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4 Modeling solar near-relativistic

electron events

Modelization of SEP events aims at revealing (1) the scenario of the particle acceleration and

release into interplanetary space, and (2) the properties of the subsequent particle transport

through the IMF. Energetic particles released from the solar corona into interplanetary space

are usually described by an injection function that contains free parameters. The particle

transport along the IMF is generally described by means of a pitch-angle scattering model

and the particle mean free path. Up to now, X-rays and radio solar observations have also

been used to understand the scenario of particle acceleration and release (i.e. to find out where

and when energetic particles are injected into interplanetary space) by a priori reducing the

number of free parameters. Nevertheless, it is also possible to constrain the scenario by taking

advantage of the angular information contained in the sectored time-intensity measurements

at 1 AU. Then, available solar proxy observations can be used to check the outputs of the

modelization.

Keeping this latter idea in mind, we have developed an algorithm that involves a simul-

taneous fit of the time-intensity profiles recorded by different sectors, which is applicable

to the modelization of solar NR electron events observed by the LEFS60 telescope of the

ACE/EPAM experiment. The algorithm can be easily adapted to study sectored time-intensity

profiles measured by other telescopes on board spacecraft with similar features and perfor-

mance.

4.1 Fitting procedure

4.1.1 Deconvolution of the sectored intensities

We have developed a new technique for deconvolving the effects of interplanetary transport

in order to determine the underlying time profile of particle injection near the Sun. We solve

the inversion problem of obtaining the mean free path and the injection time profile at the
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4 Modeling solar NR electron events

Sun from a set of measured sectored intensities Is
l (t), where Is

l (t) is the intensity measured at

time t by the sector s in the energy channel [El, El +ΔEl]. By taking into account the angular

response of the EPAM/LEFS60 telescope (see Chapter 2), we derive the modeled sectored

intensities Ms
l (t; λr), in sector s and energy interval l, that have to be compared with Is

l (t).

We consider an arbitrary function q(t) – to be determined – that represents the injection

function of NR electrons close to the Sun. Then, Ms
l can be written as

Ms
l (t; λr) =

∫ T2

T1

dt′gs
l (t, t

′; λr) q(t′), (4.1)

where gs
l (t, t

′; λr) represents the contribution of an impulsive injection to the modeled inten-

sities, for a given sector s and energy interval l, at a given time t, when the injection of NR

electrons took place at time t′, with T1 ≤ t′ ≤ T2. Consequently, Ms
l (t; λr) represents the mod-

eled sectored intensities at time t, resulting from different elemental solar injections produced

between T1 and T2. Details about the transformation of the simulated Green’s function of par-

ticle propagation into gs
l (t, t

′; λr) functions are given in Section 2.4.5. The calculation takes

into account the angular response function of the EPAM/LEFS60 telescope and the angular

directions scanned by the telescope as a function of time.

The injection energy spectrum is assumed to be a power-law, dN/dE = CE−γs , terminated

by cutoff energies Emin and Emax. The energy spectrum is normalized to one particle per

steradian at the solar surface. Therefore, C = (γs − 1)/(E1−γs
min

− E1−γs
max ). The spectral index,

γs, is estimated from the observational data. Consequently γs is not a free parameter of the

model.

The dependence of gs
l (and thus of Ms

l ) on ε has not been explicitly shown in Equation (4.1),

because we regard ε as a descriptor of the scattering model rather than as a free parameter of

the model (see section 3.3.2).

Taking discrete values of time, we have

Ms
l (t; λr) =

m∑
j=1

gs
l (th, t′j; λr) q(t′j) (4.2)

where s = 1, 2, ..., 8 numbers the sectors of the telescope. If nobs is the number of observa-

tional time points in each sector, then th = t0 + (h− 1) ·Δt, where Δt is the observational time

resolution, t0 is the origin of time of the event and h = 1, 2, ..., nobs numbers the observational

time bins. Similarly t′j = T1 + ( j − 1) · Δt, where T1 is the assumed origin of time of the

injection of NR electrons (T1 < t0) and j = 1, ...,m numbers the injection times. The duration

of the injection (T2 − T1) determines the number of sectored Green’s functions that need to
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4.1 Fitting procedure

be computed. Therefore, in the energy range [Emin, Emax], we choose T2 to take the value

T2 = (t0 + nobs · Δt) − z
vmax

(4.3)

where z is the distance along the magnetic field line from the source to the observer and

z/vmax corresponds to the transit time of the fastest particle considered in the analysis. We

assume that injection starts after T1, which is arbitrarily taken 30 min before the beginning

of the observational type III burst radio burst1 estimated at 14 MHz. Figure 4.1 illustrates the

selection of the T1 and T2 injection parameters.

Equation (4.2) can be written as

Ms
l (th; λr) ≡ Mi(λr) =

m∑
j=1

gi j(λr) qj = (g · �q)i (4.4)

where i = h + (s − 1) · nobs = 1, 2, ..., n numbers the total number of observational points and

n = 8 nobs gives the total number of observational points in all sectors; g is an n × m matrix

with (g)i j = gi j(λr).

Finally, the modeled intensities must be compared with the observations. Let b be the

sector-averaged background intensity and Ji = Ii − b with Ii = Is
l (th). We want to derive the

m-vector �q that minimizes the length of the n-vector �J − �M, that means solving the equation

|| �J − �M|| ≡ || �J − g · �q|| ∼ 0 (4.5)

subject to the constraint that qj ≥ 0 ∀ j = 1, 2, ...,m. Thus, the best-fit �q = (q1, q2, ..., qm)

corresponds to a comb of m delta-function injection amplitudes at times t j. To obtain the

best-fit values, we use the non-negative least squares (NNLS) method of Lawson & Hanson

(1974), which always converges to a solution.

The total number of independent fitting parameters is m and the number of degrees of

freedom is n − m, which is clearly much larger than the number of model parameters, as it

should be. Note, however, that for a given interval of time, if the IMF vector has a polar angle

equal to zero, all the sectors scan the same pitch-angle cosine range and therefore, we only

get one independent sectored measurement instead of eight. This situation can be avoided

by studying NR electron events observed by the LEFS60 telescope with μ-co ≥ 70% (as

explained in section 4.2.1).

1T1 does not represent any constraint to the model neither introduces any bias in the results, provided that

T1 � tIII. The value adopted is a compromise between such conditions and the computing time demanded

if (T2 − T1) is too large.
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4 Modeling solar NR electron events

Figure 4.1: Illustration of the selection of the parameters T1 and T2. tIII marks the origin of the
type III radio emission and t0 indicates the origin of time of the event. The gray area shows the
interval of time where the deconvolution technique is performed.

4.1.2 Injection function

The results of the transport simulation are given in terms of Green’s functions normalized to

one particle injected per steradian at the solar surface in the energy range [Emin, Emax]. From

the deconvolution, we obtain q(t) =
∑m

j=1 qm δ(t) i.e. a comb of m delta-function injection

amplitudes in units of particles. We aim, however, to express the injection function by a

histogram in units of particles per time unit and energy range. This can be obtained by

dividing q(t) by the observational time resolution, Δt, and by the energy range, ΔE, taken

into account in the deconvolution.

If each energy channel is separately fitted, an extra factor has to be taken into account in

order to normalize the results with respect to the channel. If the deconvolved energy channel

ranges from E1 to E2, we have to take into account the fraction of the total simulated energy

spectra covered by the channel; that is

Ac =

∫ E2

E1

CE−γs dE, (4.6)

where C is the normalization constant,
∫ Emax

Emin
CE−γs dE = 1, given by C = (1 − γs)/(E

−γs+1
max −

E−γs+1

min
). Therefore,

70



4.2 Deconvolution test

Ac =
E−γs+1
max − E−γs+1

min

E−γs+1

2
− E−γs+1

1

(4.7)

Ac represents the number of injected particles in the [E1, E2] energy range, when we injected

1 particle in the [Emin, Emax] energy range. Therefore, we need to divide the results by Ac

in order to normalize the results with respect to the channel. Thus, the injection function

histogram is given by

Q(t) =
1

Ac

m∑
j=1

qm

Δt ΔE
H(t − t j) H(t j+1 − t) (4.8)

4.1.3 Goodness of the fit

In addition to the injection function, the value of the mean free path that best fits the data has

to be determined. The mean free path has a strong effect on the decay phase of the event.

To take into account this influence (and the fact that the intensity may vary several orders of

magnitude between the peak intensity and the later decay phase), we use the goodness-of-fit

estimator

ζ(λr) =

n∑
i=1

(
log

Ii

M∗
i (λr) + b

)2
(4.9)

to determine the best-fit value of λr. This estimator gives an equal weight to all relative

residuals instead of just emphasizing the goodness of fit at the time of maximum. Here,

M∗
i (λr) is the best-fit model obtained from the NNLS algorithm for a given value of λr. Note

that minimizing ζ implies minimizing logarithmic differences between the observational data

and the modeled data.

4.2 Deconvolution test

In this section, we test the deconvolution technique outlined in the previous section. We

aim to deconvolve synthetic sectored intensity profiles in order to verify that we recover the

injection profile, the description of the scattering processes and the value of the radial mean

free path originally assumed. Furthermore, we aim to set constraints on the conditions under

which the application of the deconvolution algorithm is reliable. The deconvolution test is

divided in two parts. First, we produce synthetic data in five main steps:

1. Simulation of the Green’s function of particle transport for several values of the radial
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4 Modeling solar NR electron events

mean free path, 0.1 ≤ λr ≤ 1.4 AU, and different scattering models.

2. Selection of: (i) a scattering model and a value of λr ; and (ii) an injection profile.

3. Convolution of the Green’s function of particle transport for the selected λr by the

selected injection profile.

4. Selection of a magnetic field configuration and, therefore, of the μ-co of the telescope.

5. Calculation of the synthetic observational sectored intensities (from steps 3 and 4).

Second, we deconvolve the synthetic observational sectored intensities and check the good-

ness of the fit in each case. Finally, we verify that the best fit corresponds to the original λr

and that the underlying injection profile is resolved.

We assume that the particle injection of NR electrons takes place at the root of a Parker

spiral magnetic field (u = 425 km s−1). The energy spectrum at the source is assumed to be

dN/dE ∝ E−2.9 in the energy range 62–330 keV. The maximum simulation time is fixed to

120 min. The detector is assumed to have a time resolution of 72 s and to record in a single

energy range 175–312 keV (it corresponds to E’4 of EPAM/LEFS60).

We consider three different scattering cases: isotropic and μ-dependent scattering with

ε = 0.10 and ε = 0.01. For each scattering case we simulate sixteen values of the radial

mean free path between 0.1 and 1.6 AU with step intervals of 0.1 AU – a total of 48 different

scenarios.

We select two of these scenarios to test the deconvolution technique: λr = 0.2 AU and

λr = 0.9 AU, for the μ-dependent scattering case with ε = 0.01. As discussed in the in-

troduction, several studies suggest that NR electron events are produced by an impulsive

injection component related to the flare and a more time extended component associated with

the CME-driven shock. We aim to determine whether the deconvolution technique is able to

resolve two components of this kind. Therefore, we assume that the injection close to the Sun

takes place in two episodes: a short intense injection lasting ∼4 min and injecting 3 × 1033

electrons followed by a weaker decaying injection component starting 72 s later and injecting

3 × 1031 electrons to the interplanetary medium. Figure 4.2 illustrates the assumed injection

profile.

We convolve the Green’s functions of particle transport for λr = 0.2 AU and λr = 0.9 AU

and a μ-dependent scattering model with ε = 0.01 by the injection profile illustrated in Figure

4.2. Figure 4.3 shows the resulting 175–312 keV omni-directional intensities for λr = 0.2 AU

(Event 1) and λr = 0.9 AU (Event 2), respectively. The inset plots show three snapshots of the

pitch-angle distributions (normalized to maximum): during the rising phase, at the peak and
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4.2 Deconvolution test

Figure 4.2: Two component solar injection profile.

during the decay phase of the event (indicated by black dots on the time-intensity profile). As

can be seen, the shorter the mean free path

– the later first particles are detected at the spacecraft position,

– the later the particle omni-directional intensity profile peaks,

– the lower the intensity of the peak is,

– the slower the decay phase is,

– the higher the intensities are in the decay phase of the event,

– the more isotropic the pitch-angle distributions are late in the event.

Nevertheless, sectored intensity profiles observed by a detector mounted on a spinning

spacecraft will be rather different from these two synthetic differential intensities because the

IMF orientation does not always allow all particles moving across 1 AU to be recorded.

In the following subsections, we verify that the deconvolution technique outlined in the pre-

vious sections is correct. For this purpose, we neglect measurement errors of the detector and

we study the different representations that these two events take depending on the magnetic

field configuration. We study two cases: (1) a synthetic magnetic field vector that does not

vary with time; (2) two selected magnetic field configurations obtained from observations by

the ACE/MAG instrument. Once the magnetic field configuration is known, we can calculate

the sectored intensities observed by the LEFS60 telescope for these two events (see Chapter

2). We also assume that the background intensity of the sectors is 10 e/(cm2 sr s MeV). Then,
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4 Modeling solar NR electron events

Figure 4.3: 175–312 keV omni-directional intensities for Event 1 (λr = 0.2 AU and μ-dependent
scattering with ε = 0.01), top panel, and for Event 2 (λr = 0.9 AU and μ-dependent scattering
with ε = 0.01), bottom panel. The three insets in each plot show the pitch-angle distributions
(normalized to maximum) corresponding to the snapshots indicated by dots.
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4.2 Deconvolution test

we can deconvolve the sectored events for the 48 situations detailed above. We select the

time interval between t0 = 15 min and 120 min to apply the deconvolution technique and we

assume that the solar injection starts after T1 = 0 min.

4.2.1 Stable synthetic magnetic field

Let us assume a magnetic field vector that does not vary with time. As a representative

case, we choose B̂ perpendicular to the spin axis, with polar angle θB = 90◦ and clock-angle

φB = 60◦, in the spacecraft coordinate system. For this configuration, the telescope gets

nearly complete coverage in pitch-angle cosine during the whole event; μ-co � 100% (see

section 2.4.4). Figure 4.4 displays the intensities observed by each sector (top) and the pitch-

angle cosine, μ, of each sector (bottom) for the two events synthesized. Since the magnetic

field vector does not vary with time, these values remain constant throughout the event.

Note that the sectors scanning particles with μ � 1 are the ones that start earlier to observe

particles and that record higher intensities, whereas those sectors with μ < 0 start to observe

particles later in time and measure lower intensities with more gradual increases. The small

fluctuations seen in the decay phase of the intensity profiles are statistical.

Figure 4.5 shows the values of the goodness of fit estimator, ζ, obtained from the decon-

volution of the two events shown in Figure 4.4, for the 48 tested scenarios; the left panel

shows Event 1 and the right panel shows Event 2. Each curve2 displays the values of ζ for

a different scattering case: isotropic (dashed line), μ-dependent with ε = 0.10 (dotted line)

and μ-dependent with ε = 0.01 (solid line). Open circles indicate the lowest value of ζ,

ζmin = ζ(λmin), obtained for each case.

As can be seen in Figure 4.5, ζ(λr) has a single minimum and is rather symmetric around

λmin. The ζ-values are high for λr < λmin because for these values of λr it is not possible

to reproduce the rising phase of the event. No matter what the injection profile is, particles

with smaller λr get to the observer too late to reproduce the detected onset (if injection is

assumed to start after T1 = 0 min). For Event 1, the ζ-values obtained for the three scattering

cases at λmin are very similar. This is because for a low value of λr, differences between

normalized PADs are small (see Figure 3.4). The lowest value, ζ = 0, is obtained for μ-

dependent scattering with ε = 0.01 and λr = 0.2 AU for Event 1, and λr = 0.9 AU for Event

2. In these two cases the injection profile obtained from the deconvolution reproduces the

actual injection profile (see next paragraph). We therefore conclude that the deconvolution

2Actually, we compute the values of the goodness of fit estimator, ζ, for a grid of values of λr. It is possible to

increase the number of values of λr to get a denser grid, but the results will not differ significantly from the

general trend shown in Figure 4.5.
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4 Modeling solar NR electron events

technique provides accurate results if the coverage of the telescope is of ∼100%.

Figure 4.6 illustrates the injection profile yielded by the deconvolution algorithm as a func-

tion of the radial mean free path derived for μ-dependent scattering with ε = 0.01. For Event

1 and λr < 0.2 AU, the deconvolution algorithm yields an earlier and higher impulsive in-

jection, and a high value of ζ. As expected, a minimum of ζ = 0 is found for λr = 0.2 AU;

in this case, the derived injection profile matches the original assumption. As λr increases,

the deconvolved injection profile becomes wider but ζ increases again because the prolonged

injection produces high anisotropies that cannot adequately fit the intensities registered by the

sectors not aligned with the magnetic field. The same type of explanation is valid for Event

2, but ζmin = 0 occurs for λr = 0.9 AU as expected.

To get an idea of the sensitivity of the deconvolution algorithm, we study the results yielded

by the algorithm if we were assuming a scattering model that badly describes the scattering

processes at work. In the cases we are studying, Event 1 and Event 2, this would corre-

spond to fit these events assuming either isotropic scattering or μ-dependent scattering with

ε = 0.10. For Event 1, the best fit corresponds to λr = 0.2 AU for these two scattering cases;

the injection profiles are shown in the two bottom left panels of Figure 4.7. In these two cases,

two injection episodes can be resolved but, (i) the onset of the first prompt injection is blurred

by erroneous previous weaker injection episodes and (ii) the onset of the second injection is

delayed and its decay phase shows noticeable intermittency. For Event 2, the best fit corre-

sponds to λr = 0.8 AU for the two scattering cases. Thus, if we were to erroneously assume

an isotropic or a μ-dependent scattering model with ε = 0.10, we would underestimate the

value of λr. For isotropic scattering and λr = 0.8 AU, the obtained injection profile displays

a single injection episode, but is one that is modulated by the two actual episodes (Figure

4.7, bottom right panel). For μ-dependent scattering with ε = 0.10 and λr = 0.8 AU, the two

injection episodes can be resolved but they start earlier than the actual injection profile does

(Figure 4.7, middle right panel). Thus, the more accurate the description of the scattering

processes at work, the better the injection profile can be resolved.

An important issue to address is how the pitch-angle cosine coverage of the telescope,

μ-co, influences the results of the deconvolution. For this purpose, we study eight different

magnetic field configurations that assure four different values of the μ-co of the LEFS60 tele-

scope (85%, 70%, 55% and 40%). Table 4.1 lists the characteristics of these eight magnetic

field configurations; the first column identifies the configuration, the second column gives the

μ-co; then follows the corresponding μmax and μmin scanned by the telescope3; the last two

columns give the polar angle and the clock-angle of the magnetic field vector in the space-

3If μmax is negative, the telescope only observes the negative hemisphere of the PAD, whereas if μmin is

positive, the telescope is only able to observe the positive hemisphere.
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4.2 Deconvolution test

Figure 4.4: Event 1 and Event 2 as observed by the LEFS60 telescope for a constant magnetic
field vector. Different colors represent different sectors. Upper panels show the electron sec-
tored intensities 175–312 keV. Lower panels show the pitch-angle cosine scanned by each
sector.

Figure 4.5: Goodness of fit estimator, ζ, obtained from the deconvolution of Event 1 and 2 for
16 values of the radial mean free path and three scattering models: isotropic (dashed line),
μ-dependent scattering with ε = 0.10 (dotted line) and with ε = 0.01 (solid line). The magnetic
field vector is assumed to have θB = 90◦ (μ-co � 100%) and φB = 60◦. The lowest ζ value,
ζmin, is marked by an open circle. The thin horizontal line shows ζ = 0.
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4 Modeling solar NR electron events

Figure 4.6: Electron injection profiles as a function of λr for μ-dependent scattering with ε = 0.01.
Left panel displays the results for Event 1, right panel for Event 2.

craft coordinate system. Each configuration is labeled with a number. Configurations with

the same number have the same μ-co and the prima denotes that the telescope mostly ob-

serves negative pitch-angle cosines. Figure 4.8 illustrates the μ-co of the eight magnetic field

configurations (left) and the range of μ scanned by the telescope in each case (right).

As an example, Figure 4.9 displays the intensities observed by each sector and the pitch-

angle cosine of the zenith direction of the detector at the midpoint clock angle of the sector,

as a function of time, for Event 1 and Event 2 and for the configurations (2’) and (4), and (2)

and (4’), respectively. Note that the narrower the range of μ scanned by the telescope, the

more similar the intensity profiles registered by different sectors. Moreover, the smaller μmax,

the lower the intensities registered by the telescope.
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4.2 Deconvolution test

Figure 4.7: Best-fit electron injection profiles as a function of the scattering model for Event 1
(left) and Event 2 (right), assuming θB = 90◦ (μ-co � 100%) and φB = 60◦.

Figure 4.10 shows the values of the ζ-estimator obtained from the deconvolution of Event

1. Each one of the eight panels corresponds to a different magnetic field configuration (and

thus, Event 1 is observed differently by the LEFS60 telescope). Panels in the same row show

the results for the same value of μ-co. Panels in the same column show values of μ-co that

decrease from top to bottom.

From this figure, it is clear that the higher the μ-co of the telescope the deeper the minimum

of ζ and the more symmetric the function ζ(λr) around the best fit value of λr. If λr < 0.2 AU,

ζ values remain high for any magnetic field configuration due to the onset effect. On the

other hand, if λr > 0.2 AU the lower the μ-co, the flatter the ζ(λr). If ζ(λr) becomes flat

(i.e. the ζ-estimator takes similar values for a range of λr), it means that there is more than

one scenario that reasonably fit the observational data. Thus, the information contained in

the measurements is not enough to discern the actual scattering model, the value of λr or

the underlying injection profile. This is what happens when μ-co = 40% (configurations 4),

where all sectors scan nearly the same range of μ values.
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Table 4.1: Characteristics of the magnetic field configurations.

LEFS60 coverage B̂
μ-co μmin μmax θB φB

(1) 85% -0.70 1.00 131.0◦ 60◦

(1’) 85% -1.00 0.70 49.0◦ 60◦

(2) 70% -0.41 0.99 151.5◦ 60◦

(2’) 70% -0.99 0.41 28.6◦ 60◦

(3) 55% -0.17 0.93 165.8◦ 60◦

(3’) 55% -0.93 0.17 14.2◦ 60◦

(4) 40% 0.04 0.84 177.6◦ 60◦

(4’) 40% -0.84 -0.04 2.4◦ 60◦

Figure 4.8: Left: μ-co of the LEFS60 telescope as a function of θB. Blue dots indicate the selected
magnetic field configurations with μ-co equal to 85%, 70%, 55% and 40%. Right: Range
of μ-values scanned for each configuration. Blue dots indicate the lowest and the highest
values in each case; vertical blue lines mark the interval of coverage. The characteristics of the
configurations are listed in Table 4.1.
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4.2 Deconvolution test

Figure 4.9: Event 1 and Event 2 as observed by the LEFS60 telescope for different magnetic field
configurations. Same presentation as in Figure 4.4.
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4 Modeling solar NR electron events

Figure 4.10: Goodness of fit estimator obtained from the deconvolution of Event 1 for 16 values
of λr and three scattering cases: isotropic (dashed line), μ-dependent scattering with ε = 0.10

(dotted line) and with ε = 0.01 (solid line). Each panel shows the result for a different magnetic
field configuration (details in Table 4.1). The lowest ζ obtained for each scattering case is
denoted by an open circle. The thin horizontal line marks ζ = 0.
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4.2 Deconvolution test

Nevertheless, for all magnetic field configurations, the deconvolution technique obtains

ζ = 0 for μ-dependent scattering with ε = 0.01, λr = 0.2 AU and an injection profile that

coincides with the actual one; which shows that the technique works properly although it is

no longer possible to distinguish the correct profile from the several possibilities.

By assuming isotropic scattering or a μ-dependent scattering with ε = 0.10, we find that

the best fit corresponds to λr = 0.2 AU in both cases, for configurations from 1 to 3 (Figure

4.10). For configurations (1) and (2), ζmin are different and the lowest one corresponds to

μ-dependent scattering with ε = 0.01. Note, however, that the ζmin values obtained for con-

figuration (3) are very similar for the three scattering cases; therefore, for this configuration,

it is not possible to distinguish between the three scattering models. This is a consequence

of the lack of coverage of the telescope, in particular of μ � 1. These pitch-angle cosines are

critical because they constrain the contribution of the injection. If λr > 0.2 AU, however, the

evolution of ζ(λr) shows a different behavior for the three scattering models in configurations

from (1) to (3). The more accurate the description of the scattering processes at work, the

lower the value of ζ .

For configurations from (1’) to (3’), deconvolution yields the same result, ζ � 0, for

λr = 0.2 AU, for the three scattering cases. Therefore, it is not possible to discern the actual

scattering processes at work, even when μ-co = 85%. This is because these configurations

do not allow the telescope to scan particles with μ ∼1; the reverse of what happens in config-
urations (1) and (2). In addition, for λr > 0.2 AU, the evolution of ζ(λr) shows that the more

isotropic the scattering model, the lower the value of ζ obtained.

Figure 4.11 shows the values of ζ obtained for Event 2 (using the same presentation as

for Figure 4.10). As expected, the higher the μ-co of the telescope the deeper the minimum

of ζ and the more symmetric the function ζ(λr) around λmin. For values of λr > λmin, the

lower the μ-co, the flatter the ζ(λr). This is clearly seen when μ-co ≤ 55%. For all magnetic

field configurations, the deconvolution algorithm gives ζ = 0 for μ-dependent scattering with

ε = 0.01, λr = 0.9 AU and an accurate injection profile.

By assuming either isotropic scattering or μ-dependent scattering with ε = 0.10, we find

that the obtained λmin value underestimates the actual value of λr for configurations from (1)

to (3), whereas it is overestimated for configurations from (1’) to (3’). Also, as expected, for

configurations (1) and (2), ζmin is different for the three scattering cases, while for configura-

tions (1’) and (2’) the values of ζmin are very similar in the three cases. The evolution of ζ(λr)

for λr > 0.9 AU for the three scattering models in configurations 1 to 3 follows the same

explanation given for Figure 4.10.

Thus, we conclude that in order to discern the actual scattering model, the value of λr

and the underlying injection profile from LEFS60 sectored measurements of NR electron
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4 Modeling solar NR electron events

Figure 4.11: Goodness of fit estimator obtained from the deconvolution of Event 2. Same pre-
sentation as in Figure 4.10.
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4.2 Deconvolution test

intensities two requirements must be fulfilled:

1. the event must be observed with μ-co ≥ 70%, and

2. the telescope must scan particles coming antisunward along the field direction.

4.2.2 Varying magnetic field

We select two different time periods during which the ACE/MAG instrument measured the

local magnetic field vector in the spacecraft coordinate system with low and high variation

of θB and φB, respectively. We label these two data sets as configurations (5) and (6). They

correspond to the time periods from 17:45 UT to 19:45 UT on 2004 September 19 (5), and

from 14:00 UT to 16:00 UT on 2001 April 15 (6). The magnetic field vector shows a standard

deviation in θB of 14◦ and 31◦, respectively, and a standard deviation in φB of 9◦ and 42◦. The
mean μ-co of the telescope during these periods is very similar μ-co � 90%. Table 4.2

lists the characteristics of these two data sets. The first column identifies the magnetic field

configuration; the following three columns give the date and the time period of the MAG

measurements; the next three columns give the mean polar angle and the mean clock-angle

of �B in the spacecraft coordinate system and its prevailing polarity; the last column gives the

mean μ-co of the telescope during the selected time period.

The sign of the magnetic field (polarity) is relevant to the calculation of the pitch-angle

distributions. A negative IMF polarity means that the field-aligned electrons coming from

the Sun have a pitch-angle cosine μ = −1, whereas a positive IMF polarity means that anti-

sunward field-aligned electrons have μ = +1. A change of polarity during the period of study

of the event may indicate a change in the flux tube scanned by the spacecraft, implying a pos-

sible change in the injection history and interplanetary transport conditions of the energetic

particles.

In the Radial Tangential Normal (RTN; spacecraft centered) coordinate system4, R is the

outward Sun to spacecraft radial component, T is the component perpendicular to R in the

ecliptic plane in the sense of solar rotation, and N completes the orthogonal set pointing

toward the North. We define the polarity of the interplanetary magnetic field as

sign(�B) = sign(BR − BT ) (4.10)

where BR and BT are the R and T components of the magnetic field vector in the RTN coor-

dinate system, respectively. Figure 4.12 illustrates how the polarity changes as a function of

4http://www.srl.caltech.edu/ACE/ASC/coordinate_systems.html
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Figure 4.12: Average Parker field direction at 1 AU. R shows the outward Sun to spacecraft radial
direction and T is the component perpendicular to R in the ecliptic plane in the sense of solar
rotation. Dotted line separates regions where BR > BT (positive polarity) and BR < BT (negative
polarity).

the interplanetary magnetic field direction.

From the MAG measurements of BR and BT at 1 AU at 72 s time resolution for the time

periods listed in Table 4.2, we calculate the polarity of the interplanetary magnetic field as

a function of time and estimate the modal value (+1 or -1) during the period of study of the

event.

Figure 4.13 shows the magnetic field measurements and the range of μ-values scanned by

the LEFS60 telescope, for the two configurations; (5) left and (6) right. The top panel shows

the IMF magnitude and its polarity (thin line). The two middle panels show θB and φB in the

spacecraft coordinate system. The bottom panel shows the range of μ-values scanned by the

LEFS60 telescope (gray area) and the pitch-angle cosine of each sector as a function of time.

The IMF polarity is positive and constant for configuration (5). For configuration (6),

however, the polarity is negative during most of the period under study (this means that

electrons coming from the Sun along the field lines have μ = −1) but there are some reversals

after 19:05 UT. For the deconvolution procedure and for the estimation of the goodness of

the fit, we only consider those data points showing the modal polarity.

Figure 4.14 shows the ζ-values obtained from the deconvolution of Event 1 and Event 2

for configuration (5) and (6). The results for both configurations are quite similar to those

obtained for configuration (1), with μ-co = 85 % and a stable magnetic field (section 4.2.1).

Therefore, we conclude that the variation of the magnetic field direction does not change the

results of the deconvolution, provided that final requirements listed for a stable magnetic field

are met and that changes in polarity are taken into account.
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Table 4.2: Magnetic field data sets selected from EPAM/MAG instrument.

Time period �B
Date <θB> <φB> polarity μ-co

(5) 2004 Sep 19 17:45 19:45 120◦ ± 14◦ 3◦ ± 9◦ +1 90%

(6) 2001 Apr 15 14:00 16:00 83◦ ± 31◦ −15◦ ± 42◦ -1 91%

Figure 4.13: Three top panels: Magnetic field magnitude and polarity (thin line), polar angle (θB)
and clock-angle (φB) measured by the MAG experiment in the spacecraft coordinate system
during 2004 September 19 (left) and 2001 April 15 (right). Bottom panel: range of pitch-angle
cosine scanned by the LEFS60 telescope (gray area) and the pitch-angle cosine of each sector
as a function of time.
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Figure 4.14: Goodness of fit estimator for magnetic field configurations (5), top, and (6), bottom,
for Event 1 (left) and Event 2 (right). Same presentation as in Figure 4.5.
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4.3 Measurement errors

In the previous section we assumed that intensity and magnetic field measurements have no

errors associated. Real data, however, is generally subject to measurement errors. Thus, in

the following two subsections we study how uncertainties, in either intensities or magnetic

field directions, affect the results obtained by the deconvolution algorithm.

4.3.1 Intensity errors

Uncertainties in intensity data measured by EPAM are derived from statistical (counting)

errors only, according to the EPAM Data Documentation5. Particle counting is a Poisson

process. Therefore, the statistical error in counts is given by
√

Ns, where Ns is the number of

counts registered in sector s in the averaging time period; thus, the relative error is given by

1/
√

Ns. The sectored intensity, Is, can be calculated by

Is =
Ns

g · Δt · ΔE
(4.11)

where g is the geometrical factor in units of cm2sr, Δt is the actual collection time in seconds,

(that is, the livetime of each sector) and ΔE is the energy range in MeV. For the particular

case under study, g = 0.397 cm2 sr, Δt = 9 s and ΔE = 0.137 MeV. Thus, the uncertainty, σs,

associated with a measure of sectored intensity is given by

σs =
Is√
Ns

(4.12)

The effect of statistical errors in the results of the deconvolution algorithm can be studied

by adding to the synthetic measured sectored intensities a random fraction of its associated

error, that is, Is + ξσs, where ξ is a normally distributed random number (with zero mean

and unit variance). We choose magnetic field configuration (5) and generate the sectored

intensities observed by LEFS60 for Event 1 and Event 2. Afterward, we ’shake’ the intensity

data by adding ξσs to each data point. Finally, we try to fit the measured sectored intensities

by means of the deconvolution algorithm.

Figure 4.15 shows the values of the goodness of fit estimator, ζ, obtained from the decon-

volution of Event 1 and Event 2 when including statistical errors in the measured sectored

intensities.

The values of ζ(λr) obtained for both events are quite similar to those obtained in section

5http://www.srl.caltech.edu/ACE/ASC/level2/epam_l2desc.html
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4.2.2 for configuration (5) (see Figure 4.14), without taking into account the uncertainties in

the intensity measurements.

The lowest ζ value, ζ = 0, is obtained for μ-dependent scattering with ε = 0.01 and

λr = 0.2 AU for Event 1, and λr = 0.9 AU for Event 2. In these two cases, the injection

profile obtained from the deconvolution reproduces the timing of actual injection profile but

it shows intermittency in the time-extended injection component (see upper panels in Figure

4.16). We therefore conclude that the deconvolution algorithm tries to cope with fluctuating

intensities by temporally switching on and off the injection.

To get an idea of the sensitivity of the deconvolution algorithm, we study the results yielded

by the algorithm if we were assuming a scattering model that badly describes the scattering

processes at work. In the cases we are studying, Event 1 and Event 2, this would correspond

to fit these events assuming isotropic scattering or μ-dependent scattering with ε = 0.10.

For Event 1, the best fit corresponds to λr = 0.2 AU for these two scattering cases; the

injection profiles are shown in the two lower left panels of Figure 4.16. In these two cases, two

injection episodes can be resolved but, (i) the onset of the first prompt injection is blurred by

previous weaker injection episodes, (ii) the onset of the second injection episode is delayed,

and (iii) its decay phase shows noticeable intermittency. For Event 2, the best fit corresponds

to λr = 0.5 AU for isotropic scattering and λr = 0.7 AU for μ-dependent scattering with

ε = 0.10. Thus, if we did not know that the actual scattering processes are described by a

μ-dependent scattering with ε = 0.01, in this case, we would underestimate the value of λr.

In these two cases, the two injection episodes can be resolved (see two lower right panels of

Figure 4.16) but they show the same characteristics as discussed for Event 1 (points from (i)

to (iii)).

4.3.2 Magnetic field errors

Systematic errors are more probable in magnetic field data than in intensity measurements

if we only compare sectored rates from one telescope. Therefore, we can test the effect of

errors in the measurement of magnetic field directions by adding an offset of 0.05 nT, for

example, to one of the magnetic field components. We choose magnetic field configuration

(5) for this analysis, which is characterized by 〈Bx〉 = −4.5±0.7 nT, 〈By〉 = −0.3±0.7 nT and

〈Bz〉 = −2.6 ± 1.1 nT, and study the effects of an offset in the z component of the magnetic

field.

We generate the sectored intensities observed by LEFS60 for Event 1 and Event 2. We then

modify the magnetic field measurements by adding 0.05 nT to Bz. Finally, we try to fit the

generated measured sectored intensities by calculating the Green’s sectored intensities using
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Figure 4.15: Goodness of fit estimator, ζ, obtained from the deconvolution of Event 1 (left) and
Event 2 (right), considering statistical errors in the intensity measurements (see text for details).
Same presentation as in Figure 4.5.

Figure 4.16: Best-fit electron injection profiles as a function of the scattering model for Event 1
(left) and Event 2 (right), considering statistical errors in the intensity measurements (see text
for details). Same presentation as in Figure 4.7.
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the magnetic field data that contains the error.

Figure 4.17 shows the values of ζ obtained from the deconvolution of Event 1 and Event

2, assuming magnetic field configuration (5) but adding a systematic offset of 0.05 nT in the

Bz component. The obtained ζ(λr) profile is very similar if the offset is added in the x or y

magnetic field component.

The values of ζ(λr) obtained for both events are quite similar to those obtained for config-

uration (5) in section 4.2.2 (see Figure 4.14), without taking into account the uncertainties in

the magnetic field direction.

The lowest ζ value, ζ = 0, is obtained for μ-dependent scattering with ε = 0.01 and

λr = 0.2 AU for Event 1, and λr = 0.9 AU for Event 2. In these two cases, the injection profile

obtained from the deconvolution shows (i) an early prompt injection, and (ii) intermittency

in the time-extended injection component (see upper panels in Figure 4.18). We therefore

conclude that the deconvolution algorithm tries to cope with uncertainties in the magnetic

field direction by decreasing and increasing the injection. The smaller the mean free path, the

stronger the effect.

If we were to assume isotropic or μ-dependent scattering with ε = 0.10, the best fit would

correspond to λr = 0.2 AU for Event 1. In these two cases, the two injection episodes could be

resolved (injection profiles are shown in the two left lower panels of Figure 4.18) but, (i) the

onset of the first prompt injection would be blurred by previous weaker injection episodes, (ii)

the onset of the second injection episode would be delayed, and (iii) its decay phase would

show noticeable intermittency. For Event 2, the best fit would correspond to λr = 0.5 AU

for isotropic scattering and λr = 0.7 AU for μ-dependent scattering with ε = 0.10. Thus,

if we did not know that the actual scattering processes are described by μ-dependent scat-

tering with ε = 0.01, we would underestimate the value of λr. The two injection episodes

could be resolved (see two lower right panels of Figure 4.16) but they would show the same

characteristics as discussed for Event 1; points from (i) to (iii).
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Figure 4.17: Goodness of fit estimator, ζ, obtained from the deconvolution of Event 1 (left) and
Event 2 (right) considering an offset of 0.05 nT in the measurement of Bz (see text for details).
Same presentation as in Figure 4.5.

Figure 4.18: Best-fit electron injection profiles as a function of the scattering model for Event 1
(left) and Event 2 (right) considering a systematic 0.05 nT offset in the measurement of Bz (see
text for details). Same presentation as in Figure 4.7.
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