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Introduction

Statement of the problem

A very natural question that an undergraduate who has begun the
study of Galois theory can ask is the Inverse Galois Problem over Q.
Which finite groups can occur as Galois groups of an extension of the
rational field? More precisely, given a finite group G, does there exist
a Galois extension K/Q with Galois group G? This problem was first
considered by D. Hilbert, who gave an affirmative answer in [35] when
G is a symmetric or an alternating group.

A central problem in number theory is the study of the structure of
the absolute Galois group Gal(Q/Q). The Inverse Galois Problem can
be reformulated as a question about the finite quotients of this absolute
Galois group. In spite of the many efforts made to solve the Inverse
Galois Problem, it still remains open. Of course, all these attempts
have not been fruitless, and there are many finite groups that are
known to be Galois groups over Q. For an idea of the progress made
in this direction, the reader can leaf through [81] or [51]. The Inverse
Galois Problem will constitute the groundwork of this dissertation.

Assume that a finite group G can be realized as a Galois group over
Q, say G ~ Gal(K1/Q), where K1/Q is a finite Galois extension. But
perhaps we are interested in field extensions with some ramification
property, and K;/Q does not satisfy it. We can ask whether there
exists some other finite Galois extension, K»/Q, with Galois group
G and enjoying this additional property. In this connection, several
variants of the Inverse Galois Problem have been studied.

In this dissertation, we shall address the following problem, posed
by Brian Birch. In [7], Section 2, he formulates the following question,
which he describes as “somewhat malicious”.
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Problem 0.1 (Tame Inverse Galois Problem). Given a finite group G,
is there a tamely ramified Galois extension K/Q with Gal(K/Q) ~ G?

In fact, it seems that at some point Birch has conjectured that all
finite groups G can be realized as the Galois group of a tamely ramified
extension of Q (see [32], Section 2). We shall devote our attention to
this problem, and seek an affirmative answer for some families of finite
groups.

In [7], Birch notes that “extensions of Q with given Galois group
constructed by the rigidity method are likely to be wildly ramified”,
hence his description of the problem as “malicious”. In other words,
the rigidity method is not well suited to produce such Galois realiza-
tions.

This remark has already caught the attention of some mathemati-
cians. In [63], the authors show that the Mathieu groups M;p; and
M2, and the group of automorphisms of the Mathieu group Ms, can
be realized as the Galois groups of tamely ramified Galois extensions
of Q and, moreover, these realizations are obtained by specializing
rigid extensions of Q(T).

Problem 0.1 is only one of the possible variants of the Inverse
Galois Problem. There are many ways to strengthen the statement of
the problem, by requiring that the Galois extension enjoys additional
properties. Let us mention another such problem. Fix a finite set
of prime numbers S. Can G be realized as the Galois group of an
extension K/Q which does not ramify in S? Note that if a group can
be realized as the Galois group of an extension of QQ which is unramified
at any prescribed finite set of primes S, then it can also be realized as
the Galois group of a tamely ramified extension. Namely, it suffices to
pick S as the set of primes which divide the order of G.

It is well known that if G is a finite abelian group, then it can be
realized as the Galois group of an extension which does not ramify
in S, whatever finite set .S of primes has been chosen. Symmetric
groups, and in general all groups such that the Noether problem has an
affirmative answer, can also be realized as Galois groups of extensions
which are not ramified in a prefixed finite set of primes S ([73]). It
is also known that the proof of Shafarevich that solvable groups can
be realized as Galois groups over Q can be adapted to yield a Galois
extension which is unramified in any prefixed finite set of primes S
(see [59], [41]). This problem has also been solved for alternating
groups A, [62] and, if n # 4,6, 7, for finite central extensions of A,,.
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Consequently, all these groups can be realized as the Galois group of
a tamely ramified extension of (. Problem 0.1 has also an affirmative
answer for the finite central extensions of symmetric and alternating
groups, and of the Mathieu groups Mj; and Mo (see [61]).

General strategy

One way to deal with the Inverse Galois Problem, and eventually with
Problem 0.1, is to consider continuous Galois representations of the ab-
solute Galois group of the rational field. Fix an algebraic closure of Q.
The Galois group Gal(Q/Q) can be endowed with a topology, namely
the Krull topology (see [58], Chapter IV). The open subgroups of this
topology correspond precisely with the finite subextensions K/Q. Let
V' be a finite dimensional vector space over a finite field F, and con-
sider a representation of Gal(Q/Q) in the group of automorphisms of
V, say
p: Gal(Q/Q) — GL(V).

Furthermore, assume that this representation is a continuous map,
when we consider the discrete topology on GL(V') and the Krull topol-
ogy on Gal(Q/Q). In particular, the set containing only the identity
element of GL(V) is an open set, and therefore p~1({Id}) = ker p is an
open (normal) subgroup of Gal(Q/Q). That is to say, there exists a
finite (Galois) extension K/Q such that ker p = Gal(Q/K). Therefore

Imp ~ Gal(Q/Q)/ ker p ~ Gal(Q/Q)/ Gal(Q/K) ~ Gal(K/Q).

In other words, a continuous Galois representation of Gal(Q/Q)
provides a realization of Imp as a Galois group over Q.

Throughout this dissertation, we shall adopt this strategy, and
study Galois representations of the absolute Galois groups of the ra-
tional field. In particular, we shall study the Galois representations
that arise through the action of the absolute Galois group Gal(Q/Q)
on some arithmetic-geometric objects, such as elliptic curves, or more
generally abelian varieties, and modular forms.

How can one adapt this strategy to cope with Problem 0.17 We
have to determine in which way the ramification of the Galois exten-
sion K/Q relates to the Galois representation p. When the Galois
representation comes from geometric objects, a great deal of informa-
tion is available. Namely, the representation is unramified outside a
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finite set of primes, which depends on the geometry of the object. Also
the characteristic polynomial of the image of the Frobenius elements
at the unramified primes is known. We shall make use of these facts.

What conditions must p satisfy in order to provide a Galois exten-
sion K/Q which is tamely ramified? In order to explain this, we need
to introduce the inertia group and the wild inertia group. First of all,
let us recall the definition of tame ramification.

Definition 0.2. Let K/Q be a finite Galois extension. Let p be a
prime number, and assume that the principal ideal generated by p in
the ring of integers Ok of K decomposes as (p) = ([]i—, p;)?”, where
p; are different prime ideals of Og. Then K/Q is tamely ramified at
p if p 1 ep. We will say that K/Q is tamely ramified if it is tamely
ramified at p for all prime numbers p.

Let p be a prime number, and let us consider the field of p-
adic numbers Q,. Fix an algebraic closure of @, and an immersion
Q — @p. This induces an inclusion of Galois groups Gal(@p /Qp) C
Gal(Q/Q). Inside the Galois group Gal(Q,/Q,) we can consider the
inertia subgroup I, = Gal(@p/(@p,um) and the wild inertia subgroup
Iyw = Gal(@p /Qpt), where Qp, unr and Q)¢ denote the maximal un-
ramified extension and the maximal tamely ramified extension of Q,,
respectively. A prime p is unramified (respectively tamely ramified)
in the Galois extension K/Q if and only if p(I,) = {Id} (respectively
p(I,w) = {Id}). Note that this amounts to saying that the image of
all the higher ramification groups is trivial.

Therefore, if we want a Galois representation p to yield a tamely
ramified Galois extension K/Q, we will have to ensure that p(I, ) =
{Id} for all prime numbers p. We will see that it will be far easier to
ensure this property when the prime p is different from the character-
istic of the finite field F. Throughout this dissertation we will refer by
£ to the characteristic of I, and we will denote by p the prime numbers
that occur in the course of our reasonings.

Note that this strategy of constructing Galois representations such
that the image of the wild inertia group at all primes is trivial can
be encompassed in the general trend of constructing Galois represen-
tations with prefixed local behaviour. This is a currently very active
area of research; see for instance [90].
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Contents of the dissertation

This dissertation is split into two parts. In the first part, we tackle
the realization of families of two dimensional linear groups over a finite
field as the Galois group of a tamely ramified extension of Q. We study
the Galois representations attached to elliptic curves and to modular
forms. In the second part we address the problem of realizing a family
of four dimensional linear groups over a prime field as the Galois group
of a tamely ramified extension of Q. In this part we study the Galois
representations attached to abelian surfaces.
The main results we have obtained are the following.

Theorem 0.3. Let £ be a prime number. There exist infinitely many
semistable elliptic curves E with good supersingular reduction at £.
The Galois representation attached to the (-torsion points of E pro-
vides a tame Galois realization of GLa(Fy).

Furthermore, we give an explicit algorithm to construct these el-
liptic curves. See Theorem 1.19 and Theorem 1.20 for further details.
The primes ¢ = 2,3,5,7 have been considered separately in Section
1.4.

Theorem 0.4. Let ¢ > 5 be a prime number. There exist infinitely
many genus 2 curves C' such that the Galois representation attached
to the £-torsion points of the Jacobian of C' provides a tame Galois
realization of GSpy(Fy).

As in the previous result, we give an explicit algorithm that enables
us to construct these curves. See Theorem 12.25 and Remark 12.27.
Our reasonings do not apply for the primes ¢ = 2, 3.

In addition, we have obtained tame Galois realizations of groups
of the form PSLy(IFy2) for several values of ¢ (see Proposition 2.10).

Let us go over the different chapters of this dissertation in more
detail.

In the first chapter we study Galois representations attached to the
{-torsion points of elliptic curves. It is a well-known result of J-P. Serre
[77] that the image of these representations is the group G = GLqy(Fy)
for all but finitely many primes ¢ whenever the elliptic curve has no
complex multiplication. Combining it with a result of B. Mazur we
manage to obtain Galois representations with large image. To obtain a
tamely ramified extension, the most delicate point is the control of the
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ramification of the representation at £. In fact, if we pick a semistable
elliptic curve, we are assured that the ramification will be tame at all
primes p # £. In order to obtain tame ramification at £, we ask the
elliptic curve to have good supersingular reduction at this prime. We
end the chapter by presenting an algorithm that computes, given a
prime number ¢, a semistable elliptic curve with good supersingular
reduction at ¢ and such that the Galois representation attached to
the (-torsion points of E is surjective. This elliptic curve provides a
tame Galois realization of GLa(FFy). Therefore we have an affirmative
answer to Problem 0.1 for this family of groups. Note that we construct
a supersingular elliptic curve over any prime field F, with £ > 3. We
have recently found that some authors have given another construction
that will soon appear in print (cf. [11]).

The contents of this first chapter are presented in [1].

In the second chapter we focus our attention on Galois represen-
tations attached to modular forms. K. Ribet [69] has studied the im-
age of these representations when the modular form has no complex
multiplication. As a conclusion, we can try to obtain tame Galois re-
alizations of families of groups PSLa(Fyr) and PGLa(F,r). We recall
some results of J-M. Fontaine concerning the ramification of the mod-
ular form at the prime ¢. Unfortunately, in this chapter we have not
managed to obtain conclusive results. We point out the main difficul-
ties that have arisen and, as a consequence of some computations of
L. Dieulefait and N. Vila [23], we give some examples of tame Galois
realizations of groups belonging to the family PSLo(F2).

The second part of this dissertation is a combination of many re-
sults, which fit together to produce tame Galois realizations of groups
of the form GSp,(Fy). In this part we consider the Galois representa-
tions attached to the f-torsion points of an abelian surface A. The first
chapters of this part address the problem of obtaining some control
on the ramification of the Galois representation, and the last chapters
deal with the issue of obtaining large image.

At the primes p # ¢, we will again take advantage of semistabil-
ity. In Chapter 3 we recall a result of A. Grothendieck [31] about
the Galois representation of semistable abelian varieties. As a conse-
quence, the control of the ramification boils down to finding a way to
deal with the ramification at . This is the aim of chapters 4-10. In
chapter 4, we review the case of elliptic curves, delving into the details
of the reasoning that supersingularity implies tame ramification. We
conclude that a key ingredient is the study of the formal group law
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attached to the abelian variety. We introduce a condition (Hypoth-
esis 4.7) such that, whenever it is satisfied by the formal group law
attached to A, then the corresponding Galois representation is tamely
ramified at £. Chapter 5 is devoted to recalling the notion of height
of a formal group law of dimension greater than 1, and several points
connected with it. In Chapter 6 we pause for a while to reflect on the
results obtained up to this point. A new kind of formal group laws are
introduced in Chapter 7, namely symmetric formal group laws (see
Definition 7.3). This symmetry property, in contrast to Hypothesis
4.7, is easy to detect with a quick look at the formal power series that
define the formal group law. The rest of Chapter 7 is devoted to prov-
ing that, under certain suitable conditions, symmetric formal group
laws satisfy Hypothesis 4.7, and thus the Galois extension provided
by the Galois representation attached to the ¢-torsion points of A is
tamely ramified.

Chapter 8 addresses the problem of finding in nature some abelian
surfaces such that the corresponding formal group law is symmetric.
Namely, it considers a certain kind of genus 2 curves, which we call
symmetric (see Definition 8.3). It is proved that the Jacobian variety
attached to such a curve is an abelian surface with symmetric for-
mal group law. The last section of the chapter focuses on symmetric
bielliptic curves.

One last issue must be addressed before leaving aside the matter
of obtaining tame ramification. Namely, the main result obtained in
the previous chapters ensures that certain abelian surfaces give rise to
Galois representations that will be tamely ramified. However, these
conditions are very restrictive: in particular they will also imply that
the image of the Galois representation is not large. Therefore, the
conditions must be relaxed in some way in order to overcome this last
obstacle. This task is carried out in Chapter 10.

At last we come to the question of determining the image of the
Galois representations attached to the ¢-torsion points of abelian sur-
faces. As in the case of dimension 1, a well-known result of J-P. Serre
[82] asserts that, if the abelian variety does not have complex multipli-
cation, then the image of the representation coincides with GSp,(Fy)
for all but finitely many primes ¢. Again, we have to devise a way
of ensuring that the image of the representation is large. We take
as starting point some explicit results of P. Le Duff, and following a
suggestion of L. Dieulefait we present a nice statement in Chapter 11.

Finally, Chapter 12 is devoted to combining all the previous results
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into an explicit algorithm, which, given a prime ¢ > 3, produces a
genus 2 curve whose Jacobian satisfies that the Galois representation
attached to its ¢-torsion points provides a tame Galois realization of
GSp, (Fy).

We have added an Appendix which gathers a specific set of defining
equations for the Jacobian of a genus 2 curve, which can be found at
the web page of V. Flynn, but as far as I know have not appeared in
print in this exact form (cf. [28]).

At the end there is a summary of the contents of the dissertation,
written in Spanish.
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Chapter 1

Tame Galois realizations of
GLo(IFy)

1.1 Introduction

Let ¢ be a prime number. In this chapter we will address the tame
inverse Galois problem when G = GLo(Fy), that is to say, we will
consider the question of constructing a tame Galois extension K/Q
with Galois group GL2(Fy) (see Problem 0.1). It is a classical result
that the linear groups GLo(FF;) can be realized as Galois groups over
the field of rational numbers (cf. [89]). Our aim is to show that one
can obtain some Galois realization Gal(K/Q) ~ GLa(Fy) with K/Q
tamely ramified.

We will approach this problem by means of the Galois representa-
tions attached to the ¢-torsion points of elliptic curves. Under certain
hypotheses, these representations will supply us with tame Galois re-
alizations of GLa(Fy).

Let us consider an elliptic curve E/Q defined over the rational
numbers. The absolute Galois group Gal(Q/Q) acts on the group of
(-torsion points of the elliptic curve (which shall be denoted by E[¢]),
and thus gives rise to a group homomorphism

@r: Gal(Q/Q) — Aut(E[f]) ~ GLa(IFy).

This homomorphism is continuous when we consider the Krull
topology on Gal(Q/Q) and the discrete topology on GLy(Fy). In fact,
to see this it is enough to show that the inverse image of the identity

3
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(which is an open set in GLy(Fy)) is open in the Krull topology. But
this inverse image is the Galois group Gal(Q/K), where K = Q(E[¢])
is the finite Galois extension obtained by adjoining to Q the coordi-
nates of the ¢-torsion points of E.

As a consequence, we obtain that the image of ¢, can be realized
as a Galois group over Q;

Im ¢y =~ Gal(@/Q)/ ker ¢y =~ Cal(Q(E[(])/Q).

Were ¢y surjective, we would obtain a realization of GLo(FF,) as Galois
group over Q.

Concerning the surjectivity of this representation, we have the fol-
lowing result of J-P. Serre (see [77], Theorem 2 of § 4.2).

Theorem 1.1 (Serre). Let K be an algebraic number field, and let
E/K be an elliptic curve without complex multiplication. Then, for

all but finitely many primes £, the homomorphism ¢, : Gal(K/K) —
Aut(E[l)) ~ GLo(Fy) is surjective.

This result, of course, provides a great deal of information. For
instance, combining it with other results in the paper, Serre proves
that the image of the Galois representation ¢, attached to the elliptic
curve E of conductor ¢ = 37 coincides with GLg(F), for all primes ¢
(see Example 5.5.6 of [77]). In this way, the elliptic curve E provides
a Galois realization of GLo(FF;) as Galois group over Q, for all primes
L.

But, unfortunately, given a prime ¢, Theorem 1.1 does not tell
us how to check whether the result holds for our prime or, on the
contrary, it is one of those exceptional primes for which the result
does not apply. In [52] some explicit bounds for ¢ are computed, but
they are far too high to suit our purposes. We will make use of the
following result of B. Mazur (Theorem 4 of [53]).

Theorem 1.2. Let E/Q be a semistable elliptic curve, and ¢ > 11
a prime number. The Galois representation attached to the £-torsion
points of E is surjective.

Therefore, for each prime ¢ > 11, the Galois representation at-
tached to the f-torsion points of a semistable elliptic curve defined
over Q gives rise to a realization of GLy(Fy) as Galois group over Q.
In the rest of the chapter, we shall only consider semistable elliptic
curves. We need to find suitable conditions that guarantee that the
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field extension Q(FE[¢])/Q is tamely ramified, so that we can combine
them with the previous result. Following the notation used at the in-
troduction of the dissertation, we shall denote by I, (respectively I, )
the inertia group (respectively the wild inertia group) at a prime p.

Theorem 1.3. Let £ > 11 be a prime number, and consider a semi-
stable elliptic curve E/Q such that ¢ has good supersingular reduction.
Let us consider the Galois representation

@r : Gal(Q/Q) — Aut(E[(]) ~ GLo(Fy)
attached to the £-torsion points of E. Then

Gal(Q(E[(])/Q) ~ GLa(Fy),
and moreover the extension Q(E[(])/Q is tamely ramified.

Proof. Taking into account Theorem 1.2, it suffices to show that the
extension Q(FE[¢])/Q is tamely ramified.

Let p be a prime number. Let us check that ¢;(I, ) is trivial.

Assume first that p # £. Since E is semistable, there are only two
possibilities: either E has good reduction at p, or E has bad multi-
plicative reduction at p. In the first case, the Néron-Ogg-Shafarevich
criterion claims that ¢;(I,) = 1, and therefore ¢,(I, ) is also trivial.
In the second case, the result can be proven using Tate curves. Follow-
ing the notation of [84], Appendix C, § 14, we know that there exists
q € Qp with p-adic absolute value |g| < 1, such that E is isomorphic
to the Tate curve Eg, either over @, or an unramified quadratic ex-
tension of . In both cases, the action of the inertia group I, on the
{-torsion points of E coincides with the action on the ¢-torsion points
of E,. But the /-torsion points of E, satisfy the following short exact
sequence of Gal(Q,/Q,)-modules:

0— pe — Eyll] = Z/IZ — 0,

where pi; denotes the group of the (-th roots of unity in Q) and the
action of Gal(@p/(@p) on Z/VZ is trivial (see Appendix A.1.2, p. IV-31
of [80]). Therefore, choosing a suitable basis of E[¢], the image of I,
by the representation ¢, satisfies

et < (5 1)
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That is to say, it is contained in a cyclic group of order /. But since
I, v is a pro-p-group, the elements of yy(I,+) have order equal to a
power of p. Therefore the image of I, ,, must be trivial.

Suppose now that p = ¢. In [77] J-P. Serre studies the image of the
inertia and wild inertia groups by the Galois representations attached
to the p-torsion points of an elliptic curve defined over a local field of
characteristic zero and residual characteristic p. In particular, Serre
proves that, if F is an elliptic curve defined over the field of p-adic
numbers which has good supersingular reduction, then the image of
the wild inertia group I, by the representation ¢, is trivial (cf. [77],
Proposition 12). This concludes the proof.

O

From now on, our aim shall be to find, for each prime ¢ > 11, an
elliptic curve satisfying the hypotheses of Theorem 1.3. In the next
section we will focus on the construction of elliptic curves with good
supersingular reduction at a given prime ¢. Afterwards, we will blend
it into a construction which gives us an elliptic curve satisfying all the
required conditions.

Remark 1.4. The most delicate point when we try to ensure that the
extension Q(E[¢])/Q is tamely ramified is the control of the ramifica-
tion at the prime p = £. In Theorem 1.3, this control is achieved by
asking that the reduction at the prime ¢ be good and supersingular.

Let us fix an elliptic curve F/Q without complex multiplication. J-
P. Serre has proven that the set of primes having good supersingular
reduction has density zero (see [74], § 3.4, Corollary 1). However,
according to N. D. Elkies [27], this set is infinite. In any case, it seems
that, given an elliptic curve, in this way we can prove only for few
primes ¢ (that is to say, for primes ¢ belonging to a density zero set)
that the realization of GLo(TFy) obtained will be tamely ramified. So a
study of the ramification in the case of ordinary reduction might seem
advisable. However, in a note to [77] (Note 1 to n® 94., p. 706 of [78]),
Serre states that it might seem reasonable to think that the density of
the set of primes of good ordinary reduction such that the wild inertia
group acts trivially is also zero. Thus, this approach does not seem to
be much more fruitful than the one we have taken.
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1.2 Supersingular elliptic curves

In this section we are going to construct, for each prime number ¢ > 3,
an elliptic curve E/Q with good supersingular reduction at ¢. We
will first recall some results on supersingular elliptic curves over finite
fields, and then proceed to describe an explicit construction. Through-
out the section, £ > 3 will be a fixed prime number. Let us denote by
F; an algebraic closure of Fy.

We start with the definition of supersingular elliptic curve.

Definition 1.5. Let E be an elliptic curve defined over a finite field
of characteristic £. E is supersingular if E[¢"] = 0, for all r > 1.

If E is a supersingular elliptic curve over a finite field of charac-
teristic ¢, it can be proven that its j-invariant lies in Fyp2 (see [84],
Theorem 3.1 of chap. V). Therefore, there are only a finite number of
such curves. Next we recall a characterization of these curves in terms
of the Deuring polynomial.

Definition 1.6. The Deuring polynomial is defined by the following
expression:

-1

2. /N2

Hy(x) = 2 gh,
=3 (7)) s
k=0
The roots of this polynomial give us all supersingular elliptic curves

in Legendre normal form.

Proposition 1.7. Let_)\ € Fo, A #0,1, and let us consider the elliptic
curve E defined over Fy by the equation in Legendre form y? = x(x —
1)(z — X). Then E is supersingular if and only if Hy(X\) = 0.

Proof. See [84], chapter V, Theorem 4.1. O

Let us bear in mind that we are looking for an elliptic curve F,
defined over Q, such that its reduction modulo ¢ is a supersingular
elliptic curve. Therefore, the j-invariant of E must belong to Q, and
consequently the j-invariant of the reduction must lie in F,. That is
to say, only supersingular elliptic curves with j-invariant in Fy can be
lifted to Q. Our problem is therefore to find a root of Hy(x) such
that the elliptic curve given by the equation y? = 2(z — 1)(z — ) has
j-invariant in Fy. Certainly, if we find a value of A € [Fy such that the
elliptic curve defined over F; by the equation y? = z(z — 1)(z — \) is
supersingular, it would be a simple task to lift this equation to Z.
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Remark 1.8. Assume /£ is a prime congruent to 3 modulo 4, so that

K_Tl is odd. Then Hy(x) contains an even number of terms, namely

KTI + 1. Besides, they can be paired in the following way:

et 2k p%l p=l_
2 .
<k>x and <E—k>x2
/-1

Since 51 is odd, (—1)* and (—1)pT_1_k have opposite signs. Therefore,
when =z = —1, the paired terms cancel out, and so we obtain that
Hy(—1) = 0. That is to say, we have found a root of Hy(x) in Fy,
provided | =3 (mod 4).

Therefore we can conclude that the elliptic curve defined over Fy
by the equation y? = z(z — 1)(z + 1) is a supersingular elliptic curve
whenever / is congruent to 3 modulo 4.

In the general case, however, things are not that simple. To begin
with, if £ =1 (mod 4), Hy(x) has no linear factors over Fy (see [10],
Theorem 1-(a)). We shall need some knowledge of the roots of the
Deuring polynomial. Let us recall the following well-known facts (see
for instance Theorem 4.1-(c) of chapter V of [84] and Proposition 2.2

of [4]).

Proposition 1.9. Let ¢ be an odd prime number.
e The roots of Hy(x) are simple.
e The roots of Hy(x) lie in Fp.

Since the roots of Hy(x) are in Fy2, Hy(z) splits in linear and
quadratic factors over Fy. Proposition 6 of [10] gives us a characteri-
zation of the factors that will yield an elliptic curve with j-invariant
in Fg.

Proposition 1.10. The j-invariant of the supersingular elliptic curve
defined by the Legendre equation y? = x(x —1)(z — \) lies in Fy if and
only if X is an element of Fy, or else it is quadratic over Fy satisfying
that either its norm is equal to 1, or its trace is equal to 1, or its norm
and trace are equal to each other.

We are going to focus on factors of the form z? — z + a, that is
to say, factors with trace equal to 1 (as a matter of fact, if we find
an irreducible quadratic factor of this form, we can easily produce
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quadratic factors of the other two types: see the proof of Theorem
1-(a, b) of [10]). In [14], L. Carlitz studies the divisibility of Hy(x)
by certain factors of this form (for instance, he proves that the factor
22—z + 1 divides Hy(z) if (=3/1) = —1, see Theorem 16 of [14]). But
we are not going to fix the value of a in the expression z? — z + a; for
us it will suffice to know that there exists a factor of this form, which
can be computed effectively. J. Brillhart and P. Morton have counted
the number of factors of this form that divide Hy(x) (see Theorem
1-(b) of [10]).

Theorem 1.11. Let £ be any prime greater than 3. The number of
monic irreducible quadratic factors of Hy(x) having middle coefficient
—1 s

h(—2)/2 if¢t=1 (mod 4),
(3h(—¢)—1)/2 if£=3 (mod 8),
(h(=¢)—1)/2 if£=7 (mod 8),

Ny =

where h(—{) denotes the class number of Q(v/—F).

Corollary 1.12. Let £ > 3 be a prime number. There exists a € Iy
such that % — x + a divides Hy(x).

Proof. Since h(—¢) > 1, it is obvious from the above theorem that
whenever ¢ = 1 (mod 4) or £ = 3 (mod 8) the number of monic ir-
reducible quadratic factors of Hy(z) having middle coefficient —1 is
strictly greater than 0. Trouble may arise when ¢ = 7 (mod 8) and
h(—¢) = 1. But the only prime which satisfies these two conditions is
¢ =17 (see [85]). If we factor H7(x), we obtain

Hy(x) = (z+1)(z +3)(z +5)

Note that the product of the two factors (z+41)(z+5) yields 22 —z+5,
which has the desired form. O

Provided we have a factor of Hy(z) of the form 22 — z + a, what
we are trying to do is to give a Weierstrass equation such that, after
a change of coordinates, we can write it in Legendre form 3? = x(x —
1)(z — A), where A is a root of this factor of Hy(z), that is,

1, V11
A=k
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Let us consider a Weierstrass equation of the form
v’ = (z —e1)(z — e2)(x — e3),

and let us try to determine ey, es, e3 so that this equation satisfies the
condition above.
A change of coordinates yields a Weierstrass equation in Legendre
form, with
3 —e1

= : 1.1
A= e (1.1)

Since we know that, in general, A does not lie in F,, we cannot
expect to find eq, e9, e3 all in Fy. Instead, we shall assume one of them
lies in Fy2. Automatically, this implies that one of the others is its
conjugate, and that the remaining one lies in Fy.

Taking all this into account, we will look for b, ¢,d € Fy, such that
the equation

v’ = (z = b)(x — (c+0))(x—(c—9)) (1.2)
where 0 € Fj2 satisfies 62 + d = 0, defines an elliptic curve with
A=14 VIda

2 2 -

Note that performing the product on the right hand side we get
(x—b)(z—(c+0))(z—(c—0)) = 23— (b+2¢) 2%+ (2bc+c?+d)x— (bc? +bd)
and so Equation (1.2) defines a curve over F,. We shall have to ensure
that the discriminant is not zero.

According to Equation (1.1), we can express the curve defined by
Equation (1.2) in Legendre form with A = % + %. So we simply shall
look for b, c,d € Fy such that

b;C — +V1— da.
In particular, it suffices to ask that

d=4a—-1

b=c+ (4a —1).

Let us gather together these considerations into a statement:

Proposition 1.13. Let £ > 3 be a prime number, and let a € Fy be
such that the polynomial x> — x + a divides the Deuring polynomial
Hy(x). If b,c,d € Fy satisfy

d=4a -1

b=c+ (4a—1)
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then the equation
y? = a3 — (b4 2¢)x? + (2bc + ¢ + d)x — (bc® + bd) (1.3)
defines a supersingular elliptic curve over FFy.

Proof. To see that Equation (1.3) defines an elliptic curve, we have to
check that its discriminant A = —64d((b — ¢)? + d)? is different from
zero. But the conditions above imply that d # 0 and (b — ¢)? +d # 0.
Indeed, in the first case, we would have that 4a — 1 = 0, and therefore
2> —x+a=2>—x+1/4= (x—1/2)%, which has a double root, in
contradiction with Proposition 1.9. In the second case, 4a(4a—1) = 0,
and hence either a = 1/4 (which cannot happen, as we have just seen)
or a = 0. But then 22 — x would divide Hy(z), and Definition 1.6
makes it clear that zero is never a root of the Deuring polynomial.
Finally, by construction this equation defines a supersingular ellip-
tic curve. O

Remark 1.14. Given a prime ¢ > 3, let b, ¢, d € Fy be as above. Then
lifting these coefficients to Z, we obtain a Weierstrass equation, de-
fined over Q, such that reducing modulo £ we obtain the supersingular
elliptic curve given in Proposition 1.13.

1.3 Explicit construction for ¢ > 11

In this section we are going to construct, for each prime number ¢ > 11,
an elliptic curve E such that the Galois representation attached to the
group of /-torsion points of E provides us with a tame realization of
GLy(Fy) as Galois group over Q. The primes 2, 3, 5, and 7 will be
handled in the next section.

Let us fix a prime ¢ > 11. We shall start by stating the problem
we wish to solve, once we take into account the contents of Theorem
1.3.

Problem 1.15. Find ai, a9, a3, a4, a6 € Q such that:
e The Weierstrass equation
v+ arzy + asy = 22 + asx® + aux + ag (1.4)
has non-zero discriminant, and therefore defines an elliptic curve.

e The elliptic curve defined by Equation (1.4) is semistable.
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e The elliptic curve defined by Equation (1.4) has good supersin-
gular reduction at the prime /.

In what follows, we are going to replace the conditions that appear
in Problem 1.15 with others which are more restrictive but also more
convenient for us. First of all, we shall look for ay,as, a2, aq,a6 € Z.
This will allow us to control the behaviour of the different primes p by
requiring the coefficients of the equation to satisfy certain congruences
modulo p.

Section 1.2 dealt with the last condition. Now, in order to tackle
the semistability condition, let us briefly recall some elementary facts
about reduction of elliptic curves.

Assume we have a Weierstrass equation (1.4) such that the a;,
1 =1,2,3,4,6, belong to the ring of integers Z. Attached to it there
are certain quantities; in particular one might consider c4 and the
discriminant A (their expressions in terms of the a;, i = 1,2,3,4,6,
can be found in [84], chap. III, § 1). If a prime p does not divide
either A or ¢4, then Equation (1.4) is minimal with respect to the
p-adic valuation (cf. [84], chap. VII, Remark 1.1).

The kind of reduction modulo p of a curve defined by a Weierstrass
equation over Z, minimal with respect to the p-adic valuation, can
easily be classified in terms of ¢4 and A:

Lemma 1.16. Let E/Q,, be an elliptic curve defined by a Weierstrass
equation (1.4), minimal with respect to the p-adic valuation, and let
c4 and A be the corresponding quantities attached to it.

Then

e E has good reduction if and only if p1 A.

e E has bad multiplicative reduction if and only if p|A but ptcy.

According to Section 1.2, it is clear that when ¢ = 3 (mod 4) one
can give a simpler construction, so we will treat it first and then turn
to the general case.

Assume therefore that £ =3 (mod 4). We are going to determine
a value \ € Z such that the equation

v =z(x—1)(z -\ (1.5)

satisfies the conditions in Problem 1.15. From Remark 1.8 it follows
that the last condition will be satisfied provided we require A = —1
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(mod ¢). Now if we compute the quantities ¢4 and A attached to
Equation (1.5) we obtain

A =16\2(\ —1)?
ey =16(\2 — X +1).

It follows that, if p # 2, Equation 1.5 is a minimal Weierstrass
equation, and further that the reduction of E at p is either good or bad
of multiplicative kind, since p cannot divide both A and ¢4. Thus, in
order to ensure semistability, we just have to control the prime p = 2.

In order to study the behaviour of the prime 2 we must change
coordinates so that we obtain a minimal Weierstrass equation with
respect to the 2-adic valuation. Let us consider the following change:

{m =22 +r

1.6
y =23y + 2%s2’ +t (1.6)

where r,s,t € Q. If we write ¢ for the quantity attached to the new
equation, we have the relation

Ay =cg/2' =N -\ +1,

which is always an odd number. Therefore, if we choose r, s,t so that
the new equation has again coeflicients in Z, it will be a minimal
Weierstrass equation, and moreover at p = 2 there will be either good
reduction or bad multiplicative reduction, according to whether A’ is
odd or not.

Now if we apply the change of variables (1.6) to Equation (1.5),
we get

1 1
v+ sa'y + Zty’ =% Z(_l B R T

1 1
+ 1—6()\— 2r — 2\ + 312 — 2st)2’ + a()\r —r? = X2t ).

Hence, to ensure that the coefficients of the new equation will be
integers, we just have to solve the following congruence system:

t =0 (mod 4)
1+ X—3r+s? =0 (mod 4)
~A+2r+2\r —3r24+2st =0 (mod 16)
X+ A2 =3 442 =0 (mod 64).
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Let us choose r = s = 1, t = 0. Then the system reduces to the
single equation
A=1 (mod 16),

and the new equation we obtain is y'> + #'y/ = 2> + 11— Az +
16(1 =)’
16 x.

We have thus solved Problem 1.15 whenever ¢ =3 (mod 4):

Proposition 1.17. Let £ > 11 be a prime number such that £ = 3
(mod 4), and let X\ € Z be such that

e \=—1 (mod ¢).
e A=1 (mod 16).

Then the equation y? = x(x — 1)(x — \) satisfies the conditions of
Problem 1.15.

Let us now consider any prime ¢ > 11. In order to make it easier
to deal with the supersingularity condition applying Proposition 1.13,
we shall look for a Weierstrass equation of the shape

y? = (. —b)(x — (c+iVd))(z — (c —iVd)), (1.7)

where b,c,d € Z. Our aim is to find some conditions that assure us
that it defines a semistable elliptic curve.
A direct calculation yields that

A = —64d((b — ¢)? + d)?
cy = 16((b — ¢)? — 3d)

The conditions on b, ¢, d that we will require in order to apply Propo-
sition 1.13 shall in particular imply that A is different from zero, so
we will not consider that for the moment. We will turn to the issue of
semistability.

If an odd prime p divides both A and ¢4, then it would have to
divide b — ¢ and d. So to guarantee that the curve is semistable at all
odd primes p, we must require that the greatest common divisor of
b — c and d be a power of two.

Again, the strategy to deal with p = 2 is to find a suitable change of
variables, so as to obtain an equation where one of the new quantities
c4 or A is odd. This assures us that it is minimal at 2, and that the
elliptic curve it defines is semistable at 2. The idea to perform this is
explained in the following remark.
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Remark 1.18. Let us take any elliptic curve given by an equation of
the form

y? = (z = bo)(z — (co +iv/do)) (& — (co — iV/dp)),

and satisfying that there exists a change of variables, preserving the
Weierstrass form, which returns a new equation such that the quantity
A’ (or else ¢j) attached to it is odd. Then if we require b, ¢, d to be
congruent to by, cg, dy modulo a high enough power of 2, the elliptic
curve defined by Equation (1.7) will be semistable at 2. The reason
why this holds is simply that the same change of variables, applied to
Equation (1.7), will yield an equation such that the quantity A’ (or
else ¢) attached to it is odd.

Let us consider the curve 17-A1 from Cremona’s Tables [18],
Vraoy+y=a3—2®—z—14. (1.8)

This curve is semistable, and has good reduction at every prime
save 17. The discriminant of this equation is A = —83521, which is
odd. Therefore this is a minimal model for p = 2. Through a change
of variables, we can transform this equation into

y? = 2% — 322 — 8 — 880 = (x — 11)(2% + 8z + 80) (1.9)

which has the desired shape with by = 11, ¢g = —4, dy = 64. The
change of variables from Equation (1.9) to Equation (1.8) is the fol-
lowing:

x =47
y=28y +4x' +4
If we apply this change of variables to Equation (1.7), we obtain

1 b ¢
y2+:17y—|—y::173—<—+—+—>:132+

4 4 2
1 be 2 d 1 b bd
+<—§+§+1—6+1—6>x_<1+a+6_4>' (1'10)

In order to be certain that all coefficients are integers, and more-
over of the same parity than those of Equation (1.8) (so that the
discriminant will also be odd), we need to ask b,c,d to be congruent
to bg, co, dg modulo 2 - 64 = 128.

Finally we have all the ingredients to solve Problem 1.15.
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Theorem 1.19. Let ¢ > 11 be a prime number. Assume a € Z is
such that, if @ denotes its reduction modulo ¢, the factor x> —x +a
divides the Deuring polynomial Hy(z) in Fylx].

Let us pick b, c,d € Z satisfying:

e b—c and d are relatively prime.
eb—c=4a—1 (mod¥), d=4a—1 (mod /).

e b=11 (mod 128), ¢ = —4 (mod 128), d = 64 (mod 128).

Then the equation
2 _ .3 2 2 2
y- =" — (b+2c)z” + (2bc + ¢ + d)x — (be” + bd) (1.11)

defines a semistable elliptic curve with good supersingular reduction at

‘.

Proof. First of all, note that ¢ does not divide the discriminant of
Equation (1.11), and therefore it cannot be zero (see the proof of
Proposition 1.13). Consequently Equation (1.11) defines an elliptic
curve over Q, say FE.

Since b — ¢ and d are relatively prime, it is easy to check that no
odd prime number can divide both quantities ¢4 and A; thus E is
semistable at all these primes. To study the reduction at p = 2, let
us apply to Equation (1.11) the change of variables (1.6). Now the
congruence conditions modulo 128 allow us to check that the equation
we obtain has integer coefficients and odd discriminant, and therefore
FE has good reduction at p = 2.

Finally, since ¢ does not divide A, Equation (1.11) is a minimal
Weierstrass equation at p = ¢, and so the reduction of E modulo
{ can be expressed by means of the equation obtained reducing the
coefficients in Equation (1.11). Hence Proposition 1.13 assures us that

FE has good supersingular reduction at £.
O

Note that this theorem gives an explicit construction of infinitely
many semistable elliptic curves with good supersingular reduction at
the prime /.

Thus as a consequence of Theorem 1.3 and Theorem 1.19, we are
able to state the following result.
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Theorem 1.20. For each prime number £ > 11, there exists an el-
liptic curve E/Q such that the Galois extension Q(E[(])/Q is tamely
ramified with Galois group GLa(Fy).

Note that Theorem 1.19 gives us infinitely many tamely ramified
Galois extensions K/Q with Galois group GLy(Fy).

1.4 Explicit construction for small primes

Theorem 1.19 allows us to obtain tame Galois realizations of GLa(IF)
provided £ > 11. To complete this result, we can take specific curves
that yield tame Galois realizations when £ = 2,3,5 and 7.

Example 1.21.

e ( = 2: The curve 1943 of Cremona’s Tables [18] is semistable,
has good supersingular reduction at 2, and the Galois represen-
tation attached to its group of 2-torsion points is surjective (cf.
[66], Theorem 3.2).

e ( = 3: The curve 17A1 of Cremona’s Tables [18] is semistable,
has good supersingular reduction at 3, and the Galois represen-
tation attached to its group of 3-torsion points is surjective (cf.
[66], Theorem 3.2).

e ( = 5: The curve 14A1 of Cremona’s Tables [18] is semistable,
has good supersingular reduction at 5, and the Galois represen-
tation attached to its group of 5-torsion points is surjective (cf.
[66], Theorem 3.2).

e ( = T: The curve 15A1 of Cremona’s Tables [18] is semistable,
has good supersingular reduction at 7, and the Galois represen-
tation attached to its group of 7-torsion points is surjective (cf.
[66], Theorem 3.2).

In order to make our result completely satisfactory, we would like to
be able to construct infinitely many elliptic curves which provide tame
Galois realizations of GLy(Fy), for each of the primes ¢ = 2,3,5,7.
Of course, the main difference with regard to the previous section is
that we cannot use Theorem 1.2 to prove surjectivity. Fortunately we
shall be able to use some tricks, which shall depend on the value of
£. Moreover, we shall rely on the examples presented above. First
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of all, we will go through the four cases ¢ = 2,3,5,7 and show some
conditions that ensure that the corresponding Galois representation is
surjective and has good supersingular reduction at the prime £. At
the end of the section we will explain how to construct elliptic curves
which are semistable and, at the same time, satisfy the conditions we
required.

The prime ¢ =2

Let E/Q be an elliptic curve. The image of the Galois representation
attached to the 2-torsion points of F can be specified in terms of the
discriminant and the rational 2-torsion points of E (see Proposition
2.1 of [66] and § 5.3 of [77]). More precisely, the image of 9 is GLa(F2)
if and only if E(Q)[2] = {O} and Ag is not a square.
Consider the curve 19A3 of Cremona’s Tables [18], given by the
equation
v +y=a23+a22 o (1.12)

Let us change variables in order to obtain an equation of the shape
y? = 423 +byx? +2bsx + bg, where the b; are obtained as usual from the
coefficients a; of the original equation (see for instance [77], beginning
of § 5). In this case, we apply the change of variables y — %(y - 1)
and obtain the new equation

y? =423 + 42?2 + 4z + 1.

The polynomial 423 + 422 + 4z + 1 is irreducible modulo 5, and its
discriminant is not a square modulo 3. Therefore, any elliptic curve
E given by an equation which is congruent to (1.12) modulo 3 and
5 will satisfy that the Galois representation attached to its 2-torsion
points is surjective. Moreover, if the equation of E is congruent to
(1.12) modulo 2, its reduction (modulo 2) shall be given by 32 +y =
x3 + 22 + z, and therefore will be supersingular at 2.

The prime ¢ =3

For this case, we will make use of the following result (see [66], Theo-
rem 2.3-(iii)):

Theorem 1.22. Let E/Q be an elliptic curve given by the equation

y2 = 4g° — GoT — g3, (1.13)
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and let VY = 3z — %g2x2—3g3x— %g%. Assume that V¥ has no ratio-
nal roots and the discriminant of (1.13) is not a cube. Then the Galois
representation attached to the 3-torsion points of E is surjective.

Let us consider the curve 17A1 of Cremona’s Tables [18], which is
given by the equation y? + zy + y = 2° — 22 — x — 14. If we make
the change of variables y — %(y —x — 1), we obtain the equation
y? = 423 — 322 — 2z — 55. In order to adjust it to the shape of
the equation in the theorem, we must still make another change of

variables, x +— x + %, and we get

Y =dad - - —. (1.14)

The discriminant of the polynomial P(z) = 4a3 — iz — 4%5 is
—1336336, which is not a cube modulo 19.

On the other hand, the polynomial UZ = %%1 — %x — %ﬁ +3z4
is irreducible modulo 5.

Therefore, any elliptic curve F given by an equation congruent
to (1.14) modulo 3, 5 and 19 satisfies that the Galois representation
attached to the 3-torsion points is surjective. Moreover, its reduction
at the prime ¢ = 3 is supersingular.

The prime ¢ = 5.

In this case we will make use of the following result (see Proposition
19 of [77]).

Proposition 1.23. Let ¢ > 5 and let G be a subgroup of GLo(Fy)
which contains three elements s,s’,s" satisfying the following proper-
ties:

1. tr(s)? — 4det(s) is a non-zero square in Fy and tr(s) # 0.
2. tr(s")? — 4det(s') is not a square in Fy and tr(s') # 0.

3. Let u = tr(s")%/det(s"). Then u # 0,1,2,4 and it satisfies that
u? —3u+1#0.

Then G contains SLa(Fy). In particular, if det|c is surjective,
then G = GL2 (Fg)
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Therefore, since we know that the representation ¢, attached to
the /-torsion points of an elliptic curve E satisfies that det ¢y is the
cyclotomic character, which is surjective, the previous proposition tells
us that it suffices to find three elements s,s’,s” in Im(ypy) satisfying
the conditions above in order to prove that ¢y is surjective.

Let us consider the curve 14A1 of Cremona’s Tables [18], which is
given by the equation

v 4oy +y=a+4z —6. (1.15)

We already know that the Galois representation s attached to the
5-torsion points of this curve is surjective. Therefore, it contains all
the elements in GLy(F5). In particular, it will contain three elements
s,s',s" satisfying the conditions of the proposition above. We are
going to pick three such elements. To do so, we will look for primes
p where our elliptic curve has good reduction, and see whether the
image of the Frobenius element at p satisfies the conditions of the
proposition.

e Let p =13, and take s = p5(Frob;3). We can check that tr(s) =
1 # 0 and tr(s)? — 4 det(s) = 4, which is a nonzero square in Fs.

e Let p = 3, and take s’ = p5(Frobs). Then one can see that
tr(s’) = 3 # 0 and tr(s')? — 4det(s’) = 2, which is not a square
in F5.

e Let p = 3 again, and call s” = p5(Frobg). One can check that
u(s") = tr(s")?/ det(s”) = 3 and furthermore u(s”)? — 3u(s”) +
1=1+#0.

Therefore, if we take any elliptic curve given by an equation con-
gruent to (1.15) modulo 3, 5 and 13, we shall have that the Galois
representation attached to the 5-torsion points of F is surjective, and
moreover the reduction at the prime 5 is supersingular.

The prime ¢ =7

In this case we will proceed as above: we will use Proposition 1.23
in order to ensure surjectivity. Let us consider the curve 15A1 of
Cremona’s Tables [18], given by the equation

Y2 +ay+y=2® + 22 — 10z — 10. (1.16)
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We know already that the Galois representation (7 attached to
the 7-torsion points of this curve is surjective. Now we will look for
primes p of good reduction such that the image of the Frobenius at p
satisfies the conditions of Proposition 1.23.

e Let p = 13, and call s = p7(Frob3). It is easily verified that
tr(s) = 5 # 0 and tr(s)?2 —4det(s) = 1, which is a nonzero square
n F7.

e Let p =17, and let s’ = ¢7(Froby7). One can check that tr(s’) =
2 # 0 and tr(s’)? — 4det(s’) = 6, which is not a square in [Fy.

e Let p = 13, and call s” = p7(Froby3). Then one can see that
u(s") = tr(s”)?/ det(s"”) = 3 and u(s”)? — 3u(s”") +1=1#0.

Therefore, if we take any elliptic curve E given by an equation
which is congruent to (1.16) modulo 7, 13 and 17, we shall have that
the Galois representation attached to the 7-torsion points of E is sur-
jective, and furthermore it has good supersingular reduction at 7.

Semistability

According to the previous paragraphs, given £ = 2,3,5 or 7 we already
can construct elliptic curves F such that the Galois representation
attached to the /-torsion points of FE is surjective, and the reduction
of E at / is good and supersingular. We can achieve this by asking an
equation defining E to be congruent coefficientwise with the equations
of the elliptic curves that we considered in Example 1.21, modulo
a few suitable primes. What remains to be done is to show that,
furthermore, we can choose these elliptic curves in such a way that
they are semistable. Note that all the elliptic curves which appeared
in Example 1.21 are semistable.

In order to settle the question, it will suffice to solve the following
problem:

Let us consider a semistable elliptic curve E, given by a
minimal Weierstrass equation

v+ a1zy + asy = 2° + asx® + aux + ag, (1.17)
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and a set of primes pq,...,p, together with certain expo-
nents eq,...,e,. Can we construct infinitely many semi-
stable elliptic curves defined by equations

y? + dyxy + dyy = 23 + aba® + alx + af
satisfying that a; = a; modulo p{*, ..., psr?

Let us choose a} = a;, i = 1,...,4, and leave aj as a parameter.
Since ¢, = (a} + 4aly)? — 24(2d/, + a}ja}) does not depend on aj, it is
a fixed, concrete value (as a matter of fact, ¢j = ¢4). Let qi1,...,¢s
be the prime numbers which divide ¢4. Our problem boils down to
finding an infinite quantity of values of af which are congruent to ag
modulo pi*,...,pS, and furthermore satisfying that

A = —8(a)dl + 2d))® + 9(a'12 + 4aj)(a)as + 2aﬁl)(a§2 + dag)
—27(a}y” + dap)? — (a)” +-4a5)* (—a} aya —ay” +a}"af +ab(a}” +da))
is not divisible by qi, ..., gs.

But note that the discriminant of equation (1.17) is not divisible by
q1,---,(s, since the initial elliptic curve E is semistable (and the initial
Weierstrass equation is minimal at all primes). Therefore it suffices to
choose ag so that it is congruent to ag modulo qi, ..., ¢s,pi", ..., P

In this way we obtain infinitely many different equations. And if
we look at the expression of the j-invariant j = ¢} /A, it is clear that in
fact we obtain infinitely many different elliptic curves (for the invariant
c4 is the same for all the curves, so if A differs, the j-invariant changes.
And the discriminant A is a quadratic polynomial in ag, with nonzero
leading term).

1.5 Examples

The aim of this section is to display a few examples of elliptic curves,
obtained by the method we have presented, which provide a tame
Galois realization of GLgy(IFy) for several prime numbers .

Example 1.24. Let us consider the prime ¢ = 11. Since 11 = 4-2+ 3,
we can make use of Proposition 1.17. That is to say, we must pick
A € Z such that A = —1 (mod 11) and A =1 (mod 16). The smallest
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positive integer satisfying these conditions is A = 65. Hence the curve
FE defined by the equation

y? = z(x — 1)(z — 65) (1.18)

is a semistable elliptic curve and has good supersingular reduction at
¢ =11.

Indeed, this curve is the one labeled 130B2 in Cremona’s Tables
[18]; it is therefore semistable (its conductor equals 2 -5 - 13) and we
can easily check that the reduction at 11 is supersingular.

The Galois extension Q(E[11])/Q yields a tame realization of the
group GLg(Fq1) as Galois group over Q.

Example 1.25. Let us consider the prime ¢ = 13. According to
Theorem 1.19, the first step is to find a. We compute the Deuring
polynomial,

Hyz(x) = (2 +da 4+ 9) (2 + T2 + 1) (2% + 122 + 3).

Since the factor 22 + 12x + 3 divides Hi3(x), we may take a = 3.
Therefore, we have to select b, c,d € Z such that ged(b— ¢, d) = 1,
b= 11 (mod 128), ¢ = —4 (mod 128), d = 64 (mod 128), b = ¢+ 11
(mod 13), d =11 (mod 13).
For instance, we may take ¢ = —4, b = 267, d = 960, and the
elliptic curve E we obtain is

y? = 2 — 25927 — 1160z — 260592. (1.19)

This is a semistable elliptic curve (its conductor is N = 3-5-47-1583),
and it has good supersingular reduction at 13.

Now we can claim that the Galois extension Q(E[13])/Q gives rise
to a tame realization of GL9(FF13) as Galois group over Q.

Example 1.26. Let us consider the prime ¢ = 17. First of all, we
must find a value for a (cf. Theorem 1.19). Computing the Deuring
polynomial, we obtain

Hi7(z) = (22 + . + 16)(2® 4+ 14z + 1)(2% + 162 + 1) (2 + 16z + 16).

Both factors 2% 4+ 16z + 1 and 22 + 16z + 16 divide Hy7(z), so we can
take either a =1 or a = —1. Let us pick a = —1.

Therefore, we have to select b, c,d € Z such that ged(b— ¢, d) = 1,
b =11 (mod 128), ¢ = —4 (mod 128), d = 64 (mod 128), b=c—5
(mod 17), d = —5 (mod 17).
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For example, let us choose ¢ = —4, b = 1419, d = 1984. We obtain
the elliptic curve E defined by

y? = 23 — 141122 — 93522 — 2838000. (1.20)

This is a semistable elliptic curve (its conductor is N = 7-31-289559),
and it has good supersingular reduction at 17.

The Galois extension Q(E[17])/Q provides a tame realization of
GLy(Fy7) as Galois group over Q.



Chapter 2

Towards a generalization
with base field Fr

2.1 Elliptic curves and modular forms.

In the previous chapter we dealt with the problem of realizing the
group GLo(Fy) as the Galois group of a tamely ramified extension
of Q, for every prime ¢. We tackled this problem by making use of
the Galois representations attached to the /-torsion points of elliptic
curves. Throughout this dissertation, we will take this result as our
starting point and try to generalize it in several ways. More precisely,
in this chapter we will replace elliptic curves with modular forms,
in order to obtain tame Galois realizations of groups of the families
PGLy(Fyr) and PSLa(Fyr) (cf. [23]).

First of all, let us explain how a modular form may help us in
our task. Modular forms are holomorphic functions defined on the
upper half plane $ = {z € C : Im(z) > 0}, which satisfy certain
symmetry relations. How can they provide an action of the Galois
group Gal(Q/Q) on some arithmetic-geometric object?

In this chapter, we will consider modular forms with respect to
the congruence subgroup I'o(N), for some positive integer N. That
is to say, the symmetries of the modular forms will be subject to the
subgroup

Ty(N) = {<Z Z) € SLy(Z) : Nle).

Moreover, we will be concerned only with modular forms of weight
two. In other words, the symmetries that a modular form f shall

25
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satisfy are given by

f (ZIZ) = (cz + d)2f(2), for all (i Z) € To(N).

A holomorphic function on $ satisfying the condition above will be
called a modular form if, in addition, it is “holomorphic at the cusps”.
We will not explain this hypothesis in detail, but refer the reader
o [22], Definition 1.2.3. In particular, this condition implies that the
modular form has a Fourier expansion at each cusp. If the independent
term is zero for all these expansions, we will say that the modular form
vanishes at the cusps, or, in short, that it is cuspidal. We will denote
by S2(N) the set of cuspidal modular forms with respect to T'o(V)
and weight 2. This set is in fact a complex vector space, and it can be
proved that its dimension is finite (see [22], Chapter 3).

For each natural number n, there is an operator T,, : Sa(N) —
Sa(N), called the n-th Hecke operator (see [19], Chapter 1, § 3 for a
definition). It can be proven that any two Hecke operators commute,
that is to say, T, o 1Ty, = 1}, o T, for all n,m € N. We will call T
the subring of the ring of endomorphisms of So(NN) generated by the
set {T,, : n € N}. Of particular interest will be the cuspidal modular
forms that are eigenvectors for all the Hecke operators. Let us write
the Fourier expansion of f at ioc as

f(z) _ Z aneQﬂinz

neN

Then if f is an eigenvector for the Hecke operator T}, say with eigen-
value \,, one can prove that from the formula 7;,f = A, - f it follows
that a,, = A\, - a1. Assume that f is a non-zero eigenvector for all the
Hecke operators, and multiply it by al_1 (if a; = 0, then all the a,
would be compelled to vanish because of the relation a,, = A\, - a1, so
that f would be zero). Then the Fourier coefficients of this modular
form are precisely the different eigenvalues. We will say that f is an
etgenform if it is a non-zero cuspidal modular form which is an eigen-
vector for all Hecke operators, and we will always assume that a; = 1
(multiplying it if necessary by al_l). The field generated over Q by
adding all the Fourier coefficients, say Q¢ = Q[{an }nen], turns out to
be a number field, which will play an important role in what follows
(see Definition 6.5.3 of [22]).

On the other hand, in this setting it is natural to consider the
modular curve Xy(IV), defined as the quotient of $ by I'g(NN), and
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compactified by adding the cusps (see [22], chapter 2). Thus defined,
this is a compact Riemann surface (over the complex numbers). But
it turns out that it has a model defined over Q. (This is a non-trivial
fact. The proof relies on the fact that we can look at the quotient
space 9/To(N) from a completely different point of view, namely, as
the moduli space of elliptic curves with some extra structure. See
[22], chapter 1, § 1.5). Furthermore, one might consider its Jacobian,
denoted by Jo(NN). This is an abelian variety of dimension equal to
the genus of Xo(N). It can also be defined over Q.

Now the point is that a construction due to Shimura allows one to
attach an abelian variety A; to each eigenform. This abelian variety
Ay is defined as a quotient of Jy(/V), and also has a model over Q. The
dimension of Ay is equal to the degree r = [Qf : Q]. (The details of
the construction can be looked up in [19], chapter 1, § 1.7). It is at the
torsion points of this variety that we shall find a Galois representation.
If we fix a prime ¢, we can consider, as in Section 1.1, the points of
(-torsion of Ay. This set is a group, isomorphic to (Z/¢Z x Z/lZ)".
But this time the ¢-torsion points of A will not suffice. For each n, we
will consider the points of £"-torsion of A, and take the inverse limit:

To(Ag) = lim A[("]

neN

This is the Tate module, which is a Zg-module of rank 2r. The action
of the Galois group Gal(Q/Q) on the £"-torsion points of A extends
to an action on the Tate module, giving rise to a Galois representation

pe: Gal(Q/Q) — Aut Ty(Ay) =~ GLa(Z)

On the other hand, the relationship between S3(N) and Xo(N)
allows one to carry the action of the Hecke operators to Jo(N). In
turn, the abelian variety Ay also inherits a certain action: the algebra
T maps to a subring of Endg(Af). More precisely, consider the map
from T to Qy defined by T, — a, (that is to say, it attaches to each
Hecke operator its eigenvalue). The image of this map is an order
Hy inside the ring of integers Oy of Qf, which can be viewed inside
Endg(Ayf). Furthermore, the action of the ring Hy on Ay, induces
an action of Hyy := Hy ®z Zy in Ty(Ay), thus endowing it with a
structure of Hy -module.

By tensoring everything by Qy, we will obtain an ¢-adic represen-
tation. Namely, call Qf, = Qf ®g Q. We obtain that the Qy-vector
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space V;(Ay) defined as Ty(Af) ®z, Q¢ has a structure of Qy -module.
Moreover, one can prove that in fact V;(Ay) is a free module of rank
2 over this ring. Besides, this structure is compatible with the ac-
tion of the elements of the Galois group Gal(Q/Q). In other words, if
o € Gal(Q/Q), a € Qs and t € Ty(Ay), then p(o)(a-t) =a- p(o)(t).
Therefore, fixing a Qy ¢-base of Vy(Ay), the representation p above is
remodeled into

pre: Gal(Q/Q) — GL2(Qyp).

We can go one step further, and consider a prime A of Q; above
£. Since Qy ¢ is the direct sum of the completions of Q; at the differ-
ent primes above £, taking the part corresponding to A we obtain a
representation

pra: Gal(Q/Q) — GL2(Qy»),

where Q » is the completion of Q¢ at the prime A.

The relationship between this Galois representation and the mod-
ular form f(2) =Y, ane*™™* we started with is made very explicit
in the following way. Let us consider a prime number p which does
not divide the level N. Then the abelian variety A; has good reduc-
tion at p. Moreover, if p{£- N, then py ) is unramified at p, and the
characteristic polynomial of the image of the Frobenius element at p,
pr(Froby,), is precisely X% —a,X + p (see Theorem 3.1, pg. 85 of
19)).

Remark 2.1. Since we will only deal with modular forms of weight
2, we have briefly outlined the classical construction, due to Shimura,
of the Galois representation attached to a modular form. Further, we
have left aside the modular forms with character, but this is not an
essential restriction, and we did it only with the intention to simplify
the presentation. In general, when the weight is k£ > 1, a result of
Deligne [20] allows one to attach a Galois representation ps, to a
modular form f. When & = 1, the existence of the py, is proven by
Deligne and Serre [21].

As a matter of fact, we did not intend to obtain a A-adic repre-
sentation, but a representation over a finite field. Therefore, we will
consider the composition of py y with the reduction modulo A on Qy .
In this way, we obtain a representation

pf)\ : Gal(@/@) — GLQ(]F)\)
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Let us step back for a while and return to the point before we
tensored by Qy. We had endowed the Tate module T;(Af) with a
structure of Hyg-module. Now the index (O : Hy) is a finite number.
If /¢ does not divide this index, then it is easy to see that from the fact
that V;(Ay) is a free Q-module of rank two, it follows that T,(Ay)
is a free Hy -module of rank two. We will assume that ¢ { (Oy :
Hy). Therefore, fixing a base of Ty(Af) as Hy-module, we obtain a
representation

pre: Gal(Q/Q) — GLy(Hyy) C GLa(Qyp).-

It can be proven that the determinant of the representation py,
is equal to the cyclotomic character (see Proposition (2.2) of [67]).
Therefore, the image of py, lies in

Ay ={x € GLa(Hyy) : det(z) € Z; }.

But is it possible to write a more precise statement?

First of all, we need to recall a couple of new concepts. On the
one hand, from now on we will only consider modular forms f €
So(N) which are newforms (the definition can be looked up in [19],
Definition 1.21; in particular newforms are normalized eigenforms).
On the other hand, recall that the notion of complex multiplication
was essential in order to formulate a result about the image of the
Galois representation attached to the f-torsion points of an elliptic
curve. In our current setting, we also need to take this into account.
More precisely, the definition of newform with complex multiplication
is as follows (see [67], § 3): a newform f has complex multiplication
by a non-trivial Dirichlet character ¢ if, for all primes p contained in
a set of primes of density one, it holds that ¢(p)a, = a,. This kind
of newforms shall have to be excluded when we formulate our result.
But it will not be enough to exclude them; we must also take non-
trivial inner twists into account. A newform f has an inner twist by
a Dirichlet character y if there exists an embedding v : Qf — Q such
that v(ap) = x(p)a, for all but finitely many primes p (see [68]).

When f € S5(N) is a newform, a result of Ribet tells us that for all
sufficiently large primes ¢ the image of p;, coincides with Ay, provided
that f does not have complex multiplication or non-trivial inner twists
(see Theorem 3.1 of [69]).

Now that we have a precise result about the image of the repre-
sentation, we wish to carry out the reduction modulo ¢. Call Oy, =
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Of @z Zy¢. Note that, since we are assuming that £ { (O : Hy), then
Hyp ~ Ofy. Let X\ be any prime ideal of Oy above ¢, and call IFy
the residue field Of/AOf. The following result follows from all the
previous considerations (cf. [23], Theorem 2.2).

Theorem 2.2. Let f € S3(N) be a newform without complex multi-
plication or non-trivial inner twists. For all but finitely many primes
¢, the image of Py, coincides with {x € GL(Fy) : det(z) € F}}.

In order to get rid of the condition on the determinant above,
we may consider the projection of the image inside the projective
space, that is to say, we can compose py, with the map GLz(Fy) —
PGLy(Fy). The theorem above yields the following result:

Corollary 2.3. Let f € So(N) be a newform without complex multipli-
cation or non-trivial inner twists, and call r the degree of the extension
Fy/Fy. For all but finitely many primes £, the projective image of Doy
coincides with PSLa(Fyr) if r is even and PGLa(Fyr) if r is odd.

Proof. The image of {x € GLa(F-) : det(x) € F;} through the projec-
tion GLa(Fyr) — PGLo(Fyr) is PSLa(Fyr) if r is even and PGLy(Fyr)
if r is odd, according to Lemma 2.2 of [64]. O

At this point, it is already perceptible how the representations at-
tached to modular forms generalize those considered in Chapter 1, as
was claimed at the beginning of this section. Namely, let f € So(N)
be a newform, and assume that the coefficient field Q coincides with
Q. In this situation, the abelian variety A, attached to f has dimen-
sion r = [Qf : Q] = 1, and is therefore an elliptic curve. Thus the
Galois representation attached to the Tate module Ty(FE) has already
been considered in Section 1.1. What does Theorem 2.2 tell us in
this case? If we have a newform with rational Fourier coefficients and
without complex multiplication, then the corresponding elliptic curve
has no complex multiplication, and the result of Serre (Theorem 1.1)
assures us that, for all but finitely many primes ¢, the image of the
corresponding Galois representation equals GLa(Fy). To sum up, any
Galois representation we obtain in this way could have been accom-
plished by the reasonings described in Chapter 1. Our aim now is to
consider modular forms such that the corresponding abelian variety
Ay is not an elliptic curve, and in this way to generalize the tech-
niques used in Chapter 1. There are two points which have to be
settled, namely, to ensure that the ramification of the corresponding



2.2. RAMIFICATION OF THE GALOIS REPRESENTATION 31

extension is tame, and to guarantee that the image of the representa-
tion is as large as possible. The two following sections will deal with
these points.

2.2 Ramification of the Galois representation
attached to a modular form

Let f € S3(IN) be a newform without complex multiplication or non-
trivial inner twists. In the previous section we saw how to attach to
f a Galois representation

pf,é . Gal(@/@) — GLQ(F@)

Our aim in this section is to find conditions on f which ensure that
the ramification of the Galois extension that one obtains from p;, is
tame. More precisely, we need to ensure that the image of the wild
inertia group Ipw by py, is trivial, for all prime numbers p. We will
split the section into two parts: in the first one, we will consider the
primes p # £, and in the second one we will deal with the prime p = /.

e p#L

Given a continuous, odd, irreducible Galois representation

7y : Gal(Q/Q) — GLo(FFy),

there is a way to measure the ramification away from ¢. In [79], J-
P. Serre attaches to each Galois representation as above a conductor
N(py), a weight k(p,) and a character £(p,), and he conjectures that 5,
is isomorphic to the Galois representation p, , attached to a modular
form g of level N(p,), weight k(p,) and character €(p,). In this section
we are interested in the conductor N(p,), because it constitutes a
precise measure of the ramification of p, at the primes p # ¢.

Let us briefly sketch its definition. Fix a prime number p. Then
one can define an integer number n(p) in the following way (see [79],
§ 1). Let us fix an extension w to Q of the p-adic valuation in Q. This
is equivalent to fixing an embedding Q — @,

On the other hand, since p, is continuous, there exists a finite
Galois extension K/Q such that ker p, ~ Gal(Q/K). The embedding

above restricts to an embedding K — K,,, where K,, denotes the
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completion of K with respect to the restriction to K of the valuation
w. Let O, be the ring of integers of K,, with respect to the valuation
w. For each i € N, we can define the i-th higher ramification group as

G, = {o € Gal(K,,/Q,) such that w(o(z)—z) > i+1 for all z € O}

Since Gal(K,,/Q)) is isomorphic to the decomposition group of w in
Gal(K/Q), we can view G; inside Gal(Q/Q).

In this way we obtain a decreasing sequence of subgroups of the
inertia group at p:

I,=GoDG1 DG D---DG; D--- . (2.1)

Note that the second group of this sequence, (G1, is already known to
us: it coincides with the wild inertia group at p, I, .

Let V be a 2-dimensional vector space over Fy, and consider the
action of Gal(Q/Q) given by p, upon V. For each i € N, define

Vii={veV:p)o)(v) =wv for all o € G;}

A way to measure the size of G; is to consider the dimension of V; as
Fy-vector space. More precisely, one can consider the quantity

e}

dim(V/V;
n(p) = Z:; ﬁ (2.2)

where (G : G;) denotes the index of G; in Gg. It can be seen that n(p)
is an integer number, which is greater than or equal to zero. Moreover,
n(p) = 0 if and only if p, is unramified at p. Since p, can only ramify
in the primes which are ramified in the extension K/Q, n(p) = 0 for
all but finitely many primes p.

Definition 2.4. The Artin conductor is defined as

N@) = [] »"®,
p#L

p prime
where n(p) is given by Equation (2.2).
Let p be a prime number different from ¢. There exists a certain
s € N such that
dim(V/V7) dim(V/Vy)

n(p) = dim(V/Vo) + < = m s ot Ta
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Note that all the terms in the sum above are positive. Moreover, the
fact that (2.1) is decreasing implies that

dimV/Vy > dimV/1; > -+ > dim V/V,

Therefore, if n(p) = 1, then it must hold that dim(V/Vj) =1 and all
the remaining terms are zero. In particular, V3 = V, that is to say,
the wild inertia group at p acts trivially upon V. In other words, p,
is tamely ramified at p. Therefore, a sufficient condition for p, to be
tamely ramified at a prime p # ¢ is that the exponent n(p) of p in
the Artin conductor N(p,) is either 0 or 1. In particular, if N(5,) is
squarefree, then p, is tamely ramified at all primes p # /.

Let us consider the Galois representation p; , attached to the mod-
ular form f € S3(IN) we considered at the beginning of the section.
According to Serre’s conjecture, py, comes from a modular form g of
level N(p,) (and weight k(p,), character (p,)). But it may well be
that N # N(p,). Luckily, there is a strong relationship between the
two values: thanks to the work of Carayol and Livné (cf. [13], remark
following Theorem 1 and [49], Proposition 0.1), we know that N (7,)
divides NV (when py , is irreducible). Therefore, if IV is squarefree, then
N (p,) has no choice but to be squarefree too, and we will be certain
that the ramification of py, is tame at all primes p # £. Let us write
this statement as a Proposition.

Proposition 2.5. Let f € S3(N) be a newform, and let py, be the
Galous representation attached to f. Assume that pg, is irreducible.
If N is squarefree, then py, is tamely ramified at all primes p # (.

ep=1/

Now that we have dealt with all primes p # ¢, we address the problem
of obtaining some control of the ramification at the prime ¢. In the
case of elliptic curves, this was achieved by asking the elliptic curve to
have good supersingular reduction at £. Is there a similar condition in
this general context?

As a matter of fact, the answer is affirmative. There exist the
concepts of ordinary and supersingular (see [70], Chapter 2, § 2.1).
We will define these notions in general, that is to say, for a cusp form
f of weight k, level N and character ¢ (that is to say, f € Sg(N,¢)),
since the results of this subsection hold in this general setting.
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Definition 2.6. Let f € Si(INV,e) be a newform, and call a, the
eigenvalue corresponding to the Hecke operator T),. Let £ be a prime
number. Fix a homomorphism ¢ from the ring of integers of Q; to
Fy, and let Py be the Galois representation attached to f using the
reduction map . We will say that p;, is ordinary at £ if p(as) # 0.
Otherwise we will say that ps, is supersingular at £. We will say that
the newform f is supersingular at £ if there exists a homomorphism ¢
such that the corresponding Galois representation is supersingular.

Fontaine has studied the image by p;, of the inertia group at ¢
when f is supersingular. The following theorem, which is Theorem
2.6 of [25], seems to have appeared in a letter from Fontaine to Serre.

Theorem 2.7 (Fontaine). Let f be a newform in Si(N,¢e) with 2 <
k < {+1. Assume that py, is supersingular at €. Then p;, is irre-

ducible and
_ 1[)16—1 0
pf7€|12 = < 0 1[),k_1> )

where 1 and 1’ are the two fundamental characters of level 2.

In particular, this result tells us that the image of the wild inertia
group at ¢, py(Irw), is trivial (any character of the inertia group Iy
acts trivially on the wild inertia group, cf. Proposition 4 of § 1.6 of
[77]). Therefore we can write the following proposition.

Proposition 2.8. Let f € So(N) be a newform, and let ps, be the
Galois representation attached to f. If py, is supersingular, then it is
tamely ramified at £.

2.3 The image of the Galois representation
attached to a modular form

In the previous section we tackled the question of finding sufficient
conditions that assure us that the Galois representation py, attached
to a newform f is tamely ramified. Now it is time to consider the
image of this representation. As we explained at the beginning of the
chapter, for all but finitely many primes ¢ the projective image of py,
is PSLa(Fyr) or PGLo(Fyr) for a certain exponent r, provided that
some good conditions hold (no complex multiplication and no non-
trivial inner twists). This result, as we pointed out, is similar to that
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of Serre about the image of the Galois representations attached to the
{-torsion points of elliptic curves. But in the context of elliptic curves,
this result was not enough for us, since it does not tell us whether, for
a given prime ¢, it falls into the set of primes with large image. We
had to resort to a theorem of Mazur (see Theorem 1.2), which allowed
us to replace the condition “for all but finitely many primes £” by “for
all primes ¢ > 11”7, provided we also asked the elliptic curve to be
semistable.

A result of this kind is not available in this context. Therefore
we will put to use such means as we have. Namely, there is a result
of L. Dieulefait and N. Vila (see [23]), which provides us with an
algorithm which takes as input a modular form f and produces a
finite set of primes S such that the representation has large image at
all primes outside this set. In this way, they manage to realize the
groups PSLa(Fy2), PGLa(Fys), PSLo(Fy4) for many primes £.

Their method relies on some results of Ribet (see [69]). More
precisely, they make use of the following theorem (cf. § 3 of [69]).

Theorem 2.9. Let f € So(N) be a newform with coefficient field Qf
and ring of integers O, £ a prime number and X a prime of O above £.
Call Oy = O®z Zy. Let py y the A-adic Galois representation attached
to f. Then the image of this representation equals {x € GLa(Oy) :
det(z) € Z;} if the following conditions are satisfied:

(0) £ does not ramify in Q¢ /Q.

(1) The determinant map det o py \ is surjective.
(2) £>5.

(3) The image of pg contains an element x; such that (trace x,)?
generates Oy as a Zy-algebra.

(4) For each M, the image of the composition of py with the re-
duction modulo X\ is an irreducible subgroup of GLa(IFy) whose
order is divisible by (.

The algorithm of Dieulefait and Vila consists of several steps, which
are designed to guarantee that some of the conditions above hold. As
a general remark, we can say that each step consists of finding an
auxiliary prime p, satisfying perhaps some conditions regarding the
level N and the prime ¢, and such that the coefficient a, enjoys some
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suitable property involving A. If the image of the representation pg
is large, such a prime p will exist. A complete description of the
algorithm can be found in section 2.2 of [23].

2.4 Some examples of tame Galois
realizations

The aim of this section is to combine the results presented in the
previous sections in order to obtain tame Galois realizations of linear
groups of the form PSLy(Fyr) or PGLy(Fyr). But, unfortunately, we
have not been able to obtain a procedure that, given a prime number ¢,
constructs a suitable modular form yielding a tame Galois realization
of the corresponding group. Two issues are responsible for this:

1. We do not (yet) have a procedure to construct, given a prime
number ¢, a modular form (without complex multiplication or
non-trivial inner twists) which is supersingular at ¢.

2. We do not have a set of generic conditions such that, whenever
they are satisfied by a modular form, we are assured that the
image of the corresponding Galois representation is large.

Concerning the first issue, we have tried several approaches. Of
course, it is well known how to construct a modular form with com-
plex multiplication possessing a zero coefficient at a given prime. Un-
fortunately, the image the Galois representation attached to such a
modular form is not large, so it does not serve our purposes. Among
other attempts, we tried to use some results of raising the level, and
also some strategies involving Eisenstein primes. None have borne
fruit for the time being.

With regard to the second issue, the algorithm of Dieulefait and
Vila, while very effective at discerning whether, for a given modular
form f, the Galois representation at a prime ¢ has large image, it is
quite rigid, in the sense that one needs to know many features of the
modular form in advance. For instance, in several places one must
have the exact value of the level N. On the other hand, in the context
of elliptic curves, we applied a result of Mazur, which told us that if
the conductor N of an elliptic curve E was squarefree and ¢ > 11,
then the Galois representation attached to E at ¢ was surjective. This
left us great flexibility to pick the elliptic curve F, thus allowing us to
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impose other conditions (to control the image of the inertia group at
¢, mostly).

Therefore, we have not managed to give an algorithm to construct
tamely ramified extensions with Galois group PSLy(F,r) or PGLa(IFyr)
for a certain r. This problem remains a challenging issue for further
investigation. Nevertheless, the results we have explained allow us to
present a few concrete examples.

In [23], section 3.1, the authors apply their algorithm to some
weight 2 newforms whose field of coefficients is a quadratic extension
of Q. More precisely, they consider newforms of level 23, 29, 410, 414,
496, 418, 546. For each newform, they provide a finite set of primes
such that the Galois representation attached to it has large image (in
the sense of Theorem 2.2) whenever ¢ does not belong to this set. We
present their results in the following table:

Table 2.1: Computations of big image

Modular form ‘ Level ‘ Coefficient Field ‘ Set of primes

fi 23 22 -5 5, 11

fa 29 2 —2 7

fs 410 | 2?2 -3 5, 41

fa 410 | 2?2 —17 5, 41

f5 414 27 7,23

fs 496 2_33 11, 31

fr 418 | 2% —13 11, 13, 19
fz 546 | x? — 57 7,13, 19

Our purpose is to take advantage of their computations and try
to produce tamely ramified Galois realizations of groups of the form
PSLy(Fy2) from the modular forms fi,..., fs presented above. First
of all, note that the numbers 23, 29, 410, 418, 546 are squarefree.
Therefore, we know that the Galois representations p¢ , corresponding
to the modular forms f = f1, fo, f3, f4, f7, fs can be wildly ramified
only at the prime ¢. In order to ensure that they are also tamely
ramified at ¢, we will make use of Proposition 2.8.

We have taken each of the modular forms f1, fo, f3, f4, f7, fs and
have looked at their coefficients ay, for all primes ¢ < 5000. Since we
are looking for Galois realizations of groups of the form PSLg(F,2),
we are only interested in the primes which are inert in the extension
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Qy,/Q. For each modular form f; we can find the coefficient field Qy,

in the table above.

For each ¢ = 1,2,3,4,7 and 8, we list below the primes £ < 5000
such that ¢ is inert in the extension Qy,/Q and ay € (¢):

Table 2.2: Inert supersingular primes

Modular Form ‘ Primes ¢

fi

43,1033

f2

/3

173

Ja

23, 31, 4391

J7

99, 149, 1709

IE

47, 4799

As a consequence of Propositions 2.5, 2.8 and Tables 2.1 and 2.2,

we obtain the following result.

Proposition 2.10. The following groups occur as Galois groups of a

tamely ramified extension of Q:

PSLy(23%), PSLy(312), PSLy(432), PSLy(47%), PSLy(59%), PSLy(149?),
PSLy(173%), PSLy(10332), PSLy(1709%), PSL(43912%), PSLo (4799%).



Part 11

Part II: Tame Galois
Realizations of GSp,(Fy)

39






Chapter 3

Tame (Galois
representations attached
to abelian varieties

3.1 Statement of the problem

Let A/Q be an abelian variety, and let us fix a prime ¢. Consider the
Galois representation

pe : Gal(Q/Q) — Aut(A[(]) =~ GLgy (Fy).

attached to the /-torsion points of A. This representation gives rise to
a realization of Imp, as Galois group over Q, say Imp, ~ Gal(K/Q),
where K is the number field fixed by ker py. In this chapter we are
interested in finding conditions over the variety A that ensure that
K/Q is tamely ramified.

For each prime number p, let us fix an immersion Q — @p. This
induces an inclusion of Galois groups Gal(Q,/Q,) C Gal(Q/Q). Inside
Gal(Q,/Qp) we can consider the inertia subgroup I, = Gal(Q,/Qp,unr)
and the wild inertia subgroup I, w = Gal(@p /Qp+), where Qp ynr and
Qp,¢ denote the maximal unramified extension and the maximal tamely
ramified extension of Q,, respectively. The condition that K/Q be
tamely ramified means that the action of the wild inertia group is
trivial, for every prime p. We will address the problem of finding
conditions that assure us that the image of I,y by py is trivial.

First of all, let us note that it suffices to control the image by py
of I, just for a finite quantity of primes p. Indeed, I, is a pro-p-

41
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group, that is, each finite quotient has cardinal equal to a power of p.
Therefore the cardinal of Im(/, ) is a power of p. But this image must
be contained in GLg,(F,). Yet this group is finite, and has cardinal
equal to

2n(2n—1) 2n .
A | (G}
i=1
Therefore, if p does not divide this quantity, the cardinal of Im(Z), )
must be p® = 1. We thus see that in order to obtain that the Galois
extension K/Q is tamely ramified, it suffices to take into account the
primes p which divide card(GLa, (F/)).

When the prime p is different from ¢, a sufficient condition to
guarantee that py(lp) is trivial will be to require that the abelian
variety has semistable reduction. However, the control of the image of
I by pg will be much more subtle.

3.2 Semistable reduction and the action of
the inertia group

Let K be a number field, and let us consider an abelian variety A/K.
Let us consider a prime ideal p of the ring of integers O of K. In order
to define what it means for A to have good or semistable reduction at
the prime p, it is convenient to introduce the notion of Néron model
(see Definition 1 of § 1.2, Chapter 1 of [8]).

Definition 3.1. A Néron model of A is a scheme A over Spec Ok
which is smooth, separated and of finite type, such that its generic
fibre Ax is equal to A, and such that the following universal property
is satisfied:

For each smooth scheme ) over Spec Ok and for each K-morphism
ur : Vg — Ak, there is a unique morphism of schemes over Spec O,
u:) — A, extending ug.

It is well known that all abelian varieties over a number field ad-
mit a Néron model (see for instance [8], chap. 1, § 1.4, Theorem 3).
Because of the universal property it satisfies, this model is unique.

Let us consider a prime p of Ok . The Néron model A of A allows
us to consider the reduction of A at the prime p, simply by taking the
special fibre of A at p, which shall be denoted by A,. This fibre is a
scheme over the residue field ky, = Ok /p. If it is smooth, we say that
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A has good reduction at the prime p. In our setting, this is equivalent
to saying that Ay is an abelian variety over k, (cf. [36], § A.9.4).

Recall that the set of primes of O where the reduction of A is
not good is finite (see [8], Chapter 1, § 1.4, Theorem 3).

In general, the special fibre A, is an algebraic group, but it need
not be connected. However, we may consider the connected component
of A, that contains the identity element of A, say Ag. This is a
connected algebraic group, and therefore (see Theorem 16 of [72]) it is
the extension of an abelian variety by a linear group. That is to say,
there exists an abelian variety B and an algebraic linear group L such
that we have the following short exact sequence:

0—>L—>.Ag—>B—>O.

Now let us focus on the structure of this linear group. Recall the
following two notions:

Definition 3.2. Let k be a field and k an algebraic closure of k.

e A torus over k is an algebraic group over k which is isomorphic
over k to a power of the multiplicative group over k, that is to

3 T
say, to an algebraic group of the form Gm,SpecE for some r € N.

e A commutative algebraic group G is unipotent if there exists an
ascending chain of subgroups

0=GpcGicCc---CcG,=G

such that G;41/G; is isomorphic over k to the additive group

G, spec> for each i € {0,...n —1}.

For a definition of the additive and multiplicative group, see [48],
Examples 4.35 and 4.36 of Chapter 7.

Now the structure theorem for commutative linear algebraic groups
is the following one (see [8], Theorem 2, § 9.2, Chapter 9):

Theorem 3.3. Let k be a perfect field and let G be a smooth and
connected algebraic group over k of finite type. Assume that G is
commutative and linear. Then G is canonically an extension of an
unipotent algebraic group by a torus.

We will be interested in the case where there is no unipotent part.
The following definition can be found in [36], § A.9.4.
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Definition 3.4. We will say that A/K has semistable reduction at a
prime p € Spec Ok if the connected component of the special fibre of
A at p, Ag, is the extension of an abelian variety by a torus. In other
words, if there exists an abelian variety B and a torus 7" such that we
have the following exact sequence

0—>T—>Ag—>B—>0.

The kind of reduction of an abelian variety at a prime p is reflected
in the action of the inertia group at p on the Tate module of the
variety. Let £ be a prime number, different from the characteristic of
the residual field ky, and let us denote by T;(A) the Tate module of A
at £. Let us also denote by I, C Gal(K/K) the inertia group at the
prime p.

The following well-known criterion gives us a characterization of
good reduction at the prime p (see [75], Theorem 1):

Theorem 3.5 (Néron-Ogg-Shafarevich). Let A/K be an abelian va-
riety, and p € Spec Ok . Let £ be a prime number, different from the
characteristic of the residual field k,. Then A has good reduction at p
if and only if I, acts trivially on Ty(A).

Moreover, a result of Grothendieck characterizes the case when
the reduction is semistable in terms of the action of the inertia group
at p (see [31], Proposition 3.5 of Exposé IX, Modeles de Néron et
monodromie).

Theorem 3.6 (Grothendieck). Let A/K be an abelian variety, and
p € Spec O. Let ¢ be a prime number, different from the characteris-
tic of the residual field ky. Then the following assertions are equivalent:

o A has semistable reduction at p.

e There exists a submodule T' C Ty(A), which is stable under
the action of Iy, and such that I, acts trivially on both T' and

To(A)/T'.

Let us now return to the situation at the beginning of this chapter.
We have an abelian variety A/Q, and a prime ¢, and we are considering
the Galois representation py attached to the ¢-torsion points of A. Let
p # £ be a prime number, and assume that A has semistable reduction
at p. Theorem 3.6 guarantees that py(ly p) is trivial. For it is clear
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that it suffices to ensure that I, acts trivially on Ty(A). And the
theorem claims the existence of a submodule 7" C T;(A), fixed by the
action of I, and such that I, acts trivially on both 7" and Ty(A)/T".
Choosing a suitable basis of T;(A), the action of I, has the following

shape
Id, =«
0 Ids /-

But the order of such a matrix is a divisor of £. Since I, , is a pro-
p-group, its elements cannot act by a matrix of order ¢, and therefore
they all act as the identity.

Let us state this claim as a theorem:

Theorem 3.7. Let A/Q be an abelian variety, and let £,p be two dif-
ferent prime numbers. Assume that A has semistable reduction at p.
Then the image of the wild inertia group I, by the Galois represen-
tation py is trivial.

The previous theorem gives us a sufficient condition for the rep-
resentation py; to be tamely ramified at a prime p # ¢. The following
chapters are devoted to developing a strategy that allows us to obtain
sufficient conditions for the representation to be tamely ramified at £.
Of course, we will want these conditions to be effective. Since we will
be interested in the behaviour of py at the prime ¢, we will for the time
being work in a local setting.






Chapter 4

Supersingular abelian
varieties and the action of
the inertia group at /

In the previous chapter, we found a condition that suffices to guarantee
that the image of the wild inertia group at a prime p # £ by the Galois
representation attached to the f-torsion points of an abelian variety
is trivial. In this chapter we will address this issue when the prime p
coincides with £. Since we are interested in the behaviour at the prime
£, we will work in a local setting. Namely, let us consider a local field
K of characteristic zero and residual characteristic £. Let v be the
corresponding discrete valuation, normalized so that v(K*) = Z, and
denote by O the ring of integers of the valuation and by & the residue
field. Further, we will assume that v(¢) = 1 (that is to say, K is an
unramified extension of Q). Let us also fix an algebraic closure K of
K, and keep calling v the extension of v to this algebraic closure. k
shall denote the algebraic closure of k obtained through the reduction
of O, the ring of integers of K with respect to v, modulo its maximal
ideal. Finally, we will denote by I and I, the inertia group and the
wild inertia group of Gal(K /K).

First of all, we will recall how the point was settled in Chapter 1,
where the abelian variety was an elliptic curve. Afterwards, we will
try to find a way to extend this situation to the general case.

We will see that the first part of the reasoning for an elliptic curve
extends beautifully to the general case. However, in order to complete
our task, we need to make an extra assumption (see Hypothesis 4.7).

47
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The result we obtain is the content of Theorem 4.9.

4.1 Supersingular elliptic curves and the
action of the inertia group at /

Let E/K be an elliptic curve with good supersingular reduction. Then
the extension K (E[(])/K obtained by adjoining to K the coordinates
of the points of /-torsion is tamely ramified. Serre explains this result
in [77], § 1. Let us briefly review his reasoning.

Let E/K be an elliptic curve with good reduction at ¢. Then the
curve we obtain by reducing modulo the maximal ideal of the valuation
ring, say E/k, is also an elliptic curve. There is a short exact sequence
of abelian groups

0— B (K)— E(K) — E(k) — 0,

where F1(K) denotes the points of E with coordinates in K which
reduce to the neutral element of the group of points of £, and E(K) —
E(k) is the reduction map.

If E /k is a supersingular elliptic curve, then it has no non-zero /(-
torsion points. Therefore, all the points of ¢-torsion of £ must belong
to F1(K). Consequently, it suffices to study this group. It is at this
point that the formal group associated to the elliptic curve E turns
out to be very fruitful for us.

Recall that to the elliptic curve F/K one can attach a commutative
formal group law also defined over K, that is to say, a formal power

series F'(X,Y) € O[[X, Y]] satisfying the following three properties:
e F(0,X)=X=F(X,0).
o F(F(X,Y),Z) = F(X,F(Y,Z)).
e F(X,Y)=F(Y,X).

(see [84], Chapter IV, for a detailed study of this).

To this formal power series one can attach a group, whose elements
are those elements of K with positive valuation. On this set, which
we shall denote m, one can define an addition law &g by

r Oy = F(x,y),
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(which is well-defined since F'(x, y) converges to an element of m). The
set m, endowed with this sum, turns out to be a group, which shall be
denoted by F(m).

Now this group turns out to be very useful to us, because there
is a group isomorphism between E;(K) and F(m). When our elliptic
curve F has good supersingular reduction, all /-torsion points of FE lie
in By (K), and therefore they can be viewed inside F(m). Moreover, if
we call V' the Fy-vector space of the ¢-torsion points of F'(m), it is not
difficult to prove that E[¢] is isomorphic (as Fy-vector space) to V.

Besides, the absolute Galois group of K acts over F'(m); the action
of an element o € Gal(K/K) is simply x +— o(z), for all x € m. The
expression of the isomorphism between Fi(K) and F(m), which we
have not made explicit here (but see [84], Prop. 2.2 of Chapter VII),
makes it clear that it respects the Galois action. Therefore, the study
of the Galois representation attached to the group of ¢-torsion points
of F is equivalent to the study of the Galois representation attached
to the ¢-torsion points of the formal group F'(m).

In § 1.9 of [77], Serre studies the representation of the absolute
Galois group of K attached to the ¢-torsion points of a one-dimensional
formal group of height two (which, in particular, includes the case we
are concerned with, that is, a formal group attached to an elliptic
curve with good supersingular reduction at /).

Let us have a quick look at his reasoning. Let F/(X,Y) € O[[X, Y]]
be a formal group law of height 2, and F'(m) the group attached to
it. Let V be the Fy-vector space of the points of ¢-torsion of F(m).
Since the height of the formal group law is 2, it is easy to prove that
V has in fact dimension 2 over Fy (see [29], Chap. IV, § 2). The main
idea now would be, let us say, to try to embed V into another vector
space, one such that there is information available about the action of
the inertia group. What follows can be found in [77], § 8 and 9, but
we recall it here, since it will be essential to our further reasoning.

First of all, let us start by defining an auxiliary object. Let us fix
a positive rational number a € Q.

Definition 4.1. Consider the sets
My={rem:v(z)>a} and W ={zem:v(x)>al.
We define V,, as the quotient group

V, i=m,/m}.
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In fact, V,, has a natural structure of k-vector space. Namely, the
multiplication is defined in the following way: take any element of k,
say p -+ m, where u € K is an element with f-adic valuation greater
than or equal to zero, and let # +m} be any element in V,,. Then

(p+m)-(z+m)):=p-z+ml €V,

The dimension of V,, as k-vector space is clearly one.

The absolute Galois group of K acts on V,, in the natural way, that
is to say, for each o € Gal(K/K), and for each = +m} € m,/m}, we
have

olx+m}) =o(zx) +m}.

In general, this action does not respect the k-vector space struc-
ture. If we take 0 € Gal(K/K), p+m € k and z + m} € V,,, then

o((p+m)-(z+m]) =o(p-z+m)) =o(p-z) +m; =
=o(p)-o(x) + W = (o(p) +m) - (o(z) + W) =
= (o(p) +m) - oz + W) # (u+m) - o(z+m7),

save in the case when o belongs to the inertia group I C Gal(K/K).

But this is precisely the case we are interested in. Specifically, and
this is the key point, if we take an element ¢ in the inertia group I,
it induces a morphism of k-vector space on V,. But since V, is a one-
dimensional vector space, such morphism must be the multiplication
by an element of k. That is to say, we obtain a character

Yo I — k
such that, for all o €
olx +m) = pa(o)(z +m}).

But let us assume that o belongs to the wild inertia group Iy,. Since
I, is a pro-f-group, it holds that ¢, (o), which has finite order in the
multiplicative group I (for, by definition of local field, the residue
class field k is finite, and so any element of its algebraic closure has
finite order), must have order equal to a power of /. Yet k" has no
element of order £. This proves that I, acts trivially on V. Let us
state this as a lemma.

Lemma 4.2. The wild inertia group Iy acts trivially on V,.
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Once this point is settled, the next step is to embed our Fy-vector
space V', which is the set of ¢-torsion points of the formal group F(m),
into V,, for a certain value of «.

Let us first determine what this value o might be.

Lemma 4.3. Let x € V C m be a non-zero element. Then v(x) =
1

71
Proof. This is explained in the proof of Proposition 9, § 1.9 of [77]. In
any case, we will recall the details here, since we will need to generalize
it in Chapter 7.

Since we are assuming that the formal group law has height two,
the multiplication by ¢ map in the formal group F(m) can be written
as

A(X) =Y ax’,
i=1

where a; € O for all i € N, and moreover a; = £, {|a; for all i < (2,
and ap2 € m (see Proposition 2.3 and Corollary 4.4 of chapter IV of
[84]).

Now if x € V is a non-zero element, it must hold that

o
E a;x' = 0.
i=1

Call a = v(z), and let us compute the valuation of each of the
terms in the previous equation.

e v(a1z) =v(a1)+v(r) =14+

e For all i € {2,3,...,0% — 1}, v(a;2") = v(a;) +v(z!) > 1+,
since v(a;) > 1 and v(z%) > v(z) = a.

o v(apz?) =v(apz) + Co(z) = 0+ £Pa = La.

e For all i > £2, v(a;2") = v(a;) +v(z?) > £2a, since v(a;) > 0 and
v(z?) > v(mﬂ).

Therefore, since there must be (at least) two terms with minimal
valuation (so that they compensate each other and the sum vanishes),
the first and the /2-th terms are constrained to satisfy that v(ajz) =
’U((Igzﬂj‘ﬁ), that is to say, 1 + o = £2a, and this concludes the proof.

O
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This lemma tells us that we have an inclusion of sets (V' \ {0}) C

Mg, for a = 221_1. So we can consider the following map

Q:V =V, =m,/m}

x»—>m+ﬁ2.

This is obviously an injective map. Besides, it is a group morphism.
For, from the definition of the formal group law F', it follows easily
that its shape is the following:

F(X,Y)=X+Y + terms of degree > 2.

Therefore, for all z,y € M,, it holds that F(z,y) —x —y € m/.
That is to say,

O(z@py) = (v@py) +MW, = (z+y) + W, = O(z) + (y).

Finally, it is immediate to check that this morphism commutes
with the Galois action: for all o € Gal(K/K),

O(o(x)) =o(x) + W =o(z+m}) = o(P(x)).

This is enough to show that the wild inertia group acts trivially on
V. For take any o € I, and € V. Since ® is injective, o(x) = z if
and only if ®(o(x)) = ®(x). But this last claim follows from Lemma
4.2.

4.2 Generalization to supersingular abelian
varieties

Our task now is to generalize all the steps we described in the previous
section, when the abelian variety does not necessarily have dimension
1. We maintain the notation which was explained at the beginning of
this chapter, thus remaining in the local setting.

Let us take an abelian variety A/K. The first step would be to
reduce the study of the group A[{] of ¢-torsion points to the study of
a certain formal group.

First of all, let us recall what supersingularity means for an abelian
variety (see Chapter 1, § 6 of [60]):
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Definition 4.4. Let k be a field of positive characteristic £. An abelian
variety A/k of dimension n > 2 is called supersingular if there exists
a supersingular elliptic curve E defined over an algebraic closure k of
k such that A and E™ are isogenous over k.

It is well known that a supersingular abelian variety A/k has no
points of /-torsion. So, this far, everything occurs as we could wish.

On the other hand, the notion of formal group law generalizes to
any dimension (see [34], Chapter II, § 9.1).

To ease notation, let us denote the following d-tuples of variables
by X = (X1,...,.Xq), Y= M1,...,.Yy),Z = (Z1,...,Z4). We shall
denote by m*? the cartesian product of ™ with itself d times.

Definition 4.5. A d-dimensional formal group law defined over O is
a d-tuple of power series

(F1(X,Y),...,Fa(X,Y)) € O[[Xy,...,Xq, Y1,...,Yg]]*¢
satisfying:

o Fi(X,Y)=X;+Y, (mod terms of degree two),
foralli=1,...,d.

o Ii(M(X,Y),... . Fu(X,Y),Z) = F;(X,F(Y,Z),...,Fi(Y,Z))
foralli=1,...,d.

Besides, if F;(X,Y) = F;(Y,X) foralli =1,...,d, then the formal
group law is said to be commutative.

As in the case of dimension 1, one can attach a group to a formal
group law. The addition law @ defined by

d X ﬁxd _}ﬁxd

(X7Y) = (Fl(xvy)7' . aFd(va))

Gp :m~

on m*¢ endows it with a group structure. We shall designate this
group by F(m).

To an abelian variety A/K of dimension n one can attach a n-
dimensional formal group (see the construction given in [36], Part C,
Chapter C2).

Again, this far everything generalizes beautifully. Now our aim
is to see that the study of the Galois action on the ¢-torsion points
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of A can be reduced to the study of the Galois action on this formal
group. Fortunately, this is also a well-known fact (See Theorem C.2.6,
Chapter C2, Part C of [36], taking into account that all the coordinates
of the ¢-torsion points of A are contained into a finite extension of K).

Proposition 4.6. Let A/K be an abelian variety with good reduction,
and let A1(K) be the kernel of the reduction map

AK) — A(k).

Then there is a group isomorphism between the formal group F(m)
associated to the abelian variety A and the group A1(K).

Moreover, this isomorphism commutes with the Galois action on
both sides.

If we take an abelian variety A/K with good supersingular re-
duction, all its /-torsion points belong to A;(K) and the previous
proposition tells us that they can be viewed inside the formal group
F(m).

As in the preceding section, we will call V' the Fy-vector space of
the ¢-torsion points of F(m). All the previous considerations imply
that we have a group isomorphism

Al ~V

compatible with the action of the absolute Galois group Gal(K /K).

Thus, up to this point, everything happens analogously to the case
of dimension one. If we recollect what we did in that case, the next step
should be to embed V into V,, for some value of a. Yet in general we
do not know how to accomplish this task. Our idea was to assume an
extra hypothesis and try to follow the above line of reasoning wielding
it. We will devote ourselves to this task in the following section.

The result we are aiming to obtain is Theorem 4.9.

4.3 Inertia action and the formal group law

In the previous section we began to tackle the Galois representations
attached to the f-torsion points of an abelian variety. We were trying
to emulate the case of dimension one, which was completed in Chapter
1. We were partly successful, but found the first important difficulty.
Overcoming it shall be the aim of this section.
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We remain in a local setting, as in the previous section. That is to
say, K is a local field of characteristic zero and residual characteristic £,
v the corresponding discrete valuation, normalized so that v(K*) = Z,
O the ring of integers of the valuation and k the residue field. Further,
v(¢) = 1 (for instance, we may take K = Q). We fix an algebraic
closure K of K, and call v the extension of v to this algebraic closure.
Finally, k£ denotes the algebraic closure of k obtained through the
reduction of O, the ring of integers of K with respect to v, modulo
its maximal ideal.

When the abelian variety A/K has supersingular reduction and its
dimension is 1, the dimension of the formal group law F' attached to
it is also equal to 1 and its height is 2. This allowed us to embed the
Fy-vector space V' of ¢-torsion points of F(m) into V,, (see Definition
4.1) for a certain value of @ € Q. The key point was that each of the
points in V C m has f-adic valuation equal to 1/(¢? — 1). This is the
content of Lemma 4.3. But when the abelian variety has dimension
n > 1, the points of V' C m*"™ have n coordinates, with room for
different valuations.

Let F be a formal group law of dimension n, and let V' be the set of
{-torsion points of F. We need to devise a way of tackling the possibil-
ity that the valuations of the coordinates of the /-torsion points of F
have different values. Our idea was to formulate a weaker assumption
about the valuations of the coordinates, but which is strong enough
to imply the desired result about the action of the wild inertia group
Iy, on F(m).

Hypothesis 4.7. The Fy-vector space V is finite, and there exists a
positive o € Q such that, for all non zero (x1,...,x,) € V, it holds
that
11;1;171{11(3:2)} = a.

Remark 4.8. When the formal group law F is attached to an abelian
variety, the FFy-vector space of ¢-torsion points of F will always be
finite. This will follow from the fact that the formal group law has
finite height. We will recall the notion of height in Chapter 5.

Let us check that, under this hypothesis, we are able to achieve
our aim:

Theorem 4.9. Let F be a formal group law such that the Fp-vector
space V' of the {-torsion points of F(m) satisfies Hypothesis 4.7. Then



56 CHAPTER 4.

the image of the wild inertia group Iy by the Galois representation
attached to V is trivial.

Proof. Let P = (x1,...,x,) € V. We are going to show that each
o € I, acts trivially on P, that is, o(P) = P.

According to Hypothesis 4.7, we have that, for each non-zero point
Q: (yla"'ayn) € V>

min {o(y)} = a.
Therefore, for each n-tuple (\1,...,\,) € Z", we know that either
A1y1+ - Apyn = 0 or else it belongs to m,,. This allows us to consider
the following map:

POgdn) PV = Vo =My /Myt
(y17"'>yn) — )\12/1 +)\nyn +ﬁl_

It is clear that ¢y, .. x,) is a group morphism, when we consider
on V the sum given by the formal group law, and on V, the sum
induced by that of K. As a matter of fact, it is a morphism of F-
vector spaces (for the structure of Fy-vector space is determined by
the sum). Besides, it is compatible with the Galois action. If we take
an element 7 € Gal(K /K), then

POnrd) (T(Q)) = @y, )( (1), 7(Yn)) =
=M\i7(y1) +--- + )\nT( n)) +m
=7((My1 4+ Aayn) + W) = (80(A1, ) (@)

Now let us take an element o € Iy. Then pn, ) (0(P)) =
(L0, an) (P)) = P(a1,...0) (P), where the last equation follows from
Lemma 4.2. In other words, for each n-tuple (A1,...,\,) € Z", o(P)—
P Dbelongs to the kernel of ¢y, x,)- But no point of V' can belong
to all these kernels save the zero vector. This, again, is a consequence
of Hypothesis 4.7. Any non-zero point Q@ = (y1,...,yn) € V satisfies
that there exists j € {1,...,n} such that v(y;) = a. If we take \; =0
for all i # j, \j = 1, then oy, . 1) (P) = ; +my £0+m.

To sum up, for each P € V and each ¢ € I, o(P)—P = (0,...,0),
and so o acts trivially on P, as we wished to prove.

Q-i-

O



Chapter 5

Height of a formal group
law

In this rather technical chapter we recall the notion of height of a
formal group law. We shall also establish a few important points
concerning the shape of homomorphisms between formal group laws.
Let us start by recalling the definition of homomorphism.

Definition 5.1. Let F = (F1(X,Y),..., F,(X,Y)) and

G = (Gi(X)Y),...Gnp(X,Y)) be two formal group laws over O of
dimension n. A homomorphism f is a n-tuple of formal power se-
ries in O[[Z1, . .., Zy]] without constant term, say (f1(Z1,...,2Zn),.--,
fu(Z1,...,Zy)), such that

f(Fl(X7Y)7 s 7Fn(X7Y)) =
= (Gl(fl(X)> .- afn(X)vfl(Y)w .- >fn(Y))7
e 7Gn(f1(X)>' o 7fn(X)>f1(Y)v s 7fn(Y)))

Example 5.2. For each m € N, one can define the multiplication by
m map in the following way:

[0](Z) = (0,0,...,0)
[1(z) = Z
[m +1](Z) = F([1)(Z), [m|(Z)) for m > 1.

It is easy to prove by induction that the shape of the n power series
[m];(Z) that constitute the multiplication by m map is the following:

[m]i(Z) = m - Z; + terms of degree > 2,

o7
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foralli=1,...,n.

We will now recall the notion of height of a formal group law (see
[34], Chapter IV, (18.3.8)). Firstly, we need to define this concept
for formal group laws defined over k, and then we will transfer this
definition to formal group laws over O through the reduction map.

Definition 5.3. Let F be a formal group law of dimension n over
k, and let [¢] = ([(],(Z),...,[{],(Z)) be the multiplication by ¢ map.
Then F is of finite height if the ring k[[Z1, ..., Z,]] is finitely generated
as a module over the subring k[[[{],(Z),...,[f],(Z)]].

When F is of finite height, it holds that k[[Z1,..., Z,]] is a free

module over k[[[(],(Z),...,[],,(Z)]] of rank equal to a power of ¢, say
¢". This h shall be called the height of F.

Definition 5.4. Let F be a formal group law of dimension n over O.
We define the height of F as the height of the reduction F of F modulo
the maximal ideal of O.

Remark 5.5. Before delving deeper in our problem by using this new
tool, a few words about the way to compute it would be highly advis-
able. Let f,(Z),..., f,(Z) be n formal power series in k[[Z1, ..., Z,]|
without constant term. We will prove below that the following state-
ments are equivalent:

o k[[Z1,...,Z,]] is generated by h elements as a module over the

subring k[[fq,. .., fall-

o K[[Z1,...,Zu)/{f1,---, fn) is a k-vector space of finite dimen-
sion less than or equal to h.

Therefore, to compute the height of F, one seeks the least h that
satisfies the last property, that is, the dimension of the k-vector space
k([Z1,...,Zu)]/(f1,---, fn). But this can be easily done by means of
standard bases.

Lemma 5.6. Let fi,..., f, be formal power series in k[[Z1, ..., Zy]]|
without constant term. CallI = (f1,..., fn) the ideal of k[[Z1, ..., Zy]]
they generate. Then k[[Z1,...,Zy,]] is finitely generated as a module
over k[[f1,..., fn]] if and only if k[[Z1,...,Z,]]/] is a finite dimen-
stonal k-vector space. Moreover,

rank(k[[Z1, ..., Zu)], kl[f1,- - fa]]) = dim(K[[Z1, ..., Z,)]/1).
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Proof. Assume k[[Z1,...,Z,]] is generated by ai,...,a, as a mod-
ule over k[[f1,...,fn]]. Take any element of k[[Z1,...,Z,]]/I, say
a + I. We can express a = bjaj + --- + b.a,, for some by,...,b. €

E[[f1,---, fa]]- That is to say, for each ¢ = 1,...,r, there is a formal
power series g;(Z) € k[[Z1, ..., Zy]] such that b; = gi(f1,..., fn)- So if
A; is the constant term of g;, we may write b; = \; + ¢;, where ¢; € I.
Therefore

a=biay + - +bra, = (\ray + - + A\ray) + (crag + -+ + crayp).

This shows that the k-vector space k[[Z1,...,Zy,]]/I is generated by
the elements a1 + I, ..., a, + I. Therefore it has finite dimension and
furthermore

rank(k([[Z1, ..., Zu]l K[ f1 - -, ful]) 2 dim(K[[Z1, . . ., Z0]]/1).

Assume now that k[[Z1, ..., Z,]]/I is a finite dimensional k-vector
space, and fix a base a1 + I, ...,a, + 1. We wish to see that aq,...,a,
generate k[[Z1, ..., Z,]| as a module over k[[f1, ..., fn]]. Take therefore
some a € k[[Zy,...,Zy]]. Our assumption assures us that there exist
Aly..., A € k such that a — (Aja1 + --- \ra,) € I. Therefore, there
exist a},...,a), € k[[Z1,...,Z,]] such that we can write

0= Ny + 3 difi (5.1)
j=1 i=1

Now we can apply the same procedure to each af, and express it as

a, = Z a] + >0 al s ! fs. Replacing this expression in (5.1), w
get

>0 +Z%fz RS ) SIS

7=1 =1 s=1

Iterating this procedure, we will express a as a sum

a_zg] f17"'7fn a;,

for some ¢(Z) € k[[Z1,...,Z,]], thus proving that k[[Z1,...,Z,]] is
finitely generated as a module over k[[f1,..., f]], and moreover that

rank(k([[Z1, ..., Zn]l K[ f1, -, ful]) < dim(E[[Z1, ..., Z0]]/1).
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Let us recall briefly the definition and some properties of standard
bases in power series rings (see [5]).

Definition 5.7. Let k be a field, and Xy, ..., X,, variables. Let T =
{X7 - X952 Xon i (oq,...,an) € N} An admissible ordering on

n
T is a total ordering < on 1" which satisfies:

e I<tforallteT.
o If t; <ty thenty -t <to-tforall ty,to,t €T.

Definition 5.8. Let f = Y yn o X® € k[[X1,..., X;]], and let <
be an admissible ordering on T'. Let us denote by T(f) = {a, X : a €
N™ and a, # 0}. The leading term of f with respect to <, denoted
LT(f), is the term a, X such that a, # 0 and, for all agXﬁ e T(f),
X< X8,

Now we have introduced the terminology required to define stan-
dard bases.

Definition 5.9. Let < be an admissible ordering on 7', and let I be
an ideal in k[[X1,...,X,]]. A finite subset S C I is called a standard
basis of I if, for every f € I there exists g € S such that LT(g)|LT(f).

The main interest of standard bases lies in the fact that they pro-
vide us with a way to deal with division in k[[X7,...,X,]], as the
following theorem shows.

Theorem 5.10 (Hironaka division theorem). Let < be an admissible
ordering on T and I an ideal in k[[X1,...,X,]]. Then

e There exists a standard basis S of I.

o If S ={g1,-..,9m} is a standard basis of I, then for all f €
E[[X1,...,Xy,]] there exists an unique v € k[[X1,...,X,]] such
that

— There exist q1,...,qm € k[[X1,...,X,]] with

m
F=Y gi-a+r
=1

— For all term t € T(r), and for all leading term s € {LT(g) :
g € S}, s does not divide t.
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Remark 5.11. From the result above, it easily follows that, if I is an
ideal of k[[X1,...,X,]], then the dimension of k[[X1,...,X,]]/] as a
k-vector space is determined in this way: Take a standard basis S of I,
and consider the set of terms M = {t € T': for all g € S,LT(g) 1 t}.
Then the cardinal of M is the required dimension (of course, it need
not be finite).

Now, if we have a formal group law F over k of dimension n, its
height is the dimension of k[[Z1, ..., Z,]]/([(],(Z), ..., ], (Z)), so the
previous considerations allow us to compute it in an explicit way.

In the case when the formal group law is of dimension 1, another
definition of height is used (see for instance [84], Chapter IV, § 7).
Namely, if F(X,Y) is a formal group law defined over k, the height
of F is defined as the largest 7 such that the multiplication by ¢ map,
[01(Z), can be expressed as [(](Z) = g(Z""), for some formal power
series g(Z) € k[[Z]]. One can prove, following a simple reasoning,
that the first term of ¢ with non-zero coefficient is precisely a constant
times Z'". Now what happens if we try to imitate this reasoning in

dimension n?

Proposition 5.12. LetF, G be formal group laws over k of dimension
n, and f : F — G a non-zero homomorphism. Let us write

If u is the smallest exponent such that, in some f,(Z), some vari-
able Z; occurs in a non-zero monomial raised to the u-th power, then
u = {" for some r > 0. Furthermore, there exist g,(Z),...,q,(Z) €
kl[[Z1,...,2Zy]] such that

F/(Z) =g,(2"), foralli=1,...,n,
where Z¥ = (Z{",...,ZE).

Proof. Since f is a homomorphism of formal group laws, it holds that

f(F(X,Y)) = G(E(X), £(Y)).
Coordinatewise, this means that

Ti(Fl(Xv Y)’ s aFn(Xv Y)) =
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foreachi=1,...,n.
Let us differentiate (5.2) with respect to Y;. Applying the chain
rule, we obtain

> LExy). ?—ij,w = 3 S EX)EY))- %m’

m=1

foreachi=1,...,n,5=1,...,n.
Substitute Y = (0,0, ...,0). We obtain that

n

of; oF,,
m=1
" 9G; - of
= f(X),0,...,0) - =2(0,... .
n;aym( (%).0,..,0) - 572(0,..,0), (53)
foreachi=1,...,n,j=1,....,n.
Equations (5.3),i=1,...,n, j = 1,...,n, can be summarized in
the following expression: if we denote by
a?i OF;
Ay =57 X By = GX.0.....0
aij—aZj(O,...,O), Gij = ayj(f(X),O,...,O))
then
Ay A e A, Fn Fip - Fip
Aoy Ay e Agp | | P Foz cor Fon | _
Anl An2 Ann Fnl Fn2 an
G G - G ai; aip - Ay
G Gz - Gon | |a21 azx -+ axn
Gni Gn2 - Gpn Gpl QAp2 - Gpn

If there exist i,j € {1,...,n} such that a;; # 0, then the formal
power series f, has a monomial aZj;, where a € k*. Therefore u =
70 and obviously all the formal power series f,(Z),..., f,(Z) can be
expressed as formal power series in the variables Z1,..., Z,, so there
would be nothing to prove.
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Assume that, on the contrary, all a;; = 0. Then

An A - A, o Fip - Fiy
Azt Azp o Agn | | Fn P Fan |
Anl An2 e Ann Fnl Fn2 e an

But the matrix

Fii. Fip -+ Fip
Mp = Fyy Fy - Py,
Fnl Fn2 an

is invertible (Write Mp = Id + B, where all entries of B are formal
power series without constant term. Then the sum 1—B+B?—B3+. -
defines a formal power series, which is the inverse of Mp). Therefore
all the A;; must vanish. But this means that, for all ¢ = 1,...,n, the
monomials of the power series f;(Z), say Z{' - Z5% -+ Z&», with some
exponent e, not divisible by ¢, cannot occur with non-zero coefficient.
Thus there exist g;,(Z), i = 1,...,n, such that

fi(Z) =g,(Z").

We now wish to proceed by induction. To apply the same reasoning
to the power series g(Z) = (g,(Z),...,9,(Z)), we must view g as a
homomorphism between formal group laws. Only the formal group
laws will not be F and G. Namely, if we consider the formal group law
F/(X, Y), obtained from F(X,Y) by raising all coefficients to the /-th
power, then it is immediate to check that (F;(X,Y))! = F;(XZ,YK)
for i =1,2,...,n. Therefore,

Thus we conclude that
g(F (X,Y)) = G(E(X),g(Y)),

which shows that the induction step can be taken.
This proves that there exist g;(X),...,3,(Z) € k[[Z]] and a natu-
ral number r such that

fi(z) =g,(2"),
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fori=1,...,n.

Moreover, either g,(Z) or go(Z) or ... or g,(Z) have a term of
degree 1 with non-zero coefficient. That is to say, a monomial in some
Zfr does appear in at least one of the power series f;(Z). And it is

clear that it is the term of least degree of f,(Z). O

Remark 5.13. We can apply this proposition to the homomorphism
m of multiplication by ¢ in a formal group law F, and conclude that
there exists an 7 > 0 (in fact  will be greater or equal than 1) such
that the formal power series [T]Z-(Z), i=1,...,n, can be expressed as
formal power series in the variables ZfT, el Zf;r. But this r might not
be determined by the height of F. For instance, it might be the case
that the height of F is infinite, while the exponent r must always be
a finite number. This will cause some difficulties, which will have to

be dealt with in the following chapters.



Chapter 6

Summary of results
(abelian varieties)

The aim of this chapter is to gather all the results we have obtained
up to this point and combine them to obtain tame Galois realizations
of the image of the Galois representations attached to certain abelian
varieties over Q.

Let us consider an abelian variety A/Q, and let us fix a prime
number £ > 2.

View A as an abelian variety over (Qy through the natural immer-
sion Q — Q. In Chapter 4, Section 4.1, we saw that to A there
corresponds a formal group law F over Zy. A few relevant, well-known
facts about this formal group laws are collected in the following propo-
sition.

Proposition 6.1. Let F be the formal group law attached to an abelian
variety A/Qq of dimension n. Then the following holds:

e F is of finite height h < 2n.

o If A/Qy has good supersingular reduction, then h = 2n.

Proof. According to [87], Example (a) of (2.1), the ¢-divisible group
attached to A has height 2n. In particular, if we consider the group
scheme of /-torsion points of A, its order is ¢£2". Therefore the order
of its connected component is ¢ with h < 2n. But the exponent
h is equal to the height of F (see [87], (2.2)). In particular, if A
is supersingular, it has no non-zero /-torsion points over F,. This
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means that the group scheme of ¢-torsion points of A is connected,
and therefore the exponent h coincides with 2n.
O

The main result is the following.

Theorem 6.2. Let A/Q be an abelian variety of dimension n. Let
{ > 2 be a prime number, and P be the set of prime numbers that
divide the order of GLoy(Fy). Assume the following conditions hold:

e For all p € P different from £, A has semistable reduction at p.

e A has good supersingular reduction at ¢ and the formal group law
attached to A at £ satisfies Hypothesis 4.7.

Then the Galois extension Q(A[l])/Q is tamely ramified.

Proof. As we reasoned in Section 3.1, it suffices to control the be-
haviour of the representation

pe - Gal(Q/Q) — Aut(A[f]) ~ GLa,(Fy)

at a finite number of primes, namely, the primes that divide the order
of GLg, (Fy). The first assumption ensures that, at these primes (save
possibly at £), A has semistable reduction, so we can apply Theorem
3.6 and conclude that, at all primes p # ¢ that divide card(GLa, (Fy)),
the representation py is tamely ramified.

Therefore the problem boils down to studying the behaviour at /.

Firstly, since A has good supersingular reduction at ¢, all its ¢-
torsion points map to zero through the reduction map. Therefore,
applying Proposition 4.6, we know that A[/] is isomorphic to V, the
Fy-vector space of the ¢-torsion points of F(m) endowed with the sum
given by the formal group law, and this isomorphism commutes with
the Galois action. Thus it is equivalent to studying the Galois action
on V.

But, by assumption, Hypothesis 4.7 holds. Therefore we are able
to apply Theorem 4.9, and conclude that the wild inertia group Iy,
acts trivially on V. This concludes the proof.

O

We are now equipped with a strong result that gives us sufficient
conditions under which the Galois representation attached to the /-
torsion points of certain abelian varieties is tamely ramified. Our
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wish now is to give, wielding this theorem, some explicit examples
of abelian varieties satisfying these conditions. In order to do this,
we will restrict ourselves to the case of dimension n = 2 and we will
consider the Jacobians of genus 2 curves. The next chapters study this
case in great detail to find an explicit statement which guarantees that
the conditions in Theorem 6.2 hold. We will again place ourselves in a
local setting, thus following the notation introduced at the beginning
of Chapter 4.






Chapter 7

Symmetric
two-dimensional formal
group laws

In this chapter we will restrict our attention to formal group laws of
dimension n = 2 and finite height h = 4. The reason why this case is
appealing to us will become clear in the next chapters, where we will
apply this theory to the formal groups attached to the Jacobians of
supersingular genus 2 curves (which, by Proposition 6.1, satisfy these
conditions). Furthermore, we will take K = Qy, v the normalized
f-adic valuation, O = Z;, k = Fy. Our aim will be to find some
conditions, more restrictive than those of Theorem 6.2 but which can
be directly read on the equations which define the formal group law, so
that in the particular case when its dimension is two, we can guarantee
that the ramification of the corresponding Galois representation is
tame.

Recall that we want to find a way to deal with the action of the
wild inertia group upon the Fy-vector space V' of the /-torsion points
of a formal group law. In Section 4.1 we considered the case when
the formal group law had dimension 1 and height 2. In this setting,
we used Lemma 4.2, which claims that the action of the wild inertia
group on V,, is trivial, for any a € Q. Lemma 4.3 allowed us to embed
V into V, for @ = 1/(¢*> — 1), in a way compatible with the Galois
action, thus solving our problem. More precisely, Lemma 4.3 claims
that the valuation of the non-zero points of V' C m is equal to a. Have
a quick glance at the proof of this lemma. The points x € V must

69



70 CHAPTER 7.

satisfy the equation [¢](z) = 0, and our knowledge of the formal power
series defining the multiplication by ¢ map allows one to compute the
valuation of x.

In the case of dimension 2, several difficulties arise. On the one
hand, the points of V have two coordinates. Therefore, a point (z,y) €
V satisfies two equations in two variables, [¢];(x,y) = 0 and [{]2(z,y) =
0. This complicates matters significantly. In Chapter 4 we stated some
conditions, namely Hypothesis 4.7, under which we were able to hold
in check the action of the wild inertia subgroup. Now we need to
devise a way to ensure that these favourable conditions hold.

Moreover, our knowledge of the expression of the multiplication by
¢ map is not as complete as in the one dimensional case. We begin
with a detailed study of the shape of this map.

We can apply Proposition 5.12 to the homomorphism m of mul-
tiplication by ¢ in a formal group law F, and conclude that there
exists an r > 0 such that both formal power series ml(Zl, Z5) and
mQ(Zl, Zs) can be expressed as formal power series in the variables
ZfT, Zfr. What is the relationship between this exponent r and the
height of F as we defined it in Definition 5.37?

Proposition 7.1. Let F be a formal group law defined over Fy, and
assume that there exist two power series fq, f5 € Fo[[Z1, Z5]] such that
the formal power series that give multiplication by £ map m can be
written as o B

[0,(Z1, Z2) = [1(24, Z5),

[0)5(Z1, Z2) = [2(21, Z3).

Then the height of F is greater than or equal to 2r.

Proof. Let us write

f1(Z21,Z3) = a11Z1 + a12Z + terms of degree > 2
fo(Z1, Z5) = a1 Z1 + asaZs + terms of degree > 2.

We know that one element (at least) of the set {a11, a2, as1, aze} does
not vanish. We may assume that the term a7 # 0 (the other cases
are analogous).

Consider the graduated lexicographical ordering on F,[[Z1, Z2]]
with Z1 < Zs, that is to say, the relation < determined by the following
rules:
a+b<c+dor

7878 < 7578
a+b=c+danda > c.
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Let I be the ideal generated by f,(Z1,Z2) and fy(Z1,Z3). In
order to compute the height of F, we need to find a standard basis
for I. Now the smallest monomial with respect to this ordering is Z.
And this monomial appears in f;(Z1, Z2). We can therefore use it
to eliminate all monomials under a given degree of fo(Z1,Z2), save
those which are pure in Z,. In fact, if f5(Z1, Z3) is not a multiple
of f1(Z1,25), we will reach a point where the power series gy (Z1, Zo)
obtained from f, by eliminating the terms divisible by Z; up to a
certain degree has as leading term a monomial which is pure in Z, say
G2(Z1,7Z2) = bo+ Z5 + terms of degree > ¢ + 1. Then it is easily seen
that {f,,9,} is a standard basis for I, and the rank of F,[[Z1, Z5]]/1
as a [Fy-module is t.

Recall that the height of F is the rank of Fy[[Zy, Zo]]/([f];, [{],)-
Clearly this rank is ¢" - (("t) = (*"t. But we know that ¢ must be a
power of ¢ (see Definition 5.3), say t is of the form ¢° for some s € N.
Hence the height of F is 2r + s, which is greater than (or equal to) 2r,
as we wished to show.

O

Remark 7.2. If the height of F is 4, only two possibilities might
occur:

e The exponent r in Proposition 5.12 is 2. By Proposition 7.1,
there exists an s € N such that 4 =2r +s =4+ s. Hence s = 0.

e The exponent r in Proposition 5.12 is 1. Then by Proposition
7.1, there exists an s € N such that 4 = 2r + s = 2 + s. Hence
s =2.

As was to be expected, the analysis that the first case requires is
easier. We will therefore concentrate on this case. That is to say, from
now on our statements will include this condition as a hypothesis. In
Chapter 8 we shall state some sufficient conditions that guarantee that
the exponent r is equal to 2 (see Proposition 8.10).

Note that the condition s = 0 implies that, if we write the multi-
plication by ¢ map as

[7]1(21, Zs) = EZfQ + 5252 + terms of degree > (2
[04(Z1, Zo) = €28 +dZ5 + terms of degree > (2

then the determinant of the matrix <_ p

> 1S non-zero.

ol
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Let F be a formal group law over QQ; of dimension 2 and height 4.
Our aim is to analyze the valuation of the ¢-torsion points of F(m).
We now face the problem that the property of being of /-torsion pro-
vides us with two equations in two variables. In order to avoid this
inconvenience, we are going to restrict our attention to a special kind
of formal group laws. Namely, we will consider formal group laws such
that the two equations have a certain relationship that allows us to
reduce the problem to studying a single equation.

Definition 7.3. Let F = (Fl(Xl, XQ, Yi, }/2), FQ(Xl, XQ, Yi, Yg)) be a
formal group law of dimension 2 over Q,. We will say that F is a
symmetric formal group law if the following relationship holds:

Fy(X,X1,Y2, Y1) = Fi(X1,X5,Y1,Y3).

The symmetry is reflected in the power series [¢]i(Z1, Z2) and
[)2(Z1, Z3).

Lemma 7.4. Let F(X,Y) be a symmetric formal group law of dimen-
ston 2. For all n > 1, it holds that

[n)2(Z2, Z1) = [n)1(Z1, Z2).
Proof. We shall proceed by induction. The statement holds trivially
for n = 1: [1]1(21, ZQ) = Zl = [1]2(22,21).

Now let us tackle the induction step n — n + 1. Assume that
[n)1(Z1, Z2) = [n]a(Z2, Z1). By definition, we know that

n+11(Z1, Z2) = F1(Z1, Za, [n)1(Z1, Z2), [n]2(Z1, Z2)) and
(n+ 1)2(Z1, Z2) = Fa2(Z1, Zo, [0]1(Z1, Z2), [n]2(Z1, Z2)).

Hence

(n+12(Z2, Z1) = Fa(Za, Z1, [n]1(Z2, Z1), [n]2(Z2, Z1)) =
F\(Z1, Z2,[n]2(Za, Z1), [n]1(Z2, Z1)) =
Fl(Zl, ZQ, [n]l(Zl, ZQ), [n]g(Zl, Zg)) = [n + 1]1(21, ZQ).

O

From now on, our formal group law F will enjoy this extra condi-
tion.
Next we will establish two technical lemmas which will be useful.
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Lemma 7.5. Let ¢ > 2 be a prime number, r € N, and let f(Z1,Z2) €
Zy||Z1, Z2]] be a formal power series such that f(Za, Z1) = — f(Z1, Z2),
which can be written as:

f(Z1,Zy) = - (Zy — Z) + £ - (terms of total degree > 2 and < {")
+a- (28 — Z5) + terms of total degree > " +1,
where £ 1 a. Then if (xo,yo) € M xm with xoy # yo satisfies f(xo,yo) =

0 and furthermore v(xg),v(yo) > v(xg — yo), then the £-adic valuation
v(zg —yo) is 1/(0" —1).

Proof. Let us call 8 = v(zg — yo). We will compute the valuations of
the different terms that appear in the equality f(zg,y0) = 0.

o v(l-(xo—yo))=1+7.

e Let us consider a term of total degree between 2 and /" — 1, say
0 - cxjylt. Compute its valuation: v(f - cxfyy') = 1+ v(c) +
nv(zo) + mo(yo) > 1+ (n+m)B > 1+ 3, since n+m > 2.

e Let us consider the term a(z§ — y§ ). Let us split it into the
sum of two terms, in the following way:

a-(zf —y§)=a-((zo—y0)" —B)=a- (v —y)" —a-B,

where B = (20 — y0)" — (z§ —y§).
On the one hand, v(a - (zg — yo)*) = v(a) + €73 = £73, since ¢
does not divide a.

On the other hand, note that
o o e r—1 e {r—2 2
(w0 — o) :330_<1>$o_yo+<2>$o_yo+“‘

N o ro (O 1
s ([

Therefore, each of the terms (KZ.T )(—1)%5{‘@6 has a valuation
strictly greater than 1+ 3. (For vzl i) > BT —i+i) =73,
and hence v((zi)(—l)ixg_lyé) >14+p60">1+0).

e Since v(xg),v(yo) > B, it is clear that the valuation of the terms
of degree greater than (" is greater than ¢"j.
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But obviously there must be (at least) two terms with minimal
valuation, since they must cancel out. Therefore v(¢ - (zg — yo)) =
v(a- (zo —yo)*), that is to say, 1 + 8 = £"3, hence 3 = 1/({" — 1), as
was to be proven.

U

Lemma 7.6. Let ¢ > 2 be a prime number, r € N, and let f(Z1,22) €
Zy|[Z1, Z2)] be a formal power series such that f(Z2,Z1) = f(Z1,Z2),
which can be written as:

f(Z1,2Zy) =10 (Z1 + Z3) + £ - (terms of total degree > 2 and < ")
+a-(Z8 + Z5) + terms of total degree > 0" + 1,

where ¢ ¥ a. Then if (xo,y0) € M x WM satisfies f(xo,y0) = 0 and
furthermore v(xo),v(yo) > v(zo + yo), then v(zo +yo) is 1/(4" —1).

Proof. Analogous to that of Lemma 7.5. O

We will finally state and prove the main theorem of this section:

Theorem 7.7. Let ¥ = (F1,Fy) be a two dimensional symmetric

formal group law over Z,. Assume it has height 4 and the exponent

in Proposition 5.12 is r = 2. Let us call V the Fp-vector space of

(-torsion points of F(m), a = 1/({?> — 1), and v the (-adic valuation.
Then for all (zo,yo) € V,

min{v(zo),v(y0)} = .

Proof. First of all, let us recall that, since the formal group law F is
symmetric and of height 4 with r = 2, Remark 7.2 allows us to write
the two formal power series that comprise the multiplication by ¢ map
in the following way:

[0)1(Z1, Z9) = £Z1 + £ - (terms of total degree > 2 and < /?)
+a - ZfQ +b- ZSQ + terms of degree > (% +1

[0)2(Z1, Z2) = €Z3 + £ - (terms of total degree > 2 and < (?)
+0b - ZfQ +a- ZSQ + terms of degree > (2 + 1

with £ a? — b2
Take a point P = (xg,y0) € V. We split the proof in two cases.



75

Case 1: v(zg) # v(yo). Assume that v(zg) < v(yo) (otherwise we
proceed analogously). Then v(zg—1yg) = v(zg). We will apply Lemma
7.5 with » = 2. The point (¢, yo) satisfies both equations [¢]; (zo,y0) =
0 and [f]2(x0,y0) = 0. Therefore it also satisfies that f(xo,y0) =
[0]1(z0,y0) — [€]2(z0,y0) = 0. Furthermore, taking into account the
previous considerations, we can write

(21, 25) = 6(Z1 — Z2)+
+ £ - (terms of total degree > 2 and < £?) 4 (a — b) - (Zf2 - 52)4-

+ terms of degree greater than or equal to ¢2 + 1,

and ¢t a — b. Nothing prevents us now from applying Lemma 7.5 and
concluding that v(zg — yp) = . But then o = v(zg) < v(yp), hence
min{v(zo), v(yo)} = a.
Case 2: v(xo) = v(yo). Then either v(zo—1yo) = v(zg) or v(xg+yo) =
v(zp). (For both must be greater than or equal to v(xg). And taking
into account that £ # 2, we obtain v(zg) = v(2xg) = v((zo+yo)+ (xo—
Y0)), so both v(zg + yo) and v(xo + yo) cannot be greater than v(xy)).
If v(zg —yo) = v(zp), we can apply Lemma 7.5 as in the previous case
and conclude that v(zg) = v(yo) = a. If v(xg + yo) = v(zg), we make
use of Lemma 7.6 with f = [(]; 4 [(]2 and r = 2, thus concluding that
v(zp) = v(yo) = . This completes the proof.

U

Combining this theorem with Theorem 4.9, we obtain the following
result:

Theorem 7.8. Let F = (F1,Fy) be a two dimensional symmetric
formal group law over Zy. Assume it has height J and the exponent in
Proposition 5.12 is r = 2. Then the wild inertia group Iy, acts trivially
on the Fy-vector space of €-torsion points of F(m).






Chapter 8

Jacobian of symmetric
genus 2 curves

We concluded the previous chapter by stating a theorem which guar-
antees that the wild inertia group I, acts trivially on the ¢-torsion
points of the group attached to a two-dimensional formal group law
over Zy of height 4, provided some conditions are satisfied. These con-
ditions were of a very explicit nature, in the sense that they could be
checked directly on the equations that define the formal group law.

In this chapter we are going to present a certain kind of genus 2
curves such that the formal group law attached to their Jacobians sat-
isfies these properties, and therefore the results of the previous chapter
can be applied. Firstly, we will deal with the symmetry condition. To
do so, we will need an explicit method to compute the formal group
law of a genus 2 curve, starting from a hyperelliptic equation. In [15],
such a method is described. The reasonings that we will bring into
play will have a very explicit flavour, since they will be grounded on
the computation of the formal group law. In the last section we will
take care of the exponent r in Proposition 5.12.

From now on, we will restrict our attention to the Jacobians of
genus 2 curves C'/Q, represented through a hyperelliptic equation

C:y® = f(2), (8.1)

where f(z) = feab + f52° + fazt + fs2® + fox? + fre + fo € Z[z] is a
polynomial of degree 6 which has no multiple factors.

7
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8.1 Symmetric genus 2 curves

Given a hyperelliptic equation of a genus 2 curve C, say (8.1), one
can define an embedding of the Jacobian surface attached to C into
a projective space of dimension 15. This embedding is detailed in
[15]. Let us sketch the construction. First of all, we will identify the
Jacobian surface, which is by definition the Picard group Pic?(C'), with
the Picard group PicQ(C) consisting of equivalence classes of degree
2 divisors on C. Namely, one can define a correspondence between
Pic?(C) and Pic’(C) in the following way: Note that, if P is a point
of C' and we denote by P’ the conjugate of P through the hyperelliptic
involution, all the divisors of the form P + P’ are linearly equivalent,
and therefore represent the same class in Pic?(C). Call it O. Then the
correspondence sends each divisor D of degree 2 to the divisor D — O
of degree zero.

In this way, we have identified the Jacobian surface attached to C'
with Pic?(C)). The embedding into a projective space can therefore be
defined as a map from the symmetric product of two copies of C' (that
is, the set of non-ordered pairs of points of C') into P5,

z = (20,21,---,215) : o _, pt5

(the expressions of the z;, 0 < i < 15, are given in the first section of
Chapter 2 of [15]). The projective locus of the image of z, which shall
be written as J(C'), is the Jacobian of C.

Now J(C') can be expressed by means of equations as a variety of
P'®. Namely, one can consider 72 quadratic equations, which can be
found at

http://www2.maths.ox.ac.uk/ flynn/genus2/jacobian.variety/defining.equations

Since we are going to make use of them, we also list them in Ap-
pendix A.

Let us consider a genus 2 curve C'/Q given by a hyperelliptic equa-
tion (8.1). In [15] there is an explicit algorithm to compute the formal
group law F of the Jacobian variety (that is, the abelian surface) at-
tached to C' at the point O, the group identity (see also [28]). This
formal group is given by two power series

Fi(s1,89,t1,ta) = 51+t + 2fas5ts + 2fas1t5 — f185t2 — fisath + -+
Fy(s1, 89,11, t2) = 89 + to + 2fas3ty + 2fasots — fssaty — fssits + -
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The idea of the symmetry emerged from the curious observation
that if in the second equation we interchange f4 by fo, fi by f5 and
s1 by sg, t1 by t9, we obtain exactly the first equation.

Is this just mere chance?

Let us write a precise statement, and see if we can prove it. Let
us consider the hyperelliptic equation

y2 = fomG + f1m5 + fg:r4 + f3x3 + f4x2 + fsx + fe. (8.2)

Note that the following transformation

brings Equation (8.1) into Equation (8.2), and so this is just another
equation that represents the curve C. B

In any case, we can consider the formal group law F computed
from Equation (8.2), which shall be denoted by

F = (F1(31,52, 11, 12), F5(51, 52, 11, 2)).
The result we are going to prove in the next section is the following;:

Theorem 8.1. With the notations introduced in this section, the fol-
lowing relations hold.

ﬁ2(827 817t27t1) - F1(817 827t17t2)
F1(827 817t27t1) = F2(817 827t17t2)'

As a corollary, this statement follows easily.

Theorem 8.2. Let f(z) = fox® + f12° + fox* + f323 + fox® + fiz + fo
be a polynomial of degree 6 and non-zero discriminant, and let F =
(F1, Fy) be the formal group law attached to the Jacobian variety of
the curve defined by y?> = f(x). Then

F2(827 51, t27 tl) = F1(817 52, tl) t2)
We will work with this type of curves. Let us give them a name.

Definition 8.3. We shall call a genus 2 curve symmetric if it can be
expressed through an equation y? = f(z), where f(z) = fox® + f12°+
faxt + fzx® 4+ fox® + fiz + fo is a polynomial of degree 6 and non-zero
discriminant.
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8.2 Comparison between formal group laws

This section is devoted to the proof of Theorem 8.1. Let us refer
by J(C) to the Jacobian variety attached to the curve C' through
Equation (8.1) following the procedure described above. Of course,
one can apply the same procedure to Equation (8.2). In order to
avoid misunderstandings, let us denote by J(C') the Jacobian variety
that arises in this way. Of course, they are isomorphic, but the set of
equations that define them as algebraic varieties in P'® are different.
The first step will be to define an isomorphism between them.
Consider the following automorphism ® : P — P defined as:
ap > ao, ay = —az, a2 = —ap, a3 r>as,
as — a4, as — as, ag — —aog, ay +— —as,
ag t— —ay, a9 = —ae, aiotr a4, a1 aig,
a2 /= a2, Qi3 ail, a4 alp, a5t ais
We wish to show that ® induces an isomorphism of algebraic vari-

eties between J(C') and J(C'). It will be enough to see that the image
of any point (ag : a1 : -+ : ai5) in J(C) lies in J(C) (for, because of
the symmetry of our setting, the same proof, suitably changed, would
show that any point in J(C') maps into J(C), and this suffices for our

purposes).

Lemma 8.4. Let {eqnl,eqn2,...,eqn72} be the equations defining
J(C), and {eqn’l,eqn’2, ... eqn'72} be the equations defining J(C).
Then the change of variables ® induces the following transformations:

eqnl — eqn’b, eqn2 ~— eqn’6, eqnd +— eqn’3,

eqnd —eqn’l, eqn6 ~— eqn’2, eqn8 — eqn’ll,

eqn9 +— eqn’l4, eqnll — eqn’8, eqnl2+— eqn’l3,

eqnl3d — eqn’12, eqnl4 — eqn’9, eqnl6 — eqn’l8,

eqnl7 — eqn’17, eqnl8 +— eqn’16, eqnl9 — eqn’19,

eqn20 — eqn’21, eqn2l — eqn’20, eqn25 — eqn’29,

eqn26 — eqn’30, eqn28 — eqn’32, eqn29 — eqn’25,

eqn30 — eqn’26, eqn32 — eqn’28, eqn33 — eqn’42,

eqn34 — eqn’4l, eqn35 — eqn’39, eqn38 — eqn’38,

eqn3d9 — eqn’35, eqndl — eqn’34, eqnd2 — eqn’33,

eqndd — eqn’47 eqndb — eqn’48, eqnd7 — eqn’44,

eqnd8 — eqn’4d5 eqn49 — eqn’55, eqnd0 — eqn’56,

eqnbl — eqn’57 eqnb2 — eqn’58, eqnd3 — eqn’5H9,

eqnb4 — eqn’60  eqnd5 — eqn’49, eqnb6 — eqn’50,

eqnb7 — eqn’51l  eqnb8 — eqn’52, eqnd9 — eqn’5H3,

eqn60 — eqn’54  eqn6l — eqn’64, eqn62 — eqn’65,
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eqn63 — eqn’66  eqn64 — eqn’61, eqn65 — eqn’62,
eqn66 — eqn’63  eqn67 — eqn’68, eqn68 — eqn’67,
eqn69 — eqn’72  eqn70 — eqn’71, eqn71 — eqn’70,
eqn72 — eqn’69

eqnd reqn’4 + fofeeqn’16 — f1feeqn’20 + fofseqn’21—
— fofseqn’18 + fao(eqn’12 — freqn’17 + fseqn’20)+
+ fa(eqn’13 — freqn’21 + foeqn’17)
eqn? +—eqn’7 + 4fo fseqn’21 — 4 f1 feeqn'20 — 2 freqn’11—
— fafreqn’21 — 3f1 freqn’21 4 2 fseqn'8 + 4 f5 fseqn’20+
+4f4(eqn’13 — freqn’21 + foeqn’17) + 4 fo(eqn’12—
— faeqn’17 + fseqn’20) + 2f3(eqn’9 + eqn’14)
eqnl0 —eqn’15 — 2 freqn’17 + 2 fseqn’20 + 2(eqn’12 — fieqn’17+
+ fseqn’20)
eqnlb —eqn’10 + 2foeqn’17 + 2 f1eqn’21 + 2(eqn’13 — freqn’21+
+ foeqn'17)
eqn22 —eqn’24 + 2fo fseqn’14 + 4 fo fo fseqn’21 — fofgeqn’16—
— 41 foean'8 — 47 foeqn'17 — 81 fo foeqn'20—
— 8fof3feean’20 + 4 fo fafeeqn'16
eqn23 —eqn’23 + 2fo faeqn’11 — 3o fafseqn’21 — 2fo fafseqn’17—
— 317 feeaqn'21 + 3 fo f2eqn’20 — 12 fo f2 feeqn’21+
+ 3 f1f3feeqn’20 + 4 f1 fo feean'17 + 12 fo f4 feeqn’20+
+ 4f0ffeqn'21 + 4f1 feeqn'13 + 4f12f6eqn’21—
— Af1 fafoean'17 — 2> foeqn's — 4 f3 feeqn'20—
—2f1fafeeqn’17 + 4 fo f5(eqn’12 — freqn’17 + fseqn’20)
eqn24 —eqn’22 — 2fs freqn’9 — 4f6 f4fieqn’20 + fofieqn’18+
+ 4f5foeqn’11 + 4f52f0eqn'17 + 85 fafoeqn'21+
+ 816 f3 foean'21 — 4 fo fa feeqn’18
eqn27 —eqn’31 + 2fo fseqn’21 + 4 f1 freqn’21 — 4 f5 freqn’17—
— 2f3f1eqn’20 — 4 f4(eqn’13 — freqn'21 + foeqn’17)
eqn3l —eqn’27 + (—2f4 f3eqn'20 + 4 f5 foeqn’20 — 4 f4 foeqn’17+
+ 2f3foeqn’21) — 4f5(eqn’12 — freqn’17 + fseqn’20)
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eqn36 —eqn’36 + foeqn’21 — fieqn’20

eqn37 —eqn’40 + eqn’12

eqn40 —eqn’37 + eqn’13

eqn43 — — eqn’46 — fseqn’58 — freqn’63 — 3 fieqn’65—
— 4fofseqn’68 — 4 fo fseqn’70 + fzeqn’61

eqn46 — — eqn’43 + fseqn’52 + fseqn’66 + 3 fseqn’ 624
+ 4fe freqn’67 + 4fs freqn’71 — fzeqn’64

From this lemma, whose proof is mere algebraic computation, it
follows at once that ® : J(C) — J(C) is an algebraic isomorphism.
And note that the zero element of the sum law of J(C) (and also
of J(C)) as an abelian variety in P is (1 : 0: 0 : --- : 0) € P1?,
Therefore ® maps the zero element of J(C') into the zero element of
J(C). It is well known that this causes ® to be an isomorphism of
abelian varieties (see for instance Corollary 1.2 of [55]).

We still need to deal with a few small details in order to be ready
to prove Theorem 8.1.

First of all, we want to prove equalities between formal power se-
ries, namely Fy(s2,$1,t2,t1) = Fi(s1,s2,t1,t2) and Fi(s2,s1,t2,t1) =
F5(sq1,89,t1,t2), where s1, 89,11, to are variables. We will not prove it
directly. Instead, we will prove that, for all tuples (s1, 52,1, t2) € m*4,
the equalities are satisfied. But this is enough to ensure that the equal-
ity between formal power series holds. More precisely, we can use the

following result.

Lemma 8.5. Let G(X1,...,X,) € Zy[[X1,...,X,]] be a formal power
series. Assume that it holds that G(x1,...,x,) = 0 for all tuples
(1,...,xn) €M™, Then G(X1,...,Xy) =0 1in Z[[X1,..., X,]]-

Proof. We will proceed by induction. Assume first that the dimension
n is 1, that is to say, G(X) is a formal power series in one variable with
coefficients in Z;. Consider the formal power series G1(X) := G(¢- X).
This is a restricted formal power series. By hypothesis, we know that,
for all z € m, G(x) = 0. Therefore, the same is true for G1(X). Now
we can apply a well-known result of Strassman (see [71], pg. 306),
and conclude that G7(X) must be equal to zero. This implies that
G(X) =0.
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Once we have settled the case of dimension 1 we are ready to tackle
the induction step. Assume that the lemma is true for dimension n,
and let us prove it for dimension n + 1. Let G(Xi,...,X,, Xnt1)
be a formal power series satisfying the hypothesis of the lemma. Fix
any tuple (z1,...,2,) € m*". Now the formal power series in one
variable G (1, ..., x,, X,41) satisfies the hypothesis of the lemma for
dimension 1. Therefore, by the considerations made at the begin-
ning of the proof, we know that it vanishes in Z/[[X,+1]]. In other
words, if we consider G(X1, ..., Xn, Xnt+1) € Zo[[ X1, ..., Xu)][[Xnt1]]
as a formal power series in X,, 1 with coefficients in Z[[X1,. .., X,]],
the statement above means that all the coefficients satisfy the hy-
pothesis of the lemma for dimension n. Therefore, by the induction
hypothesis, they all vanish, and thus G(X1, ..., X,, X,,11) vanishes in
Zol[ X1,y Xn, Xny1]] O

Next, we need to establish another technical lemma. Recall that
we considered the formal group law F = (Fy, F5) on J(C'), computed
by means of the algorithm outlined in [15].

Lemma 8.6. The following identities hold

Fl(_sla —S2, _tl7 _t2) = —Fl(Sl, 827t17t2)
FQ(_Sla —S2, _tl7 _t2) = _F2(317 52, tla t2)

Proof. If we denote by (2 : 21 : -+ : z15) the coordinates in P'°) we
can consider the localized coordinates, s; = z;/zp. As a first step to
compute the formal group law F, in Chapter 7, Section 1 of [15] is
proven that (si,s2) is a pair of local parameters for J(C).

By Lemma 8.5, it suffices to show that, for any si,s9,t1,t2 € M,
Fi(—s1,—s2,—t1,—ta) = —F;(s1,82,t1,t2), i = 1,2. Let us take then
any two points of F(m), say (s1,s2) and (t1,%2). We can consider two
points in J(C),

A=(ap:ay:a2:---:a15) and B = (by : by : by :---: bys),

such that ag, by # 0 and s1 = a;/ag, s2 = az/ag, t1 = by /by, ta = ba/by.
Therefore, it suffices to show that

Fi(a1/ag,az/ag,b1/bg,ba/by) = —F;(—ai/ag, —az/ag, —bi /by, —ba/bg).

The idea of the proof can be easily grasped by considering how the
sum in the Jacobian of C' can be geometrically interpreted (generically)
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in terms of these inverse images in C'. Namely, recall that the Jacobian
of C' was embedded in P'® through the map

z=(20,21,...,215) : O — P,

which we did not write explicitly. Therefore, both points A and B have
an inverse image, say the pairs {P;, P»} and {Q1,Q2} of points of C.
Assume that these points have coordinates P; = (x1,y1), P» = (z2,y2),
Q1 = (u1,v1), Q2 = (uz,v2). Now consider the (only) cubic

Y =aX?+8X2+~4X +§

that passes through the four points P, P»,Q1,Q2. This cubic inter-
sects C' in two additional points, say Ry and Ry. Then the image
through z of the pair {R;, Ry} is the opposite of sum of A and B in
J(C).

Consider now the images of P, P», QQ1, Q2 through the hyperel-
liptic involution Y — =Y, say Pj, P5,Q},Q%5, R, R,. Then the cubic
given by the equation

Y = —aX®—BX%2—~4X —§

contains these six points, which means that the opposite of the sum of
the points in J(C) corresponding to the pairs {P{, Py} and {Q},Q5}
is the point corresponding to {R}, R)}.

At this stage, it is necessary to make use of the explicit expressions
of the maps zp, z1 and 29 (which appear in the first section of Chapter
2 of [15]) in order to check that the following identities hold

Zo(ﬂch —Y1,x2, —y2) = 20(331,917332,2/2)
z21(x1, —y1, 22, —y2) = —21(x1, Y1, T2, Y2)
2o(x1, —y1, T2, —y2) = —22(x1, Y1, T2, Y2)-

Therefore, if we consider the points P| = (z1, —y1), Py = (22, —¥y2),
I = (u1,—v1) and Q% = (ug, —v2) (which also belong to C'), and call
A = z(x1, —y1, T2, —y2), B’ = z(u1, —v1,u2, —v3), we obtain that the
local parameters of A’ are (—ay/ag, —az/ag) and the local parameters
of B’ are (—bl/bo, —bg/bo).
Let us rephrase this reasoning by using the representation of the
sum in J(C') by means of divisors. To prove that the inverse of the
sum of the points A and B is the sum of A’ and B’, it is enough to
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show that their inverse images through the map z satisfy this property,
that is to say, that the sum of the corresponding divisors in Pic?(C)
is zero. But this is immediate, since the divisor of the pair {P;, P} is
Py + Py, the divisor of the pair {Q1,Q2} is Q1 + Q2, the divisor of the
pair {P{, Py} is P{+ P; and the divisor of the pair {Q],Q5} is Q] +Q5.
Their sum is consequently Py + P+ Q1+ Q2+ P{ + P, + Q) + Q4 =
(Pr+ P)) + (P2 + P) + (Q1 + Q) + (Q2 + @) = O. This completes
the proof of the lemma.

O

We are now ready to prove Theorem 8.1.
Proof. We will prove that ﬁQ(SQ,Sl,tQ,tl) = Fi(s1,82,t1,t2). The

proof of the remaining identity is analogous.
As in the proof of the previous lemma, it suffices to show that,

for any two points in J(C) A = (ap : a1 : --- : a15) and B = (bg :
by : - 1)15) with ag,by # 0, then Fg(ag/ao,al/ao,bg/bo,bl/bo) =
Fi(ay/ag,az/ag,b1/bg,ba/bg). Let us call D = (dy : dy : -+ : dy5) the

point A+ B (Note that dy cannot vanish, since the sum given by the

formal group law on mxm is closed and F(m) ~ A;(K)). By definition
of the formal group law, we know that

Fi(a1/ag,az/ag, b1 /bo, ba/bo) = di/dp. (8.3)

On the other hand, since ® is an isomorphism of abelian varieties, we
have the identity ®(A) + ®(B) = ®(D). In particular, calling ®(A) =
(ap : @y :---:ays) and similarly ®(B) = (bg : by : -+ : by5) and ®(D) =
@0 dy oo d15), we have that Fg(al/ao,ag/ao,bl/bo,bg/bo) =
dy/ap. But now, recalling the definition of ® coordinatewise, this
identity can be expressed as

Fy(—as/ag, —ay Jag, —ba /by, —b1 /bg) = —di /do. (8.4)

Combining Equation (8.3) with Equation (8.4), we obtain that

Fi(a1/ag,az/ag,bi/bo,ba/by) =
= —Fy(—az/ap, —a1/ag, —ba /by, —b1/by).

Applying Lemma 8.6, we conclude the proof.
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8.3 Shape of the multiplication by ¢ map

In Chapter 5, we proved a Proposition about the shape of a homo-
morphism between formal group laws, namely Proposition 5.12. Let
us recall the statement in the case of dimension 2. Given a homomor-
phism f : F — G between two formal group laws of dimension 2 over
a finite field k of characteristic £, the proposition claims the existence
of an exponent r such that the formal power series f1, fo € k[[Z1, Z2]]
which define f can be written as formal power series in Z{ , Z§ . Fur-
thermore, we saw that if we consider a formal group law F of dimension
2 and height 4, and take f to be the endomorphism of multiplication
by ¢, then there are only two possibilities for the exponent r, namely,
either r = 2 or 7 = 1 (see Remark 7.2). Through the remainder of
Chapter 7, we assumed that the value of the exponent r was two, and
claimed that we would deal with such condition in this chapter. Let
us do so now.

Our aim will be to prove that, under some suitable conditions, the
formal group law satisfies the following hypothesis.

Hypothesis 8.7. There exist two formal power series g,(Z1, Z2) and
92(Z1, Z3) such that the multiplication by ¢ map [¢] = ([{],,[l]y) in the
2-dimensional formal group law F is given by

[7]1(21’ Z2) =
[7]2(21’ Z2) =

2 2
I(Zf 725)

2 2
(21,73 ).

Q|
)

Our starting point is that the formal group law attached to a prod-
uct of two supersingular elliptic curves trivially satisfies this claim,
since in dimension 1 the exponent r for a formal group law coincides
with its height, which is 2 in the supersingular case. Furthermore, by
definition a supersingular abelian surface A over k is isogenous over k
to a product of two supersingular elliptic curves (recall Definition 4.4).
Is there a way to transfer this property from the product of elliptic
curves to the abelian surface through the isogeny?

First of all, note that if our isogeny is defined over the field k£ and
has degree prime to ¢, then it preserves this property.

Lemma 8.8. Let A and B be abelian varieties defined over k, and
® : B — A an isogeny of degree prime to £. Assume moreover that
the formal group law attached to B satisfies Hypothesis 8.7. Then the
formal group law attached to A satisfies it too.
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Proof. Let m be the degree of ®. By the considerations made on
Chapter II, § 1 of [42], we know that there exists an isogeny ¥ : A — B
(the dual isogeny of ®) such that ¥ o & = [m]p.

Consider the following commutative diagram:

[4
B[]BB

® q>
[€]a

A——

We know that ®o[¢]p = [¢(]40®. Therefore, Po[l|goV = [(]4oPoV;
and thus ® o [{]p o W = [(]4 0 [m]a.

Consider now the homomorphism these arrows induce on the for-
mal group laws on A and B (we will not change their names). Since
the reduction of mB modulo ¢ can be expressed by means of for-
mal power series in ZfQ,ZSQ, the same is true of the composition
Dol]zo0W =[], 0[m], But since the multiplication by m map

in the formal group law of A is defined by

{W1(ZLZQ) =mZ,+ -
[mly(Z1,Z2) = mZo + -+ -

it cannot happen that any of the two formal power series that define
[(]a possesses a term of degree smaller than ¢? (for m is invertible
in k). Taking into account Proposition 5.12, we conclude that the
multiplication by ¢ map in A must also be expressible as a formal
power series in ZfQ, ZSQ. ]

The rest of the section is devoted to applying this lemma in a
particular case. In Chapter 14 of [15], a kind of genus 2 curves is
introduced, namely bielliptic curves, which are those which satisfy one
of the equivalent conditions of Theorem 14.1.1 of [15]. For instance,
condition (i) is that the curve can be expressed by a hyperelliptic
equation without terms of odd degree in z, that is to say, an equation of
the shape 32 = c32%+cox? 4+ 122 +¢o. Also recall that at the beginning
of this chapter we gathered that a symmetric curve would suit us.
Therefore, we will consider symmetric bielliptic curves. Namely, we
will focus on genus 2 curves C' which are given by a hyperelliptic
equation

y? = 2% + bat + b2 + 1, (8.5)
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for a certain b € Fy, which moreover are supersingular. Whether for a
given ¢ there exists such a curve is another issue, which will be dealt
with in later chapters. For the moment, we will assume we have such
a curve, and heed not the fact that we may be theorizing about the
empty set.

Note that the Jacobian of C' is isogenous (over Fy) to E' x E, where
E is the elliptic curve given by the Weierstrass equation y? = 23 +bx?+
bxr+1. In order to check that the Jacobian of C satisfies Hypothesis 8.7,
one can explicitly compute the equations of the morphism of formal
group laws that this isogeny induces. In fact, this is what we did at
first, following the procedure described in Chapter 7 of [15]. Later,
thanks to a remark of J. Gonzilez, we found that this question we are
considering is already treated in the literature. For instance, there is
the following result (cf. Proposition 3 of [37]).

Proposition 8.9. Let E and F be two elliptic curves over Fy, let A
be the polarized abelian surface E x F, and let G C A[2)(F,) be the
graph of a group isomorphism v : E[2)(F;) — F[2|(Fy). Then G is a
mazimal isotropic subgroup of A[2)(Fy), and furthermore the quotient
polarized abelian variety A/G is isomorphic to the Jacobian of a curve
C over Ty, unless 1 is the restriction to E[2](F) of an isomorphism
E — F over Fy. Moreover, the curve C and the isomorphisms are
defined over Fy if v is an isomorphism of Gal(FFy/Fy)-modules.

Let us consider the elliptic curve E defined by the Weierstrass
equation
2 _ .3 2
Yy =x° + bx* + bxr + 1.

Then the 2-torsion points of F are the following:

O
P1 = (—1, 0)

Pyi= (51— b+ V=3 -2+ 1),0)
Py = (%(1 b=/ Z3_ 21 12),0).

Let us consider the group morphism ¢ : E[2](F,) — E[2](F;) de-
fined as
O—0, PP, P,— P, Py P
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Note that it is compatible with the action of Gal(Fy/F,). In order
to apply Proposition 8.9, we need to check that 1) is not induced from
an automorphism of F.

But the group of automorphisms of E is well known (cf. [84],
Chapter III, § 10). Namely, if £ is an elliptic curve with j-invariant
different from 0 or 1728 (that is to say, with b different from 0 or
—3/2), then the group of automorphisms of E has order 2, and the
non-trivial automorphism corresponds to (x,y) — (x,—y). Therefore,
it cannot restrict to the morphism . In the other cases, the order of
Aut(F) is 4 or 6: it is easy to compute these automorphisms explicitly
and check that they cannot restrict to .

Therefore, for each b € F, such that the equation y? = 3 + bax? +
bx + 1 defines an elliptic curve E (i.e., b # 3,—1), Proposition 8.9 tells
us that there exists a genus 2 curve C' and an isogeny

o:ExE— JO)

which is separable (because of the definition of the quotient of abelian
varieties, cf. § 7 Chapter 2, Theorem on p. 66 of [56]) of degree
4. Moreover, the isogeny can be defined over F,. Therefore, if E is a
supersingular elliptic curve we can apply Lemma 8.8 and conclude that
the Jacobian of C satisfies Hypothesis 8.7. But can C' be explicitly
determined? Fortunately, Proposition 4 of [37] gives a very explicit
recipe for computing C. As a conclusion, we can state the following
result.

Proposition 8.10. Let b € Fy be such that the Weierstrass equation
y? = x® + ba? 4+ bx + 1 defines a supersingular elliptic curve over Fy.
Then the Jacobian of the genus 2 curve C defined by the hyperelliptic
equation

2 =28 + bt +b2® + 1
satisfies Hypothesis 8.7.






Chapter 9

Summary of results
(abelian surfaces)

Once more, we will make a brief interlude and devote a chapter to
collecting the results that we have already discussed. The tameness of
the Galois extension obtained from the Galois representation attached
to the f-torsion points of an abelian surface at a prime p # £ was
already dealt with in Theorem 3.7. Regarding the tameness at /,
we have proved that it suffices to ensure that Hypothesis 4.7 holds.
From that point on, we have laboured to find explicit conditions that
guarantee that this hypothesis holds. Put in a nutshell, we need that
the formal group law of the abelian surface is symmetric and satisfies
that the exponent in Proposition 5.12 is two. Note that these two
conditions have a completely different nature: the first one involves
characteristic 0; we need that the formal group law attached to A/Qy
is symmetric, whereas the second one is in fact a condition on the
reduction of A at /.

Firstly, we will write a statement about abelian surfaces which do
not necessarily come from genus 2 curves, but which is valid in general:

Theorem 9.1. Let A/Q be an abelian surface, and let £ > 2 be a
prime number. Let P be the set of prime numbers that divide the
order of GL4(Fy). Assume that the following conditions hold:

e For all p € P different from £, A has semistable reduction at p.

e The formal group law attached to A/Qy is symmetric.
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e The reduction of A at £ is a supersingular abelian variety such
that there is an isogeny defined over Fy, of degree prime to £,
from A to a product of two supersingular elliptic curves defined
over TFy.

Then the Galois extension Q(A[(])/Q is tamely ramified.

Proof. This result is a combination of Theorem 6.2, Theorem 7.8 and
Lemma 8.8. U

Theorem 7.8 gave some conditions that ensured that the action of
the wild inertia group at ¢ was trivial. These conditions were very
explicit, in the sense that they could be checked simply by looking at
the formal power series that define the formal group law. In Chapter
8, we restricted our attention to the Jacobians of genus 2 curves. We
managed to find conditions which ensure that those of Theorem 7.8
will hold, and which can be read directly in the coefficients of a hy-
perelliptic equation of the curve. Therefore, a result of a very explicit
nature like the one below was to be expected.

Theorem 9.2. Let C be a genus 2 curve defined by a hyperelliptic
equation

y? = f(),

where f(x) = fox® + fix® + foxt + f323 + fox? + frx + fo € Z[x] is a
polynomial of degree 6 without multiple factors. Let £ > 2 be a prime
number, and let P be the set of prime numbers that divide the order
of GL4(Fy). Assume that the following conditions hold:

o For all p € P different from £, C has stable reduction at p.

e The reduction of f(x) modulo ¢ is of the form x°®+bx* +bx?+1,
and the elliptic curve E defined over Fy by y?> = x® +bx? +bx+1
s supersingular.

Then the Galois extension Q(A[(])/Q is tamely ramified.

Proof. This result is a direct consequence of Theorem 6.2, Theorem
7.8, Theorem 8.2 and Proposition 8.10. Also one needs to recall that
the genus 2 curve C has stable reduction at a prime p if and only if
the Jacobian surface attached to it has semistable reduction at p (see
[48], Remark 4.26 of chapter 10). O



Chapter 10

Approximation to
symmetry

An attentive reader might have been anxious to point out an objection
before we go further. Namely, in order to obtain tame ramification at
the prime ¢, we have resolved to consider the Jacobian of a very specific
genus 2 curve. In particular, we asked that it be symmetric, that is
to say, that it could be represented by a hyperelliptic equation of the
form

y? = for + f1a® + foxt + fzi® + fox® + frz + fo.

But, alas! the endomorphism ring of such a curve contains the in-
volution (x,y) — (1/x,y/x3). In fact, the Jacobian of such a curve
is reducible. Therefore, the image of the representation attached to
the ¢-torsion points of this Jacobian cannot be GSp,(Fy) (for, if the
Jacobian splits into the product of F1 and Fs, then the image of this
representation is contained in M, = {(s, ') € Aut(E;[(])x Aut(Ez[{]) :
det s = det '}, which is strictly smaller than GSp,(F); see [65]).

And in fact it is so. It will not do to take this curve in the hope of
obtaining a representation with large image. Yet there is a way to get
around this difficulty. Namely, we are going to take a curve which is
“approximately symmetric”, that is to say, symmetric up to a certain
order with respect to the f-adic valuation.

Recall that we needed the symmetry in order to assert that the
formal group attached to the Jacobian of our curve was symmetric in
the sense of Definition 7.3. In turn, we used this symmetry in Theo-
rem 7.7 to ensure that the formal group satisfies Hypothesis 4.7. So
our aim in this chapter is the following: given a symmetric curve C,
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to find another curve C’, which is not symmetric, but such that the
corresponding formal group law still satisfies Hypothesis 4.7. More
specifically, we wish to determine how close the coefficients of a hy-
perelliptic equation of C’ must be to those of a hyperelliptic equation
of C' so that the condition in Hypothesis 4.7 is preserved. The main
result of this chapter is the following.

Theorem 10.1. Let C be a genus 2 curve given by a hyperelliptic
equation

y? = fea® + f52° + faxt + f32° + for® + frz + fo,

where fo, ..., f6 € Zg, and consider the genus 2 curve C'/Qy given by
the equation

y? = fea® + fla® + fiat + fiad + fla® + flz + £

with fl, ..., f € Zy and satisfying f; — f! € (¢*). Then if the formal
group law attached to the Jacobian of C satisfies Hypothesis 4.7, so
does the formal group law attached to the Jacobian of C'.

The rest of the chapter is devoted to proving it. Fix a genus 2
curve C'/Qy, given by a hyperelliptic equation

Y2 = for¥ + f52° + faxt + f32° + foz® + fiz + fo,

where fo, ..., f6 € Zy, and consider the genus 2 curve C'/Qy given by
the equation

y? = fea® + fla® + fiat + flad + fla? + flz + £

with f(,..., fs € Zy.

Denote by F = (F1, F») (resp. F' = (F}, F})) the formal group law
attached to C' (resp. C'). It can be proven that the coefficients of F;
(resp. F}) lie in Z[fo, ..., fo] (vesp. Z[f§, ..., f&]), i =1,2.

Therefore, if we assume that, foralli = 0,...,6, f;—f/ € (¢"), then
the difference F;(s1, s2,t1,t2) — F/(s1, 2, t1,t2) has coefficients in (£7).
Hence we may drop the curves and work in the formal group setting,
since all we have to determine is the exponent r which preserves Hy-
pothesis 4.7 (once we know its value, it is simple to construct a genus
2 curve C’ whose corresponding formal group law satisfies Hypothesis
4.7 but which is not symmetric).
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Denote by Q, an algebraic closure of Qy, and m C Q, the set
of elements with positive valuation. Recall that Hypothesis 4.7 was
a statement about the valuations of the coordinates of the ¢-torsion
points of the group F(m) attached to the formal group law F. Namely,
call [0)1(Z1, Z2), [0]2(Z1, Z2) (vesp. [€]}(Z1,Z2), [l]5(Z1, Z2)) the equa-
tions defining the multiplication by ¢ map in F (resp. F’). Then
the hypothesis claims that for all non-zero pairs (z,y) € m?, with
[]i(z,y) = [{]2(x,y) = 0 it holds that

min{v(z),v(y)} = o,
where a = 1/(£2 — 1).

Now, if the coefficients of the power series [¢]1(Z1, Z2), [¢]2(Z1, Z2)
are close (with respect to the f-adic valuation) to the coefficients of
the series [} (Z1, Z2), [€]5(Z1, Z2), does this imply that the solutions of
the system of equations [¢]1(Z1, Z2) = [(]2(Z1, Z2) = 0 are close to the
solutions of the system of equations [{]}(Z1, Z2) = [€]4(Z1, Z2) = 07

A precise answer to this question can be found in [9], chapter III,
§ 4, n° 5. The reasoning is carried out in the context of restricted
formal power series. For the sake of completeness, and since it will
not take us too long, we will include here a (quite thorough) sketch of
the reasoning, adapting it to this context.

For a while, we will change the setting, and introduce some nota-
tion. Let A be a commutative ring, and fix an ideal m of A. Assume
that A is separable and complete with respect to the m-adic topology,
that is to say, that (1, .y m” is equal to the neutral element of A and
A is isomorphic to its completion with respect to this topology (see
[9], Chapter 3, § 4, n°5, and also cf. [3], Chapter 10). For instance,
we can take A = Zy, m = £ - Zy. As usual, we will denote in boldface
the tuples of elements.

Consider a system of n power series in n variables,

f:(fl,...,fn), fZEA[[Xl,,XnH
We will denote by My the Jacobian matrix, that is to say,

oh ... oA
X1 Xn
Me=1| - - |,
Ofn ... Ofn
X1 Xr,
and we will denote by Jg the determinant of Mg. By m*™ we shall

mean the cartesian product of m with itself n times. Furthermore we
will denote 1, = (X1,...,X,) € A[[X1,..., X,]]*™
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We have the following proposition (see [9], chap. III, § 4):

Proposition 10.2. Letg = (g1,...,9n) be a system of power series in
A[[X1, ..., X,]], without constant term, such that Jg(0) is an invertible
element of A. Then it holds:

e There exists another system of power series in A[[X1,...,X,]]
without constant term, h = (hy, ..., hy), such that

goh=1,.

This system is unique and furthermore hog =1,,.

e For all x € m*", we have that g(x) € m*", and x — g(x) is a
bijection from m>*"to itself.

This proposition allows us to prove the following theorem (cf. The-
orem 2 of [9], chap. III, § 4):

Theorem 10.3. Let f = (fi,...,fn) be a system of elements in
Al[Xy,...,X,]], and let a € m*™. Call Je(a) = e. There exists an-
other system g = (g1,...,9n) of elements of A[[X1,...,X,]] without
constant term such that:

(1) Mg(0) = In.
(ii) For all x € A™, it holds that

flat+e-x)="f(a)+ Me(a) - (e-g(x)).

(iii) Leth = (hq,..., hy) be the system of formal power series without
constant term such that g oh = 1,, (see the proposition above).
For all y € m*"™ it holds that

fla+e-h(y)) =f(a) + Mi(a) - (e-y).

Proof. For each formal power series f € A[[X1,...,X,]], one can al-
ways write

FX+Y)=fX)+MX)Y + ) Gi(X, Y)YV,
1<j<k<n

for certain G, € A[[X1,..., X, Y1,..., V3]l
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In particular, let us take f = f; (fori=1,...,n), X =a,Y =e-x.

filat+e-x) = fi(a)+ My, (a)-(e-x)+ Z Gjr(a,e-x)(e-x;)(e-x)
1<j<k<n

= fi(a) + My,(a) - (e x) + € - ri(x),

where 1; is a formal power series whose terms have all degree at least
two.
If we gather these equations for all ¢, we can write simply

fla+e-x)=f(a)+ Mi(a)- (e-x)+ e - r(x).
Let M’ be the adjoint matrix of Mg(a). By definition, it satisfies

that
Me(a)M' = e - I,,.

If we insert this equation in the formula above, then we obtain

flat+e-x)="f(a)+ Me(a)- (e-x)+ Mg(a)M' - (e r(x)).

Let us define g = 1,,+M'r. Since the terms of r have at least order
2, the second term does not alter the value of Mg(0), thus Mg(0) =
M, (0) = I,,. Moreover, we can write

flat+e-x)="f(a)+ Mg(a)- (e-x)+ Meg(a)M' - (e-r(x)) =
f(a) + Mg(a) - e(x + M'r(x)) = f(a) + Mg(a) - e(g(x)).

This proves (i) and (ii). (ili) can be obtained by replacing x by
h(y), where h = (hy, ..., hy,) is given by Proposition 10.2.
O

We will say that two n-tuples a and b are congruent modulo an
ideal I of A if they are so coordinatewise, that is to say, a; — b; € [
fori=1,...,n. As a consequence of the theorem above, we have the
following result:

Corollary 10.4. Let f = (f1,...,fn) be a system of elements in
Al[X1,...,Xy]], and let a € m*™. Call e = Jg(a). If f(a) = 0
mod e’m, then there exists b € m*" such that f(b) = 0 and b = a
mod em. Furthermore, assume that there exists another tuple b’ €
m*" such that £(b’) =0 and b’ = a mod em. Then, if A has no zero
divisors, b = b’.
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Proof. If e = 0 the statement is obviously true, so we will assume that
e # 0. Let us write f(a) = e%c, where ¢ = (c1,...,¢,) is an n-tuple
satisfying that ¢; € m, for all ¢ = 1,...,n. According to Theorem
10.3-(iii), we may claim that for all y € m*"™,

f(a+ e h(y)) = f(a) + Mr(a) - (e - y) = ¢’ + Me(a) - (e - y),

where h is the n-tuple which pops up in Theorem 10.3.

Let us denote by M’ the adjoint matrix of Mg(a), so that Me(a) -
M' = el,. For all z € m*", we know that M’ -z € m™"™. Picking
y = M'z, the equality above yields

flat+e-h(M'z)) =c’c+ Me(a)-eM'z=¢>-c+e®-z=¢>(c+2).

Choosing z = —c, we conclude that b = a+e-h(M’(—c)) satisfies
the conditions that were required.

With regard to uniqueness, assume that we have two n-tuples b =
a+e-x, b’ = ate-x' with x,x’ € m*™ and satisfying f(b) = f(b’) = 0.
Theorem 10.3-(ii) allows us to claim that

f(a) + M(a) - (e - g(x)) = f(a) + Me(a) - (e~ g(x')),
that is to say,
Mg(a) - e- (g(x) — g(x')) = 0.
Multiplying now on the left by M’, we obtain that
¢ (g(x) — g(x)) = 0.

Since by assumption A has no zero divisors, we may look at this equal-
ity coordinatewise and conclude that

g(x) — g(x) = 0.

But we know that the system of power series g = (g1,...,9n)
satisfies the hypotheses of Proposition 10.2. Therefore, the map

y — 8(y)

is a bijection from m*™ to m*™. Thus if g(x) = g(x’), then it follows
that x = x/.
O
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Let us go back now to our approximation problem. We have two
formal group laws F, ', defined over Z,. Let us keep the notation
we introduced at the beginning of this chapter. We consider the two
systems of equations

0
. (10.1)

where we know that for ¢ = 1,2, it holds that
[0]i(Z1, Z2) = [0)5(Z1, Z2) € 07 - L[| Z1, Z5]].

Furthermore, since the systems of equations (10.1) describe the (-
torsion points of the Jacobians of curves of genus 2, the set of solutions
in m*? is finite. We may thus consider a finite extension K O Qy that
contains all the coordinates of all the solutions of the systems in (10.1).
Let us denote by O the ring of integers of K and by m its maximal
ideal. It is clear that O is separable and complete with respect to the
m-adic topology, and therefore all the previous reasonings are valid in
this context.

Let us call V' the set of pairs of (2/,y) € m x m such that
(2, y) = [05(2',y") = 0. Our first claim is the following:

Lemma 10.5. For all (2',y) € V', [l]1(2', ), [€]2(2',y’) € £'m

Proof. Since [{]}(2',y") = 0, we can write

[g]l(mlay/) = [ﬁ]l(l’,,y,) - [e],l(x/7y,)

Furthermore, let us express [{]i(z,y) = Zij aijz'y’, [0 (v, y) =
> AT iyJ. Hence

1 y) = (ai; — afy)a’y"”.
]
We know that a;; —aj; € (£7), and 2,3’ € m, and also that [£];(z,y) is

Jh
a power series without constant term; thus it follows that [¢];(z/,y') €
¢"m. A similar reasoning shows that [¢]a(2/,y') € £"m. d

In order to apply the corollary above to the system of equations
[0)1(Z1, Z2) = [€]2(Z1, Z2) = 0, we need to compute the determinant
of the Jacobian matrix attached to the system. But this is a simple
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task (see Example 5.2); the Jacobian matrix My, g, (7, y) is given

by
¢ 0
0 ¢)’
thus e = £2.

This result suggests that we choose r = 4.

Proof of Theorem 10.1. Take (2,y') € m*? satisfying
[ (2" y) = [ls(2", ') = 0.

We know that [¢];(z',v'), [(]2(z',y') € ¢* - m. Hence there exists a
unique (z,7) € m*2 such that [(];(z,y) = [{]2(x,y) = 0 and further-
more

' =z mod m

vy =y mod (m.

In particular, the two conditions v(z’ — z) > 2, v(y' —y) > 2 are
satisfied.
But (z,y) is a point of /-torsion of the Jacobian of C, and therefore
we know that
min{v(x),v(y)} = a.

But if v(z) = « and v(z’ — x) > 2 > a, then it follows that
v(z') = . And similarly, if v(y) = «, then v(y') = a. Alsoif v(z) > «,
it cannot happen that v(z’) < a (and the same applies to y,y’). We
may conclude that

min{v(z'),v(y")} = o,

as we wished to prove. [l

As a consequence of Theorem 10.1, we can formulate a slightly
more general result than Theorem 9.2.

Theorem 10.6. Let C be a genus 2 curve defined by a hyperelliptic
equation

y? = f(),

where f(x) = feab + f5a° + faz* + fs2® + fox? + frz + fo € Z[x] is a
polynomial of degree 6 without multiple factors. Let £ > 2 be a prime
number, and let P be the set of prime numbers that divide the order
of GSpy(Fy). Assume that the following conditions hold:
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e For all p € P different from £, C has stable reduction at p.
e The following congruences hold:
fe = fo (mod £%)

f5 = f1 (HlOd 64)
fi=fo (mod £4).

e The reduction of f(x) modulo ¢ is of the form x®+bax* +bx?+1,
and the elliptic curve E defined by y?> = x> + ba? + bx + 1 is
supersingular.

Then the Galois extension Q(A[(])/Q is tamely ramified.






Chapter 11

Image of the
representation

In the previous chapters, we devoted ourselves to the tameness con-
dition: we studied in detail some ways to guarantee that the Galois
representation py attached to the /-torsion points of certain abelian
varieties is tamely ramified. But recall that our intention was to real-
ize groups of the family GSps,, (F;) as Galois groups over Q, with tame
ramification. Therefore, some control of the image of the representa-
tion must be obtained.

Let us fix a prime ¢, let A/Q be an abelian variety of dimension n,
and let us denote by p; : Gal(Q/Q) — GLa,(F,) the Galois represen-
tation attached to the ¢-torsion points of A. Assume A is principally
polarized. Then the Weil pairing gives rise to a non-degenerated sym-
plectic form on the group of /-torsion points of A,

(-,-) - A[f] x Alf] — Fy.

Furthermore, the elements of the Galois group Gal(Q/Q) behave
well with respect to this pairing. Namely, if we denote the cyclotomic
character by x, : Gal(Q/Q) — IF;, then for all o € Gal(Q/Q), for all
P, P c A[E],

(o(P1),0(P2)) = xe(0) - (P1, Py). (11.1)

This compels the image of the representation to be contained in
the general symplectic group GSps,, (Fy).

Now a well-known result of Serre states that, if the principally
polarized abelian variety has endomorphism ring equal to Z, and fur-
thermore its dimension is either odd or equal to 2 or 6, then the image

103
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of the representation is the whole general symplectic group (see The-
orem 3 of Lettre a Marie-France Vignéras in [82]).

We are particulary interested in the case of abelian surfaces over
Q, since there are some explicit results in this context. In this case,
the result of Serre boils down to:

Theorem 11.1. Let A/Q be an abelian surface, principally polarized,
such that End@(A) = Z. Then, for all but finitely many primes £, it
holds that

Imp, = GSp,(Fy).

There are two ways of thinking about the problem of determining
whether in a specific example the image of the representation is as
large as possible, that is to say, as large as the obvious restrictions (in
this case, the behaviour of the image with respect to the Weil pairing)
allow. Assume we have an abelian variety A and we know that the
image of the representation attached to it is, at most, equal to a certain
group GG. One way to proceed is to determine a small set of generators
of (G, and make sure that some element of the Galois group maps into
each one of them. This method was first used by Shimura (see [83]).

A beautiful example of this procedure can be found in [77], § 5.2
(cf. [83]). Serre considers the elliptic curve y?+y = 2% —z. It is known
that the image of the Galois representation ¢y attached to the ¢-torsion
points of an elliptic curve is contained in GLgy(Fy). Now Proposition
19, § 2.8 in [77] claims that a subgroup G of GL2(FF;) which contains
three elements satisfying certain conditions generate SLy(Fy). Namely,
if /> 5 and G contains s, s’ and s” satisfying:

e Tr(s)? — 4det(s) is a non-zero square in Fy with Tr(s) # 0,
o Tr(s')? — 4det(s’) is not a square in F, and Tr(s") # 0,

e The element u = Tr(s”)?/det(s”) is different from 0,1,2 and 4
and furthermore u? — 3u + 1 # 0,

then G D SLa(Fy), where Tr denotes the trace and det the determinant
in GLg(Fy). Moreover, if G is the image of ¢y, then G D SLo(Fy)
implies that G = GLy(Fy), since it is known that detop, = x, is a
surjective map.

Denote by Froby (resp. Frobs) a lift of the Frobenius element at
2 (resp. at 3) to the Galois group Gal(Q/Q) (any lift will do; see the
next section for further explanation of the choice of lifts of Frobenius
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elements). Assume that ¢ > 13 and furthermore (11/¢) = —1. Then
either the choice s = py(Frobs), s’ = pp(Frobs), s” = y(Frobs) or
s = wy(Frobs), s’ = @y(Frobs), s” = py(Frobs) (according to whether
(—=1/€) =1 or not) will satisfy the conditions of the proposition, and
lead to the conclusion that Imp, = GLa(Fy).

The other way is to compute all the subgroups of G, and check that
for each subgroup there is an element in the image of the representation
which does not map inside it. Along these lines, for instance, one could
look at the proof of Proposition 21, § 5.4 of [77]. As a consequence of
this proposition, Serre shows that, save for £ =5 or £ = 11, the image
of the Galois representation ¢, attached to the ¢-torsion points of the
elliptic curve y? +y = 23 — 22 is the whole group GLa(Fy).

We will place ourselves in the situation where our abelian variety
is the Jacobian of a genus 2 curve, hence an abelian surface. In this
setting, a study of the image of the corresponding representations in
the way we described first is carried out by P. Le Duff (see [44]). The
other way is pursued by L. Dieulefait in [24]. In that paper, he manages
to determine, given a fixed, principally polarized abelian surface A/Q,
a finite set of primes ¢ outside which the image of p; equals GSp,(IFy).

In this chapter, we will take the results of Le Duff [44] as our
starting point. We will sketch some of his reasoning in order to make
use of it later on, and then we will dwell upon some specific points
where we need to modify it.

When we first took thought on these matters, guided by the results
of Le Duff, we obtained a result which was quite satisfactory, but
unfortunately it depended on an unproven conjecture, due to Hardy
and Littlewood (more precisely, Conjecture (F) of [33]). Given a prime
number ¢ > 3, we needed an auxiliary prime ¢ such that, among other
conditions, satisfies that 4¢ — 3 is a square. For concrete values of
£, one could find this prime g, but to prove that it exists for all ¢
requires the use of the conjecture. Later, following a suggestion of L.
Dieulefait, we managed to remodel our reasoning in order to obtain
an unconditional result.

As we noted above, the method of Le Duff rests upon finding a cer-
tain set of elements in the image of the representation which generate
the whole GSp4(Fy). Therefore, at the core of the method lies a theo-
rem about generators of this group. More specifically, the main result
upon which Le Duff builds his method is the following (see Theorem
2.7 of [44]):
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Proposition 11.2. The symplectic group Sp,(Fy) is generated by a
transvection and an element whose characteristic polynomial is irre-
ducible.

Remark 11.3. Recall that a transvection in GL, (k) for any field %k
is an element 7 that fixes a hyperplane and such that Im(Id — 7) has
dimension 1. (See Definition 4.1 of Chapter IV of [2]).

It is easy to see that, if the image of the Galois representation
contains the subgroup Sp,(Fy), then it necessarily contains the whole
group GSp,(Fy). This is because we have the following exact sequence

1—— Sp4(F£) - GSP4(F£) —— (Z/KZ)* —1

and because the composition 7o py = x, (due to Equation (11.1)) and
is thus surjective.

Therefore, the problem boils down to finding two elements in Impy,
satisfying that one is a transvection and that the other has an irre-
ducible characteristic polynomial.

Firstly, let us concern ourselves with the transvection. The con-
tents of Proposition 1.3 of [44] are the following:

Proposition 11.4. Let A be an abelian variety defined over a number
field K and v a valuation of K. Assume that the reduction A, of A
at v is an extension of an abelian variety of dimension dim(A) —1 by
a torus of dimension 1.

If £ is a prime number different from the residual characteristic of
v, and such that it does not divide (A, : A%) (which denotes the order
of the group of connected components of the special fibre of the Néron
model at v), then there exists an element in the inertia group I,, such
that its image by pp is a transvection.

We are particularly interested in the case when the abelian variety
A is the Jacobian of a genus 2 curve C'. In this case, the kind of reduc-
tion of A at p, (that is, the classification of the connected component
of the special fibre of the Néron model at a prime p) can be determined
through the knowledge of the kind of reduction of a minimal regular
proper model of C (the kind of reduction of such a model is classified
in [57]).

For instance, it is well known that, if C' is a smooth, projective,
geometrically connected curve of genus g > 2 over a number field K,
then C' has stable reduction at a prime p if and only if the Jacobian
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variety attached to C' has semistable reduction at p (see [48], Remark
4.26 of chapter 10).

Now if a genus 2 curve has stable reduction at a prime p, then this
reduction must belong to one of the following seven types (labeled (I)
to (VII)):

IO—O—O; In—O—Oa In—p—Oa In—p—cp IO_IO_m7 In_IO_ma In_Ip_m

for some integers n,m, q.
In particular, Lemma 4.1 of [44] restates the condition in Proposi-
tion 11.4 in terms of the stable reduction of the curve C.

Lemma 11.5. Let C/Q be a genus 2 curve and J its Jacobian. As-
sume C' has stable reduction of type (II) or (VI) at p. Then the con-
nected component of the special fibre at p of the Néron model of J
which contains the neutral element is an extension of an elliptic curve
by a torus.

The kind of reduction of a genus 2 curve C' can be computed by
means of the Igusa invariants attached to it. Therefore, the combina-
tion of the previous lemma and Proposition 11.4 provides us with an
explicit way to guarantee that a transvection lies in Impy.

Let us now try to approach the existence of an element with ir-
reducible characteristic polynomial. The candidate elements we are
going to look at are the images of the Frobenius elements at primes
different from ¢, where C has good reduction, since we have a great
deal of information about their shape (as in the example of Serre we
dwelt on at the beginning of the chapter).

Namely, let ¢ # ¢ be a prime number, and assume that J(C') has
good reduction at q. Inside Gal(Q/Q) we can consider the decom-
position group at ¢, which is isomorphic to Gal(@q /Qq). Different
immersions of Gal(Q,/Q,) into Gal(Q/Q) give rise to conjugate sub-
groups. Consider the Frobenius morphism z +— z9¢ in Gal(F,/F,).
There are many liftings of this element to Gal(Q,/Qg). Since C' has
good reduction at ¢, the reduction of the abelian variety J(C') is also
good at ¢, hence the image by py of the inertia group at ¢ is trivial.
Therefore, the image by p, of any two lifts of the Frobenius must coin-
cide, and thus an element in GSp,(Fy) is determined save conjugacy.
In any case, the characteristic polynomial of an element in GSp,(F/)
is not altered by conjugation, so this polynomial is well defined, inde-
pendently of any choices we may make along the way. What does this
polynomial look like?
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Let us consider the Frobenius endomorphism ¢, acting on the re-
duction C of C at ¢. It is well known (see for instance [17], § 14.1.6,
Theorem 14.16) that the characteristic polynomial of ¢, has the fol-
lowing shape:

P(X) = X"+ aX? 4+ bX% + agX + ¢,

for certain a,b € Z. More precisely, if we denote by Ny (resp. N3) the
number of points of C over F, (resp. Fg2), we can compute a and b
by using the formulae

=Ny —q—1
a=mmd (11.2)
bi=(No— % —1+a2)/2.

Furthermore, it can be proven (cf. Proposition 10.20 in [55]) that
the polynomial obtained from P(X) by reducing its coefficients mod-
ulo £ coincides with the characteristic polynomial of p;(Frobg). This
element need not be in Sp,(F,), but luckily, any element of GSp,(Fy),
raised to the (£ — 1)-th power does, and Lemma 3.3 in [44] shows that
it suffices to prove that P(X) is irreducible.

Up to this point, we have been following the steps of [44]. This
is the way we approached the matter at first, trying to produce an
element with irreducible characteristic polynomial. Choosing a prime
q in a suitable way and asking an equation of C' to satisfy certain
congruences modulo g, we managed to ensure the existence of this
element, but we needed to make use of a conjecture of Hardy and
Littlewood (namely Conjecture (F) of [33]). But after consulting L.
Dieulefait we have managed to devise a way to ensure a large image
without resorting to this conjecture. We will now describe this new
approach.

Since we have seen that asking the image of the Galois represen-
tation to contain a transvection is feasible, we will take advantage of
this fact. The following result is Theorem 2.2 of [44]).

Theorem 11.6. Let G be a proper subgroup of Spy(Fy), and assume
that G contains a transvection. Then one of the following three asser-
tions holds.

1. G stabilizes a hyperplane and a line belonging to it.

2. G stabilizes a totally isotropic plane.
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3. The elements of G stabilize or exchange two orthogonal supple-
mentary non-totally isotropic planes.

Remark 11.7. If G is a subgroup of Sp,(Fy) which contains an ele-
ment with irreducible characteristic polynomial, it cannot satisfy any
of the three assertions of the theorem (see Theorem 2.7 of [44]). There-
fore Proposition 11.2 is an easy consequence of this result.

Our strategy will be the following: for each of the three assertions,
we shall ensure the existence of an element of G = Impy, contained
in Spy(Fy), which does not satisfy it. In this way, we will prove that
G cannot be a proper subgroup of Sp,(Fy). Instead of asking directly
that there exists an element with irreducible characteristic polynomial,
which rules out the three possibilities at once, we will require that there
are elements such that the corresponding characteristic polynomial
decomposes in different ways.

Remark 11.8. The second assertion in the previous theorem occurs
when G is contained in a maximal parabolic subgroup. In this case, it

is easy to check that, choosing a suitable symplectic basis, this max-
*

imal subgroup consists of matrices of the form <§ ( A‘l)t>’ where
(A~H? denotes the transpose of the inverse matrix of A (cf. the re-
mark following the proof of Theorem 2.2 in [44]). On the other hand, if
the third assertion holds, then the elements of G leave two supplemen-
tary orthogonal non-totally isotropic planes stable, or else interchange
them (this is case (3) of Proposition 2 of [40]). If an element of Sp, (Fy)
interchanges two such planes, then it can be seen that its trace is zero.
Therefore an element which belongs to this kind of maximal subgroup
either has trace 0 or stabilizes two planes. Moreover, if it stabilizes two

planes, it can be expressed as > with respect to some suitable

A x
0 B
basis, where A and B belong to SLa(Fy).

Let us consider an element in Sp,(IFy), and call its characteristic
polynomial P(X). It is easy to see that this polynomial can be written
as P(X) = X* +aX? +bX? +aX + 1 for some a,b € Fy. In turn,
this implies that there exist a, 3 € Fy such that P(X) decomposes as
(X —a)(X — B)(X —1/a)(X —1/3) over F, (for P(a) = 0 implies
that P(1/a) = 0). Therefore, if P(X) is not irreducible over Fy, it will
decompose in quadratic or linear factors since, if a root belongs to Fy,
then there is another root in F,.
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Now there are essentially two ways in which such a polynomial can
break up in quadratic factors, namely

(X —)(X = 1/a)) - (X = B)(X ~1/8)

P(X)=
(X —a)(X = @) ((X = 1/a)(X ~1/8)).

The first case is labeled “unrelated” 2-dimensional constituents and
the second one “related” 2-dimensional constituents in [24].

There is a nice way to discern whether the first decomposition takes
place. Namely, consider the polynomial Py(X) = X2 + aX + (b — 2).
The roots of this polynomial are precisely a+1/«, 5+1/3. Therefore,
if the first factorization occurs, this polynomial is reducible and its
discriminant Ag = a® —4b+ 8 is a square in Fy. To determine whether
the other factorization takes place is more difficult. Given an element
of Sp,(FFy) with characteristic polynomial P(X) = X% +aX3 +bX? +
aX + 1, we will denote Ag(P) = a? — 4b + 8.

Theorem 11.9. Let G be a subgroup of Spy(Fy), and assume that
G contains a transvection. Furthermore, assume that it contains two
elements whose characteristic polynomials, P1(X) and Py(X), satisfy
the following: denoting by a;,1/ay, i, 1/6; the four roots of P;(X),
i=1,2,

e ar +1/ay, b1 +1/p1 €Fe and oy +1/a1 + 51+ 1/ #0.
o ag+ 1/ag, By +1/82 € Fy, Ag(P2) # 0 and as & Fy.
Then G equals Spy(Fy).

Proof. Since G contains a transvection, Theorem 11.6 implies that
either GG is the whole symplectic group or else one of the assertions
(1), (2) or (3) of the theorem holds. We will see that, in fact, none of
them is satisfied.

If assertion (1) holds, then all the elements of G must leave a
line invariant. But this implies that each element has one eigenvalue
which belongs to Fy. But oy + 1/aq and 81 + 1/5; do not belong to
Fy. Therefore assertion (1) does not hold.

Assume now that assertion (2) holds. Then G is contained in
a group which stabilizes a totally isotropic plane. Therefore, with
respect to a suitable symplectic basis, it is contained in a subgroup of

the shape <gl ( A:)t> (see Remark 11.8). In particular, this implies
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that if P(X) is the characteristic polynomial of an element of G, it
must factor over [Fy into two polynomials of degree two. Call the roots
of one of the factors a and . Then the roots of the other factor are
1/a and 1/8.

Let us consider the polynomial P(X) = (z — ag)(x — [o)(z —
1/ag)(x —1/032). Labeling the roots anew if necessary, we can assume
that ao and (2 are the roots of one of the quadratic factors, as above.
We can consider two cases:

e 5 = 1/ag or B3 = ag. In this case P(X) can be factored as
P(X) = (X? — AX 4 1)? for a certain A € Fy. If we work out
this expression, we obtain P(X) = X* + 24X3 + (42 +2)X? +
2AX + 1. Writing out P(X) = X* + 4o X3 + 0o X% + ap X + 1
and comparing these two expressions we obtain that Ag(FPz) = 0,
which contradicts our hypotheses on P, (X).

e (3 # ao,1/ay. In this case, the polynomials (X —aw9)(X —1/a9)
and (X — ag)(X — o) are different, and both are defined over
Fy. Therefore, one can use the Euclid algorithm to compute their
greatest common divisor (X — ag). This implies that ag € Fy,
which contradicts our hypotheses on P5(X).

Finally, assume that Assertion (3) holds. Then any element in G
satisfies that either its trace is zero or it stabilizes two planes, which
are supplementary, orthogonal and are not totally isotropic (see Re-
mark 11.8). Consider again the element with characteristic polynomial
Py (X). Since it has non-zero trace, it must stabilize two such planes.
But then P;(X) should break into two quadratic factors defined over
F,. Moreover, since the determinant of the corresponding matrix is 1
for each of the factors (cf. Remark 11.8), their independent terms must
be 1. But this means that the factors have to be (X — a1)(X — 1/aq)
and (X — 31)(X —1/01), and we know these polynomials are not de-
fined over Fy. Therefore Assertion (3) cannot hold. O

Remark 11.10. Let us turn back to our Galois representation py
attached to the Jacobian of a genus 2 curve C'. Let ¢ be a prime
of good reduction of C'. We already noted that the characteristic
polynomial of pg(Frob,), the image of the Frobenius element at ¢ has
the shape P(X) = X* +aX?+bX?+aqX +¢% Ifg=1 (mod ¢), then
pe(Frob,) belongs to Spy(F¢), and therefore it will suit our purposes.
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This result, together with Proposition 11.4, fulfils our purpose.
The following statement will be referred to many times.

Theorem 11.11. Let C be a genus 2 curve defined over Q with stable
reduction of type (I1) or (VI) at a prime number p. Let ¢ be the order
of the group of connected components of the special fibre of the Néron
model at p. Let 1 and gy be different prime numbers at which C has
good reduction.

Call Pi(X) = X* 4+ a; X3 + b;X? + a;q;: X + q;° the characteristic
polynomaal of the Frobenius endomorphism acting on the reduction of
C at q;, and define Ao(P;) = a? — 4b; + 8¢;, i = 1, 2.

If 0 > 2 is a prime number which does not divide 2pq1qac satisfying

e g;=1 (mod ¢),i=1,2.
o Aog(Py1) is not a square in Fy and a; #0 (mod ¢).

o Ay(P,) is a non-zero square in Fy, and Py(X) does not decom-
pose in linear factors in Fy.

then the image of py coincides with GSpy(Fy).
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Explicit construction

In this chapter we will (at last!) face the problem of constructing, for
a given prime number ¢, a genus 2 curve such that the Jacobian vari-
ety attached to it gives rise to a Galois representation yielding a finite
Galois extension K/Q, tamely ramified, with Galois group GSp,(Fy),
thus providing an affirmative answer to the Tame Inverse Galois Prob-
lem for this group. In the preceding chapters we have worked out some
statements that give very accurate and explicit conditions for the Ga-
lois representation attached to the Jacobian surface of a genus 2 curve
to satisfy the desired properties. To be more precise, our starting point
is the following straightforward statement:

Let C' be a smooth projective curve of genus 2, defined over
@ and such that, if we denote by A the Jacobian variety
attached to C and by p, the Galois representation attached
to the f-torsion points of A, the following conditions are
satisfied:

e The Galois extension obtained by adjoining to Q the
coordinates of the /-torsion points of A is tamely ram-
ified.

e The image of py coincides with the general symplectic
group GSpy(IFy).

Then py; provides a tamely ramified Galois realization of
GSp4(Fg)

Now the first condition was settled in Theorem 9.2, and was pol-
ished afterwards in Theorem 10.6. The second condition was dealt
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with in Theorem 11.11. If we collect all these results, we obtain the
following theorem (of a rather clumsy length):

Theorem 12.1. Let C be a genus 2 curve defined by a hyperelliptic
equation

y? = f(x),

where f(x) = fex® + fs2° + faxt + f323 + fox? + frx + fo € Z[x] is a
polynomial of degree 6 without multiple factors. Let £ > 2 be a prime
number, and let P be the set of prime numbers that divide the order
of GSp4(Fy). Assume that the following conditions hold:

e For all p € P different from £, C has stable reduction at p.

o The following congruences hold:

fo = fo (mod ¢%)
f5 = fl (IHOd £4)
fi=fo (mod £4).

e The reduction of f(x) modulo ¢ is of the form x®+bx* +bx?+1,
and the elliptic curve E defined by y*> = x® + ba® + bx + 1 is
supersingular.

e There exists a prime number p # £ such that the reduction of C
at p is stable of type (II) or (VI), and ¢ does not divide the order
of the group of connected components of the special fibre of the
Néron model at p.

e There exist two prime numbers qi,q2 with ¢ = 1 (mod ¢) and
such that C has good reduction at q;, i = 1,2. Let Pi(X) =
X4+ a; X3+, X2+ a;q; X + qZ'Q be the characteristic polynomaial
of the Frobenius endomorphism acting on the reduction of C' at
¢, and define No(P;) = a? — 4b; + 8¢;, i = 1,2. Assume that

— Ao(P1) is not a square in Fy and a; # 0 (mod ¢).
— Ag(P2) is a non-zero square in Fy, and Po(X) does not

decompose in linear factors in Fy.

Then the Galois extension Q(A[(])/Q provides a tamely ramified
Galois realization of GSpy(Fy).
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A quick glance at this theorem does not make it clear that for
each prime number ¢ > 2 such a genus 2 curve C exists. On the
contrary, there are a number of conditions that have to hold, and
it is not clear whether they can all be simultaneously satisfied, or
indeed whether they can be satisfied at all. Furthermore, some of the
conditions involve the existence of primes, and it is not clear how to
look for them.

Our aim in this chapter is to replace all these conditions with oth-
ers, more restrictive, but which are simply congruences like the second
condition of the Theorem above. In this way, it will be crystal clear
(due to the Chinese Remainder Theorem) that such a curve exists. We
shall tackle each of the conditions separately; thus the chapter will be
split in several different sections. At the end, we shall state a theorem
which will be a particular case of the Theorem above, but which will
have a very explicit flavour.

In the course of this chapter, we will have to exclude the prime
¢ = 3, since it will not be possible to find a supersingular symmetric
elliptic curve over Fg. This is a fundamental restriction, and in order
to handle the case ¢ = 3, another approach is required.

12.1 Good reduction at any given prime

Assume we have a hyperelliptic curve C of genus g defined over a
certain field k£ by an equation of the shape

where P(X) has degree 2¢g + 2.
One can define the discriminant of this equation as

A = 274D . disc(4P(z) + Q(z)?).

It holds that if A # 0, the curve C is smooth (see [47], § 2).
The hyperelliptic equation defining C' is unique up to the following

changes of variables
azx+b
{33‘ = cx+d

ey+H (x)
y—= (cz+d)3

where a, b, c,d, e € k are such that ad —bc # 0, e # 0 and H(x) € k[z]
has degree < 3 (see [47], § 2).
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To ensure that a curve C, given by a hyperelliptic equation with
integer coefficients, has good reduction at a prime p, we will use the
discriminant. Namely, let us consider the genus 2 curve defined over
Q by the hyperelliptic equation

y? =25+ 1.

The discriminant of this equation is A = —26 .36, Therefore, A # 0
(mod p), for p # 2,3. Now, if we have a genus 2 curve C defined by a
hyperelliptic equation

y* = f(x), (12.1)
where f(z) € Z[z] is a polynomial of degree 6 such that f(z) = 2% +1
modulo a prime p > 3, then the prime p cannot divide the discriminant
of Equation (12.1), thus C has good reduction at p. In this way, we
obtain a condition that we can ask a curve to satisfy if we want it
to have good reduction at a given prime p # 2,3. For the primes 2
and 3 one has to require other conditions. The following propositions
provide these conditions.

Proposition 12.2. Let C' be a genus 2 curve given by the hyperelliptic
equation

y? = f(=),

where f(z) = fex® + fs2® + fiz* + fz23 + fox? + fiz + fo € Z[z]
satisfies:

fo=fe=1 (mod 3)
fi=f5=0 (mod 3)
fo=fis=1 (mod 3)
f3=0 (mod 3).
Then C has good reduction at p = 3.

Proof. Let us consider the following hyperelliptic equation:
=2+t 22+ 1.

Its discriminant is

1 12
A= <§> ~disc(4- (2% + 2t + 2% +1)) = —4194304 =2 (mod 3).

Because of the congruence conditions on the coefficients fy, ..., fs,
it is clear that the discriminant of the hyperelliptic equation defining
C' is congruent with A modulo 3, thus it is not divisible by 3. U
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In order to prove the following proposition, we will make use of
a Lemma that will occur in Section 12.3, concerning the relationship
between the exponent of the conductor of an abelian variety at a prime
p and the kind of reduction of the variety at p. These notions will be
explained at the beginning of Section 12.3.

Proposition 12.3. Let C be a genus 2 curve given by the hyperelliptic
equation

y* = f(x), (12.2)

where f(x) = fexb+ fs2°+ frxt + f3x3 + fox® + frz+ fo € Z[x] satisfies
that:

fo=fe=1 (mod 16)

fi=f5=0 (mod 16)

fo=fis=4 (mod 16)

f3=2 (mod 16).

Then the Jacobian surface attached to C' has either good reduction

or semistable reduction at p = 2.

Proof. Let us consider the following change of variables

=z
yi=ax3+2y+ 1.

Applying it to Equation (12.2), we obtain

-1 -2 -1
—f6 a:ﬁ—i-éxs—i-éxﬁ‘—i-—fg x3+éx2+éx+‘f0

3 2 _
yrryTyn =y 4 A 4 4 4 1

Let us define by = f04_1, by = %, by = %, by = f34_27 by = %7

bs = %, bg = %. Since fy = 1 modulo 16, it follows that by belongs
to Z. Likewise, the other congruences that are satisfied by hypothesis
guarantee that by, b, b3, by, b5 and bg are integers. Moreover,

bp=bs =0 (mod 4)
by =b5=0 (mod 4)
by=by=1 (mod 4)
b3 =0 (mod 4).
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Therefore, we can compute the discriminant of the following equa-
tion modulo 4,

y+ 23y + y? = bex® + bsa® + baat + bya® + baa? + brx + by.

We obtain that A = 2: that is to say, it is divisible by 2, and once only.
But the 2-adic valuation of the discriminant is always greater than or
equal to the exponent at 2 of the conductor of the Jacobian surface
attached to C' (see [46]). Therefore, Lemma 12.10 below ensures that
the Jacobian surface attached to C' has either good reduction or bad
semistable reduction at 2. O

Remark 12.4. We could have picked a curve such that the discrimi-
nant of some integer model is odd (say, for instance, the curve defined
by the hyperelliptic equation y? = 2 + 22% — 223 — 322 + 2z + 1.
After a suitable change of variables, it can be turned into the equation
y?+ (22 +2+1)-y = —23 — 2%, which has odd discriminant. cf. [86]).
In this way, we would obtain a congruence condition which ensures
that the initial curve C has good reduction at 2. Nevertheless, we
picked the curve in the proposition above for aesthetic reasons: we are
trying to construct C' as symmetrical as possible.

12.2 Supersingular abelian surfaces

Our aim in this section is to construct, for a given (odd) prime number
f, a genus 2 curve, defined over QQ, such that its Jacobian surface
has good supersingular reduction at £. Moreover, we would ask that
it is defined by an equation of the form y?> = f(z), where f(z) =
fox® + fiz® + for + f3x3 + fox® + fix + fo € Z[x] is a separable
polynomial of degree 6 (In Chapter 8 it became clear that this is
a highly convenient condition for our purposes). We shall say that
a genus 2 curve defined over Fy is supersingular if its Jacobian is a
supersingular abelian surface.

Assume that we have a genus 2 curve C defined by an equation
as above, satisfying that neither the leading coefficient nor the dis-
criminant of f(z) are divisible by ¢. Then the reduction of C at
¢ is defined by the equation y?> = f(x), where f(x) € Fy[x] is the
polynomial of degree 6 obtained from f(x) by reducing its coeffi-
cients modulo ¢. Therefore, what we shall construct is a supersin-
gular genus 2 curve, defined over Fy by an equation y? = f(x), where
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fla) = for® + f1a° + fox* + f32® + fox® + fra+ fo € Fola] is a poly-
nomial of degree 6 with non-zero discriminant. Lifting this equation
to QQ in a suitable way we will obtain the curve we were seeking.

There is a simple criterion which characterizes when a genus 2
curve is supersingular, in terms of the coefficients appearing on an
equation defining the curve.

Lemma 12.5. Let C be a smooth projective genus 2 curve defined
over a field k of characteristic £ > 2 by a hyperelliptic equation

where f(x) € k[z] is a separable polynomial of degree 5 or 6. Let us
write

fl@)7 = > e,

J=0

and consider the matrices

0 L
M= <C£—1 Ce-z) . MO = (Céeq Cge-z) .
Cop—1 C20—2 C0—1 C2t—2
Then C' is supersingular if and only if MO - M = 0.

Proof. See [38], Lemma 1.1. O

2 _

-1

metric of degree 6. But in this case, f(z) 2 is also symmetric. That
£—1 _ .

is to say, if we call f(z) 2z = Z?(:éo 2 c;jx?, then ¢g = cg—3,¢c1 =

C30—4y...,Co_9 = Cop_1,Cp—1 = Coy_o. Therefore, the supersingularity

condition boils down to

<Cg_1 C£_2> . <C£—1 C£—2> —0
05—2 Cg—l Cr—2 Cp—1
The four equations obtained by carrying out the products on the left

turn out to be equal pairwise, and therefore we obtain just two con-
ditions, namely

We are concerned with equations y f(z) where f(x) is sym-

041 | 441
¢+, 5=0

-1 | -1
co—1¢0—2(c,_; +¢,_5) = 0.
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Moreover, if we assume f(x) € Fy, then ¢y_1,¢i—o € Fy and thus
cﬁ_l = cp_1, 05_2 = ¢y_9. Therefore the two conditions above reduce

to
G+ =0
2¢cp_1cp—0 = 0.

This shows that ¢;_1 = ¢y_o = 0 must be satisfied. We can thus
state the following proposition.

Proposition 12.6. Let £ > 2 be a prime number and let C' be a genus
2 curve defined over Fy by an equation of the form y?> = f(x), where
f(x) = forb+ frad + fort + f323 + for? + fra+ fo € Fy[z] is a separable
polynomial of degree 6 with non-zero discriminant. Let us write

, (-1

1 .

fl@)z = ) el
J=0

Then C' is supersingular if and only if cpy—1 = cy_o = 0.

Remark 12.7. This result allows us to solve our problem for a family
of odd primes ¢. Namely, let us consider the curve C defined by the
equation 2 = 2% 4+ 1 over F,. The discriminant of this equation is
A = —214.36 Therefore, if £ # 2,3, C is a smooth genus 2 curve.

Define now the polynomial g(x) = (25 + 1)2_71 If we compute
g(z) by means of the binomial theorem, it is obvious that g(z) is a
polynomial in the variable 28. That is to say, the only terms with non-
zero coefficients must have index divisible by 6. Therefore, if £ —1 and
f — 2 are not divisible by 6, then it follows that ¢, and ¢,_s are zero.
But ¢ — 2 cannot be divisible by 6 provided that ¢ is an odd number.
Therefore, if 6 { £ — 1, we obtain that C' is supersingular. Moreover,
recall that, because of the symmetry of the equation defining C', ¢y_1 =
co¢—9. Therefore, if 6 does not divide 2¢ — 2, C' is supersingular. These
two formulations are equivalent.

As a conclusion, we can claim that, if £ is an odd prime congruent
to 2 modulo 3, then the genus 2 curve C' defined by the equation
y? = 28 + 1 over F, is supersingular.

Fix ¢ > 3. In what follows, we will give a general construction of
a supersingular genus 2 curve defined over Fy,. The key point will be
to rely on the results on supersingularity obtained in Chapterl.
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In Chapter 8 we saw that the genus 2 curve given by the hyperel-
liptic equation
y? = 2% 4 bat + ba® 41 (12.3)

is supersingular if the elliptic curve defined by
y? =23 4 b +br 41 (12.4)

is supersingular. Note that the discriminant Ay of f(z) = 2 + ba? +
bz?+1 and the discriminant A, of g(z) = 23 +bx? 4+ bz +1 are related
by the equation

Ay = —64A2.

Therefore, if (12.4) defines an elliptic curve, then (12.3) will define a
genus 2 curve whenever the characteristic of the base field is different
from 2.

Therefore, our problem boils down to finding a supersingular el-
liptic curve defined by an equation of the form y? = 2% + ba? + bx + 1
for a certain b € FF.

Recall that an elliptic curve in Legendre form y? = x(z —1)(z — \)
defined over a finite field of characteristic £ is supersingular if and only
if Hy(\) =0, where Hy(z) is the Deuring polynomial (see Proposition
1.7). Moreover, in Corollary 1.12 we noticed that, provided ¢ > 3,
there is always a quadratic factor of Hy(x) of the form 22 — x + a, for
a certain a € Fy.

In Section 1.2, we looked for an elliptic curve given by a Weierstrass
equation

y? = (z = b)(z — (c+V=d))(z — (¢~ V-d)),

where b, ¢, d € Fy.
We sought b, ¢, d € Fy such that

(o)
V=

In Section 1.2, we chose

= +v1 —4a.

d=4a—-1
b=c+ (4a —1).

But in this context, we want our elliptic curve to be defined by
a symmetric equation. Therefore, we need some more flexibility to
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choose b,c,d. Let us introduce a new parameter e: we shall seek
b, c,d, e such that
d=e*(da—1
( ) (12.5)
b=c+e(da—1).
As a matter of fact, if the resulting equation has to be of the form
y? = 23 + b'2? + bz + 1 for a certain ¥, the two following conditions
must be satisfied.

—b® —bd =1
2bc + > +d = —(b+ 2¢).

2

For instance, a solution would be b = —1,d = 1 — ¢*. Replacing

these values in the equations (12.5), we obtain that

—1+4 2a -1

T T 9a T 24

Recall that a is non-zero because 2 — x + a divides Hy(z). Therefore
we can choose

b=-1
1
c=1——
2a
—1+4+4a
d= .
4a?

Under this choice, the polynomial g(z) turns out to be

1-— 1-—
3 ‘13;2+ a

g(x) =x° + x+ 1.

a a
The discrimi . Ly __ (=1+4a)3 .
e discriminant of this polynomial is A, = -1, which does
not vanish (if A, = 0, then a = 1/4, and the polynomial 22 — z + a
would have a double root). But the Deuring polynomial Hy(z) does
not have double roots; cf. Proposition 1.9).
Thus the equation

1- 1-
a2 a

y:x3+ z+1

a a
defines a supersingular elliptic curve over [y, and moreover it satis-
fies the symmetry condition. We can formulate this statement as a
theorem:
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Theorem 12.8. Let ¢ > 3 be a prime number. Let us choose a € Fy
such that the factor x> — x + a divides the Deuring polynomial Hy(z).
Then the equation

1-— 1-—
aﬂc4—|— aa:2—|—1

Y =20 +
a a

defines a supersingular genus 2 curve.

Remark 12.9. Assume ¢ = 3. The only supersingular elliptic curve
over 3 is given by the equation y? = 2(z —1)(x+1). We can study all
the changes of variables which turn this equation into a symmetric one,
but we only obtain the curve given by 32 = 23 + 1, which is a singular
curve. Therefore, there is no symmetric polynomial f(x) € Fs[z] such
that the curve defined by y? = f(z) is a supersingular elliptic curve.
From now on, we shall have to exclude the prime ¢ = 3 from our
reasonings.

12.3 Stable reduction of type (II) at 5

One of the conditions in Theorem 12.1 is that there must exist a prime
number p # £ such that the reduction of C at p must be stable of type
(IT). This leaves us great freedom to choose p, and as a matter of fact
we will always choose p = 5. Of course, this construction will not
work for £ = 5, but this is a minor hindrance. We just need a special
construction for £ = 5.

We want to build a genus 2 curve, defined over Y, with stable
reduction of type (II) at 5. Moreover, we will ask that the order of
the group of connected components of the special fibre of the Néron
model at 5 is 1 (thus ensuring that ¢ does not divide it).

In Section 12.1 we stated some sufficient conditions that guarantee
that a genus 2 curve C' defined over Q has good reduction at a given
prime. We put to use the discriminant of a hyperelliptic equation
with integer coefficients. But now our aim is more subtle; we will
need a very precise control of the conductor, which is an invariant of
the curve, far more refined than the discriminant of a hyperelliptic
equation.

Before proceeding, let us say a few words about the definition of
the conductor. Take a prime p # ¢, and consider a representation

pe : Gal(Q,/Q,) — GLay (Qp)
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which is continuous with respect to the Krull topology and the /-adic
topology; in other words, an ¢-adic representation of Gal(@p /Qp). One
can attach to py a numerical invariant f, called the conductor exponent
at p, that gives a measure of the ramification of p, (for an accurate
description of the conductor exponent, see [76], § 2.1; cf. [12], Section
2).

In order to define the conductor of the genus 2 curve C, one at-
taches f-adic representations to C' by means of étale cohomology, for
different primes ¢ (see [46], § 1.1). In this way we obtain, for all primes
p, a conductor exponent f,, (which does not depend on the choice of
). The conductor of C is then defined as a product

N¢ = H p'r.
p

prime

Similarly, one can define the conductor of an abelian variety, by
considering the f-adic representations attached to the Tate module at
different primes £. We will not dwell on the details here, but merely
note that these f-adic representations obtained through étale coho-
mology are equivalent to the f-adic representations attached to the
Tate module at different primes ¢ of the Jacobian variety attached to
C (cf. [46], § 1.1). Therefore, the conductor of C' coincides with the
conductor of the Jacobian of C' as an abelian variety.

Incidentally, the conductor exponent of an abelian variety is capa-
ble of providing information about its reduction.

Lemma 12.10. Let A/Q be an abelian variety and p a prime number.
If the conductor exponent at p is less than or equal to 1, then A has
semistable reduction at p.

Proof. The connected component of the special fibre of the Néron
model at p, say (Ap)o, is the extension of an abelian variety B by
a linear group H = T x U, where T is a torus and U and unipotent
group (see [75]). Let us call their dimensions ¢ and u respectively. The
conductor exponent of A at p is equal to

f=t+2u+s,

where 0 is the measure of the wild ramification, also called Swan con-
ductor (see [43], Chapter III, § 0). The following properties are satis-
fied:
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o If A acquires semistable reduction after a Galois extension of @,
of degree prime to p, then § = 0.

e If A has semistable reduction at p, then u = 0.

If f = 0, the Néron-Ogg-Shafarevich criterion assures us that A
has good reduction at p, so there is nothing to prove. Assume then
that f = 1. In other words, assume that 1 = ¢t 4+ 2u + 6. Since
t,u,d are integer numbers greater than or equal to zero, the above
relation directly implies that v = 0, and either ¢t = 1 and § = 0
ort = 0 and § = 1. But this last possibility cannot hold, for if
uw = t = 0, then the connected component of the special fibre at
p of the Néron model of A is the abelian variety B, that is to say,
A has good reduction and therefore, by the Néron-Ogg-Shafarevich
criterion, the Galois representation attached to the Tate module T),(A)
is unramified, thus f =0 # 1.

Therefore, when f = 1, the connected component of the special
fibre at p of the Néron model is the extension of an abelian variety
by a torus, that is to say, A has semistable reduction, as was to be
proven.

O

On the other hand, recall that if A denotes the Jacobian variety
attached to a smooth, projective and geometrically connected genus 2

curve C defined over Q, then the following conditions are equivalent
(see [48], Remark 4.26 of chapter 10):

e A has semistable reduction at 5.

e (C has stable reduction at 5.

Therefore, the previous lemma supplies a sufficient condition for
C to have stable reduction at p in terms of the conductor exponent at
P.

In general, controlling the conductor in a direct way is complicated,
but it is easy to bound it. Namely, assume we have a hyperelliptic
equation with coefficients in Z, of discriminant A, defining a genus 2
curve C. Then it holds that the p-adic valuation of A is greater than
or equal to f (see [46]). Therefore, if p does not divide A or else it
divides A just once, we can conclude that either f =0 or f = 1. We
will have to find a way to exclude the first case.
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A theorem of Deligne and Mumford tells us that every smooth,
geometrically connected, projective curve defined over a local field,
say K, acquires stable reduction over a finite extension of K (see [48],
Theorem 4.3 of Chapter 10). This stable reduction can belong to one
of the following types ((I), (II), (III), (IV), (V), (VI), (VII)). When
the curve has genus 2, Q. Liu has worked out a characterization of the
type of (potential) stable reduction in terms of the Igusa invariants
(see [45]). A technical remark should be made at this point. The
results of Liu are stated over a local field K with separably closed
residual field k. We shall assume, from now on, that our curve C is
defined over Qp ,; (the maximal unramified extension of @Q,, which
satisfies this condition). In this way, what we shall obtain after some
reasoning is the existence of a transvection inside the Galois group
of the extension @p /Qp nr, which in fact is the inertia group at p. In
particular, it will be contained in the absolute Galois group of Q,, as
we wish. In the computation of the order of the group of connected
components of the special fibre of the Néron model at p, the p-adic
valuation in Q,, ,, shall come into play; but since Qp, r is an unramified
extension of Q,, this valuation shall coincide with the usual valuation
in Qp, without any need to normalize. Therefore, considering Q, . as
the base field will not give rise to any significant modification, and we
shall be able to apply the results of Liu without paying any further
attention to this point.

The Igusa invariants can be considered as a generalization to genus
2 curves of the modular invariant j of elliptic curves. Let us consider
a polynomial

f(x) = agz® + as52° + agx® + aza® + agx® + a1z + ap.

The Igusa invariants attached to f are simply some elements belonging
to the ring Z[%][ao, ay,ag,as, as, as, ag), defined as follows:

3
Jo(ag,a1,az,as, a4, as,as) = —30agas + Saras — 2aza4 + Za?)”
165 5 , 55 41
Ji(ag,a1,az,a3,a4,as,ag) = —g %096 — g 10010506 + — Goazaqas—
25 , 21 , 15 1, 25,
— gaoag% — Zaoagag + §a0a3a4a5 — §aoa4 — §a1a4a6—|—

+15“+15 Ly +1 2
—a1a — Q102030 — —A1020405 — — Q10304 —a1asa,—
815 81236 81245 16135 8134
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1a3a —i—laQaa +1a2a2 1aaa + — 3 4
9206 T 9420305 T 924 — Q20504 7T 75043

33 D o
Js(ap,a1,a2,as, a4, as,a¢) = bagag — 2a0a1a5a6 14a0a2a4a6+

25 159 165 125
+ Zagagagaﬁ - 6—4&%&%&% + —a%a3a4a5a6 D agagag

16
5 o
—aoa1a5a6+

)
2 2
— Qo040 — 16

25
— 4a(2)aia6 + 1

16
165 ol
+ analagag% — §a0a1a2a4a5a6 + —

a0a4a5 +

3
apa1a205—
16 5

277 9
— ——apa1a3asae +

)
6 aoalagaiaﬁ + §a0a1a3a4a§—

16

1 2 2 2
—apa3a3a5a6 + Apa50a,06—

3
— —aoalaiag) — 4a0a§a% + 16

8

5 49
——-—a0a§a4a§-— §§
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Js =(1/4) - (Jz - Jg — J}),

Jio(ao, a1, az, ag, as, as, ag) =
= (1/2)'2 disc(agz® + asz® + asz* + azz® + agz? + ayz + ag).
I have computed these expressions with the help of Magma (see

[54] for a brief review of the theory of the invariants and covariants of
bilinear forms).
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Moreover, we define

Iy :=J2 — 23 .3J,
Lo = — 2303 + 320y Juds — 332 — J3Js.

We are able now to present Liu’s characterization of the reduction
type of a genus 2 curve in terms of the Igusa invariants (see Theorem
1 of [45]). As a matter of fact, we will just state the results concerning
potential good reduction (that is to say, type (I)) and type (II).

Theorem 12.11. Let R be a discrete valuation ring with maximal
ideal m and fraction field K. Let C/K be a smooth geometrically
connected projective curve of genus 2, defined by the equation y> =
f(x), where f(z) is a degree 6 polynomial. Denote by Ja, ..., Jig the
Igusa invariants of f(x), and denote by Cs the geometric special fibre
of a stable model of C' over some finite extension of K. Then it holds:

e Cs is smooth if and only if J%Jl_oi € R for all i <5.

o Cs is irreducible with a unique double point if and only if Jgifl_zi €
R for alli <5 and Jﬁ)[ﬁs € m. If this is the case, the normal-
1zation of Cz is an elliptic curve, of modular j-invariant j =

(I3 135)-
Remark 12.12. In the first case in the theorem, the curve C is said

to have potential good reduction, and in the second case potential stable
good reduction of type (II).

Let us now turn our attention to a simple example:

Example 12.13. Let us consider the curve C defined by the following
equation:
y2 =25+t 41

By using the Magma Computational Algebra System, we can com-
pute the Igusa invariants of C. We obtain the following results:

Jo = —97/4, Jy = 1323/128, Js = —14515/1024,
Jg = 3881491 /65536, J1o = 6345,/256.

Recall that the last of the invariants was the discriminant of the
equation. Since Jig = 6845/256 = 278.5-372, the only two odd primes
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of bad reduction are 5 and 37. Thus we know that, outside these two
primes and possibly 2, the curve has good reduction.

Let us study the type of reduction at 5. We must compute J%Jl_oi,
for i =1,2,3,4,5. We obtain the following list:

—8587340257 4053211077702843 —5154365219546868575

{ 27380 7 24565003059200 172182984642789376
881034504963363427759250580048451
617921920305669487313551360000 b

If we compute the factorization of the numbers appearing on the
list, we obtain:

{ _ 2—25—137—2975, 2—193155—271037—4’
—272652377629035,  274857117°19°377861°197°, 1}.

It is plain that, if p =5 (and also if p = 37), these numbers do not
all belong to Z,. Therefore, for p = 5 (and p = 37), the reduction of
C at p is not good.

Now we wish to determine if the reduction is of type (II). We have
to compute J%Il_zi for i =1,2,3,4,5. We begin with I9;

o= 209163 56 37 99500,
64

Note that 5 divides the discriminant of the equation, but it does
not divide I1s. And this is enough to ensure that the reduction at
p =5 is (potentially) stable of type (II). For if we compute the list of
the J$I,' for i = 1,2,3,4,5, we get

{—276377197029599~1, 273031871237-2995992
— 27425637732903929599 3,
277217519537716161979295994,  —27185637729599°1.
All these elements belong to Zs, and the last one is contained in the
maximal ideal, and Theorem 12.11 allows us to conclude. Moreover,

since p = 5 divides the discriminant of the equation just once, Lemma
12.10 tells us that the reduction is indeed stable.

Now we will take advantage of this example to state a general
result:
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Theorem 12.14. Let C' be a genus 2 curve defined over Q by the
equation y* = f(x), where f(z) = foa® + fsz® + fiat + faz® + foa® +
fix + fo € Zx] is a polynomial of degree 6 without multiple roots,
satisfying that

fe=fs=f=fi=fo=1 mod?25
f4EfQEO mod 25.

Then C has stable reduction at 5, and this reduction is of type (II).

Proof. Due to the congruence condition above, the discriminant of the
equation y? = f(z) is congruent to the discriminant of the equation
y? = 25 4 2° + 23 4+ 2 + 1 modulo 25, that is to say, it is congruent
to 28037120 = 20 mod 25. Therefore 5 divides the discriminant of
our equation once and only once, thus ensuring that the curve C has
stable reduction. Let us see what type of reduction it has. Since the
invariant 1o of the polynomial 2% +2°+ 3+ 241 is not divisible by 5,
the same holds for the invariant 15 of f(z) (for both are congruent to
each other modulo 25). Consequently, since the invariants Jo; belong
to Zs (the only denominators which can appear are the powers of 2),
JBI € Zs. And finally, since 5 does divide the discriminant of f(z),
that is to say, Ji2, it is clear that Jllgl 1_25 belongs to the maximal ideal
of Zs. Theorem 12.11 implies that the reduction is of type (II).

O

On the other hand, we can compute the order of the group of
connected components of the special fibre at p of the Néron model
of the Jacobian of a genus 2 curve C in terms of Igusa invariants.
Namely, the following proposition holds (see [45], Proposition 2-(ii)):

Proposition 12.15. Let R be a discrete valuation ring with mazimal
ideal m and fraction field K. Assume that the residual field k is sepa-
rably closed. Denote by v the valuation in R. Let C' be a geometrically
connected smooth projective curve of genus 2 defined over K by the
equation y?> = f(x), where f(x) is a polynomial of degree 6 without
multiple roots. Then if the stable reduction of C is of type (II), the
group ® of the connected components of the special fibre of the Néron
model at v is isomorphic to Z/eZ, where

1 _
€= EU(J1601125)-
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Remark 12.16. Consider the curve C in Example 12.13. We can

compute
6 s 6845\°% [/ —1095163) ~°
vs(Jipl12’) = vs 56 ) \ a1 = 6.

By the proposition above, the order of the group of connected compo-
nents of the special fibre of the Néron model at p = 5 is 1. Therefore,
we can add the following complement to Theorem 12.14.

Theorem 12.17. Let C be a genus 2 curve defined over Q by the
equation y* = f(z), where f(z) = fexb + f52° + fax* + fazd + for® +
fix + fo € Zlx] is a polynomial of degree 6 without multiple roots,
satisfying that

fe=fs=f=fi=fo=1 mod25
f4EfQEO mod 25.

Then C' has stable reduction at 5, and this reduction is of type (II).
The order of the group of connected components of the special fibre of
the Néron model at p=>5 s 1.

12.4 Choosing the auxiliary primes

In this section we are going to deal with the last condition in Theorem
12.1. We wish to construct a genus 2 curve C such that, at certain well
chosen primes g; and ¢2, it has good reduction and the characteristic
polynomial of the Frobenius endomorphism at ¢;, i = 1,2, satisfies
some properties concerning its factorization over [Fy.

In the previous section our problem was to construct a curve such
that, at a certain well chosen prime p, it satisfied some condition.
Our strategy there was to choose the prime p once and for all at the
beginning; namely, we took p = 5, and we established a congruence
condition modulo 52 such that, whenever it is satisfied by a genus 2
curve C', we achieve our objective. The first point in which this section
differs from the previous one is that now we will not choose the primes
q1 and ¢o beforehand; the primes ¢; and ¢ will actually depend on £.

When we face this problem, a natural question arises: Given a
prime ¢, what conditions must a pair (a,b) satisfy in order to ensure
that the polynomial P(X) = X* 4+ aX3 + bX? + qaX + ¢? is the
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characteristic polynomial of the Frobenius endomorphism at g of a
genus 2 curve? We need to recall the explicit conditions which reflect
the relationship between the curve C and the characteristic polynomial
of the Frobenius endomorphism at any given prime gq. Namely, if Ny
(resp. Nz) denotes the number of points of C' over F, (resp. Fj2), it
holds that

Nl =q+ 14+a

Ny =¢*>+1+2b—a?

(see [17], Chapter 14, § 2, Theorem 14.17).

In [50], the authors address the problem of determining whether,
given finite field F, and a pair of positive natural numbers (N1, Na),
there exists a genus 2 curve C' with N7 points over F, and N3 points
over F 2. We shall make use of their results.

Firstly, let us recall the definition of a Weil polynomial (see Defi-
nition 2.2 of [50]).

Definition 12.18. Let g be a power of a prime number. We will say
that the polynomial P(X) = X* + aX? + bX? + qaX + ¢* € Z[X] is
a Weil polynomial if the following inequalities are satisfied

lal <4v/q
a2
2|a\\/_—2q§bgz+2q.

Remark 12.19. To simplify the problem, we will always choose a = 1,
so we will only have to take care to choose b satisfying 2,/q —2¢ < b <
1

i+ 2q.

4

Let us fix an odd prime number g. Collecting Theorem 2.15 and
Theorem 4.3 of [50], we can state the following result:

Theorem 12.20. Let P(X) = X* + aX?® + bX? + qaX + ¢* € Z[X]
be a Weil polynomial, and let Ay = a®> — 4b + 8q. Assume that the
following conditions are satisfied:

e A is not a square in 7.
e qftb

e a®¢{0,q+0b,2b,3(b—q)}.
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Then there exists a smooth projective curve of genus 2, defined over
Fy, with Nw = q+1+a points over Fy and Ny = 2b— a’+q¢*>+1 points
over Fz2.

Remark 12.21. The previous corollary claims the existence of a genus
2 curve, say C, defined over F, with N1 points over [F, and N» points
over F2. If g is odd, we know that there exists a hyperelliptic equation
y?> = f(z) defining C, with f(x) € Fy[z] a polynomial of degree 6 and
without multiple roots. Since there is only a finite number of such
polynomials f(z) € Fy[z], one can compute the curve C simply by an
exhaustive search, so one can say that this construction is effective.
Nevertheless, there are algorithms to compute genus 2 curves with a
given number of points over F, and over [F 2. For instance, see [26].

Keeping this result in mind, the following two propositions show
us how to construct suitable ¢; and g».

Proposition 12.22. Let £ be an odd prime number. Choose q1 such
that ¢ = 1 (mod ¢). Then there exists a projective curve of genus
2, C1/Q, such that it has good reduction at q1, and the characteristic
polynomial of the Frobenius endomorphism at q, P1(X) = X*+a; X3+
b1 X2 +qra1 X +q? satisfies that Ao(Py) is not a square in Fy and aj 2 0
(mod /).

Proof. Fix a1 = 1. Since ¢ = 1 (mod ¢), it follows that ¢; > ¢.
Therefore, if we choose any element b; € F,, there exists b, € Z,
0 < by < ¢ mapping into b;. Therefore P (X) = X4+ a1 X3+
b X2+ qa1 X + q% is a Weil polynomial. We will choose b; such that
1 —4b; + 8¢ is not a square in [Fy (since 4 is prime to /, the expression
1 — 4by + 8¢; runs through all the elements of F, as by varies, so this
is clearly feasible).

Now it is easy to check that the pair (aj,b;) satisfies all the con-
ditions in Theorem 12.20, so that there exists a smooth projective
curve of genus 2 defined over F, with a suitable number of points
over g, and F 2. Lifting this curve to @, we obtain the curve we were
seeking. O

Proposition 12.23. Let £ be an odd prime number. Choose qo such
that g = 1 (mod ¢) and qo > 3¢. Then there exists a projective
curve of genus 2, Co/Q, such that it has good reduction at q2, and
the characteristic polynomial of the Frobenius endomorphism at qs,

Py(X) = X% + aa X3 + 0o X2 + quas X + g3 satisfies that Ag(Ps) is a
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non-zero square in Fy but is not a square in Z, and Pa2(X) does not
break up in linear factors over IFy.

Proof. As in the proof of Proposition 12.22, we will fix as = 1. Note
that, since ¢o > 3¢, for each element by € F, there exist three values
of by € Z,0 < by < g such that by maps into by, which can be taken
as b2, l+ bg, 20 + b2.

Let us choose an element z € Iy such that 22 — 16¢y is not a
square in F;. Such an element exists: if we take any square a2 €
Fy;, and add —16¢g2 as many times as we wish, we can obtain any
element in [Fy that we like. In particular, if we consider the sequence
z2, 2% — 16q0, 2% — 2 - 16q2, 2> — 3 - 164, . .., a point will come when
we obtain a non-square element. The previous element shall be our
22 If 22 = 1, we will take z = 1. Now let us choose by < g2 such that
1 — 4by + 8¢5 is congruent to (z + 1)? modulo ¢. This is possible for
the same reason as in the proof of Proposition 12.22. Moreover, at the
beginning of the proof we noted that there are, in fact, three possible
choices for by which are strictly smaller than ¢o. It is not difficult to
check that for the three of them 1 — 4by + 8¢2 cannot be a square in
Z. We have set this claim aside in Lemma 12.24. Therefore, we can
choose by such that 1 —4bs + 8¢5 is not a square in Z, and furthermore
bs is not divisible by ¢s.

If we choose by in this way, it is easy to check that the conditions
of Theorem 12.20 hold. Therefore, there exists a smooth projective
genus 2 curve over F,, such that the characteristic polynomial of the
Frobenius endomorphism of g is Po(X) = X*+as X3 +by X% +qoas X +
q3. Now we ascertain that the thesis of our Proposition holds. It is
clear that Ag(P) = (2 + 1)? (mod ¢) is a non-zero square in F,. Tt
remains to show that P»(X) does not split into linear factors. Call
a9, qa/aa, B2, qa/ B2 the roots of Py(X). The fact that Ag(P) is a
square tells us that the polynomials (X — a2)(X — g2/a9) and (X —
B2)(X — q2/B2) are defined over F,. We would achieve our objective
if we see that one of these polynomials is irreducible over F,. Since
both ag 4 go/an and Ba + qo/B2 are roots of Py(X) = X2 + asX +

. . - 2_ -
by — (b — 2¢2), they are given by the expressions a2ty a22 Ab2—202)
Interchanging s and [ if necessary, we can assume that as+qa /e =

—az2+4/ a% —4(b2—2q2)
2

. Therefore the polynomial (X —as)(X —g2/as) can
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and its discriminant is

be written as X2 —

—az++/aZ—4(b2—2g2)
as a22 (b2 QQ)X-FQQ,

A (—az + /a2 —4(by — 2(]2)>2 4.
2
Let us compute this quantity modulo ¢. Since as = 1, Ag =
1 —4by +8g2 = (2 +1)?, we obtain that A = % (mod ¢), which is
not a square in Fy because of the choice of z. This proves that Ps(X)
does not decompose in linear factors over IFy, as we wished.
O

Lemma 12.24. Let A be a natural number, and let £ be a prime.
Then the three numbers A, A — 40, A — 8¢ cannot be squares in 7.

Proof. Assume that there exist x,y, z positive integers such that A =
22, A — 40 = y? and A — 8¢ = 2. From the first two equations we

get that 40 = 22 — y> = (z + y)(z — y). Therefore ¢ = ZZ¥ . =L,

Since /£ is a prime number, it follows that z — y = 2, and moreover

(= (y—i-g)-i-y . (y+§)_y =y + 1. The same reasoning applied to the last

two equations yields that y — z = 2, and we can write £ = yTJrZ . % =
(z+§)+z . (Z+§)_Z = z + 1. This is clearly a contradiction. ]

12.5 Main result

In this section we will state the main result concerning tame Galois
realizations of GSp,(F/). At the beginning of the chapter we stated a
result, Theorem 12.1, that claims the existence of an abelian surface
A such that the Galois extension Q(A[(])/Q is tamely ramified with
Galois group GSp,(F,), provided that a certain set of conditions are
satisfied. But from the looks of the conditions, we cannot be sure
when they might be satisfied, or indeed if they can be satisfied at all.
Throughout this chapter, we have sought to remodel these conditions
in order to make them look like congruences. We have succeeded to a
great extent. Replacing these conditions with those (more restrictive
but simpler) obtained in the previous sections, we obtain the following
result:

Theorem 12.25. Let C' be a genus 2 curve defined by a hyperelliptic
equation

y? = f(z),
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where f(x) = fox® + fs2® + faxt + f323 + fox? + frx + fo € Z[x] is a
polynomial of degree 6 without multiple factors. Let £ > 7 be a prime
number, and let P be the set of prime numbers that divide the order
of GSpy(Fe).

Let b € Fy be such that the elliptic curve defined by y?> = 3+ ba? +
bx+1 is supersingular. Furthermore, let ¢1,q2 =1 (mod ¢) be different
prime numbers with go > 3¢. Let C1/Q be a genus 2 curve such that
it has good reduction at q1, and the characteristic polynomial of the
Frobenius endomorphism at q1, P1(X) = X*+a1 X3+b; X2 +qra1 X +¢3
satisfies that Ao(Py) is not a square in Fy and a; #Z 0 (mod ¢). Let
C3/Q be a genus 2 curve such that it has good reduction at qa, and
the characteristic polynomial of the Frobenius endomorphism at qo,
Py(X) = Xt + aa X3 + 0oy X? + quas X + q3 satisfies that Ag(Py) is a
non-zero square in ¥y but is not a square in Z, and P2(X) does not
break up in linear factors over Fy. Consider hyperelliptic equations
y? = a0 + 52 + eyt + e3P + cpx® +erx+co and y? = dexb +dszd +
dax* + dza® + dox® + dix + dy defining C1 and Cs.

Assume that the following conditions hold:

e The following congruences mod 2* hold:

fo=fe=1 (mod 16)
fi=fs=0 (mod 16)
fo=fi=4 (mod 16)
f3=2 (mod 16).

e The following congruences mod 3 hold:

fo=fe=1 (mod 3)
fi=f5=0 (mod 3)
fo=fi=1 (mod 3)
f3=0 (mod 3).

e The following congruences mod 5> hold:

foe=fs=fs=fi=fo=1 mod 25
fi=f>=0 mod 25.
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o The following congruences mod {* hold:

fo=fo (mod ¢*)
f5 = f1 (HlOd 64)
fi=fo (mod £4).

Furthermore,
fe=1 (mod ¥¢)
f5=0 (mod ¢)
fa=b (mod ?)
f3=0 (mod ¥)

o The following congruences mod q1 hold:

fi=¢ (mod q1),i=0,1,...,6.

e The following congruences mod gy hold:

fi=d;, (mod ¢2),i=0,1,...,6.

e For all p € P different from 2, 3, 5, q1, qo and £, the following
congruences hold:

fo=fe=1 (modp)
fi=fs=0 (mod p)
fo=f1=0 (modp)
f3=0 (mod p).

Then the Galois representation attached to the £-torsion points of
the Jacobian of C provides a tamely ramified Galois realization of
GSpy(Fe).

Proof. The existence of the element b € Fy such that the elliptic curve
defined by y? = 2 4+ bz® 4 bz + 1 is supersingular is proved in Section
12.2. On the other hand, the existence of the genus 2 curves Cj and
C5 is proved in Propositions 12.22 and 12.23. The theorem is thus a
direct consequence of Theorem 12.1. O

A quick look at this theorem shows that, for each prime number
¢ > 7, there exists a genus 2 curve C satisfying all the hypotheses,
simply because of the Chinese Remainder Theorem. Therefore, we
may write the following corollary:
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Corollary 12.26. For each prime number £ > 7, there exists a Ga-

lois extension over Q which is tamely ramified and has Galois group
GSpy(Fy).

Remark 12.27. As we remarked at the beginning of Section 12.3, we
excluded the prime ¢ = 5 just in order to write a neat statement for
all £#£ 5. Let us now tackle the case £ = 5. Consider the hyperelliptic
curve C defined over Q by the following equation:

y? = 2% 4 3913002 4 117023 + 130022 + 1. (12.6)

To simplify the notation, call fg =1, f5 =0, f4 = 391300, f3 = 1170,
fo=1300, f1 =0, fo=1.

We can compute the reduction data of this particular curve by
means of the algorithm of Liu (which is implemented in SAGE). We
obtain that this curve has good reduction outside (possibly) the primes
2, 27792683 and 195476205803858674906021. In any case, at the last
two primes the conductor exponent is 1. Therefore, by Lemma 12.10,
the curve has stable reduction at all odd primes. The algorithm of Liu
does not compute the conductor at the prime 2. Nevertheless, in this
case it is easy to check that the coefficients f; of the equation defining
the curve satisfy that

fe=fo=1 (mod 16) fa=fo=4 (mod 16)
fs=fi=0 (mod 16) f3 =2 (mod 16).

Therefore, Proposition 12.3 ensures that the reduction of C at 2 is
also stable. As a conclusion, we can say that the Galois representation
attached to the 5-torsion points of the Jacobian surface of C'is tamely
ramified outside the prime ¢ = 5.

How does this curve behave at the prime ¢ = 57 Note that

f6=fo (mod5*)
fs=f1 (mod 5%)
fo=f1=50 (mod 5%).

Therefore, the equation defining C' is congruent modulo 5% with the
symmetric equation

y? = 25 + 1300z + 117022 + 130022 + 1.
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This guarantees that the wild inertia group at 5 acts trivially on the
group of 5-torsion points.

Let us denote by p, : Gal(Q/Q) — GSp,(F5) the Galois represen-
tation which arises from the action of the Galois group on the points
of 5-torsion of the Jacobian variety attached to C. Now we want to
determine its image.

The computation of the reduction data of C' at the prime p =
27792683 shows that the stable reduction at p is of type (II), that is
to say, of the kind Iy g gy. Therefore, the prime p = 27792683 satisfies
the hypothesis of Lemma 11.5. Furthermore the order of the group of
connected components of the special fibre of the Néron model at p is 1,
so it is not divisible by 5. This ensures the existence of a transvection
in the group Imp, C GSp,(F,). In order to prove that the image of
the Galois representation is GSp,(Fy), we will make use of Proposition
11.2.

For instance, let us consider the prime ¢ = 19. The number of
points of C over Fyg is 22, and the number of points of C over Fig2
is 410. Therefore, Equations (11.2) allow us to compute the char-
acteristic polynomial of the Frobenius endomorphism at ¢, namely
P(X) = X*4+2X3+26X2% 438X +361. It is not difficult to ascertain
that this polynomial is irreducible over F5. Therefore, we conclude
that the image of p5 is GSp,(IF5). Thus this group can also be realized
as the Galois group over QQ of a tamely ramified extension.

The previous remark allows us to state Corollary 12.26 without
excluding the prime ¢ = 5:

Corollary 12.28. For each prime number £ > 5, there exists a Ga-

lois extension over Q which is tamely ramified and has Galois group
GSpy(Fe).

As a matter of fact, we have proven not just the existence of a
tamely ramified Galois realization of GSp,(Fy), but of infinitely many
of them.

Theorem 12.29. For each prime number £ > 5, there exist infinitely
many tamely ramified Galois extensions over Q with Galois group
GSpy(F).

Proof. If £ > 7, this is clear from the statement of Theorem 12.25.
If ¢ = 5, note that the cardinal of GSp,(F5) equals 37440000 =
29 .32 .5%.13. Therefore, each curve C given by a hyperelliptic
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equation congruent to (12.6) modulo a suitable power of the primes
2,3,5,13,27792683 will provide a tamely ramified Galois realization
of GSp,(Fs5). O

12.6 Some examples

In this section we will present a few examples to illustrate how The-
orem 12.25 allows us to compute explicitly genus 2 curves providing
tame Galois realizations of the group GSp,(F,). In fact, Theorem
12.25 can easily be turned into an algorithm to compute these genus 2
curves. Even though we have not explicitly formulated it in this way,
the examples will thoroughly clarify how the algorithm works.

Before turning our attention to the examples, note the simple well-
known result:

Lemma 12.30. Let g be a prime number. Then

(2n)? n .
card(GSpy, (Fq)) = (¢—1)¢ 4 H(qm —1).
j=1

Example 12.31. Let us take £ = 7. We will compute all the elements
that appear in the statement of Theorem 12.25.

e First of all, let us compute the set P of prime numbers which
divide the order of GSp,(F,). Since { = 7 and n = 2, Lemma
12.30 yields that card(GSp,(Fy)) = 1659571200 = 210.33.52.74,
Therefore, the set of primes that divide the order of GSp,(Fy) is
P =1{2,3,5,7}.

e Next, we need to compute the element b € F; such that the
equation y? = x® + ba? 4+ bx + 1 defines a supersingular elliptic
curve. In order to do this, we compute the Deuring polynomial
(see Section 12.2)

3 2
Hy(z)=>_ <3> 2 = 234222422 +1 = (2+1)(z+3)(z+5).

=0

Therefore, 2> — x + 5 = (x + 1)(z + 5) divides the Deuring
polynomial, so we can take b= (1 —5)/5 =2 in Fr.
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e The following elements that emerge are the primes ¢; and gs.
We must choose two different prime numbers, ¢; and ¢o, which
are congruent to 1 modulo 7 and such that g0 > 3 -7 =21. We
may take ¢ = 29, ¢o = 43. Now we must find the genus 2 curves
Cy and Cs.

— Choosing the curve Cy: firstly, fix a; = 1. According to
Proposition 12.22, we need to find by such that 1—4-b1+8-29
is not a square modulo £. For instance, we can take by = 1.
Now that we have a pair (a1,b1), we seek a genus 2 curve
over Fog with N1 = 29 + 1 4+ a; = 31 points over Fog and
Ny =292 + 1 4 2b; — a} = 843 points over Fyg2. We know
that such a curve exists, and if we scrutinize the set of all
hyperelliptic curves defined over Fyg (which is a finite set),
we can obtain the curve given by the hyperelliptic equation
y? =28 +2° + 172 + 5.

— Choosing the curve Cs: again, fix a; = 1. According to
Proposition 12.23, the first step is to find an element z € F5
such that 22 — 16 - 43 is not a square in F7. For instance,
we can consider z = 1. Next, we must find by such that
1—4-by+8-43 is congruent to (z + 1) = 4 modulo 7. For
instance, take b = 3. Note that 1—4-3+8-43 = 333 isnot a
square in Z. We have a pair (ag,bs). We must seek a genus
2 curve over F43 with N; = 43414 ag = 45 points over Fy3
and Ny = 432 + 1 4 2by — a2 = 1855 points over F,32. Such
a curve exists, and again an exhaustive search can provide
it. For instance, we have taken the curve defined by the
hyperelliptic equation y? = 2% + 2% + 322 + 13z + 21.

Let us now go through Theorem 12.25 replacing the elements that
appear there by the ones we have chosen above:

Proposition 12.32. Let C' be a genus 2 curve defined by a hyperel-
liptic equation

y* = f(),
where f(z) = fox® + fs2® + faxt + f3x3 + fox® + frx + fo € Z[x] is

a polynomial of degree 6 without multiple factors. Assume that the
following conditions hold:
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The following congruences mod 2* hold:

fo=fe=1 (mod 16) fo=fi=4 (mod 16)
fi=fs=0 (mod 16) f3=2 (mod 16).

The following congruences mod 3 hold:

fo=fe=1 (mod 3) fo=fi=1 (mod 3)
fi=fs=0 (mod3) f3=0 (mod 3).

The following congruences mod 5 hold:

fe=fs=fs3=fi=fo=1 mod?25
fa=fo=0 mod 25.

The following congruences mod 7* hold:

fo = fo (mod 7%
fs=f1 (mod 7%
fi=fo (mod 7%).

Furthermore,

{fG =1 (mod?7) {f4 =2 (mod 7)
f5=0 (mod 7) f3=0 (modT7).

The following congruences mod 29 hold:

) fo=0 (mod 29)
) fi=17 (mod 29)
; fo=5 (mod 29).

fe=1 (mod 43) B

fs=1 (mod 43) f2=3 (mod 43)
fi =13 (mod 43)

fa=0 (mod 43) — 91 (mod 43)

f3=0 (mod 43) Jo= © '
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Then the Galois extension Q(J(C)[7])/Q provides a tamely rami-
fied Galois realization of GSpy(F7).

It is easy to construct infinitely many such curves. For instance,
we may take the genus 2 curve defined by the hyperelliptic equation

y? = 2% 4+ 9757776 - 2° + 8853700 - * + 10422426 - 23+
+ 677292100 - 22 + 3179077776 - = + 342862800.

Example 12.33. Now we will take £ = 11. As before, we will start
by determining an appropriate choice of the elements that occur in
Theorem 12.25.

e We begin by computing the set P of primes dividing the order
of GSp,(F11); applying Lemma 12.30, we can compute

2
card(GSp,(F11)) = (11 — 1)11°%F H (11% —

= 257213088000 =2%.32.5%.11* . 61.
Therefore P = {2,3,5,11,61}.

e The next step is to find a value b € F1; such that the equation
y? = 23 +b-22+b-2+1 defines a supersingular elliptic curve. The
way to locate this value is to compute the Deuring polynomial

5 2
Hu(t) =) (j) =t 43t P 2+ 3+ 1 =
=0
= (t+1)(t+5)(t+9)(t* + 10t +1).

Therefore, we can take b= (1 —1)/1 = 0.

e The next elements that we encounter are the primes ¢; and ¢-.
Recall that we must choose different ¢1,g2 = 1 (mod 11) such
that go > 3 - 11. For instance, we have taken q; = 23, g2 = 67.
Next, we have to find the genus 2 curves C7 and Cs.

— Choosing the curve C7: Let us take a; = 1. According to
Proposition 12.22, we must choose b; in such a way that
1 —4by + 8- 23 is not a square modulo ¢. For instance, we
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can pick by = 6. Therefore, we can compute the quantities
Ny =23+ 1+a; =25, No = 232+ 1+ 2b; — a? = 541.
Next, we must find a genus 2 curve C; with N points
over [Fo3 and N» points over Fo32. The curve given by the
hyperelliptic equation y? = 26 4+ 25 + 22 + 102 + 1 satisfies
these conditions.

— Choosing the curve Cy: Pick as = 1. According to Propo-
sition 12.23, the first step is to take an element z such that
22 — 16 - 67 is not a square modulo £. We have taken z = 1.
Next, we have to pick by such that 1 —4by + 8- 67 is congru-
ent to (z+1)? = 4 modulo 67. For instance, by = 5 satisfies
this condition. Moreover, with this choice of b, it holds that
1—4-bo+8-67 = 517 is not a square in Z. Therefore we have
the necessary ingredients to compute the quantities Ny =
67+1+as =69 and Ny = 672 + 1+ 2by — a3 = 4499. Now
we take the hyperelliptic equation y? = 2%+ 25434z +8. It
is easy to check that the curve Cs defined by this equation
has Nj points over Fgy and Ny points over Fgrz.

Once we have made all these choices, we can peruse Theorem 12.25
replacing the elements there by the ones we have determined. We
obtain the following proposition:

Proposition 12.34. Let C be a genus 2 curve defined by a hyperel-
liptic equation

y? = f(),

where f(x) = fox® + fsx® + faxt + f323 + fox? + frx + fo € Z[x] is a
polynomial of degree 6 without multiple factors.
Assume that the following conditions hold:

e The following congruences mod 2* hold:

fo=fe=1 (mod 16) fo=fi=4 (mod 16)
fi=fs=0 (mod 16) f3=2 (mod 16).

e The following congruences mod 3 hold:

fo=fe=1 (mod 3) fo=fi=1 (mod 3)
fi=fs=0 (mod3) f3=0 (mod 3).
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e The following congruences mod 5° hold:

f4 = f2 =0 mod 25.

{f65f55f3£f15f051 mod 25

e The following congruences mod 11* hold:

Je = fo
fs=h
Ji=[2
Furthermore,
foe=1 (mod 11)
f5=0 (mod 11)

(mod 11%)
(mod 11%)
(mod 11%).

fa=0 (mod 11)
f3 =0

(mod 11).

e The following congruences mod 23 hold:

fe=1 (mod 23)
f5=1 (mod 23)
fa=0 (mod 23)
f3=0 (mod 23)

fo=1 (mod 23)
fi=10 (mod 23)
fo=1 (mod 23).

e The following congruences modulo 61 hold:

fo=fe=1
1=/fs=0

(mod 61)
(mod 61)

f2 = f4 =0 (HlOd 6].)
f3=0 (mod 61).

e The following congruences mod 67 hold:

fe=1 (mod 67)
fs=1 (mod 67)
fa=0 (mod 67)
f3=0 (mod 67)

fo=0
flE34
fo=8

(mod 67)
(mod 67)
(mod 67).

Then the Galois extension Q(J(C)[11])/Q provides a tamely ram-

ified Galois realization of GSpy(Fi1).
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It is simple to construct curves satisfying the conditions of the
proposition above. One such curve is defined by the hyperelliptic
equation

y? = 28 4 798661776 - 2° + 723807700 - z* + 998854626 - 23+
+ 431555730100 - 2% + 1561224728976 - = + 1059932266801.



Appendix A

In Lemma 8.4, we make use of a set of equations defining the Jaco-
bian of a genus 2 curve C. More precisely, we consider the set of
72 quadratic equations which define the Jacobian variety of C' as a
subvariety of P that can be found at
http://www2.maths.ox.ac.uk/ flynn/genus2/jacobian.variety/defining.equations
Since the precise way in which they are labeled is essential to the
statement of the Lemma, we will list them in this appendix, in order
to avoid misunderstandings.

eqn(l) := — apa1 + firasas + fzaroas + fsazaig + 2asa3

eqn(2) := — apap + a%

eqn(3) 1= — apai2 + asas

eqn(4) = — fof2al, — foaraas — 8fofeals — f3fsarzaio — f1fearsaro—

— fafsa1zar0 — fi1fsa13a11 — 3f5foa13a12 — f1fsaisain—
— fsfoaraars — fofearaaro — fafaarsaro + ai — aparo—
— 6fofearzars — fafearoars — f1fearnais — fsfoarsars—
— fufaasan — faarzas — fifoals — fofeals — fifeaio—
— Jearoas — fiar0as — f3fearoarn —4fa2fearoarn—

—2f1fea11012
eqn(5) := — apaiz + fraiaas + fzaisas + fsaipas + 2asa4
eqn(6) := — apaiy + a?
eqn(7) := — 4fo fra%y — 4 foaraas + agars — 36 fofeals — 4fsfsa12a10—

—4f1fearz3ar0 — 4f2fsaizaio — 12 f5 foarzaia—

147
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— 2f1fsa1aa12 — 4 f3 foarsarz — 4 f2 faarsar0 — 4f5a10a4—
— fRajy — 24fo fearzars — 4fa fearoars — 4f1 feariars—
— Afs foarzars — 4f1 fraraa11 + faraa10 — 2f3a11a5—

— 161 fsaiy — 2 fra13a5 — 4 foarzas — 4 fo foaTs—

— 4fsfsaty — Afsaroas — 4 fsar0as — 4fsfearoarr—

— 16 f2 fearoa1z — 81 fear1arz + fiat, — 16 fo frarsa12—
— 4 f1fsa12a15 — 4fo faar4a15

2 2

eqn(8) = — fiafy — faaaaiz + 2fsa13a12 — fsaiy — 2a4a14—
— 2fia14a11 + asa;3

eqn(9) = — fiausa1z — fsaraaio — fsaiaip — 2asa12 + asan

eqn(10) :=2fsa14a10 + 2fsa12a11 — 4asary — 2f1a3s — asais+
+ fiaaa13 + faarsarr — fsaizaio + 2asa13
eqn(ll) = f5a%o — faaioaiz + 2foariarr — flafz — 2a4a10—

— 2foai3aio + asann

eqn(12) :=faaly + frarzarz — asaio — frarsain — foaroais + asar
eqn(13) :=fsaizaip + fiaiaaio — asars — faal, — fsa2a11 + azais
eqn(14) := — firaisaiz — f3a1aa10 — fsa12a10 — 2a4a12 + azaiz
eqn(15) :=4 frai3a12 — 2asa10 — 3f1a14a11 — agais — 2azaia+
+ fsaioa11 + fzaroa13 + 2a4a11
eqn(16) := — ajga1s — 4ajpaiy + a%?,
eqn(17) := — ajpa1s + a%Q
eqn(18) := — ajgais — 4ajparz + a3,
eqn(19) := — ajya13 + 2a10a14 + aipa1s + 203,
eqn(20) := — ajea13 + aj1a14
eqn(21) := — ajjai2 + ajpais
eqn(22) = — afo fof — af1 fofs + af — aoas + 8 fo foasan — afof3 fo—

— f4a3 — foa3 + 4aiy f1fs fo + 4aiy fafafe — atoasfafs+
+ dayoas fafs + 8f1fearoas + f1fsaroas + 4aty fofafo—
— ayoary f1f2 + daroany fofs fe + 4aoarn fi fafe+
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+ 4 fofsaizay + 2a12a10 fo f2 + 6aiaaio f1f3fe+
+ 8fof3fear2a1r + 4aisaio fofafeo + 2a14a10 fof3f5+
+ 3aysaro ffe + 4fofifearaarr + 2fof1fsa1aa12

eqn(23) :=ajas — agaq + 3arzaio fof? + arzaio f1f3fe + 2030 fof5 fo+

eqn(24) :=

eqn(25) :=

+ fafeaioas + 4f2fearoas + aioas fofs + Saioas f1fe+
+4f1fea12as + 20 fo feaizas + 10 fo f5 fearoaia+

+2ads f1fs f5 + 28a%5 fo f fo + data fifafo + 3f1 fsarzast
+ 2a12a10 f1.fafs + 2a12a10 f2f3 f6 + ar2a10 f1.f2 —

— Afofarzar — 4fofefrarzant + 2 fo frarsas+

+ 8aioa1s fofsfe + 8arsaia fofafs + 3aizarz fofsfs—

— ar3a12 L fo + 9araas fo fs + araas fifa + fofsaraas—

— 2f1fefaa14a10 — 8fo fe f3a1aa10 — 2fo f5 f3a14a11—
—4fofef2a14a11 + 10 f1 fe foaraara + 2a14a12 fo f2 5+

+ araar2 L fs + 21 foasars + 4fo feasars + 2fo fsasars+
+ 2fof5fea10a15 + 4fof3fea12a15 + 2f1 fe foaraars

— alyfofs — alyfifa+ a5 — agas — fea3 — faa3+

+ 8aizay fofe + 4fofsa13a5 + 4arzaro fofsfe—

— dayzao f1fafe + 4fofaaraa5 + daroars fofafo—

— aroaia fofz + daroarafi f3fs + 81 fearzas+
+4f1fs5fea12a10 + 4f1f6 faa12a11 — 2 f1 fearzaz+

+ dargars fofifo + darsars fofaofs — araars f1 f5+

+4a3, fofofa + fifsaraas — araas fi f3 + 8araars fo fs fo+
+ 16a14a12 fo f2 f6 + 2a14a12 fo f3f5 + 4ara fo fafears—

- al4f12f6015

—apai4 — foaisas — fsaisay — 2 fra14a3 — 3 fsasain—

— feasars — 5 feazars — fifsaly — f1faarsarz—

— fifsaraa15 — 5f1 fsa12a14 — f1fea13a1s — 3 f1feaizain—
— 2faf1a14a12 — 2 fafsa13a12 — 2 fa fearzar1—

— 3f3fsaraary — 2f3fea12a11 — 2fafear2ai0 — fraraaiot
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+ asag

—apa1z + fraisas + fzasaiz — fsaoas — 2fearraz+
+2fofsai, + 4fofaaraars + 4fs foaraars + 145 foaraara+
+4fofea1za1s + 8fofeaizaiz + 4fofearsarn+

+ 2f1faa14a12 + 2f1 fsa13a12 + 2 f1 fear2a15+

+ 8f1 feais + 2azas

eqn(27) :=2fraza1s — apars + 40 fo foals + 6f3 fza12a10+

eqn(28) :=

eqn(29) :=

eqn(30) :=

+4fafsa1za10 + 8f5 foarzaiz + 3f1f3a14a12+

+ 2f3 foarsa13 + 8 fo fearsaio + 4 f2 faarsa10 — 2apa12+
+4fsaras + fraiy + 4fsarnas + 28 fo fearzars+

+4f1 fearrars + 4fs foarsars + 4f1 faarsans + fiaraaio+
+4fafealy + 161 fsaly + frarsas + 2azar + 4fo foals+
+4fsfoaty + 2fsar0as + 4fsaroas + 4f3 fearoarn+

+ 14 f1 fear1a12 + 16 fo faar4a12 + 4 f1 fsa12a15+

+ 4 fofaarsa15 + f1fsa14a10 + 6a14a11 fofs

—apayy — 4 foarzas — fraisas — 5 frai2as — 2 faarias—

— fsaioas + fsazaio — 4fofearsa1s — 2f3foarsarsa—

— 10fo fsaraarz — 4fofaaraans — 2a15a12 fofs — 6fo fsaia+
+ flawsars — fifsarsan — 2f1 faady — fifsarsaro + 2a2a6
— apaip — fiazaio — fzasaip — 2f2a10a5 — 3 fra1as—

— foarsas — 5 foaraas — fsfzaly — f5faaroa1;—

— fifsa15a10 — 5f1f5a10012 — a15a11 fofs — 35 foarnara—
— 2f1faa10012 — 2f1fra11012 — 2 fo fra13a11—

— 3auaiofifs — 2fsfoarzarz — 2fo f2araa12 — flasain+
+ agaq

—apa1 + fsazaio + fzazaiz — fraisaz — 2 foarzas+
+2f6 f3a3y + 4f2fearoanr + daio f1 fears + 1daipara fi fo+
+4fofeaisair + 8fofeaizain + 4fofeaizaio+

+2fs fsaraaio + 2f1 fsarzarn + 2a1sa12 fofs + 8fofsaia+



151

+ 2aqa7
eqn(31) :=4fy f2aly + 2foaraas + fsasar — apars + 40fo feais+
+ 3f3fsa12a10 + 6f1fsa13a10 + 14 f5 foaizaia+
+ 6 f1f3a14a12 + 4f3 foarsa13 + 8fo fearsaio — 2apaia+
+4f3a12a4 + 28 fo fea12a15 + 4 f2 fear0a1s + 4 f1fea11a15+
+4fs foarsars + 41 fraraarn + faraaio + 2a1as+
+ 161 fsaly + 4 faa12a5 + 4 fs foats + 4fofeals+
+ 2faaroas + 2f3fearparr + 16 f2 feaipaiz + 8f1 fearaia+
+ fialy + 4f1 fsarzars + fifsaiaa10 + 4f2 faaly+
+4f1a14a4 + 2a12011 f3 fa + 4f2 f5a12a11 — 2a10013 f3fa—
— 2a13a12f2f3 + 2a14a11 f2.f3
eqn(32) 1= — apaiz — 4feannaz — fsazais — 5fsazarn — 2fsarz3a3—
— fsaisas + frarsas — 4fsfaaroarn — 2fsfzaroars—
— 10fs fsaroarz — 4f2fearzaro — 2f1 foarzars — 6.f1 foaia+
+ fZavars — fsfsarzaro — 2fs f2aly — f1fsaraans + 2a1ag
eqn(33) == — asays — foaly — fsauars — fials — 3fsaizarn—
— fsaiza1s — fearaaro — 6fearaars — 8feais — foals + a
eqn(34) :=agas — asais — f3a1aa12 — faaraai — fsaroars — 4fsais—
— fearnnais — 2fsaiiarz — feaizaio
eqn(35b) :=2agay — asais — 2asa12 + fra14a13 + 2 fra14a12+
+ fza1sa11 — fsa13a10 — 2fea15a10 — 6 feaioai2
eqn(36) :=agag — asa1s — asar2 + faa14a11 + 2f3a14a10 + faaizari+
+ fiaisa12 + fsa12a10
eqn(37) :=a3 — asa1z — foai, — fiais — fsar12a11 — fearsaro—
—4fearoais
eqn(38) :=ayag — asa12 — foaisaiz — fraisa1z — fsa12a10 — feaioan
eqn(39) :=2agas — aza1s — 2azaiz + fsaipair + 2fia12a10+
+ fsaroa1z — fra1aa11 — 2foar5a14 — 6 foaisain

2
eqn(40) :=a7 — asaio — foaisa14 — 4foa14a12 — frarsa11 — faarpa14—
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2
— feaio
eqn(41) :=agar — asaig — f3a10a12 — f2a13a10 — fra1aais — 4f1a3y—

— foaisa1z — 2 foaizaiz — foaiiais

eqn(42) = — agaig — faaiy — fzar1a10 — f201; — 3fia11a12—
— frarza11 — foaraaro — 6foarsar — 8foats — foals + al
eqn(43) := — fiagas + aisas fi + 4f1asas + 2f3azar + azar—

— fsaza10 + 4 foasas — agag + 2 f2asaz — 2 fo fsapag+
+ 3f1fsa10as + 2f1 fearrae + 12 fo fsar2a7r + 12 fo fear2as+
+ daizas fofa + 2a12as f1 f3 + 2a12a7 f1 4 + 2a1206 f1 f5+
+4aygag fofo + 4fof3a1aar + 4fo fraraa6 + 4fo fsarais+
+4fofeasars

eqn(44) := — arap + 2foagas + fragas + asas

eqn(45) :=fsaipaz + azas + aiqas fy — apas + feagaz — foagas—
— fafiariag + an1ag f1fe — ar1as fofs + 4f2 faaroas+
+daigaz fafs — 4arzar f1fe + 3 fafearzas + fofsaizag—
— fofsa1aag9 — araag f1f3 + arsaz fofs — arsar f1fa—
— fifsa1aa6 + fafaasars + a7 fofsais — ar f1fears+
+ fafeasans

eqn(46) := — faisar — 2a1007f3 + 4 fsaras + azas + 41 foariag—
— apag + fzagays + 3fsazas + 2fsaras + 4 fo fsa13a9—
— 2[5 fearoas + daroar fafe + 4f3fear0as + 4f2fearoag+
+12fo fear2a9 — f3feaizas + 4aizas fofs + daizag f1fs+
+daigaz fafe + 2a12a7 f3 f5 — arzas fsfa — fsfsaizas+
+ 2f1fsa14a7 — a14a6 f3 f4 — a1sas fo f3 + 2a1406 f1 f6+
+ 4 fofeagars — f3feasais

eqn(47) := — apas + 2feasaz + fsazar + asax

eqn(48) = foagas + aras — fifra13a6 + aroar fi + fraraar—
— faasas + fefra12a6 — arag + azazr fofs — aizazrfifa—
— fefsai0as — ar0a7 f3f5 + aroas f3fs — aroasfofs—
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— fsfiaroag + 4fafaarar + 4arzas fi fa — 4fo fsai2as+
+ 3fafoarzag + fafiarais + ag fifiars — fofsagais+
+ fafoagars

eqn(49) := — agas + fzaisas + 2fsa14a7 + 2fsa14a6 + 2fsa13a6+
+ fsagai2 + azaiy

eqn(50) := — 2asas — fra1aag — 2faarsas — fzarsa7 + fsazan+
+ 2fsai2a6 + azais

eqn(51) := — asar + 2foaraag + firaisas + azais

eqn(52) := — agar + 2foaizag + firaizas + azaio

eqn(53) := — 2agaz — fra1ag — 2faaizas — fzarzaz + fsaroar+
+ 2fsaioas + azain

eqn(54) := — 2asay — fia1zag — 2fra14a7 — 2 fra12a9 — f3a1406—

— 3f3agaiz — 4 fiarar — 3fsai12a6 — fsaioas — 2fear1as+
+ asa1s5 + 2a20a12

eqn(55) := — azae + fzaioar + 2faai0as + 2f1a10a9 + 2foar1a9+
+ fiaizaz + arao

eqn(56) := — 2azar — fsaroae — 2fsaoar — fzaroas + frarzas+
+ 2foai2ag + aray

eqn(57) := — agasz + 2feaioas + fsaroar + arai2

eqn(58) 1= — asag + 2fsa12a6 + fsaraiz + ajais

eqn(59) := — 2asar — fsa12a6 — 2fsa12a7 — fzagaiz + fraisas+
+ 2 foa1sa9 + arai3

eqn(60) := — 2agaz — fsai1ae — 2f1agaip — 2fsai2a6 — f3a10a9—

— 3fsai2ar — 4 faa12a8 — 3 fra12a9 — fraraar — 2 foarzag+
+ arais + 2a1a12

eqn(61) := — agas + faaiaas + fzaraa7 + fiarsae + frar2ag+
+ fsaiza6 + feasais + 3feaiaas + asag
eqn(62) := — agag — foaiaag — fraisag + fiarpar + fsa12a6+

+ feariae + asar

eqn(63) := — agar — foaizag — fraisar — frainag — faarzag—
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— f3a12a7 + feaioas + agas

eqn(64) := — agas + faaroar + fzaipas + f2a10a9 + foazaiz+
+ fia11ag + foaisag + 3foarzag + azar

eqn(65) 1= — asar — feaioas — fsaioar + faa12as + fraizag+
+ foaizag + agas

eqn(66) := — aqas — feariae — fsaioas — fsaioae — fiarzar—
— f3asa12 + foaraag + agas

eqn(67) := — daraiz — arais + agai + agai3

eqn(68) := — dagaiz — agais + araiz + aga

eqn(69) := — agaiz + ayaiq + agaio

eqn(70) := — araiz + agaiq + agaio

eqn(71) := — agayy + agaig + arajs

(72)

eqn 72) == — arail + agaig + agai2



Resumen en castellano

Esta tesis se desarrolla en torno al Problema Inverso de la Teoria de
Galois sobre el cuerpo de los nimeros racionales. Este problema, que
fue considerado por primera vez por D. Hilbert, tiene un enunciado
muy simple (para un estudiante con nociones basicas de teorfa de
Galois). ;Qué grupos finitos pueden realizarse como grupos de Galois
sobre Q? En otras palabras, dado un grupo finito G, jexiste una
extensién de Galois K/Q tal que G ~ Gal(K/Q)?

Este problema ha despertado el interés de muchos matematicos
y, sin embargo, ain es un problema abierto. En la actualidad se ha
resuelto afirmativamente para muchos grupos finitos. El lector puede
consultar [81] o [51] para hacerse una idea sobre el estado actual de la
materia.

Sea GG un grupo finito, y supongamos que puede ser realizado como
grupo de Galois sobre Q, digamos mediante una extensién Ki/Q.
Podria ocurrir que estuviéramos interesados en extensiones del cuerpo
de los racionales cuya ramificacién tenga alguna caracteristica espe-
cial, y la extensiéon K;/Q no resulte adecuada. Podemos preguntarnos
si existe otra extensién de Galois, K5/Q, cuyo grupo de Galois coin-
cida con G y ademés su ramificacién posea esta caracteristica. En esta
direccién se han estudiado diversas variantes del Problema Inverso de
la Teoria de Galois.

Por ejemplo, en la seccién 2 de [7], B. Birch plantea la siguiente
pregunta, a la que se refiere como “algo maliciosa”.

Problema 1. [Problema Inverso de la Teorfa de Galois Moderado]
Sea G un grupo finito. ;Existe una extensiéon de Galois K/Q, mode-
radamente ramificada, tal que Gal(K/Q) ~ G?

Este problema es una de las posibles variantes que han sido consi-
deradas, pero hay muchas formas de refinar el Problema Inverso de la
Teoria de Galois anadiendo condiciones de ramificacién. Por ejemplo,

155
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tenemos el siguiente problema. Fijemos un conjunto finito de primos,
digamos S, y sea G un grupo finito ;Se puede realizar el grupo GG como
grupo de Galois de una extensiéon de Q que no ramifique en S? Si G
puede realizarse como grupo de Galois con esta condicién, sea cual
sea el conjunto S prefijado, entonces también puede realizarse como
grupo de Galois de una extension de Q moderadamente ramificada.
De este modo puede probarse que el Problema 1 tiene una solucién
afirmativa para los grupos abelianos finitos, los grupos simétricos (y
todos los grupos finitos de forma que el problema de Noether tenga
solucién afirmativa [73]), los grupos solubles finitos (ver [59], [41]) v
los grupos alternados A,, [62].

Por otra parte, los grupos de Mathieu My; y Mis, el grupo de
automorfismos de Myy (cf. [63]), v las extensiones centrales finitas
de los grupos simétricos, alternados y de Mathieu M y Mg (cf.
[61]) pueden realizarse como grupos de Galois de una extensién de Q
moderadamente ramificada.

En esta tesis abordaremos el Problema 1 mediante el estudio de
las representaciones del grupo de Galois absoluto Gal(Q/Q) asociadas
a objetos aritmético-geométricos.

En efecto, sea

p: Gal(Q/Q) — GL(V)

una representacién continua, donde V es un espacio vectorial sobre
un cuerpo finito F de caracteristica ¢, y consideramos en Gal(Q/Q)
la topologia de Krull y en GL(V) la topologia discreta. Entonces
el niicleo de p es de la forma kerp = Gal(Q/K), donde K es una
extensién de Galois finita de Q. Por tanto,

Imp ~ Gal(Q/Q)/ ker p ~ Gal(Q/Q)/ Gal(Q/K) ~ Gal(K/Q).

Es decir, p nos proporciona una representacion de la imagen Imp como
grupo de Galois sobre Q.
Ante esta situacion, nos planteamos dos preguntas.

e ;Cual es el grupo Imp?

e ;Qué caracteristicas debe tener p para que la extensién K/Q sea
moderadamente ramificada?

En esta tesis consideraremos representaciones de Galois asocia-
das a curvas elipticas, formas modulares y variedades abelianas. Las
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imagenes de estas representaciones han sido estudiadas en profundi-
dad, como veremos mas adelante. En cuanto a la segunda pregunta,
podemos dar una respuesta en funcién de los grupos de ramificacién
superior.

Sea p un nimero primo, y consideremos el cuerpo de los nimeros
p-adicos Qp. Fijemos una clausura algebraica de @, y una inmersién
Q— @p. De este modo tenemos definida una inclusién Gal(@p /Qp) C
Gal(Q/Q). Dentro del grupo de Galois Gal(Q,/Q,) podemos conside-
rar el grupo de inercia I, = Gal(@p /Qpnr) v €l grupo de inercia sal-
vaje I, w = Gal(@p /Qp), donde Qp r (repectivamente Q) denotan
la maxima extension de @, no ramificada (respectivamente moderada-
mente ramificada).

Lema 2. K/Q es no ramificada (respectivamente moderadamente ra-
mificada) en p si y solo si p(I,) = {Id} (respectivamente p(I,w) =

{1d}).

Por tanto, tendremos que buscar condiciones que garanticen que
para todo primo p, p(I, ) es trivial. Veremos que serd mucho maés
facil conseguir estas condiciones cuando p sea distinto de la carac-
teristica £ del cuerpo F. La estrategia que vamos a utilizar, es decir,
la construccién de representaciones de Galois de forma que la ima-
gen del grupo de inercia salvaje sea trivial, se engloba en el problema
de construir representaciones de Galois con un comportamiento local
prefijado, que es en la actualidad un campo muy activo.

Resultados fundamentales

Esta memoria estd dividida en dos partes. El objetivo fundamental
de la primera parte es la obtencién de realizaciones de grupos lineales
2-dimensionales sobre un cuerpo finito como grupos de Galois de una
extension de Q moderadamente ramificada. En primer lugar, conside-
ramos las representaciones de Galois asociadas a los puntos de /-torsién
de curvas elipticas. El resultado principal que hemos obtenido es el
siguiente (véanse los teoremas 1.19 y 1.20).

Teorema 3. Sea £ un niumero primo. Existen infinitas curvas elipticas
semiestables E/Q con buena reduccion supersingular en €. La repre-
sentacion de Galois asociada a los puntos de £-torsion de E da lugar
a una realizacion de GLa(Fy) como grupo de Galois de una extension
de Q moderadamente ramificada.
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Ademas, este resultado es explicito, en el sentido de que damos un
algoritmo que nos permite construir estas curvas.

A continuacion se consideran las representaciones de Galois aso-
ciadas a formas modulares, con el fin de realizar grupos lineales de
las familias PSLy(IF,r) y PGL2(Fpr) para r € N. Los resultados que
hemos obtenido no son tan satisfactorios como en el caso anterior. Al
final del Capitulo 2 obtenemos realizaciones de Galois moderadas para
algunos de estos grupos (véase la Proposicién 2.10).

El objetivo de la segunda parte es la obtencién de realizaciones
de los grupos lineales de la familia GSp,(F;). Con este propdsito,
consideramos las representaciones de Galois asociadas a superficies
abelianas. El resultado principal de esta parte es el siguiente (ver
Teorema 12.25 y Nota 12.27).

Teorema 4. Sea ¢ > 5 un numero primo. Ezisten infinitas curvas
C de género 2 tales que la representacion de Galois asociada a los
puntos de £-torsion de la Jacobiana de C' proporciona una realizacion
de GSp4(F¢) como grupo de Galois de una extension moderadamente
ramificada de Q.

Contenido de la tesis

Vamos a detenernos en cada uno de los capitulos de esta memoria para
resumir su contenido.

Capitulo 1

En este capitulo estudiamos las representaciones de Galois ¢y asocia-
das a los puntos de ¢-torsién de curvas elipticas. Nos centramos en
dos puntos: la determinacién de la imagen de esta representacion y la
imagen de los grupos de inercia salvaje.

En cuanto al primer punto, J-P. Serre [77] estudia detenidamente
la imagen de estas representaciones. Concretamente, demuestra que
si £/Q es una curva eliptica sin multiplicacién compleja, entonces la
imagen de @y es isomorfa a GLo(Fy) salvo para un ntimero finito de pri-
mos . Combinando este resultado con otros, Mazur [53] prueba que, si
E/Q es una curva eliptica semiestable, entonces la imagen de ¢, coin-
cide con GLy(IFy) siempre que ¢ > 11. Una curva eliptica semistable
verifica, ademads, que la imagen por ¢y del grupo de inercia salvaje
I, es trivial siempre que ¢ # p. Por tanto, lo tnico que nos falta



CONTENIDO DE LA TESIS 159

es controlar la ramificacién en ¢. Ahora bien, en [77] Serre demuestra
que, si E' es una curva eliptica con buena reduccién supersingular en
¢, entonces @(Iyy,) = {Id}.

FEn resumen, si E es una curva eliptica semiestable definida sobre Q
y £ > 11 es un primo tal que E tiene buena reduccién supersingular en
£, entonces la representacion ¢, asociada a los puntos de ¢-torsiéon de
E da lugar a una representacién de GLy(Fy) como grupo de Galois de
una extensiéon de Q moderadamente ramificada. El resto del capitulo
estd dedicado a la construccion de este tipo de curvas. Concretamen-
te, para cada £ > 11 construimos infinitas curvas que satisfacen estas
condiciones. Uno de los puntos clave en la construccion es hallar, para
cada primo ¢, una curva eliptica supersingular definida sobre Iy, para
lo cual utilizamos resultados de J. Brillhart y P. Morton [10] sobre el
polinomio de Deuring.

Los primos ¢ = 2,3,5,7 los tratamos aparte, con razonamientos
particulares adaptados para cada caso.

Capitulo 2

En este capitulo se aborda el estudio de las representaciones de Galois
asociadas a formas modulares de peso 2 respecto al grupo I'o(N). Al
igual que en el caso de las curvas elipticas, hay estudios sobre sus
imagenes y su comportamiento local.

En primer lugar, realizamos una introduccién donde exponemos la
construccién clasica, desarrollada por G. Shimura, que a cada forma
modular asocia una variedad abeliana definida sobre Q, y, en conse-
cuencia, una representacion del grupo de Galois absoluto de Q. Una
vez que hemos introducido la representacion py ; asociada a una forma
modular f en un primo ¢, nos centramos en exponer los resultados ya
conocidos relevantes para la resolucion de nuestro problema. K. Ribet
[69] ha estudiado las imégenes de estas representaciones. Cuando f
es una forma modular sin multiplicacion compleja ni “inner twists”
no triviales, la imagen resulta ser grande salvo para un nimero finito
de primos . En este punto encontramos una dificultad, ya que no
disponemos de un resultado analogo al resultado de Mazur para cur-
vas elipticas. Si que existe un algoritmo efectivo que, dada una forma
modular, calcula un conjunto finito de primos fuera del cual la imagen
de la representacion es grande (véase [23]), pero para poder aplicarlo
necesitamos una forma modular f concreta, y no puede utilizarse de
forma “genérica”. Por otra parte, si el nivel N de la forma modular
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es libre de cuadrados, entonces la imagen del grupo de inercia salvaje
I, es trivial para todo primo p # £. De nuevo, el primo ¢ puede
abordarse mediante una condiciéon de supersingularidad: si la forma
modular f es supersingular, entonces un resultado de Fontaine (cf.
[25]) garantiza que la imagen del grupo de inercia salvaje en ¢ es tri-
vial. En este punto encontramos otra dificultad, ya que no conocemos
un modo de construir formas modulares supersingulares en un primo
prefijado £, que no tengan multiplicaciéon compleja.

No obstante, reuniendo todos los resultados presentados en este
capitulo, podemos dar algunos ejemplos de representaciones de grupos
de la familia PSLy(F2) como grupos de Galois de una extensién de Q
moderadamente ramificada.

Capitulo 3

En este capitulo comienza el estudio de las representaciones de Galois
asociadas a variedades abelianas, que abarcara el resto de la memoria.
Comenzamos introduciendo el objeto fundamental de estudio: dada
una variedad abeliana A, consideramos la representacion de Galois py
asociada a los puntos de /-torsién de A. En los primeros capitulos de
esta parte, nos ocuparemos de controlar la ramificacion de p,. Concre-
tamente, este capitulo trata la ramificacién en los primos p # £. En
este sentido, podemos generalizar de forma directa los razonamien-
tos que aplicamos en el caso de curvas elipticas. Un resultado de
Grothendieck [31] afirma que si A es una variedad abeliana con re-
duccién semiestable en un primo p # ¢, entonces la imagen de I,y
por pg es trivial. A fin de definir el concepto de reduccién semiestable
en una variedad abeliana, recordamos algunos conceptos, como por
ejemplo el modelo de Néron.

Capitulo 4

En este capitulo comenzamos a abordar el problema de obtener un
cierto control efectivo sobre la ramificacién en ¢ de la representacién
de Galois. Como primera aproximacién, tratamos de generalizar los
razonamientos que se llevaron a cabo en el caso de curvas elipticas.
Con este fin, comenzamos exponiendo con detalle los razonamientos
de [77] que conducen a demostrar que una curva eliptica E con buena
reduccion supersingular en £ induce una representacion de Galois mo-
deradamente ramificada en £. De este modo, podemos observar que la
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ley de grupo formal F' asociada a E en ¢ constituye un objeto funda-
mental en todo el razonamiento. Un lema clave estudia la valoracion
de los puntos de ¢-torsién del grupo F'(m) asociado a la ley de grupo
formal F. Asi pues, a continuaciéon nos centramos en exponer c¢6mo
la nocién de ley de grupo formal asociada a una curva eliptica puede
generalizarse a variedades abelianas. Pero la ley de grupo formal aso-
ciada a una variedad abeliana de dimensién n tiene a su vez dimensién
n, lo cual nos impide reproducir los mismos razonamientos que en el
caso de una curva eliptica (dimensién 1). Para solucionar este pro-
blema, introducimos una condicién adicional, la Hipdtesis 4.7, bajo
la cual somos capaces de probar que la imagen de Iy, por la repre-
sentacién py es trivial. Nuestro objetivo en los préximos capitulos es
obtener algunas condiciones de naturaleza explicita que nos permitan
asegurar que la Hipdtesis 4.7 se satisface.

Capitulo 5

Este capitulo estudia el concepto de altura de una ley de grupo for-
mal, que sera necesario en los razonamientos que aparecen en capitulos
posteriores. Exponemos la definicién general tal y como aparece en
[34], asi como un rapido esquema sobre cémo se calcula en casos con-
cretos. A continuacién comparamos esta definicién en la Proposicién
5.12 con aquella, méas simple, que se utiliza en el caso de dimensién 1.
Esta proposicién serd clave en el razonamiento, ya que relaciona las
propiedades que se utilizan en dimensién 1 para demostrar el resultado
que buscamos con la definicién general de altura.

Capitulo 6

En este capitulo nos detenemos para reflexionar sobre los resultados
que hemos obtenido hasta el momento y enunciar un resultado de
caracter general sobre la ramificacién de la representacién asociada
a los puntos de {-torsién de una variedad abeliana. Denotemos por
Q(A[f]) a la extensién de Galois finita de Q que se obtiene adjuntando
las coordenadas de los puntos de f-torsién de A. El resultado mas
destacado es el siguiente.

Teorema 5. Sea A/Q una variedad abeliana de dimension n. Sea £ >
2 un numero primo, y P el conjunto de los primos que dividen al orden
de GLa,, (Fy). Supongamos que se verifican las siguientes condiciones:
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e Para todo p € P distinto de £, A tiene reduccion semiestable en
p.

e A tiene buena reduccion supersingular en £ y la ley de grupo
formal asociada a A en ¢ satisface la Hipdtesis 4.7.

Entonces la extension de Galois Q(A[(])/Q es moderadamente ramifi-
cada.

Capitulo 7

A partir de este capitulo, nos centramos en el caso en que A es una su-
perficie abeliana (es decir, la dimensién n es 2). También supondremos
a partir de ahora que la altura de la ley de grupo formal asociada a
Aen £ es 4. Si A es una superficie abeliana con buena reduccién
supersingular en £, esta iltima condicién se verifica automaéaticamente.

El objetivo de este capitulo es introducir un tipo de ley de grupo
formal, que denominamos simétrica, y demostrar que, si una ley de
grupo formal simétrica satisface que el exponente r que aparecen en
la Proposicion 5.12 es 2, entonces la Hipdtesis 4.7 se verifica. Tanto
la simetria como la condicién sobre el exponente r son condiciones
que pueden leerse de forma directa en la expresién de la ley de grupo
formal de A, es decir, tienen un caracter explicito, al contrario que
la Hipdtesis 4.7. Los resultados de este capitulo se basan en un par
de lemas técnicos (7.5 y 7.6) que generalizan, dentro del contexto en
que nos encontramos, el lema clave que se utilizo en el caso de curvas
elipticas.

Capitulo 8

En este capitulo tratamos de encontrar ejemplos de superficies abe-
lianas que verifiquen las dos condiciones que aparecen en el capitulo
anterior, es decir, de forma que la ley de grupo formal asociada sea
simétrica y el exponente de la Proposicién 5.12 sea 2. Para hallar es-
tos ejemplos, consideraremos las superficies abelianas que se obtienen
como Jacobianas de curvas de género 2.

La primera condicién se verificara siempre que la correspondiente
curva de género 2 sea simétrica (Definicién 8.3). Para demostrar este
hecho, necesitaremos probar un resultado (el Teorema 8.2). La de-
mostracién de este teorema utiliza el algoritmo explicito de calculo de
la ley de grupo formal asociado a la Jacobiana de una curva de género
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2 que aparece en el Capitulo 7 de [15]. En esta demostracion se utiliza
un modelo explicito de la Jacobiana sumergida en un espacio proyec-
tivo de dimensién 15. Las ecuaciones que lo definen se encuentran en
la pagina web de V. Flynn, pero las hemos incluido en el Apéndice A
para evitar confusiones.

Finalmente, centraremos nuestra atencion en las curvas bielipticas,
con el fin de encontrar curvas de género 2 simétricas de forma que,
ademas, el exponente de la Proposicién 5.12 de la ley de grupo formal
asociada a la Jacobiana de la curva sea 2.

Capitulo 9

De nuevo, consideramos conveniente dedicar un capitulo a reflexionar
sobre los resultados obtenidos hasta el momento y enunciar de forma
clara los teoremas fundamentales. Los resultados explicitos que se
han obtenido en los dos capitulos anteriores nos permiten escribir el
siguiente teorema.

Teorema 6. Sea C' una curva de género 2 definida por una ecuacion
hipereliptica de la forma

y* = f(x), (12.1)

donde f(x) = foxb+ fiz® + fox* + f323 + fox® + fiz + fo € Z[z] es un
polinomio de grado 6 sin factores maltiples. Sea £ > 2 un primo y P el
conjunto de los primos que dividen al orden de GL4(Fy). Supongamos
que se verifican las siguientes condiciones:

e Para p € P distinto de £, C tiene reduccion estable en p.

e La reduccion de f(x) médulo £ es de la forma x5 +bax* +bx? 41,
y la curva eliptica definida sobre Fy por y?> = 23 + ba? + bx + 1
es supersingular.

Entonces la extension de Galois Q(A[(])/Q es moderadamente ramifi-
cada.

Capitulo 10

El teorema que presentamos en el capitulo anterior, aunque aparente-
mente muy satisfactorio, esconde una dificultad esencial que nos impi-
de utilizarlo para nuestros propdsitos. La razén es la siguiente: la
imagen de la representacién de Galois asociada a la Jacobiana de
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una curva de género 2 dada por una ecuacién de la forma (12.1) con
f(x) = fox®+ fra®+ fox* + f3x®+ fox® + fiz+ fo no es grande. Es decir,
esta representacién no dard lugar a una realizacién del grupo GSp, (Fy)
como grupo de Galois, sino de un subgrupo propio. Por tanto, necesi-
tamos dar unas condiciones que garanticen que la representacion py es
moderadamente ramificada, pero que sean lo suficientemente débiles
como para permitir que la imagen de py sea grande. Es decir, tenemos
que suavizar las condiciones del Teorema 6.

Para esto utilizaremos algunos resultados de [9] que relacionan la
proximidad de las soluciones de dos sistemas de ecuaciones {f; =
0, f2 =0}y {g1 = 0,92 = 0}, donde f1, fa, 91,92 € Z¢[[X1, X2]], con la
proximidad de los coeficientes de f; y g;. La medida de esta proximi-
dad se realiza mediante la valoracién ¢-adica. Este capitulo cierra el
estudio de la ramificacion de la representacién py.

Capitulo 11

En este capitulo se estudia la imagen de la representacién de Galois
p¢ asociada a una superficie abeliana, con especial énfasis en el caso
en que esta superficie es la Jacobiana de una curva de género 2.

Serre (cf. Teorema 3 de Lettre a Marie-France Vignéras en [82])
generaliza al contexto general de variedades abelianas el resultado de
[77] sobre la imagen de la representacién ¢y asociada a los puntos de
{-torsién de una curva eliptica. Concretamente, demuestra que si A es
una variedad abeliana definida sobre Q de dimensién n impar, o bien
igual a 2 6 6, principalmente polarizada, cuyo anillo de endomorfismos
coincide con Z, entonces la imagen de la representacién de Galois py
asociada a los puntos de ¢-torsién de A es isomorfa al grupo general
simpléctico GSpy,, (Fy).

En el caso en que la variedad abeliana tenga dimension 2, hay
resultados explicitos que permiten determinar si la imagen de p, es
isomorfa a GSp,(F,) (véanse [44] y [24]).

En una primera aproximacién, adaptamos los resultados de P. Le
Duff [44] a nuestros propdsitos, y logramos construir, para cada ¢ > 5,
curvas de género 2 de forma que la representacién de Galois asociada
a los puntos de f-torsién de su Jacobiana tiene imagen grande. Sin
embargo, esta construccion depende de una conjetura no demostrada
(Conjetura F de [33]). M4ds adelante, siguiendo una sugerencia de L.
Dieulefait, conseguimos dar otra construccién que no depende de esta
conjetura.
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En esencia, el resultado de Le Duff se basaba en la siguiente pro-
posicién.

Proposicién 7. El grupo simpléctico Sp,(Fy) estd generado por una
transveccion y un elemento con polinomio caracteristico irreducible.

Imponer que la imagen de py contenga una transveccién es re-
lativamente sencillo utilizando la relacién entre la fibra especial del
modelo de Néron en un primo p # £ y el tipo de reduccion de la curva
C (véanse la Proposicién 11.4 y el Lema 11.5). Por otra parte, Le
Duff aborda la segunda condicién pidiendo la existencia de un primo
g, de buena reduccién en A, de forma que el polinomio caracteristico
de la imagen del elemento de Frobenius Frob, por p, sea irreducible.
Es en este punto donde necesitamos refinar la condicién de Le Duff.
Nosotros pediremos la existencia de dos primos auxiliares, ¢; y ¢z, de
forma que sus polinomios caracteristicos tengan un tipo concreto de

factorizacién sobre Fy. El resultado final es el siguiente (ver Teorema
11.11).

Teorema 8. Sea C una curva de género 2 definida sobre Q con re-
duccidn estable de tipo (I1) o (VI) en un primo p. Sea c el orden del
grupo de las componentes conexas de la fibra especial del modelo de
Néron enp. Sean q1 y g2 primos diferentes de forma que C tiene buena
reduccion en ellos. Llamemos Py(X) = X*+a; X3 +b; X% +a;¢: X +q;°
al polinomio caracteristico del endomorfismo de Frobenius actuando
sobre la reduccion de C en q;, y definamos Ao(P;) = a? — 4b; + 8q;,
i=1,2.

Supongamos que £ > 2 es un primo que no divide a 2pgiqac y
satisface

¢ ;=1 (mod¥{),i=1,2.
e Ay(Py) no es un cuadrado en Fy y ap £ 0 (mod ¢).

o Ay(P) es un cuadrado no nulo en Fy, y P(X) no descompone
en factores lineales en IFy.

Entonces la imagen de py coincide con GSpy(Fy).

Capitulo 12

En este capitulo recogemos los resultados fundamentales de los ca-
pitulos anteriores y, utilizdndolos como punto base, realizamos una
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construccién explicita de curvas de género 2 que proporcionan reali-
zaciones de GSp,(Fy) como grupo de Galois de una extensién de Q
moderadamente ramificada. El capitulo estd dividido en una serie de
secciones que tratan las distintas construcciones que se requieren para
llegar al resultado final.

Comenzamos exponiendo una construccion que garantiza que, en
un primo p # ¢ dado, la curva C' de género 2 tiene buena reduccion
en p. A continuacién nos centramos en la construccién de superfi-
cies abelianas supersingulares. Esta construccién, que utiliza curvas
bielipticas, descansa sobre los resultados obtenidos en el Capitulo 1
sobre curvas elipticas supersingulares. A continuacién se consideran
los primos auxiliares que aparecen en el Teorema 8, es decir, p, q1
y o, necesarios para garantizar que la imagen de la representacion
de Galois es suficientemente grande. Concretamente, tomamos como
primo auxiliar p = 5, y, estudiando los invariantes de Igusa en un caso
concreto, obtenemos una construccion general. En cuanto a los primos
q1 Y g2, proponemos un modo concreto y explicito de escogerlos, en
funcién del primo ¢ de partida.

Finalmente, recogemos todos estos resultados en un teorema fun-
damental (Teorema 12.25). Dado un primo ¢ > 7, este teorema afirma
que cualquier curva C de género 2 definida mediante una ecuacion
hipereliptica y? = f(x), donde f(x) = feax®+ fsx®+ faxt + fa23+ fox®+
fix + fo € Z]x] es un polinomio de grado 6 sin factores miltiples, de
forma que sus coeficientes satisfacen unas ciertas congruencias modulo
algunas potencias de primos (concretamente, 2%, 3,52 ¢4, los primos
auxiliares q1 y ¢o, y los primos que dividen al orden de GSp,(Fy)),
proporciona una realizaciéon de GSp,(F,) como grupo de Galois de
una extensiéon de Q moderadamente ramificada. Mas ain, es facil
calcular infinitas curvas C' que satisfacen estas condiciones.

Tras considerar brevemente el caso ¢ = 5, el capitulo concluye
con unos ejemplos donde se utiliza el resultado fundamental para con-
struir curvas de género 2 que proporcionen realizaciones moderadas de
GSp,(Fy) para £ = 7,11.
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