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Abstract. Given a compact Riemannian manifold M of dimension m � 2, we study
the space of functions of L2.M/ generated by eigenfunctions of eigenvalues less than
L � 1 associated to the Laplace–Beltrami operator on M . On these spaces we give a
characterization of the Carleson measures and the Logvinenko–Sereda sets.
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1 Introduction and statement of the results

Let .M; g/ be a smooth, connected, compact Riemannian manifold without bound-
ary of dimension m � 2. Let dV be the volume element of M associated to the
metric gij . Let�M be the Laplacian onM associated to the metric gij . It is given
in local coordinates by

�Mf D
1p
jgj

X
i;j

@

@xi

�p
jgjgij

@f

@xj

�
;

where jgj D det.gij / and .gij /ij is the inverse matrix of .gij /ij . AsM is compact,
gij and all its derivatives are bounded and we assume that the metric g is non-
singular at each point of M .

Since M is compact, the spectrum of the Laplacian is discrete and there is a
sequence of eigenvalues

0 � �1 � �2 � � � � ! 1

and an orthonormal basis �i of smooth real eigenfunctions of the Laplacian, i.e.,
�M�i D ��i�i . So L2.M/ decomposes into an orthogonal direct sum of eigen-
functions of the Laplacian.
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2 J. Ortega-Cerdà and B. Pridhnani

We consider the following spaces of L2.M/:

EL D

²
f 2 L2.M/ W f D

kLX
iD1

ˇi�i ; �M�i D ��i�i ; �kL � L

³
;

where L � 1 and kL D dimEL. We see that EL is the subspace of L2.M/ gene-
rated by eigenfunctions of eigenvalues � � L. Thus in EL we consider functions
inL2.M/with a restriction on the support of its Fourier transform. It is, in a sense,
a Paley–Wiener type space on M with bandwidth L.

The motivation of this paper is to show that the spacesEL behave like the space
defined in Sd (d > 1) of spherical harmonics of degree less than

p
L. In fact, the

space EL is a generalization of the spherical harmonics and the role of them are
played by the eigenfunctions. The cases M D S1 and M D Sd (d > 1) have
been studied in [16] and [13], respectively.

This similarity between eigenfunctions of the Laplacian and polynomials is not
new; for instance, Donnelly and Fefferman showed in [3, Theorem 1] that on a
compact manifold, an eigenfunction of eigenvalue � behaves essentially like a
polynomial of degree

p
�. In this direction they proved the local L1-Bernstein

inequality stated below.

Theorem (Donnelly–Fefferman). Let M be as above with m D dimM . If u is an
eigenfunction of the Laplacian �Mu D ��u, then there exists r0 D r0.M/ such
that for all r < r0 we have

max
B.x;r/

jruj �
C�.mC2/=4

r
max
B.x;r/

juj:

The proof of the above estimate is rather delicate. Donnelly and Fefferman
conjectured that it is possible to replace �.mC2/=4 by

p
� in the inequality. If the

conjecture holds, we have in particular a global Bernstein type inequality:

kruk1 .
p
� kuk1 : (1.1)

In fact, this weaker estimate holds and a proof will be given later. This fact sug-
gests that the right metric to study the space EL should be rescaled by a factor
1=
p
L because in balls of radius 1=

p
�, a bounded eigenfunction of eigenvalue �

oscillates very little.
In the present work we will study for which measures � D ¹�LºL one has

ˆ
M

jf j2d�L �

ˆ
M

jf j2 dV; 8f 2 EL; (1.2)

with constants independent of f and L.
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Carleson measures and Logvinenko–Sereda sets on compact manifolds 3

We will also study the inequalityˆ
M

jf j2d�L .
ˆ
M

jf j2 dV

that defines the Carleson measures and we will present a geometric characteriza-
tion of them. Inequality (1.2) will be studied only for the special case

d�L D �ALdV ;

where A D ¹ALºL is a sequence of sets in the manifold. In case (1.2) holds, we
say that A is a sequence of Logvinenko–Sereda sets. Our two main results are the
following:

Theorem 1.1. The sequence of sets A D ¹ALºL is Logvinenko–Sereda if and only
if there is an r > 0 such that

inf
L

inf
z2M

vol.AL \ B.z; r=
p
L//

vol.B.z; r=
p
L//

> 0:

Theorem 1.2. Suppose � D ¹�LºL is a sequence of measures on M . Then � is
L2-Carleson for M if and only if there exists a C > 0 such that for all L

sup
�2M

�L.B.�; 1=
p
L//

vol.B.�; 1=
p
L//
� C:

In what follows, when we write A . B , A & B or A � B , we mean that
there are constants depending only on the manifold such that A � CB , A � CB
or C1B � A � C2B , respectively. Also, the value of the constants appearing
during a proof may change, but they will be still denoted by the same letter. We
will denote by B.�; r/ a geodesic ball in M of center � and radius r and B.z; r/
will denote an Euclidean ball in Rm of center z and radius r .

The structure of the paper is the following: in the second section, we will ex-
plain the asymptotics of the reproducing kernel of the space EL. In the third sec-
tion, we shall discuss one of the tools used: the harmonic extension of functions in
the space EL. Following this, we will prove Theorem 1.2 and in the last section,
we will prove our main result that is Theorem 1.1.

2 The reproducing kernel of EL

Let

KL.z; w/ WD

kLX
iD1

�i .z/�i .w/ D
X
�i�L

�i .z/�i .w/:
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4 J. Ortega-Cerdà and B. Pridhnani

This function is the reproducing kernel of the space EL, i.e.,

f .z/ D hf;KL.z; �/i; 8f 2 EL:

Note that dim.EL/ D kL D # ¹�i � Lº : The function KL is also called the spec-
tral function associated to the Laplacian. Hörmander proved in [7] the following
estimates:

(1) KL.z; w/ D O.L.m�1/=2/, z ¤ w.

(2) KL.z; z/ D �m
.2�/m

Lm=2 CO.L.m�1/=2/ (uniformly in z 2 M ), where �m D

2�m=2=.m�.m=2//.

(3) kL D
vol.M/�m
.2�/m

Lm=2 CO.L.m�1/=2/.

In fact, in [7] there are estimates for the spectral function associated to any elliptic
operator of order n � 1 with constants depending only on the manifold.

So for L big enough we have kL � Lm=2 and

kKL.z; �/k
2
2 D KL.z; z/ � L

m=2
� kL

with constants independent of L and z.

3 Harmonic extension

In what follows, given f 2 EL, we will denote by h the harmonic extension of f
in N DM �R. The metric that we consider in N is the product metric, i.e., if we
denote it by Qgij for i D 1; : : : ; mC 1, then

. Qgij /i;jD1;:::;mC1 D

 
.gij /

m
i;jD1 0

0 1

!
:

Using this matrix, we can calculate the gradient and the Laplacian forN . If h.z; t/
is a function defined on N , then

jrNh.z; t/j
2
D jrMh.z; t/j

2
C

�
@h

@t
.z; t/

�2
and

�Nh.z; t/ D �Mh.z; t/C
@2h

@t2
.z; t/:

Note that jrMh.z; t/j � jrNh.z; t/j.
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Carleson measures and Logvinenko–Sereda sets on compact manifolds 5

Let f 2 EL, we know that

f D

kLX
iD1

ˇi�i ; �M�i D ��i�i ; 0 � �i � L:

Define for .z; t/ 2 N

h.z; t/ D

kLX
iD1

ˇi�i .z/e
p
�i t :

Observe that h.z; 0/ D f .z/. Moreover, jrMf .z/j2 � jrNh.z; 0/j2.
The function h is harmonic in N because

�Nh.z; t/ D

kLX
iD1

h
ˇie
p
�i t�M�i .z/C ˇi�i .z/�R.e

p
�i t /

i
D 0:

For the harmonic extension, we do not have the mean-value property because it is
not true for all manifolds (only for the harmonic manifolds, see [19] for a complete
characterization of them). What is always true is a “submean-value property”
(with a uniform constant) for positive subharmonic functions, see for example
[17, Chapter II, Section 6]).

Observe that since h is harmonic on N , jhj2 is a positive subharmonic function
onN . In fact, jhjp is subharmonic for all p � 1 (for a proof see [5, Proposition 1]).
Therefore, we know that for all r < R0.M/

jh.z; t/j2 .
 
B.z;r=

p
L/�Ir .t/

jh.w; s/j2dV.w/ds;

where R0.M/ > 0 denotes the injectivity radius of the manifold M and where
Ir.t/ D .t � r=

p
L; t C r=

p
L/. In particular,

jf .z/j2 � CrL
.mC1/=2

ˆ
B.z;r=

p
L/�Ir

jh.w; s/j2dV.w/ds; (3.1)

where Ir D Ir.0/. The following result relates the L2-norm of f and h.

Proposition 3.1. Let r > 0 be fixed. If f 2 EL, then

2re�2r kf k22 �
p
L khk2L2.M�Ir / � 2re

2r
kf k22 : (3.2)

Therefore, for r < R0.M/
p
L

2r
khk2L2.M�Ir / � kf k

2
2

with constants depending only on the manifold M .
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6 J. Ortega-Cerdà and B. Pridhnani

Proof. Using the orthogonality of ¹�iºi , we have

khk2L2.M�Ir / D

ˆ
Ir

ˆ
M

ˇ̌̌̌ kLX
iD1

ˇi�i .z/e
p
�i t

ˇ̌̌̌2
dV.z/dt

D

ˆ
Ir

kLX
iD1

ˆ
M

jˇi j
2
j�i .z/j

2dV.z/e2
p
�i tdt �

ˆ
Ir

e2
p
Ltdt kf k22 :

Similarly, one can prove the left hand side inequality of (3.2).

We recall now a result proved by Schoen and Yau that estimates the gradient of
harmonic functions.

Theorem (Schoen–Yau). Let N be a complete Riemannian manifold with Ricci
curvature bounded below by �.n � 1/K (n is the dimension of N and K is a
positive constant). Suppose Ba is a geodesic ball in N with radius a and h is an
harmonic function on Ba. Then

sup
Ba=2

jrhj � Cn

�
1C a

p
K

a

�
sup
Ba

jhj; (3.3)

where Cn is a constant depending only on the dimension of N .

For a proof see [17, Corollary 3.2, page 21].

Remark 3.2. We will use Schoen and Yau’s estimate in the following context.
TakeN DM �R. Observe that Ricc.N / D Ricc.M/, which is bounded from be-
low becauseM is compact. Note that N is complete because it is a product of two
complete manifolds. We put a D r=

p
L (r < R0.M/) andBa D B.z; r=

p
L/�Ir

(note that this is not the ball of center .z; 0/ 2 N and radius r=
p
L, but it contains

and it is contained in such ball of comparable radius).

Using Schoen and Yau’s theorem, we deduce the global Bernstein inequality for
a single eigenfunction.

Corollary 3.3 (Bernstein inequality). If u is an eigenfunction of eigenvalue �, then

kruk1 .
p
� kuk1 : (3.4)

Proof. The harmonic extension of u is h.z; t/ D u.z/e
p
�t . Applying inequality

(3.3) to h (taking a D R0.M/=.2
p
�/),

jru.z/j .
p
� khkL1.M�IR0=2/

�
p
� kuk1 :
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Carleson measures and Logvinenko–Sereda sets on compact manifolds 7

We conjecture that in inequality (3.4) one can replace u by any function f 2EL,
i.e.,

krf k1 .
p
L kf k1 :

For instance, as a direct consequence of Green’s formula we have theL2-Bernstein
inequality for the space EL:

krf k2 .
p
L kf k2 ; 8f 2 EL:

For our purpose, it is sufficient to have a weaker Bernstein type inequality that
compares the L1-norm of the gradient with the L2-norm of the function.

Proposition 3.4. Let f 2 EL. Then there exists a universal constant C such that

krf k1 � C
p
kL
p
L kf k2 :

For the proof, we need the following lemma.

Lemma 3.5. For all f 2 EL and 0 < r < R0.M/=2,

jrf .z/j2 � CrL
.mC2C1/=2

ˆ
B.z;r=

p
L/�Ir

jh.w; s/j2dV.w/ds:

Proof. Using inequality (3.3) and the submean-value inequality for jhj2, we have

jrf .z/j2 � jrh.z; 0/j2

.
L

r2
sup

B.z;r=
p
L/�Ir

jh.w; t/j2

.
L.mC1C2/=2

QrmC2C1

ˆ
B.z;Qr=

p
L/�IQr

jh.�; s/j2dV.�/ds;

where Qr D 2r .

Proof of Proposition 3.4. By Lemma 3.5, given 0 < r < R0.M/=2, there exists a
constant Cr such that

jrf .z/j2 � CrkLL
p
L

ˆ
M�Ir

jh.w; s/j2dV.w/ds
Proposition 3.1
� CrkLL kf k

2
2 :

Taking r D R0.M/=4, we get jrf .z/j2 � CkLL kf k
2
2 for all z 2M .
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8 J. Ortega-Cerdà and B. Pridhnani

4 Characterization of Carleson measures

Definition 4.1. Let � D ¹�LºL�0 be a sequence of measures on M . We say that
� is an L2-Carleson sequence forM if there exists a positive constant C such that
for all L and fL 2 EL ˆ

M

jfLj
2d�L � C

ˆ
M

jfLj
2dV:

Theorem 4.2. Let � be a sequence of measures onM . Then � is L2-Carleson for
M if and only if there exists a C > 0 such that for all L

sup
�2M

�L.B.�; 1=
p
L// �

C

kL
: (4.1)

Remark 4.3. Condition (4.1) can be viewed as

sup
�2M

�L.B.�; 1=
p
L//

vol.B.�; 1=
p
L//

. 1:

First, we prove the following result.

Lemma 4.4. Let � be a sequence of measures on M . Then the following condi-
tions are equivalent.

(1) There exists a constant C D C.M/ > 0 such that for each L

sup
�2M

�L.B.�; 1=
p
L// �

C

kL
:

(2) There exist c D c.M/ > 0 (c < 1 small) and C D C.M/ > 0 such that for
all L

sup
�2M

�L.B.�; c=
p
L// �

C

kL
:

Proof. Obviously, the first condition implies the second one since

B.�; c=
p
L/ � B.�; 1=

p
L/:

Let us prove the converse. The manifold M is covered by the union of balls of
center � 2 M and radius c=

p
L. Taking into account the 5-r covering lemma

(see [15, Chapter 2, page 23] for more details), we get a family of disjoint balls,
denoted by Bi D B.�i ; c=

p
L/, such that M is covered by the union of 5Bi . This

union may be finite or countable. Let � 2 M and consider B WD B.�; 1=
p
L/.
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Carleson measures and Logvinenko–Sereda sets on compact manifolds 9

Suppose n is the number of balls NBi such that NB \ N5Bi ¤ ;. Since NB is compact,
we have a finite number of these balls so that

NB �

n[
iD1

N5Bi :

We claim that n is independent of L. In this case, we get

�L.B/ �

nX
iD1

�L.B.�i ; 5c=
p
L// .

n

kL

and thus our statement is proved. Indeed, using the triangle inequality, we have for
all i D 1; : : : ; n

B.�i ; c=
p
L/ � B.�; 10=

p
L/:

Therefore,
n[
iD1

B.�i ; c=
p
L/ � B.�; 10=

p
L/;

where the union is a disjoint union of balls. Now,

10m

Lm=2
� vol.B.�; 10=

p
L// �

nX
iD1

vol.Bi / � n
cm

Lm=2
:

Hence n . .10=c/m and we can choose it independently of L.

Now we can prove the characterization of the Carleson measures.

Theorem 4.2. Assume condition (4.1) holds. We need to prove the existence of a
constant C > 0 (independent of L) such that for each f 2 ELˆ

M

jf j2d�L � C

ˆ
M

jf j2dV:

Let f 2 EL with L and r > 0 (small) fixed. We have
ˆ
M

jf .z/j2d�L
(3.1)
� CrL

.mC1/=2

ˆ
M

ˆ
B.z;r=

p
L/�Ir

jh.w; s/j2dV.w/dsd�L.z/

D CrL
.mC1/=2

ˆ
M�Ir

jh.w; s/j2�L.B.w; r=
p
L//dV.w/ds

� CrL
.mC1/=2 1

kL

ˆ
M�Ir

jh.w; s/j2dV.w/ds
Proposition 3.1
� kf k22

with constants independent of L. Therefore, � D ¹�LºL is L2-Carleson for M .
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10 J. Ortega-Cerdà and B. Pridhnani

For the converse, assume that � is L2-Carleson for M . We have to show the
existence of a constant C such that for all L � 1 and � 2M , �L.B.�; c=

p
L// �

C=kL (for some small constant c > 0). We will argue by contradiction, i.e.,
assume that for all n 2 N there exists Ln and a ball Bn of radius c=

p
Ln such that

�Ln.Bn/ > n=kLn � n=L
m=2
n (c will be chosen later). Let bn be the center of the

ball Bn. Define Fn.w/ D KLn.bn; w/. Note that the function L�m=4n Fn 2 ELn
and kFnk22 D KLn.bn; bn/ � L

m=2
n . Therefore,

C �

ˆ
M

jL�m=4n Fnj
2dV &

ˆ
M

jL�m=4n Fnj
2d�Ln &

ˆ
Bn

jL�m=4n Fnj
2d�Ln

� inf
w2Bn

jL�m=4n Fn.w/j
2�Ln.Bn/ & inf

w2Bn
jFn.w/j

2 n

Lmn
:

Now we will study this infimum. Let w 2 Bn D B.bn; c=
p
Ln/. Then

jFn.bn/j � jFn.w/j � jFn.bn/ � Fn.w/j �
c
p
Ln
krFnk1

Proposition 3.4
�

c
p
Ln
C1
p
kLn

p
Ln kFnk2 � cC1kLn :

We pick c small enough so that

inf
Bn
jFn.w/j

2
� CLmn :

Finally, we have shown thatC & n for all n 2 N. This gives the contradiction.

The following result is a Plancherel–Pólya type theorem but in the context of
the Paley–Wiener spaces EL. Before we give the statement of the result, we shall
introduce the concept of a separated family of points.

Definition 4.5. Suppose Z D ¹zLj ºj2¹1;:::;mLº;L�1 �M is a triangular family of
points, wheremL !1 as L!1. We say that Z is uniformly separated if there
exists � > 0 such that

d.zLj ; zLk/ �
�
p
L
; 8j ¤ k; 8L � 1;

where � is called the separation constant of Z.

Theorem 4.6 (Plancherel–Pólya Theorem). Let Z be a triangular family of points
in M , i.e., Z D ¹zLj ºj2¹1;:::;mLº;L�1 �M . Then Z is a finite union of uniformly
separated families if and only if there exists a constant C > 0 such that for all
L � 1 and fL 2 EL

1

kL

mLX
jD1

jfL.zLj /j
2
� C

ˆ
M

jfL.�/j
2dV.�/: (4.2)
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Carleson measures and Logvinenko–Sereda sets on compact manifolds 11

Remark 4.7. The above result is interesting because the inequality (4.2) means
that the sequence of normalized reproducing kernels is a Bessel sequence for EL,
i.e.,

mLX
jD1

jhf; QKL. � ; zLj /ij
2 . kf k22 8f 2 EL;

where ¹ QKL. � ; zLj /ºj are the normalized reproducing kernels. Note that we have
j QKL. � ; zLj /j

2 � jKL. � ; zLj /j
2k�1L . That is the reason why the quantity kL ap-

pears in inequality (4.2).

Proof. This is a consequence of Theorem 4.2 applied to the measures

�L D
1

kL

mLX
jD1

ızLj ; L � 1:

5 Characterization of Logvinenko–Sereda sets

Before we state the characterization, we would like to recall some history of these
kind of inequalities. The classical Logvinenko–Sereda (L–S) theorem describes
some equivalent norms for functions in the Paley–Wiener space PWp

�. The precise
statements is the following:

Theorem 5.1 (L–S). Let � be a bounded set and 1 � p < C1. A set E � Rd

satisfies ˆ
Rd
jf .x/jpdx � Cp

ˆ
E

jf .x/jpdx; 8f 2 PWp
�;

if and only if there is a cube K � Rd such that

inf
x2Rd

j.K C x/ \Ej > 0:

One can find the original proof in [11] and another proof can be found in
[6, p. 112–116].

Luecking studied in [12] this notion for the Bergman spaces. Following his
ideas, in [14], the following result has been proved.

Theorem 5.2. Let 1 � p < C1, � be a doubling measure and let A D ¹ALºL�0
be a sequence of sets in Sd . Then A is Lp.�/-L–S if and only if A is �-relatively
dense.

For the precise definitions and notations see [14]. Using the same ideas, we will
prove the above theorem for the case of our arbitrary compact manifoldM and the
measure given by the volume element.
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12 J. Ortega-Cerdà and B. Pridhnani

In what follows, A D ¹ALºL will be a sequence of sets in M .

Definition 5.3. We say that A is L–S if there exists a constant C > 0 such that for
any L and fL 2 EL ˆ

M

jfLj
2dV � C

ˆ
AL

jfLj
2dV:

Definition 5.4. The sequence of sets A �M is relatively dense if there exist r > 0
and � > 0 such that for all L

inf
z2M

vol.AL \ B.z; r=
p
L//

vol.B.z; r=
p
L//

� � > 0:

Remark 5.5. It is equivalent to having this property for all L � L0 for some L0
fixed.

A natural example of relatively dense sets is the following. Consider a separated
family inM , Z D ¹zLj ºj2¹1;:::;mLº;L�1, with separation constant s. Let us denote
AL DM n

SmL
jD1B.zLj ;

s

10
p
L
/. It is easy to check that the family A D ¹ALºL

is relatively dense.
Our main statement is the following:

Theorem 5.6. A is L–S if and only if A is relatively dense.

We shall prove the two implications in the statement separately. First we will
show that this condition is necessary. Before proceeding, we construct functions
in EL with a desired decay of its L2-integral outside a ball.

Proposition 5.7. Given � 2 M and � > 0, there exist functions fL D fL;� 2 EL
and R0 D R0.�;M/ > 0 such that

(1) kfLk2 D 1.

(2) For all L � 1, ˆ
MnB.�;R0=

p
L/

jfLj
2dV < �:

(3) For all L � 1 and any subset A �M ,

ˆ
A

jfLj
2dV � C1

vol.A \ B.�;R0=
p
L//

vol.B.�; R0=
p
L//

C �;

where C1 is a constant independent of L, � and fL.
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Carleson measures and Logvinenko–Sereda sets on compact manifolds 13

Remark. In the above proposition, the R0 does not depend on the point �.

Proof. Given z; � 2 M and L � 1, let SNL .z; �/ denote the Riesz kernel of index
N 2 N associated to the Laplacian, i.e.,

SNL .z; �/ D

kLX
iD1

�
1 �

�i

L

�N
�i .z/�i .�/:

Note that S0L.z; �/ D KL.z; �/. The Riesz kernel satisfies the following inequal-
ity:

jSNL .z; �/j � CL
m=2.1C

p
Ld.z; �//�N�1: (5.1)

This estimate has its origins in Hörmander’s article [8, Theorem 5.3]. Estimate
(5.1) can be found also in [18, Lemma 2.1].

Note that on the diagonal, SNL .z; z/ � CNL
m=2. The upper bound is trivial by

definition and the lower bound follows from

SNL .z; z/ �

kL=2X
iD1

�
1 �

�i

L

�N
�i .z/�i .z/ � 2

�NKL=2.z; z/ � CNL
m=2:

Similarly, we observe that kSNL . � ; �/k
2
2 � CNL

m=2.
Given � 2M , define for all L � 1

fL;�.z/ WD fL.z/ D
SNL .z; �/

kSNL . � ; �/k2
:

We will choose the order N later. Each fL belongs to the space EL and has unit
L2-norm. Let us verify the second property claimed in Proposition 5.7. Fix a
radius R. Using the estimate (5.1), we get
ˆ
MnB.�;R=

p
L/

jfLj
2dV � CNL

m=2

ˆ
MnB.�;R=

p
L/

dV

.
p
Ld.z; �//2.NC1/

D .?/:

For any t � 0, consider the following set:

At WD

´
z 2M W d.z; �/ �

R
p
L
; d.z; �/ <

t�1=.2.NC1//
p
L

µ
:

Note that for t > R�2.NC1/ we have At D ;, and for t < R�2.NC1/ we obtain
At � B.�; t

�1=.2.NC1//=
p
L/. Using the distribution function, we have

.?/ D CNL
m=2

ˆ R�2.NC1/

0

vol.At /dt � CN
1

R2.NC1/�m
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14 J. Ortega-Cerdà and B. Pridhnani

provided N C 1 > m=2. Thus if we pick R0 big enough, we get
ˆ
MnB.�;R0=

p
L/

jfLj
2dV < �: (5.2)

Now the third property claimed in Proposition 5.7 follows from (5.2). Indeed,
given any subset A in the manifold M ,

ˆ
A

jfLj
2dV �

ˆ
A\B.�;R0=

p
L/

jfLj
2dV C �:

Observe thatˆ
A\B.�;R0=

p
L/

jfLj
2dV

. CNL
m=2

ˆ
A\B.�;R0=

p
L/

dV.z/

.1C
p
Ld.z; �//2.NC1/

. CNR
m
0

vol.A \ B.�;R0=
p
L//

vol.B.�; R0=
p
L//

:

Now we are ready to prove one of the implications in the characterization of the
L–S sets.

Proposition 5.8. Assume A is L–S. Then it is relatively dense.

Proof. Assume A is L–S, i.e.,
ˆ
M

jfLj
2dV � C

ˆ
AL

jfLj
2dV:

Let � 2 M be an arbitrary point. Fix � > 0 and consider the R0 and the functions
fL 2 EL given by Proposition 5.7. Using the third property of Proposition 5.7 for
the sets AL, we get for all L � 1

1 D kfLk
2
2 � C

ˆ
AL

jfLj
2
� CC1

vol.AL \ B.�;R0=
p
L//

vol.B.�; R0=
p
L//

C C�;

where C1 is a constant independent of L, � and fL. Therefore, we have proved
that there exist constants c1 and c2 such that

vol.AL \ B.�;R0=
p
L//

vol.B.�; R0=
p
L//

� c1 � c2�:

Hence A is relatively dense provided � > 0 is small enough.
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Carleson measures and Logvinenko–Sereda sets on compact manifolds 15

Before we continue, we will prove a result concerning the uniform limit of
harmonic functions with respect to some metric.

Lemma 5.9. Let ¹Hnºn be a family of uniformly bounded real functions defined
on the ball B.0; �/ � Rd for some � > 0. Let g be a non-singular C1 metric
such that g and all its derivatives are uniformly bounded and gij .0/ D ıij . Define
gn.z/ D g.z=Ln/ (the rescaled metrics), whereLn is a sequence of values tending
to1 as n increases. Assume the family ¹Hnºn converges uniformly on compact
subsets of B.0; �/ to a limit function H W B.0; �/ ! R and Hn is harmonic with
respect to the metric gn (i.e.,�gnHn D 0). Then the limit functionH is harmonic
in the Euclidean sense.

Proof. Let ' 2 C1c .B.0; �//. We have
ˆ

B.0;�/
�gf 'dV D

ˆ
B.0;�/

f�g'dV:

By direct computation, we see that�gn' ! �' uniformly and�gn' is uniformly
bounded on B.0; �/. Then

0 D

ˆ
B.0;�/

Hn�gn'dVgn !

ˆ
B.0;�/

H�'dm.z/ D

ˆ
B.0;�/

�H'dm.z/:

Therefore, the limit function H is harmonic in the weak sense. Applying Weyl’s
lemma, we conclude that H is harmonic in the Euclidean sense.

Remark 5.10. The above argument also holds if we have a sequence of metrics
gn converging uniformly to g whose derivatives also converge uniformly to the
derivatives of g. In this case, the conclusion would be that the limit is harmonic
with respect to the limit metric g.

Now, we shall prove the sufficient condition of the main result.

Proposition 5.11. If A is relatively dense, then it is L–S.

Proof. Fix � > 0 and r > 0. Let D WD D�;r;fL be

D D

²
z 2M W jfL.z/j

2
D jhL.z; 0/j

2
� �

 
B.z; rp

L
/�Ir

jhL.�; t/j
2dV.�/dt

³
;

where hL is the harmonic extension of fL defined as

hL.z; t/ D

kLX
iD1

ˇi�i .z/e
p
�i t ; fL.z/ D

kLX
iD1

ˇi�i .z/:
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16 J. Ortega-Cerdà and B. Pridhnani

The norm of fL is almost concentrated on D because
ˆ
MnD

jfL.z/j
2dV.z/

. �
1

l.Ir/

ˆ
M�Ir

jhL.�; t/j
2L

m=2

rm

ˆ
.MnD/\B.�;r=

p
L/

dV.z/dV.�/dt

. �
1

l.Ir/

ˆ
M�Ir

jhL.�; t/j
2dV.�/dt

Proposition 3.1
. e2r�

ˆ
M

jfLj
2dV:

It is enough to prove ˆ
D

jfLj
2dV .

ˆ
AL

jfLj
2dV (5.3)

with constants independent of L, and for this it is sufficient to show that there
exists a constant C > 0 such that for all w 2 D

jfL.w/j
2
�

C

vol.B.w; r=
p
L//

ˆ
AL\B.w;r=

p
L/

jfL.�/j
2dV.�/ (5.4)

because then (5.3) follows by integrating (5.4) over D. So we need to prove (5.4).
This is the outline of the proof: We assume that (5.4) is not true in order to

construct functions that satisfy the opposite inequality. Then we will parameterize
these functions and prove that their limit is harmonic with unit norm and is zero in
a subset of positive measure. This will lead to a contradiction. Now we proceed
with the details.

Step 1. Parametrization and rescalement of the functions.

If (5.4) is not true, then for all n 2 N there exist Ln, functions fn 2 ELn and
wn 2 Dn D D�;r;fn such that

jfn.wn/j
2 >

n

vol.B.wn; r=
p
Ln//

ˆ
ALn\B.wn;r=

p
Ln/

jfnj
2dV:

By the compactness of the manifold M , there exists �0 D �0.M/ > 0 such that
for all w 2 M the exponential map, expw W B.0; �0/! B.w; �0/, is a diffeomor-
phism and .B.w; �0/; exp�1w / is a normal coordinate chart, where w is mapped
to 0 and the metric g verifies gij .0/ D ıij .

For all n 2 N, take expn.z/ WD expwn.rz=
p
Ln/, which is defined in B.0; 1/

and acts as follows:

expn W B.0; 1/ �! B.0; r=
p
Ln/ �! B.wn; r=

p
Ln/

z 7�!
rz
p
Ln

7�! expwn.rz=
p
Ln/ DW w:
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Carleson measures and Logvinenko–Sereda sets on compact manifolds 17

Consider Fn.z/ WD cnfn.expn.z// W B.0; 1/ ���! B.wn; r=
p
Ln/

cnfn
���! R and

the corresponding harmonic extension hn of fn. Set

Hn.z; t/ WD cnhn.expn.z/; rt=
p
Ln/;

defined on B.0; 1/�J1 (where J1 D .�1; 1/), where cn is a normalization constant
such that ˆ

B.0;1/�J1

jHn.w; s/j
2d�n.w/ds D 1:

Step 2. The functions Hn are uniformly bounded.

Let �n be the measure such that

d�n.z/ D

q
jgj.expwn.rz=

p
Ln//dm.z/:

Note that
ˆ
B.wn;

rp
Ln
/

jfnj
2dV D

rm

L
m=2
n

1

jcnj2

ˆ
B.0;1/

jFn.z/j
2d�n.z/:

Therefore, we have
 
B.wn;r=

p
Ln/

jfnj
2dV �

1

jcnj2

ˆ
B.0;1/

jFnj
2d�n:

As wn 2 Dn, we obtain

jFn.0/j
2
D jcnj

2
jfn.wn/j

2
� jcnj

2�

 
B.wn;r=

p
Ln/�Ir

jhn.w; t/j
2dVdt

� �

ˆ
B.0;1/�J1

jHn.w; s/j
2d�n.w/ds D �:

Since jhnj2 is subharmonic,

jFn.0/j
2
D jcnj

2
jhn.wn; 0/j

2 .
ˆ

B.0;1/�J1

jHn.w; s/j
2d�n.w/ds D 1:

Hence we have 0 < � . jFn.0/j2 . 1 for all n 2 N.
Using the assumption, we get

1

n
&

jcnj
2

vol.B.wn; r=
p
Ln//

ˆ
ALn\B.wn;

rp
Ln
/

jfnj
2dV �

ˆ
Bn\B.0;1/

jFnj
2d�n;
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18 J. Ortega-Cerdà and B. Pridhnani

where Bn is such that expn.Bn \ B.0; 1// D ALn \ B.wn; r=
p
Ln/. So we have

that ´
8n 0 < � . jFn.0/j2 . 1;

8n
´

B.0;1/\Bn
jFnj

2d�n . 1
n
:

In fact, 0 < � . jHn.0; 0/j2 . 1 (by definition) and one can prove that jHnj2 . 1.
Indeed, if .z; s/ 2 B.0; 1=2/ � J1=2, let w D expn.z/ 2 B.wn; r=.2

p
Ln// and

t D rs=
p
Ln 2 Ir=2. Then

jHn.z; s/j
2
D jcnj

2
jhn.w; t/j

2

. jcnj2
 
B.w;r=.2

p
Ln//�Ir=2.t/

jhnj
2

. jcnj2
 
B.wn;r=

p
Ln/�Ir

jhnj
2dVdt � 1:

Therefore, working with 1=2 instead of 1, we have jHnj2 . 1 for all n.

Step 3. The family ¹Hnºn is equicontinuous in B.0; 1/ � J1.

Consider .w; t/ 2 B.wn; r=.4
p
Ln//�Ir=4 and . Qw; Qt / 2 B.w; Qrr=

p
Ln/ � IQrr.t/.

Then there exists some small ı > 0 such that

jcnjjhn.w; t/ � hn. Qw; Qt /j � jcnj
Qr
p
Ln
r sup
B.w;ı=

p
Ln/�Iı.t/

jrhnj � .?/:

Taking Qr small enough so that ı � r=4 and using Schoen and Yau’s estimate (3.3),
we have

.?/ � jcnj
Qrr
p
Ln

sup
B.wn;r=.2

p
Ln//�Ir=2

jrhnj

.
Qrr
p
Ln

1
rp
Ln

sup
B.wn;r=

p
Ln/�Ir

jcnjjhnj . Qr:

So we have proved that jcnjjhn.w; t/ � hn. Qw; Qt /j � C Qr . Take Qr small enough so
that C Qr < �. Let .z; s/ 2 B.0; 1=4/ � J1=4 and . Qz; Qs/ 2 B.z; Qr/ � .s � Qr; s C Qr/.
Consider w D expn.z/, t D rs=

p
Ln, Qw D expn. Qz/ and Qt D r Qs=

p
Ln. Then

we have proved that for all � > 0 there exists Qr > 0 (small) such that for all
.z; s/ 2 B.0; 1=4/ � J1=4:

jHn.z; s/ �Hn. Qz; Qs/j < � if jz � Qzj < Qr; js � Qsj < Qr; 8n 2 N:

Change 1=4 to 1. So the sequence Hn is equicontinuous.
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Carleson measures and Logvinenko–Sereda sets on compact manifolds 19

Step 4. There exists a limit function of Hn that is real analytic.

The family ¹Hnºn is equicontinuous and uniformly bounded on B.0; 1/ � J1.
Therefore, by Ascoli–Arzela’s theorem, there is a partial sequence (denoted as the
sequence itself) such thatHn ! H uniformly on compact subsets of B.0; 1/�J1.
Since Fn.z/ D Hn.z; 0/, we get a function F.z/ WD H.z; 0/ W B.0; 1/ ! R,
which is the limit of Fn (uniformly on compact subsets of B.0; 1/).

Now we will prove that H is real analytic. In fact, we will show that H is
harmonic. We have the following properties:

(1) Observe that the family of measure d�n converges uniformly to the ordinary
Euclidean measure because gij .expwn.rz=

p
Ln// ! gij .expw0.0// D ıij ,

where w0 is the limit point of some subsequence of wn (recall that we are
taking normal coordinate charts).

(2) If gn.z/ WD g.rz=
p
Ln/ (i.e., gn is the rescaled metric), then we have that

�.gn;Id/Hn.z; s/ D 0 for all .z; s/ 2 B.0; 1/ � J1 by construction.

(3) The functionsHn are uniformly bounded and converge uniformly on compact
subsets of B.0; 1/ � J1.

We are in the hypothesis of Lemma 5.9 that guarantees the harmonicity of H in
the Euclidean sense.

Step 5. Using the hypothesis, we will construct a measure � such that jF j D 0

� -a.e. and �.B.a; s// . sm for all B.a; s/ � B.0; 1/. These two properties and
the real analyticity of F will lead to a contradiction.

By hypothesis, the sequence ¹ALºL is relatively dense. Taking into account that
vol.B.wn; r=

p
Ln// D

rm

L
m=2
n

�n.B.0; 1//, we get that

inf
n
�n.Bn/ � � > 0; (5.5)

where we have denoted Bn \ B.0; 1/ by Bn.
Let �n be such that d�n D �Bnd�n. From a standard argument (�n are sup-

ported in a ball) we know the existence of a weak *-limit of a subsequence of �n,
denoted by � . This subsequence will be noted as the sequence itself. From (5.5)
we know that � is not identically 0. Now we have that

ˆ
B.0;1/

jF j2d� D 0:

Therefore, F D 0 � -a.e. in B.0; 1/. Now for all K � B.0; 1/ compact,
ˆ
K

jF j2d� D 0;
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20 J. Ortega-Cerdà and B. Pridhnani

therefore F D 0 in supp � . Let B.a; s/ � B.0; 1/ satisfy B.a; s/ \ supp � ¤ ;.
Then using the fact Bn � B.0; 1/, we obtain

�n.B.a; s// �

ˆ
B.a;s/

d�n �
L
m=2
n

rm
vol.B.expn.a/; sr=

p
Ln// � s

m:

Therefore, �n.B.a; s// . sm for all n. Hence in the limit case, �.B.a; s// . sm.
In short,

(1) We have sets Bn � B.0; 1/ such that

� � �n.Bn/ � �n.B.0; 1// � 1:

(2) We have measures �n weakly-* converging to � (not identically 0).

(3) �.B.a; s// . sm for all B.a; s/ � B.0; 1/.

(4) jF j D 0 � -a.e. in B.0; 1/.

(5) jF.0/j > 0 and jF j . 1.

We know that H is real analytic, then F.z/ is real analytic. Federer ([4, Theo-
rem 3.4.8]) proved that the .m � 1/-Hausdorff measure Hm�1.F�1.0// < 1.
Hence Hm�1.supp �/ � Hm�1.F�1.0// <1. This implies that the Hausdorff
dimension dimH .supp �/ � m � 1. On the other hand, since �.B.a; s// . sm, we
have

0 < �.supp �/ . Hm.supp �/

and this implies that dimH .supp �/ � m by Frostman’s lemma. So we reached to
a contradiction and the proof is complete. This concludes the proof of the propo-
sition.

Remark 5.12. A natural question is if one can replace the condition of being L–S,
i.e., ˆ

M

jf j2dV � C

ˆ
AL

jf j2dV; 8f 2 EL; (5.6)

by a weaker condition like
ˆ
M

jf j2dV � C

ˆ
AL

jf j2dV; 8f 2 WL; (5.7)

where WL is the L-eigenspace of �, and still obtains the fact that ¹ALºL are
relatively dense. If this was achieved, one could try to use this fact together with
the recent work of Colding–Minicozzi (see [1]) in order to make some progress
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Carleson measures and Logvinenko–Sereda sets on compact manifolds 21

towards a proof of the lower bound in Yau’s conjecture on the size of nodal sets.
Unfortunately, a simple example shows that condition (5.6) cannot be replaced
by (5.7). Indeed, takeM D S1. Thus we are considering the space of polynomials
of the form pn.z/ D azn C bzn. Note that jpn.z/j D jaz2n C bj for all z 2 S1.
Now consider the sets

An D
®
z 2 S1 W Im.z/ < 0

¯
:

Trivially, ˆ
S1
jpnjdV � 2

ˆ
An

jpnjdV; 8n 2 N;

but the An are not relatively dense.
Of course, an interesting question which is left open is a geometric/metric de-

scription of the L–S sets for the L-eigenspaces.
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