj −zk}, (16)

14



for all non-empty coalitionS⊆ M with |S| = |µ(S)| and all z∈ σ(γ), beingσ a solu-

tion satisfying derived consistency and complaint monotonicity on sectors’ size. Since the

nucleolus also satisfies these two axioms, we have

max
i∈S

k∈M′\µ(S)

{pi −ηi ,aik −ηi −ηk}= max
j∈µ(S)
k∈M\S

{q j −η j ,ak j −η j −ηk}, (17)

for all /0 6= S⊆ M with |S| = |µ(S)|. Now, from z 6= η, either there exists a non-empty

coalitionS∗ ⊆ M such thatzi > ηi for all i ∈ S∗ andzi ≤ ηi for all i ∈ M \S∗, or there exists

a non-empty coalitionS∗ ⊆ M such thatzi < ηi for all i ∈ S∗ andzi ≥ ηi for all i ∈ M \S∗.

Let us assume without loss of generality that the first case holds, since the proof in the

second case is analogous. That is, assume there exists /06= S∗ ⊆ M such that

zi > ηi for all i ∈ S∗andzi ≤ ηi for all i ∈ M \S∗. (18)

Notice that all agents inS∗ are matched byµ. Indeed, if there existed an agent inS∗

unassigned,i ∈ S∗ \Dom(µ), from z∈C(γ) we would havezi = pi > ηi , in contradiction

with the nucleolus being in the core. Fromz∈C(γ) follows zj < η j for all j ∈ µ(S∗), and

the reader will also check thatzj ≥ η j for all j ∈ M′ \µ(S∗). Then,

max
i∈S∗

j∈M′\µ(S∗)

{pi −zi ,ai j −zi −zj} < max
i∈S∗

j∈M′\µ(S∗)

{pi −ηi ,ai j −ηi −η j}

= max
j∈µ(S∗)
i∈M\S∗

{q j −η j ,ai j −ηi −η j}

< max
j∈µ(S∗)
i∈M\S∗

{q j −zj ,ai j −zi −zj},

(19)

where the equality follows from (17). We have then reached a contradiction with (16).

Hence,z= η.

The axioms in Theorem 7 are clearly independent because the core satisfies derived

consistency on the class of assignment games but not complaint monotonicity on sectors’

size and Thompson’s fair division point satisfies the secondaxiom but fails to satisfy the

first one, since it generally differs from the nucleolus.

Let us remark that, under the assumption|M| = |M′|, complaint monotonicity on sec-

tors’ size can also be interpreted in geometric terms when combined with core selection.

15



Notice that, by adding dummy players, that is, null rows or columns in the assignment ma-

trix and null reservation values, we can assume without lossof generality that the number

of buyers equals the number of sellers, since this does not modify the nucleolus payoff of

the non-dummy agents. Then, saying that solutionσ on ΓAG satisfies complaint mono-

tonicity on sectors’ size and|M|= |M′|, is equivalent to saying

min
i∈M

{ui − pi}= min
j∈M′

{v j −q j}, (20)

for all (u,v) ∈ σ(γ). Suppose now thatσ(γ)⊆C(γ), whereσ is a solution onΓAG. For all

S⊆M, let the incidence vectoreS∈R
M be defined by(eS)i = 1 for all i ∈Sand(eS)i = 0 for

all i ∈ M \S. The vectoreT ∈ R
M′

, for all T ⊆ M′, is defined analogously. Takeε1(u,v) =

mini∈M{ui − pi} and notice thatε1(u,v) = max{ε ≥ 0 | (u− ε · eM,v+ ε · eM′
) ∈ C(γ)}.

The reason is that, taking into account(u,v) ∈C(γ), for all ε ≥ 0 efficiency and coalitional

rationality for mixed-pair coalitions hold trivially for the payoff vector(u− ε ·eM
,v+ ε ·

eM′
) and, as long asε ≤ ε1(u,v), individual rationality also holds. Similarly, if we write

ε2(u,v) = minj∈M′{v j − q j}, we can check thatε2(u,v) = max{ε ≥ 0 | (u+ ε · eM
,v−

ε · eM′
) ∈ C(γ)}. As a consequence, ifσ satisfies core selection, then for each chosen

allocation(u,v) ∈ R
M ×R

M′
, the largest per capita amount that sectorM can transfer to

sectorM′ without leaving the core equals the largest per capita amount that sectorM′

can transfer to sectorM without getting outside the core. This means that core elements

satisfying complaint monotonicity on sectors’ size, when|M| = |M′|, are at the midpoint

of a certain 45◦-slope range within the core.

As a consequence of the axiomatization in Theorem 7, we can show that a stronger

form of the above bisection property characterizes the nucleolus.

Let γ = (M,M′,A, p,q) be an assignment market with|M| = |M′|. For each /06= S⊆

M, /0 6= T ⊆ M′, |S| = |T|, we definethe largest equal amount that can be transferred

from players in S to players in T with respect to the core allocation (u,v) ∈ C(γ), while

remaining in the core ofγ, by

δ γ
S,T(u,v) = max{ε ≥ 0 | (u− εeS

,v+ εeT) ∈C(γ)}. (21)

Similarly,

δ γ
T,S(u,v) = max{ε ≥ 0 | (u+ εeS

,v− εeT) ∈C(γ)}. (22)
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The following geometric characterization extends the bisection property provided by

Maschler et al.(1979) to characterize the intersection of the kernel6 and the core of arbitrary

coalitional games. In the case of assignment games, it turnsout that the kernel is always

included in the core (Driessen 1998). It is known that a core element of an assignment

marketγ belongs to its kernel if and only ifδ γ
{i},{µ(i)}(u,v) = δ γ

{µ(i)},{i}(u,v) for all i ∈ M

assigned by an optimal matchingµ of γ.

Next theorem shows that, for assignment games, if we requirethis bisection property

to hold not only for all optimally matched pairs but for all optimally matched coalitions

we geometrically characterize the nucleolus. The main point is that if a core element(u,v)

satisfiesδ γ
S,µ(S)(u,v) = δ γ

µ(S),S(u,v) for all S⊆ M, then it satisfies equation (16), which has

been proved to characterize the nucleolus among the set of core elements.

This result generalizes the one given in Llerena and Núñez(2011) for the classical

assignment game of Shapley and Shubik (1972).

Theorem 8. Let γ = (M,M′
,A, p,q) be a square assignment market andµ ∈ M ∗

γ (M,M′).

Then, the nucleolus is the unique core allocation satisfying δ γ
S,µ(S)(η(γ)) = δ γ

µ(S),S(η(γ)),

for all /0 6= S⊆ M.

Figure 2 illustrates the above geometric characterizationof the nucleolus.

u1

 u2

N
A

B

C

D

 E

F

Figure 2:

6The kernel is a set-solution concept for coalitional games that was introduced by Davis and Maschler

(1965). The kernel always contains the nucleolus.
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In light grey we represent the core of a 2×2 assignment game in the planeu1,u2 of

the buyers’ payoffs. If we assume thatµ = {(1,1),(2,2)} is an optimal matching, then the

nucleolus is the unique core allocation (denoted byN in the picture) that bisects at the same

time the horizontal segment[A,B], the vertical segment[C,D] and the 45◦-slope segment

[E,F]. The higher the dimension of the core, the more the number of bisection equalities

that must be considered.
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