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Abstract

A collection of spherical obstacles in the unit ball in Euclidean space is said

to be avoidable for Brownian motion if there is a positive probability that

Brownian motion diffusing from some point in the ball will avoid all the

obstacles and reach the boundary of the ball. The centres of the spherical

obstacles are generated according to a Poisson point process while the radius

of an obstacle is a deterministic function. If avoidable configurations are

generated with positive probability Lundh calls this percolation diffusion.

An integral condition for percolation diffusion is derived in terms of the

intensity of the point process and the function that determines the radii of

the obstacles.
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1. Introduction

Lundh proposed in [10] a percolation model in the unit ball B = {x ∈ Rd :

|x| < 1}, d ≥ 3, involving diffusion through a random collection of spherical

obstacles. In Lundh’s formulation, the radius of an obstacle is proportional

to the distance from its centre to the boundary S = {x ∈ Rd : |x| = 1} of the

ball. The centres of the obstacles are generated at random by a Poisson point

process with a spherically symmetric intensity µ. Lundh called a random

collection of obstacles avoidable if Brownian motion diffusing from a point

in the ball B has a positive probability of reaching the outer boundary S

without first hitting any of the obstacles. Lundh set himself the task of

characterising those Poisson intensities µ which would generate an avoidable

collection of obstacles with positive probability, and named this phenomenon

percolation diffusion. Our main objective herein is to extend Lundh’s work

by removing some of his assumptions on the Poisson intensity and on the

radii of the obstacles.

Deterministic configurations of obstacles in two dimensions are considered

in detail by Akeroyd [3] and by Ortega-Cerdà and Seip [13], while O’Donovan

[11] and Gardiner and Ghergu [8] consider configurations in higher dimen-

sions. The result below is taken from these articles. First some notation

is needed. Let B(x, r) and S(x, r) stand for the Euclidean ball and sphere,

respectively, with centre x and radius r and let B(x, r) stand for the closed

ball with this centre and radius. Let Λ be a countable set of points in the

ball B which is regularly spaced in that it has the following properties

(a) there is a positive ε such that if λ, λ′ ∈ Λ, λ 6= λ′ and |λ| ≥ |λ′| then

|λ− λ′| ≥ ε
(
1− |λ|

)
. (1)

2



(b) there is an r < 1 such that

B =
⋃
λ∈Λ

B
(
λ, r(1− |λ|)

)
. (2)

Let φ : B→ [0, 1), and set

O =
⋃
λ∈Λ

B
(
λ, φ(λ)

)
.

Theorem A. Suppose that φ is a radial function, in that φ(x) = φ(|x|),

x ∈ B, and that φ(t) is decreasing for 0 ≤ t < 1. Suppose also that the closed

balls
{
B
(
λ, φ(λ)

)}
, λ ∈ Λ, are disjoint. Then the collection of spherical

obstacles O is avoidable if and only if∫ 1

0

dt

(1− t) log
(
(1− t)/φ(t)

) <∞ if d = 2, (3)

∫ 1

0

φ(t)d−2

(1− t)d−1
<∞ if d ≥ 3. (4)

Our goal is is to obtain a counterpart of this result for a random configura-

tion of obstacles. We work with a Poisson random point process on the Borel

subsets of the ball B with mean measure dµ(x) = ν(x) dx which is absolutely

continuous relative to Lebesgue measure. (Itô presents a complete, concise

treatment of this topic in Section 1.9 of his book [9]). The radius function φ

and the intensity function ν are assumed to satisfy, for some C > 1 and any

x ∈ B, 
1
C
φ(x) ≤ φ(y) ≤ Cφ(x)

1
C
ν(x) ≤ ν(y) ≤ Cν(x)

if y ∈ B
(
x,

1− |x|
2

)
. (5)

It is also assumed that

φ(x)

1− |x|
≤ c < 1 for x ∈ B. (6)
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and that

(1− |x|)φ(x)d−2ν(x) = O

(
1

1− |x|

)
as |x| → 1−. (7)

Let P be a realisation of points from this Poisson random point process and

let

AP =
⋃
p∈P

B
(
p, φ(p)

)
, ΩP = B \ AP , (8)

so that ΩP is an open, though not necessarily connected, subset of B. The

archipelago of spherical obstacles AP is said to be avoidable if there is a

positive probability that Brownian motion diffusing from some point in ΩP

reaches the unit sphere S before hitting the obstacles AP , that is if the

harmonic measure of AP relative to ΩP satisfies ω(x,AP ,ΩP) < 1 for some

x in ΩP . If ΩP is connected then, by the maximum principle, this condition

does not depend on x ∈ ΩP . We do not insist, however, on the configuration

being avoidable for Brownian motion diffusing from the origin.

We have percolation diffusion if there is a positive probability that the

realisation of points from the Poisson random point process results in an

avoidable configuration. Our main result is

Theorem 1. Suppose that (5), (6) and (7) hold. Percolation diffusion occurs

if and only if there is a set of points τ of positive measure on the sphere such

that ∫
B

(1− |x|2)2

|x− τ |d
φ(x)d−2ν(x) dx <∞. (9)

Thus the random archipelago AP is avoidable with positive probability if and

only if the Poisson balayage of the measure (1−|x|2)φ(x)d−2ν(x) dx is bounded

on a set of positive measure on the boundary of the unit ball.
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Furthermore, in the case of percolation diffusion the random archipelago

AP is avoidable with probability one.

In the radial case the following corollary follows directly from Theorem 1.

Corollary 1. Suppose that, in addition to (5), (6) and (7), the intensity ν

and the radius function φ are radial in that they depend only on |x|. Then

percolation diffusion occurs if and only if∫ 1

0

(1− t)φ(t)d−2 ν(t) dt <∞. (10)

Lundh’s result [10, Theorem 3.1] is the case φ(t) = c(1−t) of this corollary,

in which case (10) becomes∫ 1

0

(1− t)d−1ν(t) dt <∞. (11)

This corresponds to the condition stated by Lundh that the radial intensity

function should be integrable on (0,∞) when allowance is made for the fact

that he works in the hyperbolic unit ball. As pointed out in [12], Lundh’s

deduction from (11) (see [10, Remark 3.2]) that percolation diffusion can

only occur when the expected number of obstacles in a configuration is finite

isn’t correct. In fact, (11) holds in the case ν(t) = (1 − t)1−d and we have

percolation diffusion. At the same time, the expected number of obstacles

N(B) in the ball is

E[N(B)] =

∫
B
dµ(x) =

∫
B

dx

(1− |x|)d−1
=∞. (12)

Lundh’s remark erroneously undervalues his work since it gives the impres-

sion that, in his original setting, percolation diffusion can only occur if the

number of obstacles in a configuration is finite almost surely.
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The intensity ν(t) = 1/(1 − t)d corresponds, in principle, to a regularly

spaced collection of points since the expected number of points in a Whitney

cube Q of sidelength `(Q) and centre c(Q) is, in the case of this intensity,

E[N(Q)] =

∫
Q

dµ(x) ∼ ν
(
c(Q)

)
Vol(Q) =

`(Q)d

(1− |c(Q)|)d
∼ constant.

(Here and elsewhere, the notation a ∼ b is to mean that there is a constant

C, which does not unduly depend on the context, such that the positive

quantities a and b satisfy b/C ≤ a ≤ Cb.) We note that there is agreement

in principle between the integral condition (4) for the deterministic setting

and the integral condition (10) with ν(t) = 1/(1− t)d for the random setting.

2. Avoidability, minimal thinness and a Wiener-type criterion

Avoidability of a realised configuration of obstacles AP may be reinter-

preted in terms of minimal thinness of AP at points on the boundary of

the unit ball (see [4] for a thorough account of minimal thinness). This is

Lundh’s original approach, and is also the approach adopted by the authors

of [11, 12, 8].

For a positive superharmonic function u on B and a closed subset A of

B, the reduced function RA
u is defined by

RA
u = inf

{
v : v is positive and superharmonic on B and v ≥ u on A

}
.

The set A is minimally thin at τ ∈ S if there is an x in B at which the

regularized reduced function of the Poisson kernel P (·, τ) for B with pole

at τ satisfies R̂A
P (·,τ)(x) < P (x, τ). For the sets which arise in our setting,

the regularized reduced function coincides with the reduced function, defined
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above. Minimal thinness in this context has been characterised in terms of

capacity by Essén [7] in dimension 2 and by Aikawa [1] in higher dimensions.

Let {Qk}∞k=1 be a Whitney decomposition of the ball B into cubes so that,

in particular,

diam(Qk) ≤ dist(Qk,S) ≤ 4 diam(Qk).

Let `(Qk) be the sidelength ofQk. Let cap (E) denote the Newtonian capacity

of a Borel set E. Aikawa’s criterion for minimal thinness of A at a boundary

point τ of B is that the series W (A, τ) is convergent, where

W (A, τ) =
∑
k

`(Qk)
2

ρk(τ)d
cap (A ∩Qk), (13)

ρk(τ) being the distance from Qk to the boundary point τ . A proof of the

following proposition can be found in [8, p. 323]. The proof goes through

with only very minor modifications even though we do not insist on evaluating

harmonic measure at the origin and the open set B\A may not be connected.

Lemma 1. Let A be a closed subset of B. Let

M = {τ ∈ S : A is minimally thin at τ}. (14)

Then A is avoidable if and only if M has positive measure on S, that is if

and only if W (A, τ) <∞ for a set of τ of positive measure on S.

The question of whether a given set A is avoidable for Brownian motion

is thereby reduced to an estimation of capacity.

The following zero-one law simplifies the subsequent analysis, and will

imply that the random archipelago is avoidable with probability zero or prob-

ability one, as stated in Theorem 1. Again, τ is used to denote points on the
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sphere S and AP denotes an archipelago constructed as in (8) from a random

realisation P of points taken from the Poisson point process.

Lemma 2. The event that AP is minimally thin at τ has probability 0 or 1.

Proof. Whether or not the set AP is minimally thin at τ depends on the

convergence of the series W (AP , τ). For each cube Q, let Q̂ be the set of

all possible centres p of balls B
(
p, φ(p)

)
that intersect Q. By condition (6),

any point in Q̂ must lie in a cube whose Whitney distance from Q is at most

some fixed natural number N . It is therefore possible to partition the cubes

{Qk}∞1 into finitely many disjoint groups {Qi
k}∞k=1, i = 1, 2, . . ., n, in such

a manner that, if Qi
k and Qi

j are distinct cubes in the same group then Q̂i
k

and Q̂i
j are also disjoint. Break the summation W (AP , τ) into corresponding

summations

W i(AP , τ) =
∞∑
k=1

X i
k where X i

k =
`(Qi

k)
2

ρik(τ)d
cap (AP ∩Qi

k). (15)

The random variables {X i
k}∞k=1 in each resulting summation are independent

since µ
(
Q̂i
k

)
and µ

(
Q̂i
j

)
are independent for k 6= j. The event W i(AP , τ) <

∞ belongs to the tail field of the corresponding X i
k’s, hence this event has

probability 0 or 1. It follows that the event W (AP , τ) < ∞ has probability

0 or 1.

3. The expected value of the Wiener-type criterion and the Poisson

balayage

The proof of Theorem 1 follows the outline of Lundh’s argument [10] and

the second author’s thesis [12].
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We work with a Poisson point process in the ball. Each realisation P of

this process gives rise to an archipelago AP via (8), which is avoidable for

Brownian motion if and only if the associated Wiener-type series W (AP , τ)

is finite for a set of τ of positive measure on the sphere S. For a fixed τ on the

sphere S, the series W (AP , τ) is a random variable. Proposition 1 states that

its expected value is comparable to the Poisson balayage (9). We denote by

c and C any positive finite numbers whose values depend only on dimension

and are immaterial to the main argument.

Proposition 1. Fix a point τ on the sphere S. Then

E
[
W (AP , τ)

]
∼
∫
B

(1− |x|2)2

|τ − x|d
φ(x)d−2 ν(x) dx. (16)

The proof of Proposition 1 depends on a two-sided estimate for the ex-

pected value of the capacity of the intersection of a Whitney cube Qk with

the set of obstacles AP in terms of the mean measure µ(Qk) of the cube and

a typical value of the radius function φ on the cube.

Lemma 3. For a Whitney cube Q and any point x ∈ Q,

E[cap (AP ∩Q)] ∼ φ(x)d−2 µ(Q). (17)

Lundh did not require an estimate of this type as the size of one of

his obstacles was comparable to the size of the Whitney cube containing its

centre. The capacity of AP ∩Q therefore depended only on the probability of

whether of not the cube Q contained a point from the Poisson point process.

We first deduce Proposition 1 from Lemma 3 and then prove Lemma 3.

Proof of Proposition 1. The upper bound for E[cap (AP ∩ Q)] in Lemma 3

leads to an upper bound for the expected value of Aikawa’s series (13) with
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A = AP as follows:

E[W (AP , τ)] = E

[∑
k

`(Qk)
2

ρk(τ)d
cap (AP ∩Qk)

]

=
∑
k

`(Qk)
2

ρk(τ)d
E[cap (AP ∩Qk)]

≤ C
∑
k

`(Qk)
2

ρk(τ)d
φ(xk)

d−2 µ(Qk)

where xk is any point in Qk. Since the radius function φ is approximately

constant on each Whitney cube by (5), it follows that

E[W (AP , τ)] ≤ C
∑
k

∫
Qk

(1− |x|2)2

|τ − x|d
φ(x)d−2 ν(x) dx

= C

∫
B

(1− |x|2)2

|τ − x|d
φ(x)d−2 ν(x) dx.

In the other direction, first choose a point xk in each Whitney cube Qk.

Then, ∫
B

(1− |x|2)2

|τ − x|d
φ(x)d−2 ν(x) dx ≤ C

∑
k

`(Qk)
2

ρk(τ)d
φ(xk)

d−2 µ(Qk)

≤ C
∑
k

`(Qk)
2

ρk(τ)d
E[cap (AP ∩Qk)]

= C E[W (AP , τ)],

where the second inequality comes from the lower bound for E[cap (AP∩Qk)]

in Lemma 3.

Proof of Lemma 3. The assumption (6) implies that if an obstacle meets a

Whitney cube Q then its centre can lie in at most some fixed number N of

Whitney cubes neighbouring the cube Q. We label these cubes Qi, where
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the index i varies from 1 to at most N , and write Q′ for their union. Both

the distance to the boundary, and the distance to a specific boundary point,

are comparable in Q and in Q′. Analogously, an obstacle with a centre in

a specified cube can intersect at most some fixed number of neighbouring

cubes.

Consider a random realisation of points P and a Whitney cube Qk. By (5)

the radius function φ is roughly constant on the cubes Qi
k, say φ(x) ∼ φ(xk),

x ∈ Q′k, where xk is any point chosen in Qk. Therefore, by the subadditivity

property of capacity,

cap (AP ∩Qk) ≤ C φ(xk)
d−2N(Q′k),

where N(Q′k) is the number of centres from the realised point process P that

lie in the union of cubes Q′k. Taking the expectation leads to

E[cap (AP ∩Qk)] ≤ C φ(xk)
d−2E [N(Q′k)] = C φ(xk)

d−2µ(Q′k).

By (5), µ(Q′k) ≤ Cµ(Qk) and the upper bound for E[cap (AP ∩ Qk)] in

Lemma 3 follows.

In the other direction we proceed, as did Gardiner and Ghergu [8], by

employing the following super-additivity property of capacity due to Aikawa

and Borichev [2]. Let σd be the volume of the unit ball. Let F =
⋃
B(yk, ρk)

be a union of balls which lie inside some ball of unit radius. Suppose also

that ρk ≤ 1/
√
σd2d for each k and that the larger balls B(yk, σ

−1/d
d ρ

1−2/d
k ) are

disjoint. Then

cap (F ) ≥ c
∑
k

cap
(
B(yk, ρk)

)
= c

∑
k

ρd−2
k . (18)
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Let φ0 be the minimum of φ(x) for x in Q. By (5), φ0 is comparable

to φ(x) for any x in Q. We only consider obstacles with centres in Q and

suppose that all such obstacles have radius φ0, since in so doing the capacity

of AP ∩Q decreases. Set

α = min
{(
`(Q)
√
d
)−1

,
(√

σd 2d φ0

)−1}
and set

N = b4−1 `(Q)σ
1/d
d α2/d φ

2/d−1
0 c.

By (6), we have α ≥ c/`(Q). The cube Q is divided into Nd smaller cubes

each of sidelength `(Q)/N : we write Q′ for a typical sub-cube. Inside each

cube Q′ consider a smaller concentric cube Q′′ of sidelength `(Q)/(4N). If

a cube Q′′ happens to contain points from the realisation P of the random

point process, we choose one such point. This results in points λ1, λ2, . . .,

λm, say, where m ≤ Nd. By the choice of α and N , each ball B(λk, φ0) is

contained within the sub-cube Q′ that contains its centre. We set

AP,Q =
m⋃
k=1

B(λk, φ0).

Since AP,Q ⊂ AP∩Q, if follows from monotonicity of capacity that cap
(
AP∩

Q
)
≥ cap

(
AP,Q

)
.

To estimate the capacity of AP,Q, we scale the cube Q by α. By the

choice of α, the cube αQ lies inside a ball of unit radius and the radius of

each scaled ball from AP,Q satisfies αφ0 ≤ (σd2
d)−1/2. The only condition

that remains to be checked before applying Borichev and Aikawa’s estimate

(18) to the union of balls αAP,Q is that the balls with centre αλk and radius
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σ
−1/d
d (αφ0)1−2/d are disjoint. They are if

2σ
−1/d
d (αφ0)1−2/d ≤ α `(Q)

2N

since the centres of the balls are at least a distance α `(Q)/(2N) apart. This

inequality follows from the choice of N . Applying (18) and the scaling law

for capacity yields

cap
(
AP,Q

)
= α2−dcap

(
αAP,Q

)
≥ α2−d cX (αφ0)d−2 = cX φd−2

0 ,

where X = m is the number of sub-cubes Q′′ of Q in our construction that

contain at least one point of P . Hence,

E[cap (AP ∩Q)] ≥ c φd−2
0 E[X]. (19)

The probability that a particular sub-cube Q′′ contains a point of P is

1− P
(
P ∩Q′′ = ∅

)
= 1− e−µ(Q′′),

by the Poisson nature of the random point process. For any sub-cube Q′′

with centre x, say,

µ(Q′′) ∼ ν(x)

(
`(Q)

N

)d
∼ ν(x)

φd−2
0

α2
(by choice of N)

≤ ν(x) `(Q)2 φd−2
0 (since α ≥ c/l(Q))

= O(1) (by (7)).

It then follows that

E[X] =
∑
Q′′⊂Q

1− e−µ(Q′′) ≥ c
∑
Q′′⊂Q

µ(Q′′) ≥ cµ(Q), (20)
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the last inequality being a consequence of the assumption (5) and the fact

that the volume of the union of the cubes Q′′ is some fixed fraction of the

volume of Q. When combined with (19), the estimate (20) yields the lower

bound for E[cap (AP ∩Q)].

4. Proof of Theorem 1

To begin with, we need the following result from Lundh’s paper [10].

Lemma 4. Let τ ∈ S. Then E[W (AP , τ)] is finite if and only if the series

W (AP , τ) is convergent for almost all random configurations P.

Proof. It is clear that E[W (AP , τ)] being finite implies that W (AP , τ) is

almost surely convergent. The reverse direction is proved by Lundh [10, p.

241] using Kolmogorov’s three series theorem. Indeed, it is a consequence

of this result [6, p. 118] that, in the case of a uniformly bounded sequence

of non-negative independent random variables, the series
∑

kXk converges

almost surely if and only if
∑

k E[Xk] is finite. As in the proof of Lemma 2,

the series W (AP , τ) is split into n series W i(AP , τ) =
∑∞

k=1X
i
k, each of

which is almost surely convergent by assumption. The random variables Xk

in (15) are uniformly bounded. It then follows that
∑

k E[X i
k] = E

[∑
kX

i
k

]
is convergent, that is E[W i(AP , τ)] is finite. Summing over i, we find that

E[W (AP , τ)] is finite as claimed.

Proof of Theorem 1. Let us first assume that the finite Poisson balayage con-

dition (9) holds for all τ in a set T , say, of positive measure σ(T ) on the

boundary of the unit ball and deduce from this that percolation diffusion oc-

curs. In fact, we will show more – we will show that the random archipelago
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is avoidable with probability one. By Proposition 1, we see that E[W (AP , τ)]

is finite for τ ∈ T , hence the series W (AP , τ) is convergent a.s. for each τ ∈ T .

For τ ∈ T , set

Fτ = {P : W (AP , τ) <∞}

so that Fτ has probability 1. We have

1 =
1

σ(T )

∫
T

E[1Fτ ] dτ = E
[

1

σ(T )

∫
T

1Fτ dτ

]
,

from which it follows that
∫
S 1Fτ dτ = σ(T ) with probability one. Equiva-

lently, it is almost surely true that P ∈ Fτ for a.e. τ ∈ T . In other words,

it is almost surely true that AP is minimally thin at a set of τ of positive

measure on the sphere S, hence AP is almost surely avoidable by Lemma 1.

Next we prove the reverse implication. For a random configuration P , set

MP = {τ ∈ S : AP is minimally thin at τ},

similar to (14). Suppose that percolation diffusion occurs. Then, with pos-

itive probability, AP is minimally thin at each point of some set of positive

surface measure on the sphere, so that E
[∫

S 1MP (τ) dτ
]
> 0. Interchanging

the order of integration and expectation, we conclude that there is a set T

of positive measure on the sphere S such that P
(
τ ∈MP

)
> 0 for τ ∈ T . By

Lemma 2, W (AP , τ) <∞ a.s. for τ ∈ T . By Lemma 4, E[W (AP , τ)] is finite

for τ ∈ T . Finally, it follows from Proposition 1 that, for τ in the set T of

positive measure on the sphere S, the Poisson balayage (9) is finite.

Proof of Corollary 1. In the case that both φ and ν are radial, the value of

the Poisson balayage in (9) is independent of τ ∈ S and equals∫ 1

0

(1− t2)φ(t)d−2

(∫
tS

1− |x|2

|τ − x|d
dσ(x)

)
ν(t) dt,

15



where dσ is surface measure on the sphere tS. Hence (9) is equivalent to (10)

in the radial setting.

5. Percolation diffusion in space

The Wiener criterion for minimal thinness of a set A at ∞ in Rd, d ≥ 3,

is

W (A,∞) =
∑
k

cap (A ∩Qk)

`(Qk)d−2
<∞ (21)

(see [8], for example) where the cubes {Qk} are obtained by partitioning the

cube of sidelength 3j (centre 0 and sides parallel to the coordinate axes) into

3jd cubes of sidelength 3j−1 and then deleting the central cube. Assuming

that the radius function φ and the intensity of the Poisson process ν are

roughly constant on each cube Qk, and that |x|2φ(x)d−2ν(x) = O(1) as |x| →

∞, the corresponding version of Lemma 3 is that, for a cube Qk and any point

xk ∈ Q,

E[cap (AP ∩Qk)] ∼ φ(xk)
d−2 µ(Qk), (22)

and the corresponding version of Proposition 1 is

E
[
W (AP , τ)

]
∼
∫
Rd\B

(
φ(x)

|x|

)d−2

ν(x) dx. (23)

Since the random archipelago AP is avoidable in this setting precisely when it

is minimally thin at the point at infinity, the criterion for percolation diffusion

is that the integral on the right hand side of (23) be finite. Again this agrees

in principle with a criterion for avoidability in the deterministic, regularly

located setting [5, Theorem 2] (see also [8, Theorem 6]) which corresponds

to ν constant and φ radial, namely∫ ∞
1

rφ(r)d−2 dr <∞.
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