THE DIFFERENTIABLE CHAIN FUNCTOR IS NOT HOMOTOPY EQUIVALENT TO THE CONTINUOUS CHAIN FUNCTOR

F. GUILLÉN, V. NAVARRO, P. PASCUAL, AND AGUSTÍ ROIG

ABSTRACT. Let S_* and S_*^{∞} be the functors of continuous and differentiable singular chains on the category of differentiable manifolds. We prove that the natural transformation $i: S_*^{\infty} \longrightarrow S_*$, which induces homology equivalences over each manifold, is not a natural homotopy equivalence.

Contents

1.	Introduction	1
2.	The main result	1
3.	A generalization	4
Ref	erences	_

1. Introduction

A basic result of Differential Topology, proved by S.Eilenberg ([E]), states that the singular homology of smooth manifolds can be calculated with differentiable singular chains: let M be a differentiable manifold, $S_*(M)$ its singular chain complex and $S_*^{\infty}(M)$ its singular differentiable chain complex, then Eilenberg proved that there exists a chain map

$$\theta_M: S_*(M) \longrightarrow S_*^{\infty}(M),$$

which is a homotopy inverse for the natural inclusion

$$i_M: S^{\infty}_*(M) \longrightarrow S_*(M).$$

Eilenberg's definition of θ_M depends on a triangulation on M, so it should be clear that it cannot be natural. There are other different proofs of this result (see, for example, [M], [W]), but the question remains if there is a natural homotopy inverse for i.

A classical technique in Algebraic Topology to prove that there is a homotopy equivalence between two functors is the acyclic models theorem. For example, one of the first applications of acyclic models was the proof that the functor S_* and the functor of (nondegenerated) cubical chains C_* are homotopy equivalent. M. Barr has proved a generalised acyclic models theorem, whose version for pointwise homotopy equivalences gives Eilenberg's theorem ([B1]). One may wonder whether the proof can be modified to give a natural homotopy equivalence between S_*

¹Partially supported by projects DGCYT BFM2003-60063 and BFM2003-06001 Date: December 21, 2012.

and S_*^{∞} (see [B2], p. ix). In this note we answer this question in negative form proving that the functors S_*, S_*^{∞} are not homotopy equivalent.

2. The main result

We maintain the notation settled at the introduction.

Theorem 1. The differentiable chain functor S_*^{∞} is not homotopy equivalent to the continuous chain functor S_* . More specifically, there is no natural transformation of functors $\theta: S_* \longrightarrow S_*^{\infty}$ which induces isomorphisms in homology.

Let's assume that there is a natural transformation $\theta: S \longrightarrow S_*^{\infty}$ inducing isomorphisms in homology. Identify the standard 1-simplex Δ^1 with the unit interval [0,1] and let $\iota: \Delta^1 \longrightarrow \mathbb{R}$ be the inclusion map $\iota(t) = t$. Then ι is a singular chain of \mathbb{R} , $\iota \in S_1(\mathbb{R})$. Let

$$\theta_{\mathbb{R}}(\iota) = \sum_{j=0}^{n} \lambda_{j} \sigma_{j} \in S_{1}^{\infty}(\mathbb{R})$$

be its image by $\theta_{\mathbb{R}}$, where $\sigma_j : \Delta^1 \longrightarrow \mathbb{R}$ are differentiable simplexes, with $\sigma_i \neq \sigma_j$ if $i \neq j$.

Lemma. At least one σ_i is a non-constant map.

Proof of the lemma. Let $e: \mathbb{R} \longrightarrow \mathbb{S}^1$ denote the exponential map $e(t) = (\cos(2\pi t), \sin(2\pi t))$. By the naturality of θ we have a commutative diagram

$$S_*(\mathbb{R}) \xrightarrow{\theta_{\mathbb{R}}} S_*^{\infty}(\mathbb{R})$$

$$\downarrow^{e_*} \qquad \qquad \downarrow^{e_*}$$

$$S_*(\mathbb{S}^1) \xrightarrow{\theta_{\mathbb{S}^1}} S_*^{\infty}(\mathbb{S}^1)$$

that is, $\theta_{\mathbb{S}^1}(e_*(\iota)) = e_*(\theta_{\mathbb{R}}(\iota))$. However, on one hand, $e_*(\iota) = e\iota$ is a generating cycle for the homology group $H_1(\mathbb{S}^1)$. On the other hand, if all σ_j were constant maps, $e_*(\theta_{\mathbb{R}}(\iota))$ would be a boundary. Therefore, $\theta_{\mathbb{S}^1}: S_*(\mathbb{S}^1) \longrightarrow S_*^{\infty}(\mathbb{S}^1)$, which is an isomorphism in homology, would send a generator of $H_1(\mathbb{S}^1)$ to zero.

So we may assume, for instance, that σ_0 is a non-constant map. Let $t_0 \in \Delta^1$ be such that $\sigma'_0(t_0) \neq 0$.

Now let $\alpha : \mathbb{R} \longrightarrow \mathbb{R}$ be a continuous bijective map satisfying the following conditions: $\alpha(u_0) = 0$, $\alpha_{|(-\infty,u_0]}$ and $\alpha_{|[u_0,\infty)}$ are \mathcal{C}^{∞} functions with different first derivative at u_0 and all other higher derivatives at u_0 equal to zero. To be more specific, we take

$$\alpha(x) = \begin{cases} 2(x - u_0), & \text{if } x \ge u_0, \\ x - u_0, & \text{if } x \le u_0. \end{cases}$$

Take $\beta: \Delta^1 \longrightarrow \mathbb{R}$ to be the composition $\beta = \alpha \iota$. This is a singular simplex $\beta \in S_1(\mathbb{R})$. Put

$$\theta_{\mathbb{R}}(\beta) = \sum_{k=0}^{m} \mu_k \tau_k \in S_1^{\infty}(\mathbb{R}) ,$$

with $\tau_k: \Delta^1 \longrightarrow \mathbb{R}$ differentiable simplexes.

Consider a \mathcal{C}^{∞} -function $f: \mathbb{R} \longrightarrow \mathbb{R}$, which is injective and such that $f^{(n)}(0) = 0$ for all $n \in \mathbb{N}$. For instance, we can take f to be

$$f(x) = \begin{cases} e^{-\frac{1}{x^2}}, & \text{if } x > 0, \\ 0, & \text{if } x = 0, \\ -e^{-\frac{1}{x^2}}, & \text{if } x < 0. \end{cases}$$

The composition $f\alpha$ is a \mathcal{C}^{∞} function. This is clear at all points except, maybe, at $u_0 = \sigma_0(t_0)$. Let us show that this is indeed the case and also that all higher derivatives at u_0 are zero.

By induction, it suffices to prove that, for each n > 0, both lateral derivatives

$$(f\alpha)_{+}^{(n)}(u_0)$$
, and $(f\alpha)_{-}^{(n)}(u_0)$,

exist and are zero. And this follows immediately from the following formula for the higher derivatives of the function $(f\alpha)_{|[u_0,\infty)}$ (respectively, $(f\alpha)_{|(-\infty,u_0]}$), a simplified version of Faà di Bruno's formula, that can easily be proved by induction:

$$(f\alpha)^{(n)}(x) = f^{(n)}(\alpha(x))\alpha'(x)^n + \sum_{i=1}^{n-1} f^{(i)}(\alpha(x))P_{n,i}(\alpha'(x), \dots, \alpha^{(n)}(x)) ,$$

where $P_{n,i}$ are polynomials in the higher derivatives of α .

Hence, $f\alpha: \mathbb{R} \longrightarrow \mathbb{R}$ is a \mathcal{C}^{∞} function. By the naturality of θ , we have

$$(f\alpha)_*(\theta_{\mathbb{R}}(\iota)) = \theta_{\mathbb{R}}((f\alpha)_*(\iota)) = \theta_{\mathbb{R}}(f_*(\alpha\iota)) = f_*(\theta_{\mathbb{R}}(\alpha\iota)) = f_*(\theta_{\mathbb{R}}(\beta)).$$

Thus,

$$\lambda_0 f \alpha \sigma_0 + \sum_{j \neq 0} \lambda_j f \alpha \sigma_j = \sum_{k=0}^m \mu_k f \tau_k .$$

Now, $f\alpha\sigma_0 \neq f\alpha\sigma_j$, for every j > 0, because $f\alpha$ is an injective function, and $f\tau_i \neq f\tau_j$ if $i \neq j$, as f is also injective. So there exists some k such that $f\alpha\sigma_0 = f\tau_k$. We may assume k = 0. As f is injective, we may cancel it to obtain

$$\alpha \sigma_0 = \tau_0$$
.

But $\alpha\sigma_0$ is not a \mathcal{C}^{∞} function: if we compute the right and left derivatives at t_0 , assuming for instance $\sigma'_0(t_0) > 0$, we obtain $2\sigma'_0(t_0)$ and $\sigma'_0(t_0)$, respectively, because $\alpha'_+(u_0) = 2$ and $\alpha'_-(u_0) = 1$. So we get a contradiction, since τ_0 is of class \mathcal{C}^{∞} .

3. A GENERALIZATION

In fact, Eilenberg's result is more general than that we have stated. What he proves is that all the inclusions

$$i_M: S_*^k(M) \longrightarrow S_*(M)$$
,

where $S_*^k(M)$ denotes the singular simplexes of class C^k , $k = 1, 2, ..., \infty$, are homotopy equivalences. We can also show that theirs (point-wise) homotopy inverses can not be natural transformations.

For k = 0 we take $S_*^0 = S_*$, and refer to the continuous singular chains as 0-differentiable chains.

Theorem 2. The k-differentiable and l-differentiable chain functors, $l > k \ge 0$, are not homotopy equivalent. More specifically, there is no natural transformation of functors $\theta: S_*^k \longrightarrow S_*^l$, with l > k, which induces isomorphisms in homology.

Proof. It is enough to see that there could not be such a natural transformation $\theta: S_*^k \longrightarrow S_*^l$ for the case l = k + 1. The proof goes in the same way as before, and all we have to do is replace our function $\alpha: \mathbb{R} \longrightarrow \mathbb{R}$ with a bijective and everywhere differentiable function of class \mathcal{C}^{k+1} , except at $u_0 = \sigma_0(t_0)$, where it is of class \mathcal{C}^k , but not of class \mathcal{C}^{k+1} , $\alpha^{(i)}(u_0) = 0$, for all $i = 1, \ldots, k$, and has different lateral derivatives $\alpha_+^{(k+1)}(u_0)$ and $\alpha_-^{(k+1)}(u_0)$. For instance, we can take α to be:

$$\alpha(x) = \begin{cases} 2(x - u_0)^{k+1}, & \text{if } x \ge u_0, \\ (-1)^k (x - u_0)^{k+1}, & \text{if } x \le u_0. \end{cases}$$

With the same reasoning as before we come to

$$\alpha \sigma_0 = \tau_0$$

where now $\sigma_0, \tau_0 \in S_1^{k+1}(\mathbb{R})$. Again, if $\sigma'_0(t_0) > 0$, we see that the left and right (k+1)-th derivatives of $\alpha \sigma_0$ at t_0 are

$$(-1)^k (k+1)! \sigma_0'(t_0)^{k+1}$$
 and $2(k+1)! \sigma_0'(t_0)^{k+1}$,

respectively. So, $\alpha\sigma_0$ has different (k+1)-derivatives from the right and from the left at t_0 . Thus it is not of class \mathcal{C}^{k+1} , which contradicts the fact that it should be equal to τ_0 , which is of class \mathcal{C}^{k+1} .

References

- [B1] M. Barr, Acyclic models. Canadian J. Math. 48 (1996), 258–273.
- [B2] M. Barr, Acyclic models. Amer. Math. Soc. 2002.
- [E] S. Eilenberg, Singular homology in differentiable manifolds, Annals of Math. 48 (1947), 670-681.
- [M] W. Massey, A Basic Course in Algebraic Topology, Springer Verlag, 1991.
- [W] F. Warner, Fouundations of Differentiable Manifolds and Lie Groups. Scott & Foresman, 1971.
- (F. Guillén and V. Navarro) Departament d'Àlgebra i Geometria, Universitat de Barcelona, Gran Via 585, 08007 Barcelona (Spain)
- (P. Pascual and A. Roig) Departament de Matemàtica Aplicada I, Universitat Politècnica de Catalunya, Diagonal 647, 08028 Barcelona (Spain).

 $E{-}mail\ address{:}\ \texttt{fguillenQub.edu,\ vicenc.navarroQub.edu,\ pere.pascualQupc.es,\ agustin.roigQupc.es}$