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1

Organisation of this thesis

This thesis is organised in four main chapters. The first chapter is devoted to a

general introduction and objectives. Number two is devoted to all the work developed in

the laboratory. Chapter three embraces all the work that was done with field data. Each of

these two central chapters collects a mixture of published and row material. In the sake of

clarity, all the thesis has been written in the same format, regardless the state of publication

of the information. If the information of a particular section has been published, it is

indicated at the beginning of the section. Information which is considered important but

which was not included in a particular published section, has been inserted after authors’

approval. A brief introduction and extensive discussion is given in each of the sections

conforming chapters two and three. In chapter four, the main conclusions from each part

are summarised. Provided that the thesis is organised in a similar way that a compendium

of publications, and as a guide to the reader, the repetition of some material at the

introduction was unavoidable.

Organización de esta tesis

Esta tesis se organiza en cuatro capítulos principales. El primer capítulo ofrece una

introducción y objetivos generales. El segundo contiene la información obtenida de la

experimentación en laboratorio. El tercer capítulo está dedicado a los estudios de campo.

Cada uno de estos capítulos centrales se organiza en secciones. La información que

contienen son una mezcla de material publicado e inédito. Todas las secciones se han

escrito en un formato similar para facilitar la comprensión. Si una sección o parte de ella ha

sido publicada, la referencia se señala al principio de la sección correspondiente. En los

casos en que la información publicada ha sido ampliada, se ha obtenido el consentimiento

de los autores de la publicación. En cada sección de los capítulos centrales se ha añadido

una introducción y una discusión. En el capítulo cuarto se recogen las conclusiones

generales de la tesis. Dado que la estructura de las seccciones es similar a la de un artículo,

fue inevitable incluir, en algún caso, información redundante.
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1.GENERAL INTRODUCTION AND OBJECTIVES

1.1. RATIONALE OF THE THESIS AND OBJECTIVES

Populations of marine fish undergo strong fluctuations in the number of young of the

year recruits. These fluctuations are extremely difficult to predict and pose decisive

problems for fishery managers (Koslow 1992). In many species of fish, only up to 0.01%

end up surviving to the adult stage. It is therefore believed that small fluctuations in

mortality at early stages of fish are responsible for recruitment variability.

It is also known that factors affecting larval survival interact closely but can, in terms

of understanding, be divided into biotic (mainly feeding success, predation and disease)

and abiotic factors (mainly hydrography). Studies on the relative importance of each factor

have varying degrees of difficulty, either in terms of the technology needed, the labour

involved or the money required. Whereas accurate understanding of the link between

hydrodynamics and survival requires complex models (e.g. Brickman and Frank 2000;

Hinrichsen et al. 2001), and in situ studies of predation have proven difficult (Bailey 1989),

the study of nutritional condition (after Shelbourne 1957, meaning nutritional status or

“health”) enables the individual analysis of the physiological state of a larva and, as a

proxy of growing state, it is still believed to be a useful method to aid in the estimation of

larval recruitment (Ferron and Leggett 1994; Theilacker 1996; Suthers 1998). Although

severe starvation can cause direct mortality, this is seldom observed in the wild. More

probably, and according to the current line of thought, unhealthy larvae will experience

suboptimal growth, and will have an increased susceptibility to mortality by predators,

starvation, unfavourable larval transport, etc. (Houde 1987; Leggett and Deblois 1994; Hare

and Cowen 1997).

In the last decades, there has been extensive literature on the use of condition indices

applied to fish larvae of several species, both in the laboratory and in the wild (Ferron and

Leggett 1994, Suthers 1998). Most of these works can be divided into two main types. One
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regards the development of indices and the study of their properties under controlled

conditions. The other deals with the application of existing indices (prior species-specific

laboratory calibration or directly for achieving relative comparisons in the field) to study

the mean condition of wild larval populations, and relate it to environmental conditions in

order to infer potential survival.

This thesis contributes to the body of knowledge of these two main fields by focusing

on the following general objectives:

A) To deepen the study of multiple condition indices in a well-known laboratory-

reared species (sea bass Dicentrarchus labrax). There is a need to test the maximum

number of condition measurements in individuals with accurately known past feeding

history, in order to establish meaningful comparisons between condition methods and

properties. Whereas the bulk of laboratory works deal with only one or a few indices, there

are not many works that compare various indices in a species obtained from a single

culture (e.g. Martin et al. 1985; Bisbal and Bengston 1995). One requirement for

conducting valid studies of condition indices in the laboratory is that the effect of the

factors to be tested (e.g. food ration) do not vary unpredictably. For this, it is desirable that

the chosen species has well established rearing parameters. We decided to choose sea bass

for the experimental studies because of its well-known rearing requirements. Bearing in

mind that the absolute values of some indices are species-specific, the focus of this

experimental work was placed on the comparative responses of the indices, the

improvement of some classical measurements, the relationship with larval survival and the

theoretical usefulness of these indices for field studies.

B) To study the relationships between environmental variability, nutritional status

and growth of Sardina pilchardus (Walbaum 1792) larvae in an area of the Catalan

Sea (North-Western Mediterranean). Pilchard is the most abundant pelagic species in the

NW Mediterranean (Martín 1991), and supports the major fishery (in terms of biomass) off

the Catalan coast. Despite its economic importance and the known decline of the population

biomass since 1993 (Anonim 2000), the studies on possible links between environmental

conditions and pilchard early life histories are not yet developed in this area. Although the
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oceanography of the Catalan Sea is well known (Salat and Cruzado 1981; Font et al. 1988;

Pinot et al. 1995; López-Jurado et al. 1996; Millot 1999; Salat et al. 2002), the only studies

on pilchard larvae deal with its horizontal and vertical distribution patterns during the peak

spawning season (winter) (Olivar et al. 2001). There are no other studies on pilchard larval

ecology for this area, and there is none dealing with nutritional status and its relationship

with environmental conditions. Within this context, the second part of this thesis is devoted

to offering a number of elements in response to this problematic.

1.2. FACTORS AFFECTING LARVAL SURVIVAL AT SEA

Prior to any description of potential factors determining survival, we consider it

necessary to define a series of concepts and terms that characterise early life history of fish.

In general, marine fish spawn pelagic eggs that hatch into undeveloped larvae

whose energy source is of maternal origin (yolk-sac and sometimes oil globules) until they

develop the morphological, behavioural and physiological sufficiency that allow them to

obtain external planktonic food. Important events during this development are the opening

of the mouth and the development of a functional digestive system. In optimal

environmental conditions, larvae develop at fast rates until they reach the juvenile form

after a gradual or abrupt process called metamorphosis, by which larvae acquire most

morphological and physiological characteristics of the adults (including ossification, scale

formation, etc.). We will use the terminology of Kendall et al. (1984) to describe these

phases, for its simplicity and wide-spread use: egg (fertilisation to hatching), larva

(hatching to metamorphosis) and juvenile (beyond metamorphosis). Within the larval

period, development is divided into yolk-sac, pre-flexion, flexion and post-flexion. In more

general terms, we may refer to “young larvae” or “older larvae” (referring always to non

yolk-sac larvae) when the studied processes do not necessarily follow the categorisation

made by the urostyle flexion. All these phases are collectively referred to as

“Ichthyoplankton” (Ahlstrom and Moser 1976). Ichthyoplankton, by definition, is

considered to be dependent on horizontal currents for displacement, although active

migration may be performed by larvae even in the pre- flexion stage. Ichthyoplanktonic

distribution will thus be an result of the spawning site, hydrodynamics and vertical motility.
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The factors determining final larval survival, and probably recruitment, are multiple

and interact in a complex way. Acknowledging the fact that any division of putative

sources of mortality is arbitrary and biased, we next briefly review the main biotic and

abiotic factors that may condition larval survival according to the reviewed literature.

Abiotic factors

Abiotic factors like water temperature, salinity or light can influence individual

larval survival by directly affecting developmental rates (Frank and Leggett 1981,1982;

Miranda et al. 1990; Koumoundouros et al. 2001; Sawant et al. 2002), developmental

patterns (Johnston et al. 2001), adult fecundity (McGurk 2000) or spawning time (Shelton

and Huthchings 1989; Ré et al. 1988; Mihelakakis et al. 2001; Sánchez-Velascoa et al.

2002), among others. Temperature and salinity are conservative in nature and integrate to

define the water masses in which larvae are immersed. It is generally believed that physical

processes that cause water movement and structure of the water column at different scales

of space and time have a bigger influence in final larval survival. We therefore will

comment on some of these aspects.

Hydrodynamics may operate on survival at scales from less than a metre to

thousand of kilometres. Unfavourable larval transport was already postulated to be one of

the major causes of recruitment variability in the work by Hjort (1914). For example, in

upwelling areas, the associated offshore transport of larvae to less productive zones due to

Ekman transport is well documented (Parrish et al. 1981; Olivar and Shelton 1993). On the

other hand, in species whose larval development is dependent on successful transport to

defined nursery areas (i.e. defined areas where larval and juvenile survival is enhanced, like

estuaries), favourable advective processes associated with the force of wind or pressure

gradients may be crucial (e.g. Govoni and Pietrafesa 1994).

In species whose larvae develop in relatively confined areas, or with high mesoscale

variability, survival may be linked to physical forces and features spanning a scale of

metres to kilometres and days to weeks. Within these, the existence of marked

pycnoclines, frontal zones (shelf-slope fronts, plumes), upwelling and the effect of eddies

may contribute to the concentration of larvae and their prey in aggregates where survival is
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promoted. The concentration of planktonic organisms is enhanced at frontal zones, which

can be thought of as the surface expression of sharp gradients in the physical properties of

two water masses. Aggregation of plankton results from its accumulation along horizontal

hydrodynamic convergence (Kingsford 1990). Whereas there is evidence that maximum

concentrations of larvae can appear associated to shelf-break fronts or river plumes

(Sabatés 1990 a, b; Sabatés and Masó 1992; Govoni and Pietrafesa 1994), frontal zones

appear to be the direct cause of larval retention and enhanced production, therefore

contributing to final larval survival (Kiørboe et al. 1988). Also, the surface enrichment with

nutrients caused by upwelling generally causes enhanced productivity that has been related

to enhanced larval survival (Cushing 1990; Bakun 1998). Wind stress can disrupt these

structures and contribute to the scattering of larvae and their prey lowering their survival

probabilities, as expressed in the “stable ocean” hypothesis by Lasker (1981). Also, wind

stress can generate highly dynamic conditions that require larvae to invest more energy in

feeding or maintaining a position in the water column, producing physiologically unfitted

larvae that will have a higher mortality potential (e.g. Gallego et al. 1996, Kloppmann et al.

2002). Small-scale wind-generated turbulent forces play a crucial role here. Their direct

relation with individual feeding success will be discussed below.

Biotic factors

Within the biotic factors affecting survival, feeding success and predation are

thought to be the most important.

Feeding success, though an intuitive concept, involves multiple inter-related factors

such as larval and prey patchiness, turbulent forces, density-dependent mechanisms,

behavioural aspects, size and age, prey composition, etc. (see Leggett and Deblois 1994).

Feeding success must be differentiated from food abundance, that had been hypothesised as

the main field variable determining recruitment (Hjort’s (1914) Critical period hypothesis

and subsequent Cushing’s (1975) Match-Mismatch hypothesis). McKenzie et al. (1991)

showed that larvae and their prey appear in patches, these being influenced by vertical

water structure, active vertical swimming, etc. Indeed, larvae are not completely passive.

They display active vertical migration, following species-specific patterns, in order to

maximise feeding success and reduce mortality by predators (Neilson and Perry 1990).
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Feeding success can also be fostered by wind-generated turbulence. Within certain values,

small-scale turbulent forces are known modify the rate of encounter between larvae and

food items in a dome-shaped way (Rothschild and Osborn 1988, modified by MacKenzie et

al. 1994). More recently, the turbulence-avoidance hypothesis has been suggested as an

alternative mechanism generating increased larval-prey patchiness and feeding success

(Franks 2001). It suggests that both larvae and prey migrate vertically to calmer waters to

avoid unfavourable turbulent mixing, hence concentrating at particular depths. At the

individual level, interactions between development, predatory capacities and prey density

may also play an important role (Laurel et al. 2001; Puvanendran et al. 2002).

The current view is that feeding success may have a more determinant effect on

survival in young pre-flexion larvae, as at this stage they cannot withstand suboptimal

feeding or high energy expenditure for too long due to their limited energy stores. For older

larvae or yolk-sac larvae predation will be the dominant cause of mortality. However, a

complete understanding of the importance of feeding success and the mechanisms

governing it requires the integration of multiple parameters in field studies (e.g. Werner et

al. 2001).

Predation on fish eggs and larvae is thought to be perhaps the final cause of most

mortality, and can be exerted by numerous organisms (Bailey and Houde 1989). The

numerous factors affecting predation include larval size (Pepin et al. 1992), age (Litvak and

Leggett 1992), level of starvation (Yin and Blaxter 1987, Elliott and Leggett 1998, Green

and McKormick 1999), density of predators (Sheperd and Cushing 1980, Steele and

Forrester 2002), ontogeny (Fuiman 1994; Sheperd et al. 2000), temperature (Elliott and

Leggett 1997) or developmental rate (Houde 1987).

The mechanisms by which individual larvae are removed through predation are

understood in a frame of vulnerability to predators, which increases if larvae are small (the

“bigger is better” concept), or develop more slowly (the “stage-duration” concept). These

mechanisms are not mutually exclusive and fall into the broader frame of the “growth-

mortality hypothesis”. Although literature results are sometimes contradictory, there is an

increasing number of papers that support the claim that faster-growing and/or larger larvae

experience higher survival rates (e.g. Hare and Cowen 1997). Suthers (1998) analysed the



1. General Introduction and Objectives

9

usefulness of studies of condition in the frame of the growth-mortality hypothesis (“Is fatter

better”?). He concluded that having a better body condition is only advantageous if it is

related to a faster growth. In addition, suboptimally feeding larvae may lose buoyancy

control, being more vulnerable to unfavourable advective transport (Neilson et al. 1986;

Sclafani et al. 1993, 2000).

Disease and parasitism are thought to be important biotic factors affecting larval

survival, and could be enhanced in unfitted larvae. There is a paucity of information

regarding disease and its incidence in wild populations, although in clupeoids recent

evidence suggests that resulting mass mortality in juvenile and adults due to disease may be

high (Gaughan et al. 2000; Ward et al. 2001). On the other hand, parasites are known to

affect eggs and larvae (e.g. Crespo et al. 2001) and could be a potential source of mortality,

though this is usually unquantified in the field.

1.3. CONDITION INDICES

From the above explanations, survival is believed to be a result of favourable

hydrographic conditions, low predation, high feeding success and, with less certainty,

incidence of disease.

Condition indices were extensively reviewed by Ferron and Leggett (1994) in terms or

reliability, sensitivity, time response, size and age specificity, field vs laboratory estimates,

processing time, costs and requirements. They divided condition indices into three main

categories according to the main organisation levels: organismal, tissular and cellular.

These indices operate at different time scales. Typically, the higher the organisation level of

the index, the longer it takes to respond to an environmental change (i.e. food, turbulent

mixing rate etc.) for a given developmental state, species, set of environmental conditions

and specific nutritional status of the individual at the moment of study. Some indices can

serve directly to estimate mortality (typically necrotic tissues, e.g. McFadzen et al. 1997),

whereas others are a reflection of growth or immediate feeding status (e.g. some

biochemical indices). As concluded by Ferron and Leggett (1994), no single index is “the
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best index”, and usually a specific combination must be chosen in order to respond to a

particular question.

In the next paragraphs, a brief description of each category of indices is offered,

focusing on those investigated in this thesis.

Organismal level

Condition indices at the organismal level are typically studied through

morphometrics for its integrative character (changes in cellular properties cause histological

variations that may end up provoking shape changes). The term morphometrics applies to

the study of the shape, or changes in shape, of an organism or part of it. In fish larvae,

morphometrics has been utilised to detect the effects of suboptimal feeding for many years

(Shelbourne 1957; Theilacker 1978). The use of these indices is based on the premise that,

in response to food deficiency, some body parts (e.g. body depth) are modified with respect

to some less starvation-sensitive parts (e.g. eye diameter or length). Much of the success of

these indices is attributable to their short processing time, low cost and ease of

obtainability. Although differences between seasons, sites and years have been found in the

nutritional status measured by some sort of morphometric measurement (Ferron and

Leggett 1994), they have been criticised for having low sensitivity to short-term events

(less than a week), such as upwellings, etc. Other criticisms are based upon their sensitivity

to shrinkage (both due to preservatives and speed net collection), size and age dependence,

the high differences between calibration data vs wild specimens, or the high species

specificity.

Another criticism to morphometric indices is based on the usually neglected effect

of allometry. With the term allometry we refer to the differential growth of some body parts

along ontogeny. Allometry is highly species-specific, and can be easily confused with the

effects of feeding ration or quality. Whereas several standardisation methods have been

used in order to remove the effect of size, few have dealt with allometric effects.



1. General Introduction and Objectives

11

In Section 2.2. of this thesis, this question is addressed by applying a method for

totally removing size effects whilst accounting for allometry, and interpret the results in the

frame of other previously used methodologies.

Tissular level

Histological indices have a tradition of determining condition both in the laboratory

and in the wild (O'Connell 1976; Theilacker 1978; Oozeki et al. 1989; Theilacker and

Watanabe 1989; Sieg 1992; Ferron and Leggett 1994; Bisbal and Bengston 1995;

McFadzen et al. 1997; Sieg 1998). The success of histological indices is partly attributable

to the high amount of information that can be derived from their study (even if slides were

kept for a long time) and because they are thought to be the only true starvation indices

(Suthers 1998).

The technique usually consists of the examination of cells and organs and the

establishment of a grading system. Each organ is examined and the cellular aspect or

tissular cohesion evaluated in order to obtain a measure of the general condition of a larva.

A crucial advantage of histological indices measured through multiple grading is that the

general pattern of tissular degradation is relatively independent of size and, to an extent,

species (Ferron and Leggett 1994; Grioche 1998).

There are, however, some questions that require further investigation in the

laboratory. One of them regards the need of objective methods for tissue grading. Indeed, a

great amount of studies used qualitative or semi-qualitative measurements and relied on the

experience of the histologist (O'Connell 1976; Sieg 1992; McFadzen et al. 1997). Until

recently (Catalán and Olivar 2002), quantitative data have been restricted to the

measurement of cell heights of few tissues, mainly gut and liver, and have proved useful for

the early larval stages of some species (Ehrlich et al. 1976, Oozeki et al. 1989, Theilacker

and Watanabe 1989, Theilacker and Porter 1995). However, some of these measurements

are only obtainable from species with elongated digestive ducts (Theilacker and Watanabe

1989), or have been restricted to particular larval stages. Lastly, some characteristics of

muscle cellularity and muscle fibre growth patterns have been pointed out as possible

indicators of condition. Several workers have proved that temperature can modify the
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patterns of hypertrophic or hyperplastic muscle growth (Stickland et al. 1988; Vieira and

Johnston 1992; Johnston et al. 1995). The effect of food, however, has never been tested

and only in one field study it was pointed out as a possible source of variation in the muscle

growth patterns (Temple et al. 2000).

In Section 2.3, we compared the advantages of classical histological scoring vs

quantification of several organs through digital image analysis. Also, much of the work on

the condition of pilchard larvae was based on histological methods (Section 3.2.), some of

which were derived directly from our laboratory experiments. The possible effect of

temperature and food on muscle growth patterns in pilchard was also explored in Section

3.2.

Cellular level

This level is studied through biochemical indices and some histological indices.

There is not, to date, a general frame that enables the establishment of a general pattern of

mobilisation of biomolecules during suboptimal feeding conditions in fish larvae. From the

reviewed literature, it seems that suboptimally-fed young larvae soon deplete liver glycogen

stores (Govoni 1980) and endogenous lipids (Hakanson 1989), and rapidly rely on

catabolism of muscle proteins, which are the main energy source of starved young larvae

(Pedersen et al. 1990). As the larvae grow bigger, lipid and glycogen stores can cope with

starvation for longer before muscle proteins are utilised. The establishment of biochemical

condition indices in specimens of unknown age (typically wild-collected), given the large

sources of variability other than nutrition, needs to relate the variation of a particular

starvation-sensitive variable to a less-sensitive variable.

Measures of condition at the molecular level have had enormous success in the past

years (Ferron and Leggett 1994, Suthers 1998), partly due to the increased availability of

molecular techniques and the progressively lower costs. We focused this section of the

introduction on the indices that we examined in this thesis (some widely used, some largely

untested), which involved the measurement of relative RNA and protein contents,

metabolic enzyme activities and cell proliferation rates. Section 2.4. is devoted to the

comparative study of these indices.
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One of the most popular condition indices in fish larval studies is the RNA/DNA

ratio, which is a reflection of protein synthetic potential (Buckley 1979; Ferron and Leggett

1994; Bergeron 1997; Buckley et al. 1999). Fish growth is accomplished primarily by

protein synthesis (Love 1970), which can make up over 50% of total dry weight. As RNA

content per cell vary according to the amount of protein synthesis, but DNA is relatively

constant within a cell, the RNA is usually standardised by DNA (e.g. Clemmensen 1987).

RNA/DNA has been successfully used as a proxy for growth and condition in fish larvae

(Buckley 1979; Westerman and Holt 1994; Clemmensen 1996).

Although several problems in the use of RNA/DNA have been identified in the

laboratory (dependency on developmental stage, size, tissue, temperature or analytical

method), the use of RNA/DNA is still recommended for field studies in relevant and

relatively recent reviews (Bergeron 1997; Buckley et al. 1999).

Taking the clupeiforms as an example of fish group, several works found increased

RNA/DNA ratios in larvae collected in frontal or coastal areas vs offshore areas (Sardina

melanostichus, Shimizu et al. 1989, Nakata and Zenitani 1996), or in areas with higher

zooplankton biomass (S. pilchardus Chícharo et al. 1998 a,b).

From the aforementioned reviews, several important recommendations arise for

field studies: 1) RNA/DNA is best suited for the analysis of larvae that do not depend on

maternal reserves. In the youngest stages, ontogenetic effects may be confused with the

effect of food ration; 2) the use of single tissues (preferably musculature, as it is the most

abundant tissue and is a particularly good indicator of condition) is recommended to reduce

variability; 3) only similar size-ranges and temperatures should be compared; 4) analytical

methods must try to minimise the error inherent in the classical RNA determination,

usually obtained by subtraction from total nucleic acid estimates after RNA-specific

enzyme digestion. The need to reduce this uncontrolled variability becomes evident after

Houde (1989), who showed that only a 5% decrease in daily larval growth (variability in

RNA determination is often larger) could reduce by an order of magnitude the individuals

surviving through larval stage.
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Another type of biochemical condition indices are those related to the activity of

some metabolic enzymes. There are several works on juvenile and adult fish showing that

starvation and lowered growth rates can be reflected in the activity of some metabolic

enzymes (Lowery et al. 1987; Yang and Somero 1993; Mathers et al. 1992, Couture et al.

1998). In fish larvae, studies are scarce and are mostly based on the study of two enzymes,

lactate dehydrogenase (LDH), from the anaerobic glycolisis cycle, and citrate synthase

(CS) from the Krebs cycle.

Whereas LDH is associated primarily with the potential for anaerobic catabolism,

CS is a reflection of feeding-induced aerobic metabolism (Sullivan and Somero 1980). The

activities of both enzymes are usually standardised by

unit protein.

Lactate dehydrogenase transforms pyruvate to

lactate to produce energy in environments of low oxygen

availability, typically in muscle (Fig. 1.1). LDH was

found to be positively correlated to food quantity and

quality in Sciaenops ocellatus and Lutjanus synagris

(Clarke et al. 1992) and negatively related to swimming

ability under suboptimal feeding regimes in the clupeid

Brevoortia tyrannus (Fiedler et al. 1998).

Citrate synthase transforms oxaloacetate to citrate

in the Krebs cycle to obtain reducing potential plus some

ATP (Fig. 1.1). This purely aerobic pathway is thought to

be more conservative as it plays a basic role for cell metabolism. CS activity has been

found to be lower in starved vs fed larvae, but not in larvae fed different rations (Mathers et

al. 1992).

A general consideration applying to the use of both enzymes is the strong

dependence on size. Relative enzyme activities (activity protein-1 by unit body mass)

increase with size in large larvae, juveniles and adults (Somero and Childress 1980; Power

and Walsh 1992; Overnell and Batty 2000). Metabolic scaling with size is not well studied

in early larvae and it has been suggested that comparisons among individuals should be

restricted to narrow size ranges (Brightman et al. 1997).

Figure 1.1. Schematic of the
metabolic reactions measured in the
laboratory belonging to either the
anaerobic glycolisis or Krebs cycle

ANAEROBIC GLYCOLISIS

KREBS CYCLE

Oxaloacetate Citrate
CS

Ac.CoA CoA

DTNB DTNBox

Pyruvate Lactate
LDH

ßNADH NAD +
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A method that is still less exploited in the realm of biochemical condition indices is

based on the calculation of cell proliferation rates using Flow Cytometry (Theilacker and

Shen 1993 a, b; Bromhead et al. 2000; Theilacker and Shen 2001). This method relies on

the hypothesis that growth is related to increased cell division rates. During a normal

eucharyotic cell cycle, cells that start DNA synthesis will have increased DNA contents

until the end of phase S (Fig. 1.2.). The populations of dividing cells (S,G2 and M) can be

distinguished from those of non-dividing cells (G0 and G1) by measuring the DNA-specific

fluorescence of each cell using flow citometry (Fig. 1.2 A, B). Studies of in vitro cell

cultures have shown that extracellular factors such as nutrient deprivation determine that

normal growing cells in the G1 stage revert to quiescence (Pardee 1989; Murray and

Kirschner 1989; Alberts et al. 1994).

The few available studies on cell proliferation rates using Flow Cytometry in larval

fish have been conducted on brain or muscle tissue. Cells of these two tissues are known to

divide throughout most of the life cycle in fish (Greer-Walker, 1970; Bierse et al., 1980). It

is known that muscle growth has a high plasticity in responding to environmental changes

Figure 1.2. A; the main phases of the eucharyotic cell cycle. During interphase the cell grows
continuously; during M phase it divides. DNA replication is confined to the part of interphase
known as S phase. G1 (high biosinthesis) and G0 (quiescence) will show constant DNA. S
phase will show higher DNA contets, peaking at G2 and M. B; output of a flow citometry
analysis. The y axis shows the number of cells, and the x axis shows the amount of
fluorescence, proportional to DNA contents per cell, in relative units. Fluorescence identified
as “debris” is shown in blue.
A, modified from: http://www.ncbi.nlm.nih. gov:80/books/data/cell/pictures/ch17/ch17f3.gif
B, results from analysis performed on brain cells of D.labrax larvae (present study).

G0

G0+G1

G2+M
↓

↓

Debris
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(Weatherley 1990; Johnston 1999), which makes it a particularly good candidate for these

types of studies. Theilacker and Shen (2001) revealed the suitability of this tissue for

studying growth and condition in fish larvae.

Works conducted on brain cells of larval fish also showed that the DNA synthetic

activity was sensitive to different factors such as the nutritional status or the environmental

temperature (Theilacker and Shen 1993 a, b, Bromhead et al. 2000). Despite the promising

results obtained, all authors agree that further research is required in order to apply the

fraction of dividing cells as an indicator of larval growth or condition.

1.4. EARLY LIFE HISTORY OF MEDITERRANEAN PILCHARD

The pilchard Sardina pilchardus is a clupeid distributed in the North-West Atlantic,

Mediterranean Sea, Sea of Marmara and Black Sea. Within the Mediterranean, it is more

common in the western part and Adriatic Sea than in the eastern part (Whitehead 1984). In

the NW Mediterranean, it is the most abundant small pelagic species (Martín 1991). It

supports the largest fishery of small pelagics in terms of biomass, although economically it

is less important than anchovy.

Pilchard, like most clupeids, is a indeterminate, serial (batch) spawner that release

batches of pelagic eggs at intervals within the spawning season (Hunter et al. 1985). Iberian

pilchard has a protracted spawning season, with some differences in the spawning peaks

depending on the area and temperature regime (Ré et al. 1990; Solá et al. 1992). For the

Atlanto-Iberian pilchard, the main spawning months occur in winter (Portugese coasts) or

spring (Cantabric coast) (García et al. 1992). For the North-Atlantic Spanish coast, two

main spawning seasons have been identified, namely between January and June and a less

marked peak between September and October (Riveiro et al. 2000).

In the Mediterranean the spawning season extends from October to May, peaking

in January-February (Gómez-Larrañeta 1960; Palomera and Rubíes 1979; Palomera and

Olivar 1996). This period is similar to that described for other Mediterranean areas like the

Adriatic Sea (Dulcic and Grbec 2000) and embraces the most unstable months of the year.
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An important aspect for the survival of the species is the reproductive strategy which, in the

case of the small clupeids, is strongly coupled to environmental conditions (see below).

Eggs and larvae are usually found within the continental shelf. Eggs are around 1.5

mm, spherical, and are normally found in the upper 70 m of the water column, with

maximum concentrations between 10 and 40 m (Olivar et al. 2001). The time to hatching is

around 67 hours at 15 ºC (Miranda et al. 1990) and larvae can remain in the plankton for

longer than a month (Ré 1984). Larvae feed during daytime at depths between 10 and 40

m., whereas at night they show a wider vertical distribution (Olivar et al. 2001). Most food

ingested by larvae are copepod eggs, nauplii and copepodites (78-89%). The amount of

nauplii is high at all ages, decreasing with larval length and being compensated for by an

increased number of copepodites (Conway et al. 1994).

1.5. INTERACTIONS BETWEEN PILCHARD LARVAL ECOLOGY

AND OCEANOGRAPHY IN THE CATALAN SEA

The major aspects of the dynamic conditions and the typical water mass structure in

the Catalan Sea are well known and have been described by several authors (e.g. Salat and

Cruzado 1981; Font et al. 1988; Pinot et al. 1995; López-Jurado et al. 1996; Millot 1999;

Salat et al. 2002). The cyclonic circulation in the surface layer around the basin is

controlled by two permanent density fronts: the Catalan shelf-slope front located over the

Iberian Peninsula slope and the Balearic front located over the insular slope (Fig. 1.3).

The Catalan front separates the saltier old Atlantic Water (AW)1 in the central part

from fresher shelf waters near the Catalan coast. The Balearic front separates the old AW

from the less saltier and warmer new AW coming into the basin through the Balearic Island

channels (Pinot et al. 2002). The circulation is subjected to mesoscale variability, which has

been attributed to the action of open sea eddies (Tintoré et al. 1990; García et al. 1998).

1 Water mass acronyms in this paper follow the recent recommendations of the Round table on Mediterranean Water Mass Acronyms,
36th CIESM Congress, Monaco, 2001. (http://ciesm.org/events/RT5 WaterMassAcronyms.pdf).
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Some variability in the horizontal distribution of pilchard and anchovy larvae in this

area is known to be associated with the variability in the position of the shelf-slope front,

the anticylonic circulation in the shelf and the effect of surface advection of fresh water

occurring in the northern part of the

Catalan Sea in spring (Palomera

1992; Sabatés and Masó 1992;

Sabatés and Olivar 1996; Salat

1996; Olivar and Sabatés 1997;

Olivar et al. 1998). These works

have focused mainly on the spring-

summer seasons, away from the

period when the bulk of pilchard

spawning takes place.

Unlike in summer (when

strong thermal stratification

occurs), the winter period in this

area is characterised by the

fertilisation of all the water column

over the continental shelf, caused

by local vertical mixing and shelf

intrusions of slope water (Salat et al. 2002).

The reproductive strategy in small clupeids is strongly linked to favourable

environmental conditions. Whereas spawning seasonality in clupeids may be genetically-

driven, the relative timing of egg production may have a strong environmental influence

(Pitcher 1995). In agreement with this, pilchard larvae are known to distribute horizontally

on coastal and central areas of the shelf, where productivity is high and currents are less

pronounced than in the shelf-slope front (Olivar et al. 2001).

There are no data on the relationships between environmental variables and the

condition of pilchard larvae for this area. The closest information related to this issue for

this species was obtained from the north Atlantic Iberian Coast, where condition has been

assessed by histological (McFadzen et al. 1997), RNA/DNA (Chícharo et al. 1998 a, b) and

Figure 1.3. Western Mediterranean basin with
indication of the sampling area along the Catalan coast
shelf and slope.
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C/N ratios (Coombs et al. 1999). All these indices showed that percentage of suboptimally

fed larvae was low. Only RNA/DNA correlated positively with zooplankton biomass. Also,

a relatively recent work was conducted on the growth of pilchard larvae in the South-

Western Mediterranean Ramírez et al. (2001). Although they associated larval growth with

increased RNA/DNA and protein/DNA contents, no relationship with differing

environmental variables or periods was made.

Within the last part of this thesis (sections 3.1 and 3.2.), new information on the

possible environmental relations between distribution patterns, abundance, growth and

body condition of pilchard larvae in an area of the Catalan Sea is offered.
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2.1. EXPERIMENTAL REARING, GROWTH AND
SURVIVAL

Most of this section has been published in: “Olivar MP, Ambrosio PP, Catalán IA
(2000) A closed recirculation system for ecological studies in marine fish larvae: growth
and survival of sea bass larvae fed with live prey. Aquat Living Resour. 13:1-7.”

ABSTRACT

This section describes the suitability of a closed recirculation system to study the

development of fish larvae in a strictly controlled environment, where only feeding was

varied (treatments Fed, Starved, Delayed, and short-term late-fast and re-feeding). The

system served both as an incubator and hatchery. The time-variation of physical and

chemical parameters together with survival and growth of reared sea bass (Dicentrarchus

labrax) larvae were studied over the first month of life. Special attention was paid to

nitrogen compounds. The recirculation design allowed for the maintenance of levels of

ammonia, nitrite and nitrate below those cited as responsible for mortality or decreased

feeding ability in other marine fish larvae. Almost no larval mortality occurred in the Fed

larvae from day 9 after hatching. The Starved group of larvae showed a sharp decline in

survival after 17 days of food deprivation. Larvae to which feeding was Delayed until day

13 ceased dying four days after food was supplied. Growth in length was similar during the

first two weeks of larval life regardless of feeding treatment, and followed a Gompertz

curve, with an asymptotic length of 5.3 to 5.7 mm. A second Gompertz cycle was observed

in Fed and Delayed treatments some time after food was supplied. Growth differences

(growth rate and total body length) between larvae in Fed and Delayed treatments were

especially evident during the third week of life. Nevertheless, after two weeks of normal

feeding, differences in size and growth rates were reduced. No changes in length-growth or

survival were observed in the short-term late-fast or re-feeding treatments.

Growth patterns of Fed larvae in this study were similar to those reported for larvae

reared in flow through systems. We believe that survival and growth of the reared larvae

was a direct function of diet, and that the type of rearing system did not adversely affect

these parameters. The results obtained suggest that future studies on nutritional condition

may benefit from this rearing design.
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INTRODUCTION

Low food concentrations in marine systems may result in direct or indirect larval

mortality due to both starvation or reduced growth, which, in turn, may result in increased

predation (Hunter 1981). However, numerous environmental factors affect both

development and survival of fish larvae in the wild. Culturing techniques developed in

aquaculture, where most variables can be controlled, have become useful for these type of

studies.

This work is part of a broad- multidisciplinary study that deals with the factors

influencing survival of fish larvae in the North Western Mediterranean. Accurate laboratory

experiments which discriminate factors potentially affecting survival (e.g. starvation) are

crucial to understand the relative importance of such phenomenon in the wild. As a first

step, the effect of food deprivation on larval survival and growth was studied in larvae

reared under controlled conditions. In order to ensure that these parameters were only

dependent on feeding regime, it was necessary to set up an experiment in which, in a

strictly controlled environment (closed recirculation system), only the feeding ration varied.

The sea bass, Dicentrarchus labrax, was chosen for the experiments because of its wide

distribution around Europe and the relatively well-known rearing requirements.

Most studies using closed recirculation systems focus on particular aspects of the

reared species, but it is difficult to find detailed descriptions for short term experimental

cultures. Previous studies reported on acceptable levels of several physical and chemical

parameters that produce good levels of growth and survival for D.labrax (Barahona-

Fernandes 1978; Corneille et al. 1989; Johnson and Katavic 1986). None of these studies,

however, described the time-variation of all these parameters along with data on growth

and survival at different feeding levels in a closed recirculation system.

The goal of the present work is to analyse the suitability of a short-scale integrated

incubation-hatchery recirculation system to help in future studies of field collected larvae

(in this case, for calibration laboratory experiments to study nutritional condition).
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MATERIAL AND METHODS

The basic design was taken from Amat et al. (1991) and adapted to a closed system.

These changes were made to enhance the water circulation in order to maintain a uniform

water quality and enhance the elimination of non-consumed food.

Figure 2.1.1 shows the main components of the recirculating system. It was

composed of a 310 l rearing tank and a reservoir of 220 l. A biological filter (BF) was

placed on top of the reservoir tank and a mechanical filter of 85 l (MF) was located

between the two tanks. Twelve grey polyvinyl chloride (PVC) rearing cylinders of 4 l (RC)

were set in the rearing tank. A 500 µm mesh size was glued to the bottom of the cylinders.

A PVC ring with a 100 µm mesh glued to it was used as a lid for the bottom of the

cylinders (FC, Fig. 2.1.1 b). These lids were placed during feeding hours to prevent the

escape of living prey. The total water flow through the system was kept constant at 17 l min
-1 (1020 l h-1) during the whole experiment. This meant a water renewal in the rearing tank

of 4.8 h-1. Renewal rate in the rearing cylinders fluctuated between 0.37 and 2 h-1 (Table

2.1.1.).

Table 2.1.1. Controlled parameters of the water quality for laboratory-reared sea bass larvae. WF, water flow.
Turnover refers to the rearing tank.

Age Light
ux)

Temp. (°°°°C
SD)

Salinity (±±±±
D) psu

Oxygen
mg l-1)

PH ( ±±±± SD) N-NO2 ( ±±±± SD)
mg l-1)

N-NO3

mg l-1)
WF in cylinders

h -1 )
Turnover h -1 Aerat. (ml

in -1)

Eggs 11-15 16 37 9.2 8.2 0.004 ± 0.001 <5 4-6 1-1.5 40

L0L2 11-15 16 37 9.6 ± 0.2 8.0 ± 0.1 0.004 ± 0.001 <5 1.5-1.6 0.37-0.40 20

L3L10 15 17.5 ± 0.6 35.6 ± 1.3 7.9 ± 0.7 8.1 ± 0.1 0.02 ± 0.019 0-5 1.5-1.6 0.37-0.40 20

L11L18 15 20.1 ± 0.3 30.9 ± 1.0 6.9 ± 0.5 7.8 0.12 ± 0.019 10-15 1.5-1.6 0.37-0.40 20

L19L25 40 19.7 ± 0.2 30.1 ± 0.3 7.3 ± 0.2 7.9 ± 0.1 0.181 ± 0.025 15-40 1.5-1.6 0.37-0.40 40-60

L26L28 40 20.5 ± 0.9 29.9 ± 0.3 7.3 7.9 0.216 ± 0.013 15-40 2.4-2.6 0.60-0.65 40-60
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Initially, the system was filled with water that had been filtered to 0.2 µm and

sterilised by UV radiation. Water loss due to evaporation was replaced with distilled water,

0.5 mm
0.1 mm

Figure 2.1.1. A) Schematic diagram of
the enclosed recirculating system for
rearing marine fish larvae. BF, biological
filter. DP1 and DP2, distribution pipes.
FR, flow regulators. H, heater. IP, inlet
pipes. MF, mechanical filter. OP, outlet
pipes. MP, main pump. S, skimmer. SP,
secondary pumps. RC, rearing cylinder.
WL, water level. B) Detail of one of the
rearing cylinders. Letters as in A, plus:
A, air pipe. DP, distribution pipe. FC,
feeding cap. WI, water inlet. Arrows
indicate water flow.

Not to scale.
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which was added to the reservoir on a daily basis. The whole system was set in an

isothermal chamber at 15°C. Water temperature was adjusted with thermostats immersed in

the reservoir (H, Fig. 2.1.1. A). Salinity was adjusted during the different rearing periods,

varying from 37 ± 0.1 at incubation and progressively decreasing to 30 (Table 2.1.1.).

Temperature was gradually raised throughout the experiment from 16 to 20°C (Table

2.1.1.). Photoperiod was established at 9 h light: 15 h dark.

Eggs were placed into the cylinders 43 days after the filter start up. Sea bass eggs in

good condition have positive buoyancy at salinities over 34.5 psu (Barnabé 1991); thus they

could be separated following the procedure of Felip et al. (1997) and evenly distributed in

each cylinder using a Pasteur pipette. The effective number of individuals (eggs or larvae)

by cylinder was obtained by adding the number of survivors at the end of the experiment to

the number of dead and sampled larvae every day. The accumulated survival throughout the

experiment is given as percentage of the living larvae in each cylinder at first day of

feeding.

The food consisted on live prey according to Barnabé (1991) (rotifers, Artemia

nauplii and one day old enriched metanauplii). Initially, two feeding treatments were

established: the Fed treatment (8 cylinders) and the Starved treatment (4 cylinders). The

Fed treatment was supplied with food ad libitum from day 5 after hatch. From day 13, one

of the cylinders from the Starved group was supplied with food, to set the Delayed

treatment. On day 23, a short-term fast and re-feeding scheme was introduced into 4 of the

8 cylinders of the Fed treatment to establish the Late-Fast treatments. The detailed scheme

of these treatments will be shown in further sections because they were not used in this

chapter. All food was suplied at the same hour every morning. We sampled 3-4 larvae per

day and per cylinder. The methods of sample preservation depended on the later condition

analyses and will be detailed in the corresponding Sections. For the present Sections, larvae

were preserved in 10% phosphate-biffered formalin.

Larval length used for growth analyses refers to total body length (TL), measured as

the distance along the midline of the body from the tip of the snout to the end of the caudal

fin. Growth was analysed by fitting a Gompertz model to the data on TL. This model has
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been used to describe early larval development in marine fish larvae (McGurk 1985 a; Polo

et al. 1991; Zweifel and Lasker 1976).

-be-ct

Gompertz equation: TL = a e ,

where TL is the total body length (mm), a is the asymptote (mm), c the instantaneous

growth rate at the inflexion point (days-1); t the age in days and b is a dimensionless

parameter, such that b x c is the instantaneous growth rate when t=0. The Hotelling’s T2 test

(Bernard 1981) was used to screen for differences between growth curves of different

treatments. Absolute growth rate at an age t (dTL) was calculated from:

dTL = c TL (ln a - ln TL)

RESULTS

Incubation and hatching

Eggs were allocated in the rearing cylinders when they already exhibited an

advanced stage of development. The embryo, already differentiated, had the caudal region

separated from the yolk. All the eggs hatched on the same day. During incubation time and

for the next 4 days after hatching concentrations of total ammonia (N-NH4
++ NH3 in mg l-

1), unionised ammonia (N-NH3), nitrite (N-NO2
-) and nitrate (N-NO3

-) concentrations were

very low (Fig. 2.1.2., Table 2.1.1.).

Despite the attempted initial even distribution of eggs among cylinders, there was

some variability in the actual number of eggs per cylinder (mean = 130 eggs l-1, SD = 30).

The hatching success, calculated as number of living larvae at day four after hatch, was

64.1% (SD 14.8%). Daily mortality in this period was highly variable both within and

among cylinders. There was no correlation between the initial egg densities and the daily

mortality observed during this period.
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Larval rearing

During the experimental period, total ammonia, unionised ammonia and nitrite

concentrations fluctuated within a range considered as non toxic for fish larvae (EPA

1989). However, the values tended to increase towards the end of the experiment (Fig.

2.1.2., Table 2.1.1.). The first clear increase in ammonia concentration (total and unionised)

occurred on the first feeding day, when rotifers were introduced into the system (4 days

after hatching) (Fig. 2.1.2.). The later introduction of Artemia nauplii (10 days after

hatching) also produced an increase of total ammonia levels. However, concentrations of

unionised ammonia could be kept below 0.014 mg l-1 until the introduction of enriched

Artemia nauplii (19 days after hatching). Values of these metabolites reached the highest

values from day 24 to 27 (Fig. 2.1.2.).

Survival

Larval density at first exogenous feeding was 60 larvae l-1 (SD 20). The data of

larval survival in the three treatments is shown in Fig. 2.1.3. Survival decreased in all

treatments until day 9 after hatch. Next followed a steady period of scarce or null mortality

which, for the Fed larvae, continued until the end of the experiment. This phenomenon was

also observed in the Starved group until day 14, although accumulated mortality was
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Figure 2.1.2. Concentrations of total ammonia and unionised ammonia, from five
days before hatching until the end of the feeding experiment. Arrows indicate the
initiation of feeding with rotifers (R), Artemia nauplii (A0) and one day old
Artemia metanauplii (A1).
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higher. After day 17, the Starved group underwent a drastic drop in the number of larvae,

all of which died in a week time. When larvae from the Delayed group were fed (day 13),

their mortality rate continued dropping for three days (following a similar dynamics to the

Starved treatment), until a steady-state similar to that of Fed treatment was attained.

Growth
Growth was described by two-

cycle Gompertz curves in both Fed and

Delayed treatments, while Starved

treatment followed a one cycle Gompertz

curve (Fig. 2.1.4.). Larvae from each

treatment were considered as replicates

both when they were sampled from a

single cylinder (Delayed treatment) or

from several cylinders (Starved and Fed

treatments). For a same treatment, the

homogeneity of the log-linearised growth

within cylinders was confirmed by

ANCOVA using age as a covariate

(through GLM procedure, MINITAB

Inc.). Significance was set at �= 0.05.

It becomes apparent that all

treatments underwent an initial high

growth rate, up until day 4. After that

day, growth rate decreased to a plateau

that lasted differently depending on the

treatment, but which was similar for all

groups until day 14. Fed treatment

showed a second increase in growth rate

(GR) from this day (estimated GR on day

13 = 0.60). After urostyle flexion (days

a1 b1 c1 a2 b2 c2
Estimate 5.37 0.34 0.28 10.40 0.63 0.17
Std. Err. 0.204 0.039 0.103 0.512 0.024 0.051

a1 b1 c1 a2 b2 c2
Estimate 5.30 0.37 0.40 10.40 0.64 0.13
Std. Err. 0.067 0.032 0.075 1.951 0.153 0.079

a b c
Estimate 5.71 0.40 0.17
Std. Err. 0.120 0.026 0.038

Figure 2.1.4. Gompertz fit of total length vs
age of Dicentrarchus labrax larvae reared
under different feeding conditions. Fed: larvae
always fed. Delayed: Feeding was delayed
until day 13 after hatching. Starved: larvae
were deprived of food from hatching day.
Estimated growth parameters and Standard
Errors of the Gompertz curves inside each
figure.

Starved treatment

Delayed treatment

Fed treatment
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20-22) it was observed a conspicuous decrease in growth rate (estimated GR on day 22 =

0.22). Larvae to which first feeding was delayed until day 13 did not show the second

increase in growth rate until day 16 (estimated GR on day 16 = 0.43). The estimated

asymptotic size was similar for Fed and delay treatments. The second growth cycle of both

Fed and Delayed treatments were compared and found to be significantly different

(Hotelling’s test: T2 (3814) > T02 (12)). This difference was due to the lower value of

parameter c of the fitted curve in Delayed treatment.

DISCUSSION

The most dangerous metabolites for larval development (unionised ammonia and

nitrite) are even more important in the first phases of ontogeny (Holt and Arnold 1983).

However, in the case of nitrite, its toxicity in salt water is much lower than in fresh water

systems. Concentrations of unionised ammonia and nitrite during the present experiment

were much lower than those considered dangerous for survival (Brownell 1980; EPA

1989; Holt and Arnold 1983).

The system design permitted an easy adjustment of the most important physical and

chemical parameters and allowed for the successful maintenance of low levels of ammonia,

nitrite and nitrate. However, the system performance was not optimal, as an increase in

nitrogen compounds was observed along with time (Fig. 2.1.2.). There are several

explanations for this phenomenon. At the beginning of the exogenous feeding, fast

accumulation of food waste could have exceeded the filter capacity (the filter was probably

too “young” so bacteria could not cope with the input of organic matter). Also, feeding with

Artemia implies the introduction of aerobic bacteria into the system, which can outcompete

the nitrifying bacteria (Blancheton and Canaguier 1995). The increase in metabolites

towards the end of the experiment could be related to the gradual accumulation of non

captured prey into the mechanical filter.

The observed levels of unionised ammonia (0.013 mg l-1) and nitrite (0.118 mg l-1)

in the present experiments, from the start of exogenous feeding and along the first month of

live, were lower than those cited as responsible for mortality or decreased feeding ability in
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larvae and juvenile marine fish. Brownell (1980) investigated the tolerance of marine fish

larvae to ammonia by monitoring the decrease in first-feeding incidence following a 24-h

exposure as the criterion of response. This author found concentrations of unionised

ammonia N-NH3 between 0.03 and 0.13 mg l-1 responsible for a 10% decrease in first-

feeding success. Holt and Arnold (1983) observed that, after 14 days exposure to N-NH3

concentrations of 0.3 mg l-1, survival of Sciaenops ocellatus larvae decreased.

Percentage hatching and survival on the first week of live obtained herein lies

within the range found in previous works (Barnabé et al. 1976; Johnson and Katavic 1986;

Oyen et al. 1997). The maximum larval length also agrees with the literature (Chatain 1987;

Johnson and Katavic 1986; Regner and Dulcic 1994). The two different growth cycles

fitted in the present study show good parallelism with the growth in body length (Regner

and Dulcic 1994) and mg of Carbon (Bergeron et al. 1997) of sea bass larvae reared in

semi-enclosed and flow through systems respectively. In both studies it was observed a first

phase of slow growth followed by a sharp increase from days 12-14, which again decreased

by the time of urostyle flexion, as found in the present work. Survival of feeding larvae was

of the same order or even higher than in previous studies (Barahona-Fernandes 1978;

Coves 1985; Johnson and Katavic 1986). Therefore, it is unlikely that the obtained values

for the main rearing parameters caused any stress on the larvae.

In the marine environment, variation of prey abundance is particularly important for

first-feeding larvae (Cushing 1990). The experimental setting of different nutritional

regimes could simulate an uncoupling between larvae and its prey in the wild. The obtained

results on growth and survival, which we believed were not affected by other parameters

than feeding ration, could be of value for further studies on trophic ecology in the field.

Survival of Fed larvae showed higher values than those of Starved larvae from day 6 after

hatching. Nevertheless, larvae which did not receive any food, showed little mortality all

along the second week of life. Sea bass larvae are very resistant to food deprivation during

the first stages (Bergeron et al. 1997; Johnson and Katavic 1986). This is due to the large

yolk sac and oil globule, which are used as energy source during first development

(Klaoudatos et al. 1990). This fact could explain the similarity in the growth curves,

regardless feeding treatment, until day 13 after hatch. Initial high growth rate in the three

treatments, up until day 4 (Fig. 2.1.4.), was probably due to the conversion of most yolk
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reserves directly into skeletal growth, measurable as an increment in TL. From day 4 until

day 13 it was observed a decrease in growth rate, which followed a plateau-shaped curve.

During that time, Starved and Delayed treatments could have been using the internal

reserves purely as maintenance energy (Klaoudatos et al. 1990). For the Fed larvae, this

could be partly related to the inefficiency in the prey capture during the first days of

feeding. However, the sudden increase in growth rate after day 13 suggests that the Fed

animals have been investing the energy in building up body tissues or accumulating

reserves in some organs (McGurk 1985 a).

The sharp decrease in larval survival of the Starved treatment observed between 15

and 17 DAH occured after total oil globule resorption. Delayed-feeding larvae did not

attain a survival stabilisation until four days after food was supplied. From that moment on,

mortality remained near zero as in the Fed treatment.

There were significant differences in the second growth cycle between Fed and

Delayed treatments. The starting point for these second growth cycle was on day 13 in fed

larvae and on day 16 in delayed feeding larvae. The initial growth rate was also smaller for

delayed feeding larvae, indicating their poorer nutritional condition, which coincided with

the observations for Engraulis mordax (Theilacker and Watanabe 1989). In our work,

differences in size and growth rates were reduced after two weeks of normal feeding.

Summarising, in this work reference values for total and unionised ammonia and

nitrite which permit suitable rearing conditions for sea bass larvae during the first month of

life are given. To the light of the results presented throughout this section it is concluded

that differences in growth and survival among treatments were exclusively due to feeding

regime. The good values for survival and growth as well as the normal larval development

prove the adequacy of the rearing system. We believe that future nutritional studies of field

collected larvae will benefit from this kind of environmentally controlled experimental

design.
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2.2. MORPHOMETRIC INDICES

ABSTRACT

In this section, a study of condition based on the analysis of shape was conducted

on reared sea bass larvae subjected to varying feeding rations (Fed, Starved and Delayed).

Our results showed that the shape of pre-flexion Dicentrarchus labrax changes during

development, and it does so at different rates, which depend on both the source of food

(maternal or external), and the time from experimental feeding treatment. The effect of size

in five morphometric variables was successfully removed by applying a normalisation

method that enabled the incorporation of the effects of allometry.

Multivariate analysis (PCA) of such normalised data identified two extreme shape

groups: yolk-sac type larvae and extremely emaciated larvae. A Stepwise Discriminant

Analysis (SWDA) showed that the highest percentage of correct classification

corresponded to the eldest emaciated category: between 76.0 and 61.5% of these larvae

(depending on whether all data or a learning sample was used) was correctly identified.

When all ages of the Starved treatment were pooled, between 80.0% and 69.2% of the 14-

21 day old larvae were identified as Starved. Pre-anal length, body depth at anus level and

head length were the variables that most contributed to the definition of the shape-groups.

Also, the first canonical variable of a stepwise discriminant analysis using these 3

normalised variables was the measurement that best correlated with the survival of the

Starved larvae. It is believed that this type of standardisation procedures can be of value for

the study of condition in larvae exhibiting strong allometry. The potential use for field

studies is discussed.
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INTRODUCTION

Morphometrics applied to the study of starvation effects usually address the factor

of shape variation between individuals. Therefore, the effect of size is usually undesired as

it is a reflection of individual growth, and it causes variation in the variables that are

potential indicators of a starving condition. The removal of size effects has been attempted

through several mathematical operations. The use of ratios (the starvation-sensitive variable

to the less-sensitive variable, e.g. body depth at anus level to eye diameter or length) is only

valid in the case of isometric growth, which seldom occurs in fish larvae. The presence of

allometry in several studies on larval development suggests that extreme caution should be

observed in the use of ratios to remove size-effects (Reist 1985; Hare and Cowen 1995;

Suthers et al. 1996). The use of residuals has been shown to still be affected by allometry,

although the use of small size-ranges (Suthers 1989) can solve it. Performing a principal

component analysis on a multivariate set and discarding the first component, which is

usually correlated with size, is thought to effectively eliminate size effects. This approach

was applied by McGurk (1985) and defended on the grounds that it was the only statistical

method which satisfied the requisites for an ideal morphometric condition factor: size-

independence, biological meaning and orthogonality. However, some studies observed that

information on shape was also incorporated in the first PCA (e.g. Jolicoeur and Mosimann

1960). In this respect, the prior elimination of ontogenetic effect of size has been proved to

yield a better performance than the use of PCA. A normalisation method for removing the

effect of size accounting for allometric effects was empirically applied by Thorpe (1975) to

the study of snakes. This method scaled all individuals to a same size and adjusted their

shape to that they would exhibit in the new size. It was first applied to the study of fish by

Lombarte and Lleonart (1993), and generalised by Lleonart et al. (2000).

The objectives of this section must be considered in the framework of a comparative

study of condition indices in fish larvae reared in the laboratory. The first objective was to

generate morphometric data from reared D. labrax, which contained only information on

the individual shape of the larvae, whilst accounting for allometric effects. The second
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objective was to select the morphometric variables that best discriminated the nutritional

status of the reared larvae, and to measure their discriminating power. The relationship of

the different measures with the observed survival in the laboratory was also assessed. The

potential use of this shape information for field studies is discussed.

MATERIAL AND METHODS

Sea bass larvae obtained from the experimental culture described in Section 2.1

were used for the analyses. The larvae had been fixed in 10% phosphate-buffered formalin

for 30 days before being measured. The sampling scheme for morphometric analyses is

shown in Table 2.2.1. Only larvae from 6 DAH were considered. The study was extended

until 21-day-old larvae, as this was the last day for which larvae of the three main

treatments were available. We used larvae from treatments Fed, Starved and Delayed,

described in the previous section. The total number of larvae used was 195.

Table 2.2.1. Number of Larvae utilised for morphometric analyses.

Feeding
treatments

Days after hatch

6 8 10 11 12 13 14 15 16 17 18 19 20 21
Fed 12 6 7 8 6 4 7 8 9 10 9 8 9 15
Starved 6 4 4 4 4 4 3 3 4 4 5 3 2 1
Delayed - - - - - - 4 3 2 3 4 3 3 4

Several body measurements were taken using a binocular microscope with an

eyepiece graticule, to an accuracy of 0.1 mm.

The morphometric measurements used for this study were selected from the

literature and are known to relate to starvation at several degrees (Ehrlich et al. 1976;

McGurk 1985). The following measurements were recorded (Figure 2.2.1.): total body

length (TL), the distance along the midline of the body from the tip of the snout to the tip of

the notochord in preflexion larvae, and to the end of the caudal fin in postflexion

individuals; preanal length (PAL), the distance along the midline of the body from the tip of

the snout to the anus; head length (HL), the distance from the tip of the snout to the

posterior margin of the cleithrum; head depth (HD), the maximum depth of the head; body
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depth at the level of the initiation of the pectoral fins (BDP); body depth at the anus level

(BDA); and horizontal eye diameter (ED).

Removing the effect of size.

The method for removing the effect of size was empirically applied by Thorpe

(1975) and generalised by Lleonart et al. (2000). It basically standardises all measurements

of a larva to a pre-determined size, taking into account the allometric relationships between

the morphometric variables and body length. In other words, it calculates the new shape of

an individual if it was brought to a pre-defined length, taking into account the variation in

shape that it would undergo during growth. If this procedure is used, the experimental

effect (food regime) should be the most likely factor to explain variations in shape.

The allometric relationships between the various body measurements and TL were

calculated by using the equation y = a x b, where x is TL, y is the other measurement being

related, b the allometric factor, and a the expected value of y at x=1 (Gould, 1966).

The values a, b and the standard deviations (in ln-transformed units) were first

calculated.

Once these values were obtained, morphometric variables were normalised according to

Zij=Yij[X0/Xj]bi (Eq.1.)

Figure 2.2.1. Morphometric
measurements in D. labrax.
BDA, body depth at anus
level; BDP, body depth at
pectoral fin buds; ED, eye
diameter; HD, head depth;
HL, head length; PAL, pre-
anal length; TL, total length.
Drawing from Barnabé et al.
(1976). 7 mm (TL) larva, 17
DAH, 15°C.
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where Xj is the TL of the individual j, X0 is the reference length and bi is the allometric

parameter which relates the variable under study and the TL. If this procedure is followed,

all measures of a particular individual are scaled up to a mean reference length (Fig.2.2.2.)

One requirement for the application of the normalisation method is that the growth

pattern must be the same throughout the period analysed. Larval growth pattern (Fig. 2.1.4.)

showed that there was an inflexion point around 6 mm TL for Fed and Delayed larvae.

To test whether there was any difference in the morphometrical variables between

the two size groups ( ! 6 mm and > 6 mm), we compared the slopes of the ln-linearised

morphometric variables of the Fed treatment of the two groups (the latter treatment would

ideally reflect a size-effect, with no interference of food availability). The comparison of

slopes was performed through ANCOVA (through GLM, MINITAB 12.1 Inc.) (Table

2.2.2.). We used each morphometric variable as a response. TL was used as a covariant.

Table 2.2.2. Comparison of slopes of each morphometric variable vs TL between the two size-groups ( ! 6
mm and >6 mm) in the Fed larvae by ANCOVA through GLM.

PAL
F p

HL
F p

ED
F p

HD
F p

BDA
F p

Significance of slope of Interaction term
(size-variable)

18.30 <0.001 10.79 <0.005 3.08 0.082 0.70 0.405 29.1 <0.001

Slopes of PAL, HL and BDA vs TL were significantly different between the two

size-groups. This further justified the separate analysis for the two groups. In spite of these

Figure 2.2.2. Illustration of the normalisation
procedure. The central curve is an estimated
regression on the variation of a particular
morphometric measurement with respect to total
length. The lower and upper curves represent the
growth trajectories of two larvae, one of which
has a positive shape factor (and has reached a TL
of ca. 14 mm) and another of which shows a
negative shape factor, reaching a TL of ca. 9
mm). The intersection with the vertical line show
the particular value for the morphometric variable
that they would have if they were normalised to a
total length of 11 mm. The dashed parts of the
curves represent the hypothetical growth
trajectories of the two individuals in the future.
Adapted from Lleonart et al., 2000.0 2 4 6 8 10 12 14 16

0

1

2

3

4

X (Total length, mm)

X0
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preliminary results, normalisation had to be done using the coefficients for the pooled

larvae (see results), normalised to 6 mm (median for the size distribution). The success of

the normalisation method for each variable was assessed by analysing the significance of

the correlations with size.

Bivariate analysis

Data was first explored in regard to age and length in non-normalised variables. The

allometric patterns of each variable (ln-linearised) with respect to TL were analysed for

each size-group and for each feeding treatment. The significant departure from isometry

was checked by T-tests (H0: b=1).

Multivariate analyses.

The rationale for the use of multivariate analysis was two-fold. Firstly, the aim was

to study the behaviour of the body shape as a whole and to discern the particular

contribution of each variable to the total variance of shape. This was done by Principal

Component Analysis (PCA, Rao 1964). Secondly, Stepwise Discriminant Analysis

(SWDA) (Legendre and Legendre 1998) was used to ascertain the predictive power of the

morphometric variables, and for the purpose of comparison with other condition indices

performed on larvae obtained from the same experimental culture. Both analyses were

performed using STATISTICA 5.0.

All multivariate analyses were conducted on variables normalised by the previously

described method. Before proceeding with the multivariate study of the data, we considered

the suitability of using separate coefficients for each feeding treatment or a single

coefficient derived from all treatments. The suitability of applying different sets of

coefficients to each size-range was also assessed.

The normalised variables for PCA needed no further standardisation as multivariate

normality and homocedasticity held in all variables. Also, variables were measured in the

same units, so the covariance matrix was used for the analyses.

The rationale behind the discriminant analysis is to determine whether groups differ

with regard to the mean of a variable (in this case morphometric) and to then use that
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variable to predict group membership. The discrimination was done using the Mahalanobis

distances (D). By this procedure, each individual is allocated to the group for which D has

the smallest value. The data need not be standardised as discriminant analysis is not

affected by the scaling of individual variables (Manly 2001). Discriminant analysis was

done in a forward stepwise fashion, so that variables are added to the model individually

according to their discriminating power. The observations were plotted on canonical axes,

which have the maximum discriminating power. The input data to the discriminant analysis

was based both on the results of PCA analysis and on the biological meaning of the pre-

defined groups.

Relationship with survival

The relationship between each normalised morphometric variable (or function of

them) and the survival of the Starved larvae was examined through non-parametric

(Spearman) correlations due to the often non-linearity of the relationships even after data

transformation.

RESULTS

Bivariate analysis

The observation of the change in morphometric variables (non-normalised) in each

treatment with age (Fig. 2.2.3.) suggested several ongoing processes. Firstly, growth

patterns approximated that described for TL (Section 2.1.). The presence of a shift in

growth was evident in the Fed treatment of most variables and occurred around day 13. On

the other hand, variables measured in Starved larvae showed no apparent shift in growth,

and either grew at a slower rate ( Fig. 2.2.3.; ED, HL, PAL) or showed little or no apparent

growth (Fig. 2.2.3.; BDA). Delayed larvae, to which food had been supplied from day 13,

showed an apparent recovery in all variables 4-5 days after food was supplied.
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For all variables, significant differences between Fed and Starved individuals were

not detected until 10 days after food was introduced into the system. The time to noticeable

recovery after food was supplied to Delayed larvae (day 13) was 4-5 days for BDA, HD

and PAL. Eye diameter and HL never departed significantly from the Starved treatment

during this period.

Correlations between TL and the linearised (non-normalised) variables were

performed and relationships were plotted (Fig. 2.2.4.). Only BDA from Starved larvae

showed a non significant correlation with TL. From this feeding group, only 2 individuals

(from 51) had a TL of over 6 mm, and were excluded from the analyses. All significant
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Figure 2.2.3. Relations of the morphometric
variables with age. Means ± SD. Different
letters (a,b,c) indicate significant differences
(T-test when 2 groups; ANOVA with Fisher’s
post-hoc test when 3 groups, p<0.05) between
treatments at a given age.
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correlations had a p<0.001 except ln HL and ln BDA of the Delayed larvae < 6mm

(p<0.005) and ln ED (p<0.05), also from the same treatment. According to this, allometric

equations were calculated for all variables and size-groups except for BDA of Starved

larvae (Table 2.2.3.).

In Table 2.2.3., significant values of b<1 indicate that the morphometric variable is

growing at a slower rate than TL (negative allometric growth). Significant values of b>1

indicate that the morphometric variable is growing at a faster rate than TL (positive

Figure 2.2.4. Relationship of the morphometric
variables with length. Note the difficulty of
distinguisuing feeding treatments when age is
unknown
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allometric growth). Slopes not significantly different from 1 mean that the morphometric

variable is growing at a non-differentiable rate from TL (isometric growth).

Larvae ! 6mm.

This group contained all the Starved individuals, plus some Fed and Delayed larvae.

Fed larvae showed positive allometric growth for PAL and HL. From the latter, HL grew at

a faster rate. The remaining variables showed isometry. Fed larvae of this size-class were

composed mainly of young individuals (under 13-14 DAH, see Fig. 2.1.4.). The positive

allometry of PAL and HL indicates that the diggestive tract, and particularly the structures

of the head are developing fast.

Starved individuals showed positive allometry for the same variables. However,

these larvae comprised the whole age spectrum, until 21 DAH. The relatively fast growth of

PAL and HL in comparison with TL in the Starved larvae may be indicating that these

variables are particularly important for development.

Delayed larvae showed isometric growth in this size range, except for a negative

allometry in eye diameter. However, the low number of observations for this group

suggests that caution should be observed in the interpretation.

A word of caution should be addressed to the study of morphometric data using all

treatment in this size-fractionated way (a case that can be found in field studies). As shown

in the results of the pooled data (Table 2.2.3.) if the feeding treatments were unknown,

some fictitious allometry would appear in this population of small larvae.

Larvae >6mm

Only Fed and Delayed larvae over 13 DAH composed this group. In the Fed larvae,

BDA showed strong positive allometry. The HL of Fed larvae continued growing with a

slight positive allometry, thus reflecting the importance of the development of the head part

in the larval stages of this species. A slow-down in the growth (negative allometry) was

observed in ED, and to a lesser extent in PAL, in comparison with the previous size-class.

Delayed larvae showed positive allometric growth in BDA, the rest of the variables

growing isometrically.
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All larvae (pooling treatments and considering the whole size-range).

The absolute number of larvae from each size-class had relevance on this final

result. This is particularly evident if the slopes for the pooled feeding treatments are

observed. The large number of Fed larvae were responsible for the observed allometries in

the final table.

Removal of size effects and multivariate analysis

A normalisation with specific coefficient sets for each feeding treatment was not

appropriate, as the Starved treatment showed no correlation with length for BDA. For the

same reason, a normalisation by separate size-groups was judged unwise as the Starved

larvae were all ! 6mm (Table 2.2.3.). Indeed, the use of all larvae from this size-range

would have involved the use of a strong negative allometric coefficient for BDA (b=0.526).

The latter would not have been a reflection of the allometry for the whole population of

small larvae, but a result of the non-significant correlation showed by Starved larvae.

Therefore, data from all larvae (pooling all sizes) had to be used. Due to the comparatively

large number of Fed larvae, in the pooled data, we analysed the relative influence of this

treatment in a normalisation procedure using all data. The normalisation using only larvae

from Fed larvae showed no significant differences from the normalisation using larvae from

all feeding treatments, thus confirming the strong influence of this group in the final results.

According to the arguments exposed above, all multivariate analyses were performed on

normalised variables obtained from data from pooled treatments and sizes. Also, this

procedure implies no previous knowledge on the feeding treatment, which is the analogous

situation that would be encountered in the field.

The absence of correlation of the normalised variables with TL confirmed the total

removal of size-effect by the normalisation procedure. The first two principal components

of the PCA performed on these data explained 84.2% of total variance (Table 2.2.4.). PC1

explained 66.8% of the variance and was mainly a contrast between PAL/ HL and BDA.

PC2 explained 17.4% of total variance and was a contrast between HL and PAL (Figure

2.2.5., Table 2.2.4.).
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Table 2.2.4. Results from the PCA on all larvae, normalised to 6 mm.

PAL HL ED HD BDA Eigenvalue %variance

PC1 0.805 0.575 0.078 0.086 -0.085 0.011559 66.8

PC2 -0.589 0.792 0.062 0.143 -0.025 0.003013 17.4

PC1 separates individuals that exhibit a slender body and large guts and heads. At

the other extreme of PC1 one would find larvae with thick bodies and relatively short

digestive tracts and head. PC2 would further distinguish between individuals having

opposite trends in HL and PAL.

These results confirm the shape patterns suggested by the bivariate analyses. The

scores for the first two principal components plus the information on the feeding treatments

and age was represented (Figure 2.2.6.). Each feeding group was assigned a symbol. For

the sake of clarity, larvae from each feeding treatment were divided into 4-day categories.

Figure 2.2.6. showed the existence of two defined extreme groups, and a more numerous

middle group. A first group would be composed of young larvae of 6-9 DAH, both Fed and

Starved. This group would be composed of larvae with a relatively thick trunk and short
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Figure 2.2.5. Plot of the loadings of each variable for the first
two Principal Components. All larvae, normalised to 6 mm
TL.
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heads and guts. The second extreme group would be composed of Starved larvae (mainly

over 14 DAH) and some Delayed larvae. This group would have a slim trunk and large

heads and guts.

Finally, we identified a large group of larvae that had intermediate characteristics.

This group would be composed of Fed and Starved larvae over 9 days-old, (but the latter

not extremely starved), plus some Delayed larvae.

Figure 2.2.6. reflects the strong effect of age and development (see discussion) in

the ordering of the results. The first group (6-9 days old) is composed by larvae which

exhibited oil globule, and some of them remains of the yolk sac (see Section 2.1.). In these

larvae, ontogeny influences shape independently of food regime. It thus seems unwise, for

these species and under our experimental conditions, to study the effect of starvation on

morphometric measurements in larvae under 9 DAH. As time progresses, the maternal

reserves deplete, for Starved larvae the effect of starvation becomes dominant over purely

ontogenetic processes and the body shape moves gradually to the top right-hand corner of

Figure 2.2.6. These extremely emaciated larvae do not grow in length (Fig. 2.1.4.) but

undergo a relative development of heads and gut. Well fed larvae show mean values for the

different variables on both PCs.

Overall, the PCA analysis discriminates two extreme groups, and contains a mixed

information of food regime and ontogenetic processes.
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Discriminant analysis was performed on two age-groups: 6-13 and 14-21 DAH. The

criterion for doing so was based on the fact that maternal reserves were detected in

individuals up to 13 DAH.

Two kinds of SWDA were performed. First, SWDA was performed with all data.

Secondly, the dataset was split in two, so that one half of the data was used to build the

classification functions, whereas the other half was used to validate the model. All data

conformed multinormality requirements.

Discriminant analysis with all data

The discriminant analysis selected the following variables in order of importance:

BDA>PAL>HL>ED>HD. Only the first 3 variables contributed significantly to the

analysis. A second SWDA was performed using these three variables. The classification

results were practically identical, so only the results based on the 3 variables are shown.

Classification functions are shown in Table 2.2.5. (A). The percentage of correct

classification varied greatly in each group. The best classification by age-food groups (76

Table 2.2.5. Results from the SWDA performed on 3 variables using normalised data of all
larvae (n=195). A; classification functions for the different age-food groups. B; Classification
matrix (equal a priori probabilities). The first column is the real treatment. The remaining
columns are classification results. Correct classifications in bold. Values are percentages.

A
Age-food groups

F6-13 F14-21 S6-13 S14-21 D14-21
BDA 699.466 679.84 692.103 617.15 666.05
PAL 510.097 516.62 508.938 519.58 515.42
HL 4.384 7.20 6.441 20.87 18.17

constant -997.238 -1017.88 -993.587 -1029.51 -1024.04
%correct 39.53 37.33 34.61 76.00 38.46

B
Fed Starved Delayed

6-13 14-21 Total 6-13 14-21 Total 14-21
39.53 16.28 55.81 20.93 2.32 23.25 20.93
14.66 37.33 52 21.33 5.33 26.66 21.33

Fed 6-13 (n= 43)
14-21(n=75)

total 53.38 25.42 21.2
Starved 30.77 19.23 50 34.61 0 34.61 15.38

0 8.00 8.00 4.00 76.00 80.00 12.00
6-13 (n=26)
14-21(n=25)

total 29.41 56.86 13.73

Delayed 14-21 (n=26) 4.00 24.00 28.00 12.00 24.00 36.00 40.00
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%) was obtained for the extremely emaciated larvae (s 14-21, Table 2.2.5. A). The

remaining age-food groups correctly classified around 36% of larvae, which is over the

random classification value for all groups (random value = 20%). Most misclassifications

occurred in young-Starved larvae of 6-13 DAH (Table 2.2.5. B; altogether, 50 % were

misclassified as Fed). The proportion of Fed larvae of any age-group classified broadly as

Fed was 53%. This proportion was of 57% for the Starved treatment and 38% for the

Delayed treatment.

If the classification into 3 broad categories (Fed, Starved ad Delayed) is considered

by age groups, then the oldest Starved larvae (aged 14-21 DAH) were the best classified

(80% classified broadly as Starved, Table 2.2.5. B).

The first two canonical functions explained ca. 98% of all the discrimination (Fig.

2.2.7.) Looking at the standardised coefficients for canonical variables, it was seen that

individuals lying on the positive side of the first canonical variable have thick BDA and

small HL and PAL. They correspond mainly to young individuals (Fed and Starved). On

the other hand, larvae located at the negative side were characterised by a reduced BDA,

and a proportionally larger PAL and HL. The second canonical variable accounts for 12%

of the discrimination power and the variable with most weight is PAL.

Figure 2.2.7. Values of
each individual with
respect to the first two
canonical variables,
using normalised values
of 3 variables for all
larvae. Centroids of Fed
(F) and Starved (S)
individuals of age 14-
21 are indicated.
Legend. f, s, d indicate
Fed, Starved or
Delayed treatments,
respectively. Numbers
refer to age-interval
(DAH).
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Discriminant analysis with split data

The predictive value of this method was studied by splitting the dataset. One set was

used to build the classification functions, and the remaining data were used to validate it.

The SWDA chose, by order of importance, the following variables:

BDA>PAL>HL>HD>ED. This result is similar to the previous one except that the order of

second and third variables was inverted. Only the first two variables contributed

significantly to the analysis. The third variable, HL, was only marginally significant. The

result of the SWDA with 3 variables yielded a similar classification matrix to the SWDA

with 5 variables. These results are presented.

The classification functions were obtained by analysing the data that had not been

used for building up the model. These results were consistent with those using all data in

that the extremely starved individuals were the group which was best classified (ca. 62%).

Fed individuals of 14-21 DAH came in second place, and young Starved individuals came

third. These results differ slightly from the previous classification. It is possible that, due to

the smaller number of observations (approximately half of the data), the groupings are less

reliable despite being formed from different data sets than the observational data.

Nevertheless, the variables chosen as significantly contributing to the analysis remained the

same.
Table 2.2.6. Results from the SWDA on 3 normalised variables (split data).
A;, Classification functions (n=96). B; Classification matrix (n=98). Column
ordination as in Table 2.2.5.
A

Age-food groups
F6-13 F14-21 S6-13 S14-21 D14-21

BDA 522.94 509.85 521.66 420.95 484.52
PAL 572.65 580.29 567.58 591.44 578.60
HL -11.28 -8.48 -8.12 8.18 1.42

Constant -1068.55 -1095.05 -1054.57 -1133.00 -1094
%correct 28.57 44.73 38.46 61.53 30.77

B
Fed Starved Delayed

6-13 14-21 Total 6-13 14-21 Total 14-21
28.57 14.29 42.86 38.10 0 38.10 19.05
5.26 44.73 49.99 21.05 7.89 28.94 21.05

Fed 6-13 (n= 21)
14-21(n=38)

total 47.46 32.20 20.34
Starved 7.69 30.77 38.46 38.46 7.69 46.15 15.38

0 15.38 15.38 7.69 61.53 69.23 15.38
6-13 (n=13)
14-21(n=13)

total 26.92 57.69 15.39
Delayed 14-21 (n=13) 7.69 15.38 23.07 7.69 38.46 46.15 30.77
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The first two canonical variables explained 99.2 % of the discriminating power.

Looking at the standardised coefficients, it was seen that the first canonical variable

discriminates individuals with thick BDA and small PAL and HL. The second canonical

axis accounted for 5.6 % of total variance and the variables contributing most were PAL

and HL.

Relationship with survival

The single normalised variables that best correlated with the survival of the Starved

larvae were HL and BDA (Table 2.2.7.). Head depth was the only variable which did not

correlate significantly with survival. From all correlations, canonical variable 1 obtained

from the SWDA performed on 3 normalised variables previously chosen by a SWDA with

5 variables yielded the highest significant correlation (79.8%, Table 2.2.7., Fig. 2.2.9).

Discriminant functions and single variables (BDA and HL) yielded better correlations than

PC1 performed on all larvae.
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Figure 2.2.8. Values of each
individual with respect to the
first two canonical variables
(normalised data of 3
variables, split data).
Centroids of Fed (F) ad
Starved (S) individuals of
age-groups 14-21 are
indicated. Centroids seem
uncentered because they are
derived from the classification
function, obtained from
different data to that
represented in this figure.
Legend. F, S, D indicate Fed,
Starved or Delayed
treatments, respectively.
Numbers refer to age-interval
(DAH).
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Table 2.2.7. Spearman rank correlations between percentage survival of Starved larvae and the
different variables or functions. S, significant. NS, not significant

Variables or functions DF rs ts P Significance
PAL 49 -.547334 -4.57794 <0.001 S
HL 49 -.716459 -7.18893 <0.001 S
ED 49 -.549258 -4.60097 <0.001 S
HD 49 -.003819 -.02674 0.979 NS
BDA 49 .704518 6.94902 <0.001 S
Principal component 1 (all data) 49 -.663628 -6.20990 <0.001 S
Canonical variable 1(all data) 49 .798272 9.27765 <0.001 S
Canonical variable 1 (split data) 49 -.760043 -8.18667 <0.001 S

For Starved larvae, the scores for the 1st canonical variable decreased continuously

(Fig. 2.2.9.). Fed larvae underwent a decrease in this “shape factor” until day 16, and

increased thereafter.

Figure 2.2.9. Relationship of the 1st canonical
root with survival of the Starved larvae. Survival
for the Fed larvae was constant for this period
(not shown). Mean values represented. Error bars
are ± SE for survival, and ± SD for scores.
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DISCUSSION

D. labrax proved to be relatively resistant to starvation in the absence of food. The

Fed larvae reflected, through all morphometric variables, the shift in growth that takes

place after the end of the oil-globule reserves (13 DAH, Figure 2.2.3.). It is known that the

European sea bass is relatively insensitive to starvation during the early development

(Johnson and Katavic 1986, Bergeron et al. 1997) , and it is likely that internal reserves are

being used to line up feeding and digestive structures, as well as being used up as

maintenance energy (McGurk 1985 a). Also, the specific characteristics of morphometric

indices (short sensitivity) would mask any fast response to feeding regime (Ferron and

Leggett, 1994).

In Starved larvae over 13 DAH, the time of food deprivation was not reflected in a

worsening of morphometric variables but rather in the slowdown in their growth. This

confirms the suggestions made by several authors that extremely starved larvae can seldom

be separated from moderately starved larvae on a morphometric basis.

The strong influence of size on all morphometric variables ( Fig. 2.4.4.) confirmed

the need for the removal of size effects if the influence of food availability is to be detected.

Allometry in larvae ! 6mm

The positive allometric growth of PAL and particularly of HL of Fed and Starved

larvae ! 6mm (Table 2.2.3.) is an indication of the development of structures that are of

particular value at first feeding, like gut, jaws and gills. The number of Delayed larvae !

6mm was low, so the interpretation of the growth for this treatment should be addressed

with caution.

Similar observations to those recorded in the present study are registered in the

literature for larvae of fish species including sea bass, and has been interpreted in terms of

the survival advantage conferred by a fully functional visual, feeding and digestive

apparatuses (Pedersen et al. 1990; Polo 1991; Hunt Von Herbing 2000; Koumondouros

2001).
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Allometry in larvae > 6mm

Larvae > 6mm were composed of Fed and Delayed treatments only. Strong positive

allometry was detected for BDA of both treatments, indicating a thickening of the trunk at

the anus level. This was paralleled by a faster growth in length than in the previous growth

phase (Fig. 2.1.4.), which is indicative of a successful transition to external feeding. In Fed

larvae, there was a relative slowdown in the growth of HL and ED in comparison with

smaller sizes, which is reflected in the weaker positive allometry for HL and in the negative

allometry of ED (Table 2.2.3.). This reinforces the idea of a somatic growth period for this

size-class, as opposed to a developmental growth period observed for smaller larvae. The

relative slowdown of eye growth respect to the TL may be an indication of the importance

of the development of the visual system in the first growth cycle. Delayed larvae show a

similar pattern to Fed larvae in this size-class, the differences in significance probably

being explained by the small sample size.

Removal of size-effects

The application of the method of Lleonart et al. (2000) retained information on the

shape of the individuals and completely removed the effect of size from morphometric

variables. This enabled the use of the data without the interference of size-effects, which

are commonly present in the use of ratios or residuals ( McGurk 1985 a; Suthers 1992). The

initial planned comparison between a normalisation using a separate set of coefficients for

each treatment was not possible, as BDA from the Starved treatment showed no significant

correlation with TL. The coefficients used for the normalised data were drawn from the

pooled feeding treatments, and were biased towards those of Fed larvae, which was the

most abundant group (Table 2.2.3.). Infact, the comparisons of each morphometric variable

between age-groups using two types of normalisation coefficients (those derived from the

Fed treatment and those derived from all treatments) showed no significant differences.

This implies that the absolute difference in shape between feeding treatments could not be
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fully detected, but only as a relation to the mean allometry of each variable for the whole

reared population.

Multivariate analyses

Through multivariate analysis on size-free variables, we found that BDA, PAL and

HL were particularly sensitive to starvation. These variables have also been found to be

useful for distinguishing underfed individuals in other species of marine fish larvae

(Theilacker 1978; Martin and Wright 1987; Polo et al. 1991; Dou et al. 2002). Also, the

finding that young larvae possess a particular shape irrespective of feeding condition is

widely registered in the literature (Ferron and Leggett 1994).

SWDA was conducted on 2 age-intervals which were previously defined by the

duration of maternal reserves. The aim of conducting an SWDA was not to get the

maximum discrimination value but to get a quantitative value of the discrimination power

of the method, which could be compared with posterior analyses of condition obtained by

different indices performed on larvae from the same culture and sampling dates. The

SWDA showed that BDA was the variable that most contributed to the discrimination of

the age-feeding groups.

Our classification results are generally lower than those of other works that have

used SWDA (e.g. Theilacker 1978). There are several plausible explanations for this.

Firstly our results are drawn from a long-term starvation experiment. As a consequence, the

shape of the individuals from the three treatments was a highly variable continuum as

shown in Figure 2.2.6., which posed difficulties for the pre-definition of groups. This is

inherent to all studies of condition through morphometry, in which samples are gathered

over a considerable starvation time (e.g. Powell and Chester 1985). On the other hand,

comparisons of larvae from treatments sampled on a single day, or restricted to very narrow

size-ranges are prone to yield better percentages of correct classifications. Secondly, a great

proportion of larvae which were still dependent to some extent on internal reserves were

included in the analyses. This probably lowered the proportion of correct classifications in

comparison with similar works which have used relatively size-free data (McGurk 1985 a).

Lastly, most values of high classification scores in the literature are based on SWDA
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derived from ratios or residuals. According to McGurk (1985 a), these values are unreliable

because data are correlated with size.

The use of independent data sets for building a classification model and validating it

yielded slight differences in the classification matrix (Table 2.2.6.). In these split data,

sample size probably affected the classification results and hence their reliability, despite

being derived from a learning sample.

Relationship with survival

Few data on the correspondence between starvation indices and survival are found

in the literature. Most available information on survival and starvation is concerned with

the determination of the time at which starved larvae can no longer feed (and hence

recover) even if food becomes available. This is a way of defining the so called Point of no

Return (PNR; Blaxter and Hempel 1963; Theilacker and Dorsey 1980; Yin and Blaxter

1987; Dou et al. 2002). Although the PNR must theoretically exist at some point during

starvation in any species, it can be highly variable. The time to PNR in larvae deprived of

food, once maternal reserves are exhausted, depends mainly on temperature and is highly

species-specific. The lower the temperature, the longer the time larvae can withstand

starvation without it being “irreversible”. Data on PNR (calculated from yolk-resorption)

show that for temperatures between 15 and 28°C, PNR ranges from 14 to 48 DAH for

several species (Dou et al. 2002). Also, it is recognised that PNR is delayed in species with

a long-lasting oil globule, like D. labrax. In our experiment the PNR was not determined,

but a mass mortality of Starved larvae was noted around day 17 (Fig. 2.1.3.). It would be

unwise, however, to equal this increased mortality to the existence of a PNR. Infact, data on

several species including the Striped sea bass Morone saxatilis show that the PNR may be

non existent (May 1971; Eldridge et al. 1981; Rogers and Westin 1981).

From the correlations with survival, it was clear that a high explanation of total

variance in shape (PC 1) does not imply a relationship with survival. Head length itself may

be an indirect measure of condition in older larvae, whilst being related to ontogenetic

processes in early individuals, whereas BDA is probably a direct reflection of a deficient

nutritional status in larvae over 9 DAH (muscle protein is known to be quickly degraded as
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starvation progresses (Shelbourne 1957). The simultaneous plot of the first canonical root

for Starved or Fed larvae and the survival over age showed that the change in shape pattern

underwet a rapid decrease in the first days, then stabilised on days 8-12 and it either

decreased sharply in Starved larvae or remained largely unchanged in Fed larvae until 16

DAH, increasing afterwards (Fig. 2.2.9).

Application in the field.

Morphometric analyses of condition of reared larvae have been repeatedly used with

the aim of applying them in field studies. This is mainly because of the ease with which

measures can be obtained from routine ichthyoplankton surveys and the low processing

costs (Hunter 1981). The major obstacles to this general utilisation are: 1) Shrinkage

problems arising from net treatment add to fixation effects (Theilacker 1980; Hay 1982;

McGurk 1985 a ) and are known to influence larval shape and 2) calibration experiments

are rarely useful because experimental conditions (size of containers, feeding regime etc.)

tend to drive larval shape away from that of wild populations. Other main drawbacks for

the utilisation of morphometry to detect suboptimal condition are the strong influence of

age and size, the large species-specificity and the high response time (Ferron and Leggett

1994). Indeed, strong morphological changes may occur as a response to the adaptation to

first feeding (Theilacker 1978; Neilson et al. 1986) that do not depend on feeding condition

as confirmed in the present study. Also, the ontogenetic uncoupling between growth in

length and mass (i.e. an increase in mass or volume may be preceded by an increase in

length) suggested by Farbridge and Leatherland (1987) may force misinterpretations of

morphometrically-related condition in wild fish.

Nevertheless, the good points still seem to exceed the drawbacks and morphometric

analyses are still used today, through multivariate statistical procedures to eliminate age

and size effects and to increase the discriminating power between groups.

The normalised variables used in the present study of each individual were probably

biased towards the characteristics of the Fed larvae, as these were the most abundant in the

sampling. To some extent, this is the situation that would be encountered in the field, where

larval populations are known to be dominated by individuals in a relatively good condition,



2. Laboratory Studies. 2.2. Morphometric Indices

58

as factors like predation may exert a strong influence by removing poorly performing/slow-

growing larvae (Hare and Cowen 1997, but see Leggett and Deblois 1994). The way in

which the normalisation method could be applied to field studies could be as follows:

firstly, meaningful morphometric variables should be selected. Secondly, the set of samples

to be normalised should be delimited (eg. each haul, set of pooled hauls, etc.). In this

respect, speciose waters (having low density of a given species) could also be included in

the analyses, as long as there were enough larvae to draw the allometric curves. Thirdly, the

set of allometric coefficients to be used for normalisation should be selected. One

possibility would be to normalise the data from each haul with its own set of allometric

coefficients. Alternatively, a single set of coefficients derived from a selected haul (eg. the

one which best correlated with food abundance or a set of selected environmental

parameters, hence assumed to be formed by a “well-fed” population) could be used.

Finally, comparisons of normalised data (or its residuals) between sites/houls could be

adopted in a frame of “apparent condition” (McGurk 1985 a).

The latter procedure can be justified for most species since variables which respond

to food deprivation are usually similar between species, the latency and dynamics (sensu

Ferron and Leggett 1994) being the main interspecific variation. Therefore, as long as the

species follows a similar allometric growth pattern for the time-period studied, this method

could be applied without prior laboratory calibration.

It should be emphasised that allometric changes are referred to as smooth changes in

shape. As noted by Lleonart et al. (2000), processes like major structural changes, typical

from metamorphosis, do not meet the assumptions of the general allometric model, so care

should be taken in avoiding these major developmental changes in the study of wild

populations.
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2.3. HISTOLOGICAL INDICES

Part of this section has been published in: “Catalán IA and Olivar MP (2002)
Quantification of muscle condition using digital image analysis in Dicentrarchus labrax
larvae, and relationship with survival. J Mar Biol Ass UK. 82: 649-654.”

ABSTRACT

The histological response of muscle, liver, pancreas, hindgut and cartilage to

varying feeding regimes was recorded for reared Dicentrarchus labrax. Tissular response

was recorded both qualitatively and quantitatively using digital image analysis, and the

results were compared. In general, the tissues responding faster to food deprivation were

gut-associated glands and muscle. The cartilage took the longest to respond.

Liver gave more consistent results than pancreas in the determination of feeding

treatments. Liver scoring was better than hepatocyte maximum diameter for detecting

emaciated larvae. Gut associated glands proved to be age dependent and showed high

within-treatment variability. From all indices, the quantitative determination of muscle fibre

separation (MFS) was the single index that correctly classified the highest proportion of

larvae to their corresponding feeding treatments. It was not correlated with age or size and,

in the Starved larvae, it underwent a significant worsening coinciding with the initiation of

mass mortality. We regard the quantitative determination of MFS as a useful contribution to

the determination of condition in fish larvae. It is a relatively fast quantitative method, and

its use would reduce the bias caused by discrete grading (scores) and by differences in

individual expertise. Finally, a method for weighting histological indices is proposed for

use in field studies.
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INTRODUCTION

The use of histological methods in the determination of larval nutritional condition

has at least two unresolved problems. One regards the low objectivity of these methods, as

the measures are mainly qualitative (O'Connell 1976; Sieg 1992; McFadzen et al. 1997). To

date, quantitative data have been restricted to the measurement of cell heights of few

tissues, mainly gut and liver, and have proved useful for early larval stages of some species

(Ehrlich et al. 1976; Oozeki et al. 1989; Theilacker and Watanabe 1989, Theilacker and

Porter 1995). However, some of these measurements are only obtainable from species with

elongated digestive duct (Theilacker and Watanabe 1989), or have been restricted to

particular larval stages.

Digital Image analysis offers versatile tools that permit the study of trends (areas,

volumes, colour-related differences etc.) whose calculation was tedious some years ago.

Johnston (1993) measured organelle areas in the muscle of Clupea harengus larvae using

an image analyser and McFadzen et al. (1994) quantified starvation in Scophtalmus

maximus using the ratio perimeter/area of the foregut. However, there are no studies in

which multiple quantitative and qualitative measurements of several organs taken from the

same individuals can be compared.

The second main problem of histological indices (extensive to any condition index)

is the large dependence of condition on the experimental rearing parametres, with the

subsequent poor applicability to field studies. Until further evidence is supplied, there is a

need to establish a relationship between survival and each condition measurement in

laboratory conditions.

Attending to the above, the goals of this section were a) to study the variation of

several histological indices as a response to long and short-term food deprivation and

delayed feeding, b) to compare classical qualitative measurements of tissue degeneration

with quantitative measurements and c) to explore the relationship between histological

measurements and the survival of larvae in the laboratory.
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MATERIAL AND METHODS

Rearing design and sampling

The rearing design and feeding scheme were described in Section 2.1. Here, the

histological study was divided into a long-term food deprivation experiment and a short-

term one. The former aimed to study of the starvation effect from the day the food was first

supplied (4 DAH) until 21 DAH, plus the effect of Delayed feeding (starting at 13 DAH).

The short-term experiment aimed to test the effect of punctual fast on well developed larvae

aged between 24 and 28 DAH. The sampling scheme and feeding treatments are shown in

Table 2.3.1. A total of 124 larvae were used for the analyses.

A

Feeding
Treatments

Age (DAH)

6 10 14 17 19 21
Fed 5 5 5 5 5 5
Starved 6 5 5 5 5 3
Delayed - - 5 5 4 5
B
Feeding treatments Age (DAH)

24 25 26 27 28
Fed 4 5 7 3 4
1d of Fast 2
2d of Fast 8
3d of Fast 3
2d of Fast, 1d re-fed 5
2d of Fast, 2d re-fed 5

Histological analyses

Sampled larvae were placed in chilled sea water until torpid and immediately fixed

in 10% phosphate-buffered formalin (pH 7.2). After one-month fixation, larvae were

Table 2.3.1. Number of larvae per treatment that yielded
interpretable results for most tissues. A, long-term starvation
experiment. B, short-term starvation experiment. Shaded cases
indicate the day at which food was withdrawn.
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measured to the nearest 0.1 mm and transferred to 70% ethanol until analysis. Prior to

histological procedures, larvae were coded so that no bias related to the knowledge of the

treatment was introduced. Larvae were dehydrated in an ethanol series up to 95%,

embedded in historesin (Leica) and serially sectioned at 3 µm in an approximate sagittal

plane. They were mounted and stained with Lee’s Methylene Blue-Basic Fuchin (Benett et

al. 1976). Sections were blow-dried and coverslipped with Eukitt mounting medium.

We studied the degree of starvation by looking at liver, pancreas, hindgut, mucosa,

muscle and cartilage. The study of midgut was here limited to general cellular observations,

as its quantification was not possible due to uniform staining and high folding of the tissue.

Before any tissue was measured, all sections from the larva under study were

inspected and the best ones marked for further study. Both quantitative and qualitative

measurements were taken.

Qualitative measurements consisted in the scoring of the tissues of several organs.

Maximum differences between tissues of 19 and 21 day old Fed and Starved larvae were

used to establish the extremes of the scores. Few modifications were introduced in the

scoring methods in comparison with other authors, as the tissular characteristics and

alterations were similar to those described for other species (O’Connell 1976; Yúfera et al.

1993; Theilacker 1978; Sieg 1992; McFadzen et al. 1997). Details of the scoring procedure

for each character are given in Table 2.3.2.

Quantitative measurements were taken with an image analyser (OPTIMAS 6.0 CORP,

USA) connected to a CCD SONY video camera. Two types of quantitative measurements

were recorded.

A) Area-ratio measurements. These measurements consisted in the calculation of the

percentage of muscle fibre separation (MFS) of a determined area of trunk muscle and

the determination of the percentage zymogen (% zymogen) of a pancreas section.

Muscle fibre separation was measured on the central part of the trunk, in sections where

myotomes and notochord were clearly visible. For several specimens examined,

variability of MFS was high for areas comprising less than three myotomes. Therefore,

regions comprising a minimum of three myotomes were selected. For the determination
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of % zymogen, a section of the pancreas close to the endocrine tissue was chosen when

possible. To determine both MFS and % zymogen, a macro from Optimas was run on

the selected area. This macro automatically detected the lighter areas (muscle gaps or

zymogen granules) against a luminance-corrected background (Fig. 2.3.1. A, B)

B) Linear measurements. Linear measurements included hepatocyte diameters and

enterocyte cell heights. Only individuals that had a minimum of 4 readable cells of each

organ were included in the analyses. Enterocytes were measured from the basal

membrane to the inner part of the microvilli brush. Hepatocyte cell heights were

obtained by measuring the maximum cell diameters (Fig. 2.3.1. C ).

Relationship of the indices with age and size

For the long-term starvation experiment, data was analysed by age and length. As

shown in the growth studies, two size-categories were established (4.5-6 and over 6mm).

Almost all Starved larvae were included in the small size category (27 out of 29). These

few Starved larvae over 6 mm were not sufficient to provide statistically valuable

information so they were excluded from the analyses. Feeding groups of each age class

were compared through non-parametric tests (Mann-Whitney when 2 treatments, Kruskall-

Wallis when 3 treatments, α=0.05) due to the strong non-normality of the data even after

several transformations. The effect of size on each histological variable was tested by

comparing Fed individuals smaller and larger than 6 mm of the Fed treatment, as this group

would probably reflect a size effect independently of food regime. Groups were compared

using Mann-Whitney tests, at α=0.05.

The short-term starvation experiment was only analysed by age.

Classification properties by histological variable

These analyses were only conducted for the long-time experiment, for which

maximum histological differences were observed. Also, this age-range enabled the

comparison with other studies of condition (see Sections 2.2. and 2.5.). In order to study the

classification properties of the different histological variables, we defined 3 nutritional
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ranges for each type of measurement. Data from both qualitative and qualitative

measurements were divided into Healthy, Moderately Healthy and Emaciated condition.

These ranges were established in a different way for qualitative or quantitative variables.

For qualitative variables, equal ranges were built. As an example, a tissue with 3

possible qualitative categories, 1 to 3, would have the following ranges of nutritional

condition: 2.34-3.00 (Healthy), 1.67-2.33 (Moderately Healthy) and 1-1.66 (Emaciated).

For quantitative variables, ranges for each nutritional condition corresponded to these that

yielded the best classification through several tentative trials (Table 2.3.3.). Medians and

Figure 2.3.1. Quantitative measurements. A, and B, determination (in yellow) of MFS and %
zymogen, respectively, using image analysis. C, measurement of maximum hepatocyte
diameters in the liver. D, measurement of hindgut cell heights. BB, brush border; BM, basal
membrane; GV, glycogen vacuole; HS, hepatic synus; N, nucleus; VM, ventral mucosa.

HS

N

HS

GV

BB

VM
BM
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95% confidence intervals were used when possible. The goodness of each histological

variable to detect starvation was established as the percentage of larvae of a given treatment

correctly assigned to its corresponding nutritional class (For example, % of Fed larvae

classified as Healthy by the liver scores, etc.).

Table 2.3.3. Ranges used to define nutritional categories in quantitative indices for each larva.

Nutritional category

Quantitative index Healthy Moderately Healthy Emaciated

Hepatocyte max. Diametre (µµµµm) >15.5 15.5-11.5 <11.5

Percentage zymogen (%) > 20.0 20.0-16.0 < 16.0

Hindgut cell height (µµµµm) > 17.0 17.0-15.3 < 15.3

MFS (%) < 1.3 1.3-3.9 > 3.9

In order to combine the information of the different indices, and to compare it with

the previously described single classification, a Stepwise Discriminant Analysis (SWDA)

was performed on selected variables (see Section 2.2. for a more extensive explanation of

the method). This methodology has been successfully applied to discriminate fish larvae of

diverse feeding condition from pre-defined groups, and to select the variables that most

contribute to the discrimination between groups (O’Connell 1976; Theilacker 1978).

Variables were represented onto the two first canonical axes to assess graphically the

results of the SWDA.

Relationship of histological variables with survival

In order to analyse the degree of correspondence between the nutritional descriptors

and survival, we compared the time-variation of each variable with the survival of the

Starved larvae. This analysis was only performed in the long-term experiment. Spearman’s

Rank correlation was used due to the general lack of linear relationships even after data

transformation.
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RESULTS

Among the several histological variables analysed, the degree of mucosa

detachment had to be excluded from the analyses for showing extreme within-treatment

variability. The general histomorphology of D. labrax is shown in Figure 2.3.2.

General histological differences between Fed and Starved larvae

The following results describe maximum differences observed for several organs of

Fed and Starved larvae of days 19-21 (Fig. 2.3.3.).

The hepatocytes of well fed larvae were polygonal and showed defined cell

boundaries, exhibiting a high degree of vacuolisation that presumably corresponded to

glycogen (O’Connell and Paloma 1981). Cell nuclei showed basophilic stain and tended to

appear at the cell corners. In severely Starved larvae, glycogen vacuoles were almost

absent, and a variable degree of intracellular inclusions (possibly degeneration bodies) was

commonly observed. In these larvae, cell boundaries were difficult to distinguish and nuclei

usually appeared darkly stained (Fig. 2.3.3. A, B).

The pancreas of well fed individuals tended to show high amounts of zymogen

granules that showed a varying degree of affinity for basic Fuchin, ranging from intense red

to whitish. Acinar structure was visible in most cases. Extremely emaciated larvae showed

shrunk Acinar cells that stained intensely in blue, and zymogen granules were almost

absent.

Enterocytes of the Fed larvae showed a thick microvilli layer and were closely

adhered to the basal membrane, unlike those of Starved larvae. Intracellular lipid inclusions

were observed in the midgut of Fed larvae, and tended to disappear in emaciated

individuals. Small acidophilic inclusions were observed in the hindgut of Fed larvae. In

Starved animals, these inclusions tended to increase in number and size (Fig. 2.3.3. C, D).

The trunk muscle of Fed larvae showed compact myomeres, with straight muscle

fibres and abundant interfibrillar substance. Starved larvae had widely separated muscle
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fibres, a phenomenon that was more conspicuous towards the rear end of the body (Fig.

2.3.3. G, H).

The procartilage of the Fed larvae was formed by a thick matrix enclosing the

chondrocytes, which usually obliterated the capsular space. In extremely starved larvae, the

chondrocytes appeared shrunk in the luminal space (Fig. 2.3.3. I, J).

Histological response to feeding conditions along age and size

Significantly different patterns were observed between feeding treatments for most

histological variables. Despite this, high within-treatment variability occurred, particularly

in the gut-associated glands. Below, the most relevant results are commented for each

tissue and type of measurement for the long-term starvation experiment. The short-time

starvation experiment is discussed at the end of this Section.

At the start of the experiment, the liver of the Fed and Starved larvae exhibited low

scores and small cell diameters (Fig. 2.3.4. A). Starved larvae remained in poor condition

throughout the experiment whilst Fed larvae underwent a gradual improvement in liver

condition. Hepatocyte traits of Starved larvae differed significantly from those of Fed

larvae at 17 DAH (scores) or 19 DAH (diameters) (Fig. 2.3.4. A, B). Delayed feeding

larvae took 4 days to reach values similar to these of Fed larvae, showing significant

differences from Starved larvae at 19 DAH. The reasons for the apparent improvement in

condition are discussed further in this Section. A significant effect of size was observed in

both hepatocyte measurements; the Fed larvae over 6 mm showed significantly higher

scores and cell diameters (Fig. 2.3.5. A, B) thus suggesting a developmental effect on

hepatocyte cellular properties.
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Figure 2.3.3. Examples of healthy and degraded tissues of D.labrax larvae. AI,
acidophilic inclusions; BB, brush border; BM, basal membrane; BV, blood vessel;
CE, cuboidal epithelium; CH, Chondrocite; CS, capsular space; EP, endochrine
pancreas; FG, foregut; GC, goblet cell; GV, glycogen vacuole; HG; hindgut; HN,
hepatocyte nucleus; HS, hepatocyte sinus; IS, interfibrillar space; L, liver; LU,
luminal space; MA, matrix; MG, midgut; MS, miotome septa; N, nothochord; PR,
prey; TM, trunk muscle; Z, zymogen.
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The pancreas scores of the Fed larvae were significantly higher than those of

Starved larvae at 14 DAH.The pancreas condition improved in Delayed larvae until 17

DAH. The % zymogen showed little variation in Fed larvae over time and followed a

similar pattern to that of the classical scores. For both pancreas measurements, Starved

larvae showed the highest median on day 6 and decreased until day 19. As before, on day

21 there was an improved condition for Starved larvae (Fig. 2.3.4. C, D). For % zymogen,

the first significant differences between Fed and Starved larvae were detected on day 19.

Delayed larvae had fully recovered to levels of Fed larvae by day 17 (significant K-W,

p<0.05). No size-effects were detected (Fig. 2.3.5. C, D).

The medians for hindgut scores of Starved larvae were always below those of Fed

larvae, although significant differences were only observed on days 14 and 19 (scores) or

19 (cell heights) (Fig. 2.3.4. E, F). This was probably due to the lack of interpretable

measures for this tissue, and the high variability. There was no significant size-effect on

this measurement (Fig. 2.3.5. E).

Muscle scores of Fed larvae showed a higher daily variation than MFS until day 21

(Fig. 2.3.4. G, H). Mean MFS of the Fed larvae was 1.2 (SD = 1.55, n=27) throughout all

the experiment. Both muscle scores and MFS of Starved larvae had a worsened condition

from day 10. The poorest condition was attained on day 17 according to both

measurements. Both muscle measurements were significantly different between Fed and

Starved treatments from 14 DAH. Muscle response of Delayed larvae appeared earlier in

the MFS (17 DAH) than in the muscle scores (19 DAH). Delayed larvae fully recovered on

day 21 according to the scores and on day 19 according to the MFS. There was no size

effect on muscle measurements in larvae over or under 6 mm (Fig. 2.3.5. G, H).

Cartilage scores of Fed larvae varied around 2 and 3 during the experimental period

(Fig. 2.3.4. A). Starved larvae showed significantly different scores for cartilage from day

14. After that day, there was never a sufficient number of larvae (generally around 3) to

make reliable statistical comparisons. However, the trends in medians suggested a general

poorer condition of Starved larvae, with a recovery of Delayed larvae detectable 3 days

after food was supplied (17 DAH). No size effects were detected (Fig. 2.3.5. I).
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Figure 2.3.4. Relationship between each index (scores or quantitative) with age for each feeding
treatment. Data are medians and 25 and 75% percentiles. Different letters are significant differences at
p<0.05 (Mann-Whitney if 2 groups, Kruskal-Wallis if 3 groups). Asterisks indicate small sample( n<5).
When scores were coincident among treatments, no letter is shown.
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Figure 2.3.5. Box-plots (median, 25 and 75%
percentiles and range) of each treatment by
size, for each histological index. Statistical
comparisons between the Fed treatment of the
two age classes were performed by Mann-
Whitney test to test for size-effects. Different
letters indicate significant differences with
p<0.05). F, Fed; S, Starved; D, Delayed. N =
number of observations. Capital letters for each
figure are drawn to help explanation in the text.
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The short-term experiment revealed some trends in the tissular response to short-

term fast, in larvae that can theoretically cope with starvation for longer periods. Though

statistical differences were probably influenced by the low number of available larvae, a

general responsiveness of most tissues was suggested by our results (Fig. 2.3.6.).

One day of starvation was not significantly reflected in a variation of the means in

any tissue. Two days of starvation produced significant differences between Fed and

Starved treatments in MFS, and the same pattern (though not significant) was shown by the

rest of the measurements except for hepatocyte diameters. In fact, hepatic condition was

found to be far from that expected in Fed larvae (see discussion). Larvae subjected to 3

days of fast showed either a similar or a lowered condition in all cases. After 2 days of

starvation, larvae refed for 1 or 2 days showed a generalised improved condition, although

with noticeable variability values.

Classification by each index into nutritional classes

Results from the classification into nutritional classes showed that Fed and Starved

larvae between 14-21 DAH were better classified than their counterparts of 6-13 DAH by

all indices (Table 2.3.4. A, B), reflecting the more pronounced differences caused by the

longer starvation time. Except for MFS, qualitative variables of a given tissue offered better

classification results than the quantitative measurements for either age-class.

Misclassifications patterns in 6-13 DAH larvae were different for several indices

and deserve further explanation. Liver measurements, (both scores and hepatocite

diameters) of young larvae were characterised by misclassifying the majority of Fed larvae

into the Emaciated category (Table 2.3.4. A). On the other hand, pancreas classified the

vast majority (between 82 and 100%) of young Starved larvae into the Healthy class. Also,

Muscle scores, MFS and Cartilage scores classified over half of the larvae as Healthy.

Hindgut measurements of this age-class misclassified between 46 and 56% of Starved

larvae either as Healthy or Moderately Healthy. The best classification scores for larvae of
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6-13 DAH corresponded to Fed individuals; up to 86% were correctly classified as healthy

by MFS and pancreas measurements.

For larvae aged 14-21 DAH, the best classification results corresponded to MFS,

which correctly classified 72.3% of all larvae (Table 2.3.4. B). This was the index that best

classified the Fed larvae (90% correct classification). Starved larvae were best classified by

Hindgut scores (100%), and Delayed larvae were again best classified by MFS (44%).

The effect of maternal reserves was probably interacting with starvation effects in the first

age-class (see discussion), so the results were ordered from best to worse only in the second

age-class, i.e. MFS > hindgut cell heights > muscle scores > Liver scores > pancreas scores

> Cartilage scores > Hepatocite diameter > %zymogen > Hindgut cell heights.

Multivariate analysis

In order to study the gain in classification power by combining several variables, a

SWDA was performed. Larvae were assigned to 5 predefined groups of treatment-age.

Variables that shared information were not included in the analysis in order to avoid the ill-

conditioning of the matrix (Manly 2001). Also, variables that showed more than 20% of

missing data were excluded from the analyses. As seen from Table 2.3.4., all quantitative

indices (except muscle scores) yielded better classification results than the qualitative ones.

Therefore, complying with the above-mentioned conditions, the variables finally included

in the SWDA were MFS, liver scores, pancreas scores and cartilage scores. All data were

ln-linearised except for MFS, which was root-transformed in order to avoid negative

values. Multiple correlation between the selected indices showed that no single variable

showed a significant correlation with more than half of the remaining variables.

SWDA chose, in order of importance for the discrimination of groups, MFS>liver

scores>pancreas scores>cartilage scores. Only the three first variables contributed

significantly to the results.
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The group composed of 6-13 DAH larvae corresponded to Fed individuals; up to

86.0% of those larvae were correctly classified as Healthy by MFS and pancreas

measurements.

Table 2.3.5. (A) shows that the groups that were best classified were Fed larvae of

14-21 DAH (83.3%) and Starved larvae of 14-21 DAH (91.7%). Overall, 88.9% of Fed

larvae were classified as Fed (either in the 6-13 or 14-21 classes). Over ninety percent of all

Starved larvae were correctly classified as Starved (of any age-category, see Table 2.3.5.B).

All Starved larvae aged between 14 and 21 days were classified as Starved (Table 2.3.5. B).

The first two canonical variables explained 96.6% of all variation (Fig. 2.3.7.).

Looking at the standardised coefficients of the first canonical variable it was seen that

individuals lying on the positive side were characterised by having a high MFS and low

scores for the remaining three variables. These individuals corresponded to Starved larvae

of 14-21 DAH plus some Delayed individuals. The negative side of the first canonical axis

comprised individuals with low MFS and high scores for Liver, pancreas and cartilage.

Individuals falling into this area were young Fed and Starved larvae, most Delayed larvae

and all Fed larvae over 14 DAH. The second canonical axis only explained 8% of the

variation and was mainly a contrast between pancreas scores and liver scores.

Figure 2.3.7. Values of each individual with respect to the first two canonical
variables. Centroids of Fed (F) and Starved (S) individuals of age-group 14-21
DAH are indicated. Legend as in Fig. 2.2.7.
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A
Age.food groups

F6-13 F14-21 S6-13 S14-21 D14-21
MFS 3.3401 2.8874 3.9382 5.9651 4.5822

Liver scores 7.0211 9.9827 4.1275 3.0654 8.0759
Pancreas

scores
12.7317 11.2856 10.9639 5.2217 10.9767

Cartilage
scores

11.1233 11.7913 9.7643 6.1145 11.4749

Constant -17.0505 -18.3481 -13.4293 -12.0931 -18.3060
%correct 33.3 83.3 60.0 91.7 46.7

B
Fed Starved Delayed

6-13 14-21 Total 6-13 14-21 Total 14-21
33 50 83 17 0 17 0
8.3 83.3 91.6 8.3 0 8.4 0

Fed 6-13 (n= 6)
14-21(n=12)

total 88.9 11.1 0
Starved 10 0 10 60 20 80 10

0 0 0 8.3 91.7 100 0
6-13 (n=10)
14-21(n=12)

total 45 90.1
Delayed 14-21 (n=15) 6.7 20 26.7 13.3 13.3 26.6 46.7

Relationship of the histological variables with survival

Percentage of zymogen, the 2 muscle measurements and the calculated values for

the first canonical variable showed the highest significant correlation’s with survival of the

Starved larvae (Table 2.3.6.). However, the contribution to the correlation meaning should

be looked at for each variable before any interpretation on causality is made.

As seen in Fig. 2.1.4., mortality of Starved larvae showed the sharpest decline at 17

DAH. From Fig. 2.3.4., it is seen that muscle measurements for Starved larvae do vary

reflecting the mass mortality, showing the lowest scores (or highest MFS) on day 17. On

the other hand, % zymogen (which yielded the highest correlation) descended constantly

from day 6 until day 19, thus failing to encompass the survival trends. Regarding the

correlation of the first canonical root, the Spearman correlation coefficient was similar to

those yielded by muscle measurements. Therefore, it is concluded that the highest

correlation with survival held by pancreas scores did not encompass the peak mortality

Table 2.3.5. Results of the SWDA on four histological variables. A;
parameters of the classification functions. Age-food grups arecomposed
by feeding treatment (Fed (F),Starved (S), or Delayed (D)) and the age
period. B; classification mattrix. In bold, correct classifications. Values
are percentages.



2. Laboratory studies. 2.3. Histological indices

81

occurring at ca. 17 DAH, whereas muscle scores did. Also, the use of a combination of

several histological variables (1st canonical root) did not significantly improve the

correlation of survival with muscle measurements, so the latter are preferred as single

indicators of starvation mortality in the laboratory, for this species and under the present

experimental conditions.

Treatments rs T DF Significance
Liver scores 0.204 1.062 26 NS
Hepatocyte diameter -0.333 1.670 23 NS
Pancreas scores 0.256 1.242 22 NS
% zymogen 0.819 6.846 25 S (p<0.001)
Hindgut scores 0.586 3.318 23 S (p<0.01)
Hindgut cell heights 0.404 2.117 25 S S (p<0.05)
Muscle scores 0.697 4.950 26 S (p<0.001)
MFS -0.668 4.660 27 S (p<0.001)
Cartilage scores 0.384 2.037 24 NS
First canonical root -0.686 -4.526 25 S (p<0.001)

DISCUSSION

D. labrax larvae proved to be histologically sensitive to food deprivation in all the

examined tissues. However, response-times and within-treatment variability differed among

histological measurements. The comparison of qualitative and quantitative measurements

showed that, except for muscle measurements, qualitative scores correctly classified a

larger proportion of individuals than quantitative measurements at any age-class. This is

partly to be expected as the qualitative indices take into consideration more cell or tissular

characteristics, than quantitative ones. The latter notwithstanding, the search for

quantitative histological indicators of larval emaciation is well documented in the literature

(e.g. Oozeki et al. 1989) as it is generally thought that tissular scoring is an exceedingly

Table 2.3.6. Results of the Spearman rank correlation
analyses between the different histological variables and the
survival of the Starved treatment. NS, non significant. S,
significant.
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expertise-dependent procedure, as was proved in fish larvae by O’Connell and Paloma

(1981).

A general observation that is common to other works on fish larvae of several

species (O’Connell, 1976; Martin and Wright; 1987) is that at all ages, but particularly

during the first week of life, there are some Fed individuals that show symptoms of

emaciation. This has been interpreted in terms of genetic conditioning and competition for

food (O’Connell 1976; Sclafani et al. 2000), and explains why in the literature, and in this

work, the percentage of Fed larvae categorised as Healthy rarely shows values over 90%. In

fact, most of the variations and misclassifications occurred during the period in which

larvae were still dependent on maternal reserves.

Relationship of the histological variables with age and size

Before commenting separately on the different results, it should be said that the

response-times obtained in this work are only of use for the purpose of comparison among

variables. Indeed, an increased sampling frequency or/and sample size might detect earlier

responses to starvation or recovery.

It is generally accepted that liver is one of the fastest tissues to respond to food

deprivation. Its vacuoles store glycogen and lipids and are the first substances to be

mobilised in starvation episodes (O’Connell and Paloma 1981; Margulies 1993). In Starved

larvae a constant poor condition in hepatocite scores and vacuolation through time were

observed. On the other hand, Fed larvae reflected an increase in both liver scores and cell

diameters during the first days of development. This increase was obvious by age (day 6

until day 14) and size (Fig. 2.3.4. A, B, and Fig, 2.3.5. A, B). This can be partially

explained by the fact that liver in D. labrax is not fully formed until 17 DAH (Barnabé

1976). In fact, increased cellular size and tissular complexity is common in the tissues of

the digestive canal during early development, even if there is no change in tissular

organisation (Govoni 1986). Therefore, the lack of response in the liver of the Starved

larvae could be due to the initial inhibition of liver development and subsequent

degradation of hepatic cells. It is also noteworthy the relatively high variation in the
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medians of both quantitative and qualitative liver measurements, in all the feeding

treatments.

Great variability has been observed in the condition of gut-associated glands of

many species subjected to starvation in the laboratory (Yúfera et al. 1993). The time-

response of glycogen stores in larval fish may vary from hours (Watanabe 1985; Oozeki et

al. 1989) to days (Kashuba and Mathews 1984). In the present study, long-term starvation

was translated into a significantly reduced condition of both hepatocyte measurements (Fig.

2.3.4.), but in well developed larvae subjected to 1, 2 or 3 days of starvation, variability in

hepatocyte condition prevented from the detection of significant differences between

treatments. Although in the present work larvae were sampled right before food was

supplied, individual variability in the ingestion rate and time at ingestion might explain the

within treatment differences in hepatocyte vacuolation. Therefore, liver measurements

should be regarded with caution except for cases of severe starvation, as they may be

reflecting immediate digestive status.

The pancreas scores were high and the % zymogen abundant in early Starved larvae

of day 6. From then on they underwent a continuous decrease until day 19. Fed larvae

maintained a high level of pancreas condition during the experiment, although the variation

was considerable. Zymogen is protein based and is formed by enzyme precursors (mainly

trypsinogen) that will be activated in the gut once food intake elicits its release. Zymogen is

known to be synthesised in non-feeding larvae (O’Connell 1976), which probably explains

the high zymogen levels found in young Starved larvae of the long-term experiment (Fig.

2.3.4. D). As shown by Pedersen et al. (1990), starved larvae also accumulate zymogen,

which might account for some of the high values in the pancreas scores found in larvae

subjected to one day of fast (Fig. 2.3.6.). The fact that these larvae did not show a

corresponding increase in the quantitative zymogen determination could be partly explained

by varying zymogen/pancreas area ratios. With starvation time, %zymogen and pancreas

scores decreased, in both long and short-term starvation episodes (Figs. 2.3.4. and 2.3.6.).

The high variation in the medians of Fed larvae might be due to short-term processes, as in

the liver, that are not adequately explained by our data due to the low sampling frequency

for this type of analysis. However, there are other sources of variability: the amount of
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trypsinogen secreted by the pancreas is proportional to the amount of ingested food

(Pedersen et al. 1990), which in turn is higher in larger larvae. Therefore, age could have

influenced the results of the pancreas scores in the Fed treatment. For D. Labrax of 16 to 38

DAH, Zambonino-Infante et al. (1996) proved an age-dependency in the pancreatic

secretion patterns. Thus, it is not unlikely that some part of the variability found in the

experiments could be attributed to the latter findings. An observation which is crucial for

the interpretation of the results of gut-associated glands is that when larvae were fed, it was

common to find remains of live food in the rearing cylinders. Therefore, ingestion, although

less likely, could have occurred during a wide time-interval in the Fed treatment, adding

variability to the digestive processes. Delayed larvae showed a consistent recovery that was

significant for pancreas scores already 24h after food was supplied (day 14). This was

observed also in 27 day-old larvae subjected to 2 days of fast and refed for one day (Figs

2.3.4. I, F and 2.3.6. C, D). This was due to the general recovery of the integrity of Acinar

cells and zymogen contents. From the above results, it is concluded that liver and pancreas,

though responsive to food deprivation in D.labrax, should be interpreted with caution if

they are to be used in field studies. Their use should ideally be accompanied by other

starvation measurements obtained from the same individual.

In this work, we recorded the presence of presumptive acidophilic inclusions in the

hindgut and lipid droplets in the midgut (Fig. 2.3.8.). These observations agree with the

regional differences in assimilation thought to occur in the gut of fish larvae (Govoni 1986;

Boulhic and Gabaudan 1992; Yúfera et al 1993.). The acidophilic inclusions of the hindgut

are probably indicative of protein digestion. The massive presence of lipid droplets in the

midgut has been previously described in sea bass larvae (Deplano et al. 1991; García-

Hernández et al. 2001) and has been related to an excess fatty acid absorption in relation to

the exporting capacity of the enterocytes (Crespo et al. 2001).

Both quantitative and qualitative hindgut measurements reflected the general trends

found for the previous variables. The enterocytes of Starved larvae, although generally

smaller in size, tended to have more abundant acidophilic droplets. These pinocytotic

inclusions have been observed to occur in starved individuals of other species (e.g.

Kjørsvik et al. 1991). The latter observation was accompanied, in severely starved
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individuals, by a loss of cellular integrity that caused a large variation in the cell size,

making Starved individuals of 14 DAH show either extremely large or small enterocytes

(Table 2.3.4. B). The number of valid measurements was lower for this tissue as sections

through hindgut were often biased. This partly accounted for the high variability observed.

Hindgut cell heights were less useful to distinguish feeding treatments than other

quantitative measurements and than hindgut scores.

The use of digital image analysis enabled a relatively rapid determination of MFS,

which showed an improved resolving power in comparison with the classical muscle

scoring (see Table 2.3.4.). Our results agree with most of the literature on larval condition

which, for most of the species studied, report a gradual separation of muscle fibres and loss

of interfibre substance in starving individuals (Gas 1972; O’Connell 1976; Theilacker

1978; Cousin et al. 1986; Martin and Wright 1987; Green and McCormick 1999). This has

been explained by the ability of fish larvae to quickly mobilise protein by degrading muscle

when lipid and glycogen reserves have been exhausted (Love 1970; Pedersen 1990). Also,

muscle degradation was most severe coinciding with the maximum observed mortality rate,

which is important when it comes to the interpretation of the different indices for survival

(see below). In the short-term starvation experiment, muscle responded as fast as liver to

food deprivation.

Figure 2.3.8. Light micrographs of the hindgut (left) and the midgut (right) in 22 DAH D. labrax larvae .
AI, acidophilic inclusions. LD, lipid droplets.
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The cartilage is known to respond only to prolonged periods of food deprivation in

several species (Theilacker 1978; McFadzen et al. 1994). In the present experiment

significant differences between treatments could only be established on days 19 and 21,

confirming the aforementioned works. In the analysed larvae of 6 and 10 DAH, the

majority of Starved individuals were misclassified as Healthy or Moderately Healthy

(Table 2.3.4. A). The recovery of Delayed larvae was relatively fast, and 78% of the larvae

from the Delayed treatment were classified either as Healthy or as Moderately healthy

(Table 2.3.4. B). Variability in the cartilage scores have probably a large experimental

error, as the chondrocyte reduction in the capsular space was seldom uniform across

different parts of the cartilage of the same individual. In view of these results, the inclusion

of this tissue in the determination of starvation in D.labrax is only of use to discriminate

extremely emaciated individuals.

Multivariate Classification

The results of the SWDA agreed with the individual classification procedure. MFS

was the variable that contributed most to the classification of single larvae. The SWDA

improved the classification of yolk-sac and oil-globule larvae. However, there was no gain

in the classification power of larvae of the 14-21 DAH period in comparison with the single

use of MFS. For that period, SWDA correctly classified 83.3% of Fed larvae (vs 90.0%

using MFS), 91.7% of Starved larvae (vs 83.0% using MFS) and 46.7% of Delayed larvae

(vs 44.0% using MFS). Therefore, the effort of measuring several variables in that period is

not justified in this species. Our classification values are of the same order as those

obtained by Theilacker (1978) for jack mackerel. However, great caution should be taken in

referring to classifications for comparative purposes, as experimental design (days of

starvation, food type, temperature) and species-specificity are likely to make comparisons

inadvisable.

It should be said that SWDA assumes multinormality requirements and

homogeneity of within-groups covariance matrices (Manly 2001). Although this was not

the case for our data, violations of one or more of these assumptions do not compromise the
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results as long as significance tests are not the objective (Manly 2001). The agreement of

the results of univariate and multivariate classifications support this view.

Relationship with survival and importance for field studies

The exact importance of starvation-mortality in the field is unclear. Results are often

contradictory and highly species-specific. Ferron and Leggett (1994) concluded that most

studies fail to establish any clear relationship between field-determined starvation and

larval survival. For this reason, the study of this coupling in the laboratory must be

udnertaken when possible.

As explained in the results section, we chose MFS as the best descriptor of survival

for its quantitative nature, its good classifying performance, and its parallelism with the

initiation of mass mortality.

The susceptibility to mortality could not be studied following the “necrotic criteria”

used to define a point of irreversible starvation established for other species (Blaxter and

Hempel 1963; McGurk 1984). Instead, we defined a critical value of MFS that might

severely handicap survival. Based on a “mass mortality” criterion, this value was used to

delimit larvae with higher or lower probabilities of survival. We chose a critical

(approximate) value of MFS of 6% (Mmax) that might be associated with the mass

mortality period observed around day 17 (Fig. 2.3.9.) We then re-classified the larvae into

pre and post-Mmax. According to this, ca. 96 % of all Fed larvae were classified as pre-

Mmax. Of Starved larvae, ca. 69% of the larvae under 14 DAH would be classified as pre-

Mmax (therefore having higher survival probabilities), and ca. 87% of Starved larvae of 14-

21 DAH would be classified as post-Mmax (reflecting a worsened condition). Of all

Delayed larvae, 87.5% would be classified as post-Mmax (would presumably survive

accounting only for starvation data). This result corresponds well with the null mortality

observed for Fed and Delayed larvae over 16 DAH (see Figure 2.1.3.).

Our results on susceptibility to mortality based on this mass mortality criterion

should not be interpreted according to the existence of a true Point of no Return (PNR)

sensu Lasker (1970). As explained in Sections 2.1. and 2.2., it is likely that European sea
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bass has an extremely delayed PNR

(Barnabé et al. 1976). We believe that

in cases of such extended periods before

PNR is reached, the experimental

correlation with survival in the

laboratory must be interpreted as an

increased susceptibility to starvation

mortality.

If one considers the role of the

body muscle in a larva, it comes clear

that a severe degradation of the muscle

fibres could be particularly important

for survival for at least the following

reasons: a) a reduction in the feeding

success, b) a reduced capacity of avoiding the predators and c) a decrease in growth rate.

The “growth-mortality” hypothesis, which includes several of the aforementioned

mechanisms that are possibly involved, has been the object of numerous studies (see Hare

and Cowen 1997 and references cited therein). The major role of muscle for these processes

has been pointed out by Green and McCormick (1999). These authors also proved

empirically that muscle degradation was directly related to a decreased striking success.

Furthermore, according to the works on buoyancy (Neilson et al. 1986; Sclafani et al.,

1993, 1997, 2000), muscle condition may be involved in the positioning of the larvae in the

water column and hence in their interaction with prey and predators. The relationship of

other nutritional indices (particularly those which have a short-time response to food

deprivation) with survival in the wild seems less obvious.

However, it is difficult to assign a particular mortality rate to each of these mechanisms. In

the field, collected larvae are usually found at different degrees of emaciation and few seem

to be near an irreversible point of starvation (O’Connell 1980; Theilacker 1986). In the

realm of nutritional indices, a single index is often used to determine the physiological

status of a sampled larva (e.g. RNA/DNA, lipid content, etc.). If several variables are

Figure 2.3.9. Relationship of MFS with
survival. Double plot of MFS (Fed and
Starved larvae) and mean percentage survival
(Starved larvae) vs age. Mmax is the value of
MFS over which survival is supposed to be
handicapped. Survival is represented by
means ± SE. MFS are medians and 25 and
75% percentiles.
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considered (e.g. several histological variables), it is common to simply average the obtained

values to describe different larval groups. As a consequence, the particular relationship

between the different starvation indices and their probable relation to survival in the wild is

seldom considered. We propose that indices that can be obtained from a single larva (e.g.

several histological measurements) should be weighed to account for their theoretical (and

empirical when available) relationship with survival. Therefore, indices that suggest that

larvae will have a lowered performance or that have been experimentally correlated with

high mortality rates (e.g. muscle measurements) or that imply that larval growth-rate or size

will be severely handicapped for a long time (e.g. morphological indices) should be given

more importance than indices that are just indicators of immediate feeding status. Figure

2.3.10. illustrates how a methodology based on this idea could be used for field-collected

larvae.

As a conclusion, we propose the use of MFS as a main factor (within the variables

studied herein) to discriminate nutritional condition in D.labrax over the oil-globule period.

Figure 2.3.10. Proposed method for weighting measurements of nutritional condition
according to their potential relationship with survival. Necrotic tissues (Step 1) are
assumed to have the highest associated probability of death. Maximum weight (9) would be
given to larvae that exhibit optimum values for indices that are highly related to survival
(Step 2) plus high values of indices that are indicators of immediate nutritional status (Step
3).
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It is a single quantitative index that is relatively easy to obtain, and it yielded one of the

best classifications by feeding treatments. The combined information of survival and this

index could be used to classify larvae with high or low survival probabilities. From our

results, we believe that indices that are experimentally (or theoretically) more related to

survival should be given more weight than others for determining the condition of field-

collected larvae.
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2.4. BIOCHEMICAL INDICES

ABSTRACT

The aim of this section was to compare several biochemical condition indices, i.e.

RNA/DNA, protein/DNA, and the activities of 2 metabolic enzymes, Lactate

dehydrogenase (LDH) and Citrate Synthase (CS) in homogenates of single Dicentrarchus

labrax larvae subjected to varying feeding regimes. Also, the cell proliferation rates from

well developed larvae was assessed in Fed larvae vs larvae subjected to 2 days of fast.

Two developmental events, i.e. the exhaustion of maternal reserves and notochord flexion

were found to affect drastically some biochemical parameters independently of the food

regime.

In pre-flexion larvae, only RNA/DNA could be tested, and revealed to be of use

only in extremely emaciated larvae, well after the exhaustion of maternal reserves. An

RNA/DNA value of 1.7 (± 0.62 SD) was associated with the initiation of maximum

mortality rates and was considered to indicate starvation. This value is similar to that

indicative of extreme starvation in larvae of other fishes. In postflexion larvae, RNA/DNA

and LDH activity best encompassed nutritional condition.

Response time to food deprivation and re-feeding was longer in pre-flexion than in

post-flexion larvae. For the latter, recovery time decreased with increasing starvation time.

The use of metabolic enzymes revealed that LDH was a better descriptor of short-term food

deprivation than CS, as confirmed for other species. In postflexion larvae, LDH/DNA could

be a good way of detecting nutritional condition if applied to narrow size ranges.

Cell proliferation rates enabled the differentiation of larvae subjected to short-time

fast in muscle tissue but not in brain tissue. Further methodological refinements are needed

in order to use this index extensively, however our results seem promising.

The relationship between indices and their usefulness for future studies is discussed.
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INTRODUCTION

Biochemical condition indices have a tradition in determining fish larval nutritional

stress (Ferron and Leggett 1994, see Section 1). Within these, nucleic acid-based indices

(RNA/DNA, protein /DNA etc) belong to the most widely used, whereas metabolic enzyme

activities and cell proliferation rates are seldom utilised.

The objectives of this section were to test and compare several biochemical

parameters, all with extensive background (Section 1) in D. labrax subjected to both long-

term and short-term food deprivation and refeeding episodes. Also, the effect of initial

delayed feeding was explored. To our knowledge, no comparative analysis of the variables

measured herein has been done hitherto for this species. The tested biochemical indicators

of condition were RNA/DNA, protein/DNA, the activity of 2 metabolic enzymes (lactate

dehydrogenase and citrate Synthase) and cell proliferation rates. A brief explanation of

each index is given below, but further references can be found in Section 1.

The RNA/DNA ratio gives a measure of the synthetic capacity of the cell and it has

been used extensively in fish larvae to detect nutritional status and changes in growth rates

(Ferron and Leggett 1994; Bergeron 1997; Buckley et al. 1999). Theoretically, a well

nourished larva grows fast by increasing the total muscle mass. This is linked to increased

RNA synthesis. While RNA contents show high variability as a response of food

availability, the DNA contents per cell have a much reduced variability and is therefore a

good proxy for body size. It is assumed that, during starvation, DNA contents per cell is

maintained but RNA contents decrease.

Protein content is a particularly useful variable to detect emaciation in fish larvae

because, unlike in other vertebrates, fish are known to quickly mobilise protein from body

muscle to meet metabolic demands (Buckley 1979; Pedersen et al. 1990). Therefore, it is

expected that a deficient nutrition would be reflected in a decreased protein content.

Obviously, this fact is closely related to the interpretation of lowered RNA in starved

larvae. Further, a reduction in protein content has important effects in the behaviour,
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locomotory capacity and floatability of larvae and consequently survival rates can be

severely affected by reduced protein contents (Neilson et al. 1986; Sclafani 1993). It is

necessary, however, to correct the total soluble protein contents for size. Standardisation by

DNA or length are two of the possible ways of accounting for size-effects.

The activities of the two metabolic enzymes selected, lactate dehydrogenase (LDH)

and citrate Synthase (CS), have shown to be sensitive to emaciation in fish larvae (Clarke et

al. 1992; Fiedler et al. 1998), and to be correlated with growth rates in juvenile fish

(Couture et al. 1998). Nevertheless, species-specific data are still scarce. LDH is the

terminal enzyme of anaerobic glycolisis in vertebrates. It is assumed that LDH activity

increases proportionally to feeding rate and is correlated to anaerobic potential and

locomotory performance. Citrate synthase is an important enzyme of the Krebs cycle and

its activity is believed to increase as a response of feeding intensity. Increased CS activity

indicates enhanced aerobic metabolism. When standardised (classically to protein

contents), both enzymes can serve as an indicator of general condition of fish larvae.

The use of cell proliferation rates to study nutritional condition relies on the

hypothesis that optimum feeding status promotes growth, which is in turn related to cell

division rates. Studies of in vitro cell cultures have shown that extracellular factors such as

nutrient deprivation determine that normal proliferating cells in G1 stage of the cell cycle

revert to quiescence (Pardee 1989; Murray and Kirschner 1989; Alberts et al. 1994).

Despite the promising results obtained using this technique to detect starvation in fish

larvae (Bromhead et al. 2000; Theilacker and Shen 2001), numerous methodological

problems have been found, and further research has been recommended. In this section, the

cell proliferation rates were studied in brain and muscle tissue. It was anticipated that these

two tissues could respond differently to short term nutrient deprivation, due to their

particular developmental and physiological characteristics.
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MATERIAL AND METHODS

All sampled larvae were frozen alive in liquid-nitrogen and stored at –80°C until

analysed. Detailed sampling schemes and analytical methods will be described further in

this section.

Marked developmental transitions, for example the shift from maternal to

exogenous feeding, or urostyle flexion are known to be a threshold influencing biochemical

dynamics in D. labrax (Bergeron and Pearson-Le Ruyet 1997). We therefore explored these

possible effects before further analysis of the results. The type of feeding treatments was

different, as explained in other sections, for early stage or well developed larvae.

Feeding treatments

A first group of treatments was called “long-term food deprivation experiment” and

comprised larvae from 6 to 18 days after hatching ( DAH). The feeding groups were as

follows: “Fed” larvae that had been continuously feeding from 4 DAH, “Starved” larvae

which were deprived of food since hatching, or “Delayed” larvae that were starved until 13

DAH and then fed (Table 2.4.1. A). Due to the small size of the youngest larvae, it was not

possible to measure all the biochemical parameters during this period. It was decided to

measure only RNA and DNA. The condition indices explored was the RNA/DNA ratio.

A second group of treatments was set for postflexion larvae from days 22 to 28 and

is referred to as “short-term food deprivation experiment”. One treatment “Fed” was

formed by larvae that had been continuously fed since day 4. Another set of treatments was

formed by a combination of food deprivation and re-feeding days, according to the

sampling scheme in Table 2.4.1. (B). During the analysed period, each larvae yielded

sufficient material to quantify RNA, DNA, total soluble protein and LDH and CS

enzymatic activities. The tested potential indicators of nutritional condition were
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RNA/DNA, protein/DNA, protein-specific LDH and CS activity and DNA-specific LDH

and CS activities.

Also, the relationship between daily growth rate and nutritional condition was

explored. This was done using Fed larvae from 14 to 28 DAH. RNA/DNA was the selected

index as it was the only one available for that age-span. Daily growth rate was expressed in

mm/day, calculated from:

Growth rate (mm/day)=(SL(t2)-SL(t1))/t2-t1

where SL equals standard length (mm), and t1 and t2 are time in days.

For both long and short-term starvation experiments, the possible effect of size and

age in condition indices was only assessed in continuously fed larvae, as this was the

treatment for which the effect could not be attributed to a food deficiency.

A
Treatment Days after hatching (DAH)

6 8 10 12 13 14 15 16 17 18
Fed 5 6 5 4 5 4 6 3 8 6

Starved 7 5 6 2 4 4 2 1 3 6
Delayed - - - - - 4 3 4 4 4

B
Treatment Days after hatching (DAH)

22 23 24 25 26 27 28
Fed 5 14 5 2 12 10 11
Delayed 8
1d of fast 2
2d of fast 16*
2d of fast 1d refed 11
2d of fast 2d refed 7
3d of fast 5
3d of fast 1d refed 5

Table 2.4.1. Number of larvae examined for biochemical
measurements (except for cell proliferation rates). For the long-
term starvation experiment (A), nucleic acids were analysed. For
the short-term starvation experiment (B), variables measured were
nucleic acids, LDH and CS activities and protein contents. In B,
shaded cases indicate the day of food withdraw. (*) For protein-
based measurements, only 10 points were available
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Finally, the cell proliferation rates of 26 DAH continuously fed larvae were

compared to larvae of the same age subjected to 2 days of fast. Muscle and brain tissue

were analysed separately in larvae sampled every 6 hours (ca. 20 larvae were sampled each

hour-treatment) during a 24 hour period to analyse the short-time response of cell division.

Following, the protocols used for each type of analyses are detailed.

Sample dissociation

The determination of nucleic acid, protein and enzyme activities was conducted on

the same homogenates obtained from single larvae. Flow citometry analyses were obtained

from separate larval batches due to methodological constraints.

The sample dissociation procedure used for all analyses (except cell proliferation

rates) is schematised in Figure 2.4.1. Larvae were thaw, the SL measured and the head and

gut regions excised from the rest of the body, in order to avoid interference of gut contents

or tissue-specific interference in the interpretation of results. Thus, only muscle tissues

were used for the analyses. The muscle portion of a single larva was homogenised using a

borosilicate tissue grinder and a Teflon pestle, rotating at middle speed for 1 min, at 0-4ºC.

The volume (125 to 250 µl) of grinding buffer (GB, 10 mM Tris-HCl, pH 7.2) was adapted

depending upon the size of the larva. The homogenates were transferred to an eppendorf

tube, well mixed and split into two aliquots for the analyses of protein and enzyme

activities (200 µl) and nucleic acids (25 to 40 µl). In the case of the smallest samples

ground on 125 µl GB, most homogenate (110 µl) was used for nucleic acids only (as

indicated earlier). An additional chemical extraction using EDTA and sarcosyl was

performed for the nucleic acid estimation. The corresponding aliquots were diluted 1:1 with

1% TSEB buffer (Tris buffer containing 1% sarcosyl and 0.5 mM EDTA). The mixture

(now containing 0.5% sarcosyl) was kept at RT for 1 hour (well mixed after the first 30

min). The homogenates were kept frozen at –80ºC until the corresponding analyses were

performed.
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The individual larvae used for cell proliferation analyses were processed on the

same day as they were thawed. The specific protocol is detailed further in the text.

Quantification of nucleic acid contents

The methodology followed the procedure described by Berdalet (2002). Basically,

the method uses SYBR Green II fluorochrome to estimate DNA and RNA in combination

with Rnase and Dnase digestion on separate aliquots.

Briefly, the homogenate (containing 0.5% sarcosyl) was thawed and diluted down to

0.05% sarcosyl using 100 mM Tris buffer (pH 8.0, containing 100 mM NaCl, 0.9 mM

Figure 2.4.1. Procedure for the obtention of final homogenates from a single
larva in order to analyse protein, enzyme and nucleic acid analyses.

Thaw from -80°C to 0-5°C

Body length measured
Head and gut escission

Homogenise tissue with 250 µl grinding buffer
in a borosilicate grinder vessel

equiped with teflon pestle (0-4ºC)

Eppendorf.
Vortex 2s

ca. 200 µl for protein
and enzyme analysis

Freeze at -80ºC

40 µl for
nucleic acid analysis

40µl homogenate
+ 40 µl 1 % STEB

Vortex for 30 min at RT

RT for 1h (mix after 30 min).

Freeze at -80ºC until analysed

TransferTransfer
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CaCl2 and 0.9 mM MgCl2). After centrifugation (10000 rpm, 2 min, 4ºC) three aliquots

(125 to 250 µl, depending on the size of the samples) were transferred to three test tubes.

An aliquot was incubated in the presence of RNase, to allow for the estimation of the DNA.

A second aliquot was incubated with DNase, for the estimation of RNA. The third aliquot

accounts for the blank correction of the samples. The highly sensitive fluorochrome SYBR

Green II (Molecular Probes) allows the quantification of the nucleic acids. DNA Type I

from calf thymus (D-3664) and RNA Type III from baker’s yeast (R-7125), both from

Sigma, were used as standards. The analyses were run in 1 ml assays on 100 mM Tris

buffer. It is essential that the concentration of the sarcosyl in the assay was below 0.0125%.

A Shimadzu RF-570 spectrofluorometer was used for the readings at 497 and 520 nm of

excitation and emission wavelengths, respectively.

Quantification of total soluble protein and metabolic enzymes

Total soluble protein was analysed using the colorimetric method of the

Bicinchoninic acid (BCA, Smith et al. 1985). This method was selected for its highest

tolerance to common buffers and for its highest simplicity (permits a one-step analysis) and

flexibility compared to other methods such as that of Lowry et al. (1951). A daily standard

curve was made using bovine serum albumin (BSA, SIGMA P-0915). Standards included a

blank (just buffer) and increasing concentrations of BSA, from 0.1 up to 8 mg BSA/ml.

Absorbance read at 562 nm was measured using a UVIKON 923 (Bio-Tek Kontron

Instruments) spectrophotometer in a total of 1200 �l of assay (total Working Reagent). Due

to the small amount of protein yielded by each larva, we studied the possibility of making a

single reading using the whole sample rather than several replicates using smaller amounts.

The test of replicability yielded coefficients of variation between 2 and 7, which were

considered small. Therefore, it was decided to use a single reading of each larva using 35

�l of sample supernatant. Prior to reading, homogenates were vortexed and centrifuged at

14000 r.p.m. for 1 min.

The determination of enzyme activity is based on the premise that, for a given

temperature and in the presence of saturating substrate concentration, the activity (rate of
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conversion of the substrate into a product) is proportional to the total amount of enzyme

present in the sample. The protocol for LDH and CS determination was basically that of

Childress and Somero (1979), with certain modifications (described below) to optimise the

usage of reagents.

Frozen homogenates (-80°C) did not loose activity respect to fresh homogenates for

at least 2 months. This was calculated by comparing a set of 15 samples. Prior to the

analyses, homogenates were vortexed and centrifuged at 14000 r.p.m. for 1 min in a

refrigerated (4°C) centrifuge. A refrigerated multi-cuvette carrier adapted to the

spectrophotometer enabled the simultaneous reading of 3 samples at a time. Both LDH and

CS activities were measured at 15°C.

For the LDH activity, the decrease in Absorbance due to the NADH oxidation was

recorded at 340 nm in a medium containing 80 mM Tris/HCl (pH 7.2 at 20°C), 5 mM Na-

Pyruvate, 0.15 mM NADH and 100 mM KCl. The assay reagents were prepared daily. The

assay amounts were optimised for the use of pre-weighed 2 mg NADH vials (SIGMA-

4730) which permitted the analysis of 16 samples (or 8 duplicates) per vial. The volume of

assay per sample was 1 ml. The amount of homogenate (supernatant) varied between 25

and 40 �l depending on the size of the larva. Total reading time was of 8 min per larva.

The CS assay contained 50 mM Imidazole/HCL buffer (pH 7.8 at 20 °C), 0.5 mM

oxaloacetate, 0.1 mM Acetyl-CoA, 0.1 mM 5,5-dithiobis (2-nitrobenzoic acid) (DTNB) and

1.5 mM MgCl2. Total assay volume was 1 ml. The AcCoA was prepared in a 1mg/ml

solution to reduce weight error and kept at –80°C in 1 ml eppendorfs. Handled in this way,

solutions can be used for at least 6 months (SIGMA-ALDRICH). For the CS reaction to

start, it is needed that the sample (supernatant) is introduced first as it produces a

background activity that must be recorded. This activity is subtracted from the enzymatic

reaction that takes place once the substrate (oxaloacetate 25 �l) is added, 2 min after sample

addition. The CS activity was recorded for 20 min at 412 nm as the increase in Absorbance

produced by the reaction of reduced Acetyl-CoA liberated from the enzymatic reaction with

DTNB. The amount of sample varied between 25 and 50 �l depending on the size of the

larva.

The extinction coefficients utilised for calculations were 6.22 for NADH and 13.6

for DTNB. Enzymatic activity was calculated as Units (U), where 1U= 1 �mol substrate



2. Laboratory Studies. 2.4. Biochemical Indices.

101

converted to product per min. Final results were presented as specific enzyme activity

(Units/mg of protein or Units/µg DNA).

Flow cytometry

Samples were prepared following the

general procedures for flow cytometry analyses as

described by Shapiro (1988) and Vindeløv and

Christensen (1994). Thawed larvae were measured

(SL) and the head and gut regions were separated

from the rest of the body. The tissue to be

analysed, i.e. brain or muscle, was placed in 0.5

ml of a hypotonic breaking solution kept on ice

(Fig. 2.4.2.). Tissues were mechanically

dissociated with a 1-ml syringe and a 23-gauge

needle in the breaking solution to obtain single-

cell suspensions. One litre of breaking solution

contained: 1 g sodium citrate, 8 g NaCl, 0.560 g

PIPES, 0.372 g EDTA, 1 ml Triton X-100, 40 mg

RNase (heated in boiling water for 5 minutes) and

distilled water up to 1000 ml.

The cell (nuclei) suspension obtained as

previously described was filtered throughout a 40

µm mesh and subsequently incubated at 37°C for 30 minutes. Nuclei staining was

performed by adding Propidium Iodide solution to the cell suspension (final concentration

of 50 µg/ml). Samples were kept on ice until the flow cytometric analysis, which was

performed in the subsequent 2 hours. The suspension containing the stained nuclei was run

throughout an Epics XL flow cytometer (Coulter Corporation, Hialeah, Florida). The

instrument was set up with the standard configuration: excitation of the sample was done

using a 488 nm air-cooled argon-ion laser at 15 mW power. The complex DNA-

fluorochrome emits a fluorescence, which depends on the amount of DNA of each nucleus.

Light emission is higher in DNA synthesising nuclei prior to division. DNA analysis on

Figure 2.4.2. Schematic of the steps
conducted to analyse the muscle and brain
cell proliferation rates.

Thaw from –80°C to 0-4°C

Measurement of body length
Head and gut escission

Mechanical dissociation of tissue
with 23 g needle in the following

solution: Hypotonic solution + 1%
detergent+RNase (0.04mg ml-1)

Filtration (40 µm)

Staining (propidium
iodide, 0.05mg/ml)

Nuclear suspension run
through flow cytometer

Analysis of fluorescence
histograms
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single fluorescence histograms was done using ModFit LT software (Verity Software

House, 1995). The program was used to calculate the amount of proliferating cells (stages

S, G2 and M) in relation to those in stages prior to DNA synthesis (G0 and G1 stages of the

cell cycle). Only those samples with coefficients of variation of the G0+G1 peak below 6

were considered useful for interpretation of the results.

Statistical analyses

The existence of significant relationships between a given variable and age or length

was tested by linear regression (variables were ln-linearised when appropriate). Differences

between slopes and means of the different treatments were tested by ANCOVA and

ANOVA using GLM procedure of MINITAB Inc., USA, (version 12.1). Differences

between biochemical parameters for given days were tested by Student’s-T-test (2

treatments) or one way ANOVA (3 treatments) with post-hoc Tukey’s comparison when

the number of observations was over 4 for each treatment-day. The relationship with

survival of the starved larvae with the RNA/DNA ratio was explored by Spearman’s rank-

correlation.

RESULTS

D. labrax larvae underwent two shifts in growth associated probably with the total

oil globule exhaustion (around day 13) and with the notochord flexion (between days 20

and 22). This was evident in the RNA and DNA changes in continuously fed larvae (Fig.

2.4.3., Table 2.4.2.). Both RNA and DNA slopes were significantly higher in the second

growth period (days 14 to 18) than in the third growth period (days 22 to 28).

The RNA/DNA ratio was fairly constant with time (no significant correlation) in

both periods. This is of extreme importance as it allows for its direct use to estimate

condition without further size or age standardisation.
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Table 2.4.2. Regressions and comparisons of slopes of RNA, DNA and the RNA/DNA ratio with time (days)
between pre and post-flexion continuously fed larvae. Only larvae over 14 DAH are considered to avoid the
effects of maternal reserves. Fitted regressions lines can be found in figure 2.4.3. NS= not significant.

Dependent variable
(Y)

Regression equations r2 N P Test of slope

Preflexion LnY=-5.75 + 0.374 X 0.64 27 <0.0001RNA(µg larva-1)
Postflexion Ln Y= -1.03 + 0.125 X 0.28 60 <0.0001

P<0.001

DNA(µg larva-1) Preflexion LnY= -6.88 + 0.328 X 0.60 27 <0.0001
Postflexion Ln Y= -3.02 + 0.138 X 0.36 60 <0.0001 P<0.001

RNA/DNA Preflexion Ln Y= 1.129 + 0.045 X 0.080 27 NS
Postflexion LnY= 1.99 – 0.013 X 0.020 60 NS -

“Long-term food deprivation experiment” (preflexion period)

Fed larvae exhibited a significant and exponential increase of the RNA and DNA

content with age (Fig. 2.4.4., Table 2.4.3.). This increase was negligible or slow until day

12-13 and faster afterwards. Mean RNA/DNA values of Fed larvae fluctuated between 4

and 8. For these larvae RNA/DNA ratios decreased slightly from days 6 to 10. After that,

the ratio did not vary significantly.

Figure 2.4.3. Variations in RNA and DNA contents per larva, and
RNA/DNA ratio (all ln-transformed) in continuously fed D.labrax larvae
along the experiment. Regression lines were only fitted if statistically
significant (see Table 2.4.3.) and only over 14 DAH (when maternal reserves
are exhausted).

6 8 10 12 14 16 18 20 22 24 26 28
0.02

0.05

0.14

0.37

1.00

2.72

7.39

20.09

DNA(µg larva-1)

RNA(µg larva-1)

RNA/DNA

oil globule
exhaustion flexion

Ln
nu

cl
ei

c
ac

id
co

nt
en

to
rr

at
io

Age (DAH)



2. Laboratory Studies. 2.4. Biochemical Indices.

104

The length (SL) of Fed larvae increased significantly and linearly from day 6.

Length was not significantly correlated to RNA/DNA in Fed larvae in any of the 3

developmental periods (correlation, p>0.05). This is an important result as it is the basis for

its use as indicator of nutritional status in larvae of unknown age, which is often the case

encountered in the field.

In Starved larvae, RNA and DNA remained fairly low through time compared to

Fed larvae (Fig. 2.4.4.). RNA/DNA decreased from near 6 to ca. 2 from days 6 to days 17-

18. However, its variability was considerable and significant differences respect to Fed

larvae may only be real on day 12 and after day 15. The minimum RNA/DNA value of

Starved larvae was observed around days 16-18 coinciding with the initiation of mass

mortality (Fig. 2.4.5). The value for day 17 was of 1.7 ± 0.62 (SD). There was a significant

and positive relationship between survival and RNA/DNA ratio between days 6 and 18

(Spearman’s r=0.58, DF=42, p<0.0001).

Figure 2.4.4. Variation of the mean RNA and DNA contents per larva, RNA/DNA ratio and SL (±
SD) along age in larval D. labrax for each feeding treatment in the long-term starvation experiment.
Arrow indicates the time of oil globule exhaustion in fed larvae. Different letters are significant
differences at �=0.05. Asteriscs indicate less than 4 observations. The relationship with length is
commented in the text.
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Dependent variable
(Y)

Treatments Regression equations R2 P N Slope Intercept/
mean

RNA(�g larva-1) Fed LnY=-5.75 + 0.374 X 0.64 <0.0001 27 A A
Delayed LnY= -7.67 + 0.443 X 0.58 <0.0001 17 A B
Starved Y= 1.01-0.046X 0.35 <0.05 15 B C

DNA(�g larva-1) Fed LnY= -6.88 + 0.328 X 0.60 <0.0001 27 A A
Delayed LnY=-6.96 + 0.299 X 0.49 <0.001 17 A B
Starved NS - -

RNA/DNA Fed NS - -
Delayed Y= -4.64 + 0.620 X 0.21 <0.05 17 A A
Starved Y= 10.02-0.45X 0.34 <0.05 15 B B

SL (mm) Fed Y= 1.652 + 0.106 X 0.52 <0.0001 27 A A
Delayed Y= 1.294 + 0.267 X 0.38 <0.01 17 A B
Starved Y=7.007 – 0.106 X 0.32 <0.05 15 B B

In the Delayed larvae, RNA and DNA contents per larva increased significantly and

exponentially with time (Fig. 2.4.4.).

Mean values of RNA contents, DNA

contents, and SL were always

significantly lower in delayed than in

fed larvae. However, the rate of

increase (comparison of slopes) was not

significantly different between Fed and

Delayed larvae (Table 2.4.3.). The

RNA/DNA of Delayed larvae increased

abruptly from day 15 to 16, reaching

similar values to those of fed larvae

(Fig. 2.4.4.). An increase in length

occurred on day 17, which is one day

later than the observed increase in the

RNA/DNA values. Delayed larvae had similar values to starved larvae until day 17 for

DNA and SL. RNA increased for Delayed larvae on day 16, which was responsible for the

high increase in RNA/DNA. Therefore, for this period it took 2-3 days (latency) for

Table 2.4.3. Regression parametres for each variable vs age (x), for each treatment during the long-term
starvation study. Only days 14 to 18 are considered (preflexion period, no dependence on maternal
reserves). Only equations of significant regressions are shown. Different letters indicate significant
differences in slopes or means among treatments, at �= 0.05. NS= not significant.

Figure 2.4.5. Relationship between mean
survival of the Starved larvae and the mean
RNA/DNA ratio. Fed treatment is shown for
comparison. Error bars are SE for survival
and 1SD for RNA/DNA ratios.

2 4 6 8 10 12 14 16 18 20 22 24 26

0

20

40

60

80

100

RNA/DNA Fed

Age (DAH)

Su
rv

iv
al

(%
)

survival Starved

0

2

4

6

8

R
N

A
/D

N
A

RNA/DNA Starved



2. Laboratory Studies. 2.4. Biochemical Indices.

106

RNA/DNA to respond to a food addition, and the response was quite abrupt (dynamics of

just one day).

Data of Delayed larvae after flexion (not shown) are commented in this subsection

due to the relationship with the past feeding history described in this paragraph. These

larvae were significantly smaller and had lower RNA and DNA contents than continuously

fed larvae on day 24 (all t-tests showed p<0.05). However, they showed significantly

higher RNA/DNA contents than Fed larvae of that age.

“Short-term starvation experiment” (post-flexion larvae)

For this section, only data of day 25 were not statistically considered as only 2

larvae from each treatment were available, and they showed high variance in length,

therefore greatly influencing all the biochemical results. The size of the analysed larvae is

shown in Fig. 2.4.6.

The length of continuously fed larvae (Fig. 2.4.6.) showed a slight (but significant)

positive correlation with age, RNA, DNA and protein contents and total LDH and CS

activities (Pearson r between 0.33 and 0.67, all p<0.05). The condition indices (RNA/DNA

and both protein-specific or DNA-specific LDH and CS activities) showed no significant

correlation with body length.

The age of Fed larvae was positively related to SL, RNA, DNA and protein contents

(Pearson r between 0.33 and 0.59, p<0.05) but not with total LDH and CS activity.

Regarding the condition indices, there was a negative correlation between age and protein

specific CS activity, Prot/DNA, DNA-specific CS activity, and DNA-specific LDH activity

(Pearson’s r values between –0.28 and –0.45, all p<0.05).

Larvae subjected to 1, 2, or 3 days of fast exhibited a general decrease (except for

day 25 in some cases, for the reasons explained above) in all biochemical contents (raw

variables, Fig 2.4.7. A-C; Fig. 2.4.8. A, B) and condition indices (ratios, Fig. 2.4.7. D, E;

Fig. 2.4.8. C-F). The decrease in the raw biochemical values can be explained by a growth-
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inhibition, which was evidenced by

a lowered mean body length of

short-term starved and refed

animals from days 26 to 28 (Figure

2.4.6.). This was probably

accompanied by a loss of body

mass, as suggested by the decrease

in total soluble protein (Fig. 2.4.7.

B).

From all condition indices,

RNA/DNA was the one that best

described the starvation process

(Fig. 2.4.7. E). Short-term starved

larvae experienced a continuous

decline in the RNA/DNA ratios until day 27 and significant differences with regard to Fed

larvae were detected 2 days after food deprivation. Other indices also reflected a significant

lowered condition after 2 starvation days (DNA-specific LDH and DNA-specific CS

activities, Fig. 2.4.8. E, F). It was therefore proved that these measurements were also a

reflection of condition, although the response was less uniform than that of RNA/DNA. For

example, DNA-specific CS activity underwent an unexpected increase after 3 starvation

days. Regarding the protein-based condition index, it showed a delayed response

(significant differences detected only on day 27, after 3 starvation days, Fig. 2.4.7. D).

Protein-specific metabolic enzyme activities (Fig. 2.4.8. C, D) did not yield significant

differences between Fed and Starved larvae. However, mean values tended to be below

those of Fed larvae in the case of protein-specific LDH activity, which indicates that it

could be a potential index of condition if sample size was increased.

The re-introduction of food to larvae starved for 2 or 3 days caused a response in

biochemical contents and condition indices. In general, length was not responsive to the

refeeding scheme (Fig. 2.4.6.). In the case of biochemical contents (not indices), food that

was supplied to larvae that had been starved for 2 or 3 days caused a recovery in total RNA,

Figure 2.4.6. Mean size variation (SL in mm ± SD) with
age of the larvae continuously Fed, subjected to 1 to 3 days
of fast since day 24 or refed after 2 or 3 days of fast,
corresponding to the larvae of the short-term starvation
experiment. For each day, different letters indicate
significant differences between treatments.
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DNA, total soluble protein and LDH activity. However, it is difficult to make statements

about the rate of increase due to the data variability. From crossed t-test comparisons

between days, RNA was the variable that responded faster to refeeding. After just one day,

RNA contents of refed larvae were significantly higher than those of starved larvae from

the previous day (T-test, p<0.05) (Fig. 2.4.7.A).

Figure 2.4.7. Time-variation of mean RNA contents (A), total soluble protein (B), DNA contents (C),
DNA.specific protein contents (D) and RNA/DNA ratio (E) along the short-term starvation period. Error
bars are 1 SD. Significant differences of within-day comparison between individuals continuosly Fed,
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Regarding the condition indices, RNA/DNA offered the clearest recovery response

(Fig. 2.4.7. E). One day of refeeding provoked a faster response in 3d starved larvae than in

2d starved larvae. Other condition indices either responded slowly to refeeding (DNA-

specific protein or protein-specific LDH activity) or did not respond at all .

Figure 2.4.8. Time-variation of mean total (A,B) or specific metabolic enzyme activities (C-F) in the
short-term starvation experiment. Error bars are 1 SD. Significant differences of within-day
comparison between individuals continuosly Fed, deprived of food since day 24 and refed are
indicated by different letters (a,b) at �= 0.05. Comparisons were made only when n >5 for each
treatment. Student’s T-test was used when there were 2 groups, or ANOVA when there were 3
groups.
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There was no significant correlation between RNA/DNA ratios and daily growth in length

(mm/day) in Fed larvae from days 14 to 28.

Flow cytometry analysis was used to quantify the percentage of growing cells in

twenty six day old Fed larvae compared to larvae of the same age subjected to two days of

fast. The body length of the analysed larvae measured from 8.5 to 10.6 mm (data not

shown). The histograms obtained using brain cells had smaller coefficients of variation

(CV) than those of muscle tissues, which presented a higher proportion of debris. Of all

data, only a small fraction (around 30%) of the analysed larvae yielded interpretable results.

The proliferation rates estimated in muscle cells of Fed larvae ranged from 12.3 to

23.0% (Fig. 2.4.9.). For this treatment, there were no significant differences among the

values obtained at the different hours sampled. In larvae subjected to two days of fast, the

proliferation rates of muscle cells ranged from 7.8 to 10.1%.

Pooled data of the different hours showed that larvae subjected to two days of fast,

exhibited mean cell proliferation rates in muscle tissues significantly lower than that

obtained on Fed larvae (Table 2.4.4.).

In the case of brain, the cell proliferation rates ranged from 8.9 to 19.1% on Fed

larvae and from 6.2 to 17.8% on larvae subjected to two days of fast (Fig. 2.4.9.). The Brain

tissue showed no significant differences within treatments related to the time of sampling.
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Figure 2.4.9. Mean cell proliferation rates of muscle and brain of Dicentrarchus labrax
larvae along sampled at 8 hours intervals during day 26 after hatching. Bars indicate
95% confidence intervals.
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Considering the whole data set, the mean proliferation rates of brain cells in the

continuously fed larvae were not significantly different from that of the larvae subjected to

two days of fast (Table 2.4.4.).

Mean SD N T-value df P
Muscle Fed 16.4 3.1 15

Starved 11.7 3.0 9
3.71 17 <0.01

Brain Fed 11.7 2.9 17
Starved 11.5 3.7 16

0.14 28 0.89

DISCUSSION

The main goal of this section was to compare several biochemical indices of

condition in sea bass larvae obtained from a single culture. In the coming section 2.5., these

results will be compared to morphological and histological indices developed in previous

sections. Also, the results presented herein serve as reference values of the response to food

deprivation of several biochemical indices which had not been previously tested in a

comparative framework, it is, in larvae obtained from a single controlled rearing system.

For sea bass larvae, some work on this direction was conducted by Bergeron and

Person-Le Ruyet (1997). These authors successfully used DNA/C ratios to detect short-

time starvation episodes. They found, as in the present study, that three developmental

periods were reflected in larval DNA contents. Further, we found that these changes are

reflected on the RNA, but not on the RNA/DNA contents. These changes in growth

dynamics of fed larvae are defined by the exhaustion of the maternal reserves (around day

13) and by the notochord flexion (around days 20-22 in the present study). The observed

changes were abrupt confirming the theory of saltatory ontogeny of Balon (1984). Other

authors have confirmed these findings in sea bass through several methodologies, including

otolith microstructure readings (Gutierrez and Morales-Nin 1986). It is therefore of extreme

importance to have information on species-specific developmental characteristics in the

Table 2.4.4. Percentage proliferation rates of muscle and brain in larvae of the Fed
and two days of Fast treatments.
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study of condition indices (although only RNA and DNA were studied during the two

crucial shifts in growth, it is likely that any condition index will be altered, see Ferron and

Leggett (1994)), before any extrapolation to field studies is made.

Long-term food deprivation experiment

The condition index analysed in this period was RNA/DNA measured in muscle

tissue. The methodology utilised based in the method of Berdalet (2002) permitted the

separate determination of RNA and DNA in individual larvae of sizes down to 4.5 mm

using a highly sensitive fluorometric technique. Fluorimetric assays are very sensitive to

procedural details and to the choice of standards (Caldarone and Buckley 1991;

Clemmensen 1993). Nevertheless, these techniques are preferred as they are more sensitive,

more rapid and equally precise than older UV-based methods. However, the particular

variability encountered with highly sensitive fluorochromes claims for intercalibration

studies among methods (Buckley et al. 1999). Extensive discussion of pros and cons of

different methodologies used to determine nucleic acid contents in fish are available in

Ferron and Leggett (1994), Bergeron (1997) and Buckley et al. (1999). The method used

here improves the methods used by other authors because of its high sensitivity (about 100

times over Ethidium Bromide) and the independence of RNA from DNA estimations. The

latter aspect is essential when dealing with small biomasses. In the previous methods, RNA

was estimated from the subtraction of the DNA fluorescence from the Total (RNA+DNA)

fluorescence. This caused mathematical artefacts when the RNA and DNA concentrations

were close to the detection limit.

During the long-term food deprivation experiment (days 6 to 18), RNA/DNA was

dependent on developmental stage and treatment. Size was not found to be a problem for

the use of RNA/DNA as a condition index. During the period of maternal-reserves

dependence (here until day 13), RNA/DNA was insensitive to feeding regime as noticed by

other authors in several species (Clemmensen 1989; Bergeron ad Boulhic 1994;

Clemmensen 1996; Houlihan et al. 1995). Fed and Starved larvae increased in length but

showed smaller RNA/DNA values (Fig. 2.4.4.).
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The initial drop in RNA/DNA has also been observed in larvae of several species

regardless feeding treatment (Clemmensen 1987; Clemmensen and Doan 1996) and it is

probably a reflection of a lose in protein and body mass, as confirmed by several works (eg.

Brightman et al. 1997). Reasons for this may be related to allometric organ development.

The fact that only muscle was analysed could account for this effect, as RNA could be

synthesised from maternal reserves and used either as maintenance energy or to launch

fully functional digestive apparatus (McGurk a 1985). It is therefore confirmed for sea bass

that the utilisation of RNA/DNA to detect feeding condition should be avoided in the

presence of maternal reserves.

After the oil globule resorption, RNA, DNA, and length of Fed larvae increased and

were highly intercorrelated, following the usual pattern observed for several species

(Folkvord 1996).

During days 14 to 18, RNA/DNA met the requirements to be used as an indicator of

feeding status, as it was independent of size and age. Despite the relative low number of

observations, Starved larvae could probably be distinguished from Fed larvae from day 15

(Fig. 2.4.4.). The long time required to observe such difference is well explained by the

long-time dependence of sea bass from maternal reserves and their high resistance to

starvation (see discussion in Sections 2.1. and 2.4). However, the increase in RNA/DNA of

Starved larvae observed on days 13 and 14 is of difficult explanation. We hypothesise that

right after oil globule resorption, a mobilisation of energy from muscle tissue to meet

metabolic demands could be translated into a punctual increased RNA content, which

would cease in only 2 days.

The values indicative of extreme starvation were of 1.7 ± 0.62 and were detected

around the day of the initiation of mass mortality (see Fig. 2.4.1.). We believe that this

minimum RNA/DNA value can be associated with the “point of irreversible starvation” or

“point of no return” (PNR), which has an inherent maximum associated probability of

death. The positive correlation with survival further confirms this hypothesis. However,

this correlation should be interpreted with caution as, until day 13, values of the RNA/DNA

ratio also decreased for Fed larvae, which then increased. Our value of 1.7 is slightly higher

than the value found by Clemmensen et al. (1994) (minimum RNA/DNA=1) as indicative

of PNR for other fish species. Reasons for this can be due to methodological differences or
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may be species-specific. The decrease in length of extremely emaciated larvae of day 18

(Fig. 2.4.4.) is a further indication of the poor condition of these larvae. These length

reduction could have been caused by a loss of osmoregulation observed in moribund larvae

(Sclafani 1993).

It should be noted, however, that the RNA/DNA value of 1.7 is not the one that best

classifies the different feeding treatments. If we consider only larvae after oil globule

resorption (from days 14 to 18), the RNA/DNA value assigning the highest number of

larvae to their correct treatment was of 4. This value classified correctly 100% of Fed

larvae and 80% of Starved larvae. Of Delayed larvae, 71% would be missclassified as Fed,

and 29% as Starved. These values will be used for comparison with other condition

measurements in Section 2.5., for which criteria of maximum classification scores are also

used.

Delayed larvae took between 2 and 3 days to recover to “normal” RNA/DNA

values. This recovery was abrupt and took place in just one day. We think that some latent

adaptation to feeding status was necessary due to the previous prolonged starvation time.

Overall, RNA/DNA was a useful condition index to distinguish Fed from Starved

larvae 3 days after oil globule resorption. It was independent of size and its minimum

values corresponded well with the initiation of mass mortality. Delayed larvae took 3 days

to respond to food supply and responded in only one day. The relationship of RNA/DNA

with survival was clear, as the lowest RNA/DNA values were reached coinciding with the

mass mortality event.

Short-term food deprivation experiment

In general, the RNA/DNA ratio was the biochemical index that best responded to a

short-time starvation and refeeding treatment (Fig. 2.4.7. E). The time response to food

deprivation was 2 days, and continued dropping sharply after 3 days of starvation. This

time response is one day faster than in the long-term starvation experiment. Several authors

have proved that older larvae with well developed musculature respond faster to food
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deprivation in terms of RNA decrease (Bisbal and Bengston 1995; Rooker and Holt 1996).

This is so because at advanced developmental stages, the dynamics of RNA in muscle is

directly dependent on feeding status, and the variation of ribosomal RNA (the bulk of

RNA) increases with higher total muscle biomass. In particular, sea bass suffers a strong

development of musculature after flexion (see Barnabé et al. 1976 for a picture of this

phenomenon). The time to recovery of the RNA/DNA ratio was faster if larvae had been

starved for 3 days than if they had been starved for 2 days. Three day starved larvae refed

for 1 day recovered 1 RNA/DNA unit, whereas, 2 day starved larvae refed for 1 day

recovered only 0,1 RNA/DNA units (Figure 2.4.7. E). This agrees well with the scheme of

latency and dynamics proposed by Ferron and Leggett (1994) for biochemical indices, by

which the longer the starvation time, the faster the recovery time. The minimum

RNA/DNA values observed for these period (around 2.5) do not necessarily imply an

increased starvation mortality. It is crucial to bare in mind that the relationship of minimum

RNA/DNA values (like the one obtained for the long-time starvation experiment) and

survival are dependent on larval developmental stage. It is therefore unlikely that a well

developed larvae over the flexion stage with RNA/DNA values even close to 1.7 were close

to a critical period. Due to this developmental effects on RNA/DNA ratios, several authors

strongly recommend that only narrow size ranges of the same species collected at similar

temperatures should be compared in field studies (Wang et al. 1993).

The lack of correlation between daily growth rates (in length units/time) and

RNA/DNA ratios in Fed larvae was probably caused by individual RNA/DNA variability

and by the low number of data points.

The protein-based condition indices analysed in this work showed lower resolution

than the RNA/DNA ratios. Total soluble protein varied consistently with size and feeding

treatment, but short-term Starved larvae showed high variability on day 26 (Fig. 2.4.6. B).

High variability in protein as a descriptor of condition has been previously described (e.g.

Bisbal and Bengston 1995). In the present work an standardisation by DNA was attempted

(Fig. 2.4.7. D). Protein standardisation by DNA should give an idea of increased muscle

cell size in well fed larvae if hypertrophic growth occurred. However, only for day 27

differences between fed and short-term starved larvae were evident. It is plausible that
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growth was hyperplastic still at that age. In fact, Veggetti et al. (1990) showed that

hyperplasic growth occurred in sea bass until 28 DAH. Standardisation by length (not

shown) was of little use because when length is placed in the denominator total numbers

varied little (length changes were small between days). However, if differences in length

were large and could be accurately determined in field samples, protein/length ratios could

be useful to detect starvation. Several authors have shown that protein is quickly mobilised

in the absence of food or at low food rations, which can be used to detect starvation

(Pedersen et al. 1990). It is anticipated, though, that protein variation will be of more use at

early stages than in larvae with well developed musculature. This is so because early larvae

tend to use protein quickly in the absence of food (up to 45% was lost in cod larvae of 2-11

days old, Buckley 1979). Older larvae may use up liver glycogen and lipids for longer

before degrading muscle protein. Also, protein utilisation in early larvae is accompanied by

increased water content and lose of buoyancy (Neilson et al. 1986; Sclafani 1993). This has

been shown to vary the position of starved larvae in the water column and may greatly

affect survival. Histological observations and field-experiments further confirm this

hypothesis and will be further discussed.

To our knowledge, there are no studies on the response of metabolic enzymes to

food deprivation in larval D. labrax. LDH activity is thought to vary with the capacity for

anaerobic catabolism, whereas CS is thought to be indicative of feeding-induced capacity

of aerobic catabolism (Sullivan and Somero 1980). The activity of both enzymes is strongly

dependent on experimental and developmental characteristics. Within the former,

temperature will decisively determine the enzyme kinetics. The strict control of the assay

temperature suggests that this source of variability did not affect significantly our results.

Developmental variability, however, is a major concern in the use of metabolic enzymes as

indicators of condition. On one hand, there is the size-scaling phenomenon. Size-scaling

has been observed in metabolic enzymes repeatedly and implies that, for a unit mass (eg.

protein) the enzymatic activity increases (LDH) or decreases (CS) as a function of body

size independently of feeding regime (Somero and Childress 1980; Torres and Somero

1988; Overnell and Batty 2000, but see Somero and Childress (1980) for a violation of this

general law in fish). Size scaling in metabolic enzyme activity is related to oxygen
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consumption rates. Younger larvae are thought to be more aerobic dependent, absorbing

oxygen through all the body surface (Batty 1984) whereas older individuals have the

glycolitic (anaerobic) pathways potentiated. These changes may have an adaptive value, as

larger individuals tend to be “sprinters” whereas young larvae are “stayers” in their feeding

behaviour. Another developmental cause of variability is related to changes in muscle

growth patterns and types along development (Stoiber et al. 1999). Indeed, the changes in

red to white muscle fibre types have associated changes in enzyme contents and isoforms.

As a consequence of this, direct comparison of metabolic enzyme activities between larvae

must be restricted to narrow size-ranges (Brightman et al. 1997).

The latter notwithstanding, LDH and CS have been successfully used to detect

starvation in fish larvae, both in the laboratory and in the field. As an example, LDH has

been found to be positively correlated with food quantity and quality. In fish larvae of

Sciaenops ocellatus and Lutjanus synagris (Clarke et al. 1992) and negatively associated to

swimming activity under suboptimal feeding conditions (Fiedler et al. 1998).

Our results showed that these metabolic enzymes are indicative of poorer feeding

status in sea bass larvae. LDH activity (both total and standardised by protein or DNA)

showed a better response to short-time food deprivation and refeeding than CS (Fig. 2.4.8.

C-F). Standardisation by DNA gave higher discriminatory results than classical

standardisation by total soluble protein (reduced within-treatment variance). Only DNA-

specific LDH activity of short-term starved larvae decreased with starvation time and

enabled a significant separation of Fed larvae from larvae starved for 2 or 3 days. Reasons

for the higher between-treatment discrimination if standardised by DNA as opposed to

protein may be due to the smaller variability of DNA. Also, the use of DNA in the

denominator may reduce the effects of the size scaling phenomenon. These hypothesis

should guarantee further research.

In view of the evidence presented herein, we propose the use of the ratio LDH/DNA

as a potentially useful indicator of condition.

CS activity showed high variability and only when standardised by DNA some

differences between treatments became significant. It is known that CS may not respond to

food regime as well as LDH in fish larvae (Clarke et al. 1992). This lower response of CS
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has been explained on the grounds of the more conservative nature of CS, which is needed

for basal metabolic processes in the cell.

The negative correlation between specific enzyme activities and age of the Fed

larvae could be explained by size-scaling for CS. For LDH, this relationship is difficult to

explain. However, size-scaling studies usually include a higher length range.

To the light of the results presented, LDH activity is regarded as a potentially useful

indicator of condition in sea bass. However, its dynamics should be further explored along

a wider age span and feeding regimes. Respect to the other indices tested, it was the most

reliable after RNA/DNA and showed a comparable response time.

The last part of this section showed that it is possible to detect short term food

deprivation on sea bass larvae using the flow cytometric estimation of the muscle cells

proliferation rates. In contrast, this methodology revealed that brain cells remained

insensitive to the applied experimental treatment. The obtained trend should be related to

the physiological role that each tissue plays on the whole organism rather than to

methodological aspects.

As it was noted above, brain cells samples had a smaller presence of debris, which

resulted in smaller coefficients of variation than the muscle samples. The finding that brain

cells proliferation rates of larvae subjected to two-days of fast did not differ from that of

Fed larvae, suggests that brain cells may obtain nutrients from body reserves, probably

muscle, at least during a short period of (nutritional) stress. This hypothesis agrees with

several histological observations that indicate that gut-associated glands and muscle reflect

the food deprivation earlier than the brain (O’Connell 1976; Theilacker 1978; Martin and

Malloy 1980). Also, there is evidence that biochemical parameters are least affected in the

brain tissue (Yang and Somero 1993). This statement, however, does not discard that long

term food deprivation could also affect brain cells proliferation rates as observed in other

studies (Theilacker and Shen 1993 a, b; 2001). However, the usefulness of brain indicators

to detect suboptimally fed larvae in the field is under question, particularly because few

extremely starved larvae are usually identified in plankton samples (Theilacker 1986).

Fish muscle growth patterns are a combination of processes of fibre recruitment

(hyperplasia) and fibre enlargement (hypertrophy) (Weatherley 1990; Johnston 1999). The
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usefulness of cell proliferation rates as a measure of growth and condition requires a

coupling between tissue growth and cell proliferation. However, it must be considered that

muscle-generating (myosatellite) cells become more and more diluted over an increasing

number of amitotic muscle-fibres nuclei with age (Koumans et al. 1991). Therefore, the use

of the cell proliferation rate in muscle must be restricted to individuals of the same

developmental stage. Considering that the time period of our experiment was of only two

days, and that the growth in sea bass larvae is hyperplasic during the first 28 days (Veggetti

et al. 1990), we think that the observed differences in cell proliferation rates between

treatments can be explained by differences in nutrient availability.

The present results on cell proliferation rates add to the recent studies, using

different methodologies, that regard larval muscle as a suitable tissue to asses the growth

response to environmental factors as food shortage (Akster et al. 1995; Theilacker and Shen

2001) or temperature (Johnston et al. 1995; Temple et al. 2000).
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2.5. COMPARISON OF INDICES AND DISCUSSION

The aim of this section is to compare the best performing condition indices in the

two main experiments (called long and short-term starvation experiments) measured in D.

labrax larvae at three organisation levels: morphometric, histological and biochemical.

Whereas information on the response of some indices is available for this species, there is

no comparative study on larvae obtained from a single culture. Studies of this type are

valuable because they allow one to safely compare indices whilst reducing the variability

due to different rearing systems, conditions or larval origin. It is also a goal of this section

to briefly discuss the main results obtained in this experimental part.

Rearing system

We are confident that the small-scale closed recirculation rearing system, which

served as an incubator and hatchery (Section 2.1.), provided quality data for the analysis of

condition. Its design permitted the accurate regulation of rearing parameters and produced

values that were equal to or higher than those found in other studies on sea bass in terms of

hatching and survival (Barnabé 1976; Barahona-Fernandes 1978; Johnson and Katavic

1986; Oyen 1997), growth rates (Regner and Dulcic 1994; Bergeron et al. 1997) and timing

of major developmental events (Gutiérrez and Morales-Nin 1986; Klaoudatos et al. 1987;

Bergeron and Person-Le Ruyet 1997; Koumondouros et al. 2001). Also, the recirculation

design allowed for the maintenance of levels of toxic metabolites under the threshold cited

as being responsible for mortality or decreased feeding ability in fish larvae (EPA 1989).

Selection of condition indices to be compared

All condition measurements reflected the feeding regimes in the two main

experiments. Although to different extents. For simplicity, we attempted to select a single

index from each category (morphological, histological or biochemical) for making

between-categories comparisons. The main points explored in order to make this selections
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were their independence of age, size and development, which are a major problem as they

tend to confuse the differences due to feeding (Ferron and Leggett 1994). These

relationships were explored in continuously fed larvae in order to select the indices that best

described condition independently of developmental processes. Most indices were affected

at some point by pre-determined growth phases associated with the yolk absorption (7

DAH) and end of mixed feeding period (13 DAH). Other criteria used within each category

in order to choose a particular index were its relationship with survival and its classification

properties.

Morphometric analyses: Morphological characteristics are easy to obtain,

inexpensive and have low processing time. The main drawback in the study of nutritional

condition through morphometry in fish larvae are the extreme effect of size (more than age)

on all body measurements. Standardisation is difficult due to allometric processes and has

been attempted through the use of ratios and residuals, which are still correlated with size

(McGurk 1985 a; Suthers 1996). We showed in Section 2.2. that is was possible to totally

remove the effects of size by standardising each variable to a common size whilst

conserving the allometric information (Lleonart et al. 2000), which is crucial for the

definition of individual shape. Here, we used the scores of the first canonical root

performed on standardised (size-free) BDA (body depth at anus level), HL (head length)

and PAL (preanal length) as the best indicator of condition because it was not correlated

with size, it showed the highest correlation with survival of all morphometric variables and

it permitted the highest percentage of correct classification into feeding treatments.

Despite the lack of correlation with size, the shape was correlated with

developmental stage and followed a U-shape in Fed larvae (Fig. 2.5.1.A). Shape of Fed

larvae under 14 DAH was based on relatively large heads, long guts and thin muscle, and

was associated with a slow growth in length (Section 2.1.). This period of steady TL and

developing structures for maximising prey capture and digestion may be an adaptation to

the mixed feeding period (Paine and Balon 1985, Klaoudatos et al. 1987; Koumoundouros

2001) and supports the hypothesis that success at exogeonus feeding is a developmental

priority, which also fits the Critical Period hypothesis (Hjort 1914). After complete oil

globule resorption and until 21 DAH, the shape of Fed larvae became relatively deep-
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muscled and short-intestine, and was associated with increased growth rates, thus

reinforcing growth in length, which would agree with a stage-duration hypothesis (Cushing

1975). Therefore, though size effects can successfully be removed, shape is strongly

influenced by developmental stanzas and effects of feeding regimes are only likely to be

detected in the absence of maternal reserves.

Hystological analyses: Age, size and development affected some of the histological

condition indices. During the long-term starvation experiments, continuously Fed larvae

had developing hepatocytes until 14 DAH. Also, pancreas scores (but not % zymogen)

reflected a developmental effect, as it was at its maximum until 14 DAH, decreasing

thereafter. Hindgut presented high acidophilic activity at yolk-sac stage, decreasing until

exogenous feeding.

These ontogenetic effects on the digestive tract and associated organs have

previously been described in species including sea bass (Barnabé 1976, Oozeki et al. 1989,

García Hernández et al. 2001) and are usually related to the increase in both cell size and

complexity during early development (Govoni et al. 1986). The latter agrees well with the

little growth in length observed until 14 DAH and further suggests that energy during this

period (obtained from both internal and external sources) was primarily invested in the

development of the digestive apparatus. During this period, cartilage and muscle (the

“structural indices”) of Fed larvae showed no variation with age or size. In the growth

phase from complete exogenous feeding until near flexion (14 to 21 DAH), evident

developmental changes (the aforementioned increased growth rates) in Fed larvae exerted

an effect on gut and gut-associated glands (high variability was detected), probably

reflecting variability in individual feeding rates. On the other hand, the percentage muscle

fibre separation (MFS) reflected an almost invariant “healthy” state.

The short-term starvation experiment was characterised by a high histological

variability in all treatments including Fed larvae. From all indices, only MFS permitted a

significant differentiation between Fed and short-term starved larvae.

We proved that not all histological quantitative indices behave better than scores

(eg. liver measurements) but that some (MFS vs muscle scores) do. Regarding the time

responses of the different measures, it is difficult to make comparisons between qualitative
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and quantitative variables, as the statistical significance is affected by the nature of the

measurement. Martin and Wright (1987) showed that the last tissues to be degraded were

the first to recover. However, this statement, generalised by Ferron and Leggett (1994), is

severely influenced by the developmental stage, as less developed larvae are more prone to

starvation effects than more developed larvae (Sieg 1992), so for young larvae the ability to

test this hypothesis needs high sampling resolution (greater than our 2-4 days sampling

interval).

For the two experimental periods (long and short-term starvation experiments), we

selected the MFS as the best histological descriptor of suboptimal feeding. It was unrelated

to size or age for Fed larvae, responded as quickly as or faster than traditional short-term

condition indices like liver (probably due to its quantitative nature, which reduces the

inherent higher variability of discrete scores) and needed little expertise in histological

interpretation.

Moreover, it offered the best classification success among the histological variables

measured when used singly, and around the same when several variables were grouped

through discriminant analysis. Further, it showed one of the best correlations with survival

among the variables examined. From a physiological point of view, muscle degradation

may be a better indicator of deficient condition than other histological indices as it tends to

be degraded only when glycogen or lipids have been depleted (Love 1970; Pedersen 1990)

thus potentially indicating a severe emaciation process. The later may have particularly

important ecological consequences that will be discussed at the end of this section.

Biochemical analyses: the RNA/DNA was selected as the single best biochemical

descriptor of condition from both short and long-term starvation experiments. The method

utilised for nucleic acid determination (Berdalet 2002) improved other existing methods as

it was based on a highly sensitive fluorimetric technique (around 100 times more sensitive

than Ethidium Bromide-based methods), which is particularly useful when dealing with

small biomasses. The RNA/DNA ratio of continuously fed larvae was uncorrelated with

size throughout the experimental period, and a slight negative correlation with age was

observed only for days 6 to 10. The lack of correlation with size for this species is a

valuable property of this index if it is to be applied for field studies.
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The initial decrease that we observed in RNA/DNA during the first days of the

long-term starvation experiment (preflexion period) has been previously described in fish

larvae (Clemmensen 1987; Clemmensen and Doan 1996) and is independent of feeding

treatment. As in our study the RNA/DNA was measured just in muscle, its initial decline in

Fed and Starved larvae was a biased picture of development, which was preferentially

occurring in gut and associated glands. Therefore, for this species the RNA/DNA should

not be used at ages in which development is not primarily based on muscle growth.

From the short-term starvation experiment RNA/DNA yielded similar results to the

use of LDH/DNA (the numerator being lactate dehydrogenase, an anaerobic metabolic

enzyme) except for the dynamics of degradation through starvation, which was steeper for

RNA/DNA. However, the potential for LDH/DNA was clear and deserves further research.

Other biochemical condition indices like specific CS activity (terminal enzyme of the Krebs

cycle) or protein/DNA, although reflecting condition (Clarke et al. 1992; García et al. 1997;

Fiedler et al. 1998; present study), were not selected for comparison because they showed

less clear results than RNA/DNA. The use of muscle cell proliferation rates, studied

through flow cytometry, enabled the differentiation of Fed from 2-day food-deprived

larvae, but no refeeding treatments were available for comparison. The results showed that

whereas muscle tissue reflected changes in the proliferation rates after 2 days of food

deprivation, the brain was unaltered by food withdrawal during this period. This follows

logically the adaptation to protect the most “essential” organs in the absence of a sufficient

food supply (Uriarte and Balbontin 1987).

Time responses

Under time responses we will discuss the reaction time of the selected condition

indices to different feeding regimes. In the following paragraphs we will use concepts like

latency (time to a detectable change in condition) or dynamics (behaviour of this reaction,

e.g. exponential, or simply faster or slower in relative terms, Ferron and Leggett 1994).

From an ecological perspective, the comparative study of time responses is of

interest as it enables one to establish hypothesis on physiological responses to food

deprivation that can be interpreted in terms of susceptibility to mortality, both directly by
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starvation (e.g. by establishing concepts of “Point of no return” or PNR, which are

thresholds over which larvae are unable to recover even if food is offered, e.g. Blaxter and

Hempel 1963, Owen et al. 1989) or through increased predation in less fit individuals (e.g.

stage-duration hypothesis, Cushing 1975). The literature shows that the sensitivity (defined

as amount of environmental variation, i.e. food, needed to cause a change in a condition

index) of the condition indices falls as the organisation level rises. Thus, in general,

morphometrics take longer to show the effects of food deprivation than histology, and this

in turn takes longer to respond than biochemical methods.

Long-term starvation analysis

The morphometric condition index was the one that took longer to show significant

differences between Fed and Starved preflexion larvae (Table 2.5.1.). The percentage of

muscle fibre separation showed significant differences between Fed and Starved larvae on

day 14, whereas RNA/DNA underwent an apparent decrease on day 12, a later increase on

days 13 and 14 and a decline on day 15 (Fig. 2.4.4.). The observation that at 14 DAH the

MFS had responded significantly, whereas the RNA/DNA ratio had not, could be

misleading due to the low number of observations on day 12 for RNA/DNA of Starved

larvae. If infact that was a real difference, then the later RNA/DNA increase in Starved

larvae (days 13 and 14) should be explained on a physiological basis. A plausible

explanation would be that for Starved larvae the protein contained in the muscle pack was

being used before day 14 as shown in Fig. 2.3.4. (H). This could enhance catabolic

processes in the muscle that would be paralleled by an increase in RNA/DNA, which would

explain the sudden increase in RNA/DNA ratio detected in the muscle of Starved larvae of

days 13 and 14.

For delayed feeding larvae, the latency of recovery increased following the patterns

of increasing organisation level, being shortest for RNA/DNA and longest for the

morphometric index (Table 2.5.1.). Also, the time to full recovery (to levels of Fed larvae)

followed a similar pattern: morphometry had not recovered on day 21. MFS took 5-6 days

and RNA/DNA increased abruptly on the 3rd day after food was offered. This is logical for

muscle tissue (the one used to measure RNA/DNA, MFS and and BDA, the latter being the
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most discriminating variable within the morphometric ones) as the natural cascade of

events will imply firstly a modification in RNA synthesis that will lead to an increased (or

decreased) muscle fibre development, and this will eventually be detectable through

morphometry some time later.

Table 2.5.1. Response times of the different indices in the long and short-time starvation experiments.

Morphometric Histological Biochemical
Long-term starvation experiment (days 6 to 21) 1st canonical root

on size-free BDA,
PAL and HL

%MFS RNA/DNA

Days from hatching until detection of differences
between Fed and Starved larvae

17-18 11-14 15

Days to detection of response of delayed larvae after
food supply on day 13

5 4 3

Days to full recover of delay larvae after food supply
(on day 13)

Not fully
recovered

5-6 3

Short-term starvation experiment (days 22 to 28)
Days to detection of difference between Fed and
Starved larvae

No data 2 2

Continuous worsening over 3 starvation days No data No Yes
Time to significant recovery after

2 d of food deprivation
3 d of food deprivation

No data
No data

2
no data

2
1

Short-time starvation experiment

The time for food-deprived post-flexion larvae to exhibit a significantly worsened

condition was similar for MFS and RNA/DNA ratios (Table 2.5.1.). The time of 2 days is

within the range of values observed in several species for histological (Martin and Wright

1985; Green and McCormick 1999) and RNA/DNA ratios (Buckley 1984; Suneetha et al.

1999).

The RNA/DNA ratio showed a longer-lasting dynamics than MFS in the sense that

it showed a continuous decrease during the 2nd and 3rd day of fast, whereas MFS did not.

The time to significant recovery after 2 days of fast was similar for the two indices, again

showing that MFS is a relatively sensitive indicator of condition. This is in agreement with

the model of shorter latency and faster dynamics for quantitative histological and

biochemical indices suggested by Ferron and Leggett (1994) for other species.



2. Laboratory Studies. 2.5. Comparison of Indices and Discussion

127

If food was offered after 3 days of fast, RNA/DNA ratio recovered faster than if

food was offered after just 2 days of fast, suggesting a compensatory growth (table 2.5.1.).

This agrees with the work of Martin and Wright (1985) for Morone saxatilis, which shows

a faster recovery dynamics than decaying dynamics. However, further research into this

aspect should be conducted for sea bass in order to establish a pattern of latency and

dynamics for this species that can be useful for making interpretations in future field

studies.

Classification properties

We define the classification properties or “power” of a condition index in the

laboratory as its ability to correctly ascribe a particular larva to a predefined group.

Classification results are only valid for the pre-defined groups, species and rearing

conditions.

The three condition indices were compared only in the long-term starvation

experiment (pre-flexion stage) and during the exogenous feeding period (days 14 to 21) in

order to avoid differential developmental effects. The values utilised for comparison were

those yielding the best discrimination for the 3 pre-defined feeding categories, using either

multivariate or univariate measurements (Table 2.5.2.).

Fed larvae were best classified by MFS or RNA/DNA. Morphometry was not a very

good predictor of condition in Fed larvae. This is so because the shape of Fed larvae keeps

changing with age (even after removal of size effects, see below).

Starved larvae were equally well classified (around 80%) by any condition index,

which is a good result considering that the identification of Starved larvae is the main goal

in condition analyses.

Delayed larvae had a higher than chance (that would be 33%) percentage of correct

classification using either morphometry or histology. However, RNA/DNA could not be

used to define a “delayed class” as response of Delayed larvae was abrupt, with no

continuous gradient. We used an arbitrary value to separate Fed from Starved larvae (it was

the value that offered best discrimination through several trials). The latter perhaps

increased the correct classification of Starved and Fed larvae as classified by RNA/DNA
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(the existence of 2 categories instead of 3 increases the chance of spurious correct

classification). The RNA/DNA was confirmed as an excellent index for distinguishing

growing individuals for this phase. However, we found it to be a poor predictor of

intermediate condition.

Multivariate analyses performed on several biochemical measures obtained from a

single larva (traditionally not applied due to small biomass) could help the discrimination

of intermediate nutritional classes. Multivariate approaches, widely applied to

morphometry (Theilacker 1978, 86; McGurk 1985 a, Polo 1991) and histology (Theilacker

1978; O’Connell 1980) are currently being explored for biochemical indices in fish larvae

(Høie et al. 2000) and would benefit from refined sensitive fluorimetric methods like the

one used herein.

Organisation level Measure Treatment N %correct
classification

Morphometric Discriminant function
on size-free BDA,
PAL and HL

Fed
Starved
Delayed

67
25
26

52.0
80.0
40.0

Histological MFS (categories
derived from table
2.3.3.)

Fed
Starved
Delayed

20
18
16

90.0
83.0
44.0

Biochemical RNA/DNA
Reference value=4

Fed
Starved
Delayed

27
15
18

100.0
80.0
0 (no own
class)

Relationship with survival

The value of a nutritional indicator of condition is higher if it can be directly related

to decreased survival. The extreme case of this is the establishment of PNR values, which

can tell us for certain that a single larva will die even if food is supplied. If the PNR is not

established, or if it is assumed to be long (present study), then we must consider aspects

such “how a lowered condition index may decrease the susceptibility to total mortality”,

and integrate these speculations into the known theories of starvation-predation mortality

(reviewed by Leggett and Deblois 1994).

Table 2.5.2. Classification results for the three selected condition indices.
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We explored the relationship of

the three selected indices with survival in

the Starved larvae, as they were the only

ones evidencing a mass mortality episode

that could be related to a critical

condition for each index (Fig. 2.5.1.).

Although we could not calculate a

PNR based on decreased feeding activity

(e.g. Yin and Blaxter 1987) or the

presence of necrotic tissues (McFadzen et

al. 1997), it was observed that a mass

mortality occurred in Starved larvae at

around 17 DAH. We therefore observed

how the different indices behaved on this

day, and assumed that if they showed a

particular worsening their value would be

highly related to starvation mortality. The

three selected condition indices were

significantly related to survival. The

lower the survival, the lower the shape

factor and RNA/DNA, and the higher the

MFS. However, there are some important

differences regarding how each index

related to the observed mortality.

The initial sharp drop in survival

(days 4-6) was not related to food

change, as it was also experienced in Fed

larvae (see Section 2.1.), and must be

related to genetic failures in the transition

to the larval phase, which demands

Figure 2.5.1. Relationship between selected
morphometric (A), histological (B) and biochemical
(C) indices and survival. The represented survival
curve is that for Starved larvae. Fed larvae are
represented for comparative purposes. Means
represented for survival, morphometric and
biochemical indices. Medians are used for the
histological index. Error bars are SE for survival, SD
for morphometric and biochemical indices and 25
and 75% percentiles for the histological index.
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strong physiological and behavioural adaptations (Fuiman 1997). It is clear from Fig. 2.5.1.

that at the initiation of mass mortality on day 17, the three indices are in their lower range

of values for Starved larvae, whereas Fed larvae are in significantly better condition. It is

also clear from Fig. 2.5.1. that morphometric and biochemical indices are strongly related

to developmental events and may be reflecting both growth and condition (see the u-shape

in the Fed treatment) whereas MFS could behave mainly as a condition index, as it varied

little in Fed larvae.

The two types of information are of value for they have different implications if

extrapolated to the wild. On the one hand, it could be argued that body shape and

RNA/DNA have an added value because they reflect growth and thus can e associated to

potential predation mortality (Cushing 1975). Counter to these argument, these indices will

be age and size-dependent, a situation which is not easily solvable in the field unless

routine otolith readings are conducted. Another interesting observation that relates the

RNA/DNA to complex physiological processes is that RNA/DNA increased at the time that

muscle initiated a massive degradation (day 14) and confirms that the use of a single index

may lead to missinterpretations of nutritional condition.

Processing time, costs and requirements

One must not lose sight of the fact that the ultimate reason for the study of condition

indices (to relate them to fluctuations in juvenile-adult populations) can only be achieved in

routine studies, for which aspects of costs, requirements and processing time must be

considered (Ferron and Leggett 1994). The processing time once the larvae have been

collected was higher in histological measurements (around 3 days for a series of 15 larvae),

and lowest in morphometric measurements (tens were measured daily for several

variables), leaving biochemical indices in an intermediate position (a few tens measured on

a day).

Costs were minimal for morphometric analyses and higher in histological indices

(due to time requirements) and biochemical indices (due to cost of reagents). Given that the

maximum level of information must be extracted from each larva to overcome the high

individual variability (Chambers 1993), there should be a maximisation of information
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revenue vs effort in the analysis. Morphometrics could be routinely included in a

multivariate analysis based on either biochemical measurements or histology. In small

larvae, the maximum information regarding condition is undoubtedly achieved through

histology, as several organs can be explored for selected characteristics. However, some of

this information could be sacrificed (taking only subsamples for histological measures as

noted by Theilacker 1986) in favour of an increased sample size, by applying several

biochemical indices which are sensitive enough to single larvae, like the ones used in the

present study.

Usefulness for field studies

The different results obtained in this section have the value of serving as a reference

for future field studies on this species, allowing for the widely commented differential

effects between laboratory and field studies. However, following our initial goal for this

part of the thesis, we consider that an effort must be made towards drawing conclusions that

can be useful in a broader than species-specific sense.

Taking into account the peculiarities of each index in terms of time response,

classification properties, relationship with survival and effort requirements, it is clear that

each index offers a set of advantages and disadvantages (gathered in Table 2 of Ferron and

Leggett (1994), and confirmed with the analysed indices in this study). As noted by those

authors, a combination of various indices is probably the only way of approaching the

relationship between nutritional condition and susceptibility to total mortality (a

combination of direct starvation mortality and induced starvation mortality through

predation, loss of buoyancy etc).

In the realm of the nutritional indices, a single index is often used to determine the

“status” of the sampled individual larvae (e.g. RNA/DNA, prot/DNA, etc.). When several

variables are considered (usually in histological or morphometric measurements), it is

common to average the obtained values to describe the different larval groups (O’Connell

1976). When multivariate approaches are adopted, the real correspondence between the

highest discriminating variables and survival is seldom considered. Indeed, though useful,

experimental correlations with survival do not necessarily imply causality in mortality
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rates. This is even more obvious when for wild populations, where multiple non-controlled

factors interact with a weakened larval condition to cause the aforementioned increased

susceptibility to mortality.

To account for this probable - yet difficult to measure - link between larval

condition and susceptibility to total mortality, we propose here that different indices of

condition should have different weights in the overall classification of field samples. These

weights could be experimentally or theoretically based. Figure 2.5.2. illustrates how this

idea could be developed. The concept of this method is extensive to any species and

assumes that an effort for measuring several indices in each specimen is a better solution

than the use of a single index (Ferron and Leggett 1994, Suthers 1998).

Necrosis should have the minimum associated score (score 0 in Fig. 2.5.2.), as it is

the only true indicator of direct starvation mortality (it can be assumed to be a PNR,

McFadzen et al. 1997). Maximum scores (step 2, scores 7-9), should be given to indices

that may have higher associated survival probabilities. In this case, the muscle degradation

could be chosen as it is indicative of a particular degraded condition (note that a degraded

muscle means that fast-burning reserves like triacylglycerols and glycogen are exhausted)

Also, it is particularly related to swimming performance (e.g. Green and McCormick 1999),

Figure 2.5.2. Proposed method for weighting measurements of nutritional condition
according to their potential relationship with survival for field-collected samples.
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which is in turn negatively related to predation mortality (Hunter 1972, Frank and Leggett

1982) and directly related to feeding ability (Laurence 1972). Moreover, a degraded muscle

causes a change in density that has been shown to affect the relative position in the water

column of emaciated larvae which may influence the interaction with predators or food

patches (Neilson et al. 1986, Sclafani et al. 1993, 1997, 2000). Also, morphometric

characters could be used (as an alternative or in conjunction) at this level. They are the last

ones to recover after refeeding (e.g. present study). Given that morphometry, function and

performance are correlated (Fuiman et al. 1997, Osse and Boogaart 1999), a prolonged time

in a “suboptimal shape” may be indicative of severely handicapped survival. Lastly,

“storage” indices (e.g. liver) or other short-time response indices could be used to refine the

scores (Step 3). Undoubtedly, the degree of subjectivity in weighting condition indices can

be high, but on the other hand this method can be used in parallel and confronted with non-

weighted condition predictions that could be introduced into modelling schemes.
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3.1. EARLY STAGES OF Sardina pilchardus AND
ENVIRONMENTAL ANOMALIES IN THE CATALAN SEA

Most of this section has been published in: “Olivar MP, Catalán IA, Emelianov M,
Fernandez de Puelles ML (in press) Early stages of Sardina pilchardus and environmental
anomalies in the North Western Mediteranean. Est Coast Shelf Sci”.

ABSTRACT

The influence of environmental conditions on the spatial distribution patterns of the early

stages of Sardina pilchardus off the Catalan coast (NW Mediterranean) during November

1998, February 1999 and November 1999 was investigated. As a general rule, eggs were

collected on the continental shelf, while larvae displayed a wider cross-shelf distribution.

The local circulation during autumn-winter 1998-1999 was dominated by an anticyclonic

eddy of new Atlantic Water that remained stationary at the centre of the Catalan Sea from

September 1998 to the end of February 1999. Such a situation is very infrequent and the

influence of these waters extended to the continental shelf zone, modifying the slope

current by diverting the flow and even reversing the direction of the flow. On the third

cruise, carried out at the beginning of the spawning season of 1999 (November), the

circulation and water mass distribution in the region was typical, with the old Atlantic

Water occupying the whole region. Abundance of pilchard eggs and larvae during this last

cruise was higher than in the previous surveys. In November 1998, the abundance of

pilchard eggs and larvae was relatively low in the zones affected by the new Atlantic

Water. The most interesting result of these surveys was the very low concentrations of

eggs and larvae found in February 1999, possibly due to the anomalous situation created

by the eddy, which had remained almost stationary during the 1998-99 spawning season.
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INTRODUCTION

The European pilchard, Sardina pilchardus, is a coastal pelagic species found in the

Western Mediterranean and Adriatic Sea (Whitehead 1984). It is the most abundant small

pelagic species in the Northwestern Mediterranean (Martín 1991), though the biomass of

the population has decreased since 1993 (Anonim 2000). In spite of the fishery importance

of the species, there is little information on the spatial distribution patterns of adults and

recruits in this region.

Pilchard have a protracted spawning season, with some differences in the peak of

spawning depending on the areas and the temperature regimes (Ré et al. 1990; Solá et al.

1992). In the NW Mediterranean the spawning season extends from October to May and

the peak of spawning occurs in January-February (Gómez Larrañeta, 1960, Palomera and

Olivar, 1996). This period coincides with that reported for other areas of the

Mediterranean, like the Adriatic Sea (Dulcic and Grbec, 2000).

The major aspects of the dynamic conditions and the typical water mass structure in

the study area are well known and have been described by several authors (e.g. Salat and

Cruzado 1981; Font et al. 1988; Pinot et al. 1995; López-Jurado et al. 1996; Millot 1999;

Salat 2002). The cyclonic circulation in the surface layer around the basin is controlled by

two permanent density fronts: the Catalan front located over the Iberian Peninsula slope

and the Balearic front located over the insular slope (Fig. 3.1.1). The Catalan front

separates the saltier old Atlantic Water (AW)1 in the central part from fresher shelf waters

near the Catalan coast. The Balearic front separates the old AW from the less saltier and

warmer new AW incoming into the basin through the Balearic Island channels (Pinot et al.

2002). The circulation is subjected to mesoscale variability, which has been attributed to

the action of open sea eddies (Tintoré et al. 1990; García et al. 1998). Off the Catalan

1 Water mass acronyms in this paper follow the recent recommendations of the Round table on Mediterranean Water Mass Acronyms,
36th CIESM Congress, Monaco, 2001.
(http://ciesm.org/events/RT5-WaterMassAcronyms.pdf).
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coast, fertilisation of the shelf waters during the autumn-winter season is caused by local

vertical mixing and shelf intrusions of slope water (Salat et al., 2002).

There have been many studies of the

influence of oceanographic processes on

temporal and spatial patterns of distribution

of species reproducing during the

spring/summer period off the Catalan coast

(Sabatés 1990 a,b; Palomera 1992; Sabatés

and Olivar 1996). However, few studies have

addressed the environmental effects on

species that reproduce during autumn-winter,

the most unstable period of the year (Olivar et

al. 2001).

The aim of this work was to

investigate the influence of environmental

conditions on the spatial distribution patterns of Sardina pilchardus eggs and larvae in the

NW Mediterranean.

MATERIAL AND METHODS

The study area corresponded to the southern sector of the Catalan coast, and

extended from near Barcelona to the north of the Ebro river Delta (Fig. 3.1.1. and Table

3.1.1.). Three oceanographic cruises were conducted: November 1998, February 1999 and

November 1999. According to previous information, these months fall within the main

spawning period for this species (Gómez Larrañeta 1960; Palomera and Olivar 1996;

Olivar et al. 2001). The total number of stations was not identical for the different cruises

(Table 3.1.1.), although all of them were mainly designed to sample the area inhabited by

spawning adults (the continental shelf) (Gómez Larrañeta, 1960).

Figure. 3.1.1. Western Mediterranean basin with
indication of the sampling area along the Catalan
coast shelf and slope.
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Ichthyoplankton hauls and CTD casts were done on a grid of stations placed on

cross-shelf transects almost perpendicular to the coastline and 5 to 10 nmiles apart.

Oblique ichthyoplankton hauls covering from the surface to 200 m depth were made using

a 60 cm Bongo equipped with nets of 300 µm mesh size. The ship speed during the haul

was 2 knots. The volume of filtered water was estimated by means of a flow meter placed

in the centre of the Bongo mouth, and the maximum depth of the haul was determined by

means of a depth sensor (Minilog). CTD casts were carried out from surface to a maximum

of 500 m depth using a SeaBird 25 profiler system. On the first two surveys (November

1998 and February 1999), microzooplankton hauls were made to assess the amount of

potential food available to pilchard larvae. Microzooplankton samples were collected by

vertical hauls from 70 m to the surface using a Juday-Bogorov net (40 cm mouth and mesh

size of 53 µm). Posteriorly, samples were fractioned into copepod nauplii (N), formed by

nauplii < 45�m, and the rest of the microzooplankton (T-N)

Table 3.1.1. Sampling details

Vessel Sampling dates Nº. of stations Sampling location

R.V. García del Cid 4-9 November 1998 77 41° 36’-40° 31’ N

R.V. García del Cid 12-15 February 1999 50 41° 28’-40° 40’ N

R.V. García del Cid 20-25 November 1999 86 41° 20’-40° 35’ N

The number of pilchard eggs and larvae collected at each station was standardised

to number under 10 m2 of sea surface using the volume of water filtered by the net and the

maximum depth sampled. Larvae were measured to the nearest 0.1 mm, and abundance by

size class was also standardised. Size frequency distributions were presented as mean

abundance of positive stations. Abundance of copepod nauplii and the remaining

microzooplankton organisms was standardised to number of specimens per volume of

filtered water.
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RESULTS

November 1998

The vertical structure of the water column was unusual for the autumn season, with

a relatively shallow and narrow pycnocline (40-60 m) (Fig. 3.1.2.). Temperature profiles

showed great changes from surface to 50 m ranging from 20 to 15°C, and 13.5 °C was

reached at 125 m, below which the water column was almost homogeneous. Salinity was

homogeneous in the first 40 m (37.85), but increased thereafter down to 300 m, where it

reached 38.55. Fluorescence profiles still showed the importance of the deep chlorophyll

maximum between 30 and 60 m, and very low values at surface (Fig. 3.1.2.).

The horizontal distribution of temperature and salinity above the thermocline did

not show cross-shelf gradients (Fig. 3.1.3). Surface temperatures in the area ranged from

18 to 20°C, which is unusually high for this period of the year. Two colder patches of

water were detected in the central area and north of Barcelona. Surface salinity was lower

than usual for this area, not reaching the 38 characteristic of old AW. Surface fluorescence

November 1998
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was very low in the study area. Values were higher at 50 m than at the surface, showing the

importance of the Deep Chlorophyll Maximum (Fig. 3.1.3.). Main concentrations of

copepod nauplii as well as other species of microzooplankton were distributed along the

coastal band, and extended offshore in the zones where water temperatures were lower

than 19°C (Fig. 3.1.3).

Pilchard eggs were predominantly found on the continental shelf, although in the

central zone their distribution extended to the shelf break. Larvae also showed peak

abundance on the shelf, but displayed a wider cross-shelf distribution, frequently extending

to the slope. Higher concentrations of both eggs and larvae occurred in the zones of lower

water temperatures (Fig. 3.1.3). Main larval densities were also associated with high

microzooplankton concentrations (above 4500 nauplii/m3 or above 5000 individuals/m3 of

the rest of microzooplankton).

The size of the collected larvae ranged from 3 to 16.5 mm. The modal class was

found to be between 4 and 5 mm and the abundance per size class decreased thereafter.

Larvae smaller than 5 mm were more abundant on the shelf and those larger than 9 mm

appeared mainly offshore (>200m isobath) (Fig. 3.1.4).

Size frequency distributions were also analysed after the grouping of stations of

three different sectors: the southern sector (near the Ebro Delta); the central zone occupied

by colder waters, and the northern sector (north of Barcelona). In the northern and southern

sectors an exponential decrease in the abundance of larvae larger than 5 mm was observed.

In the central zone the decrease in larval abundance from the modal size class to 9 mm was

less pronounced. In the northern sector the majority of larvae belonged to small sizes

(more than 70% were <5 mm), and larvae larger than 9 mm were almost absent (Fig.

3.1.4).
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Figure 3.1.3. Horizontal distribution of surface temperature (°C), surface salinity, surface
and 50 m fluorescence, copepod nauplii and other microzooplankton organisms and Sardina
pilchardus eggs and larvae during the November 1998 cruise. Crosses indicated the sampling
location.
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February 1999

The water column was homogeneous during the period, as expected, due to the

winter mixing. Mean temperature was ca. 13°C throughout the water column. Salinity was

homogeneous in the first 20 m (38) with a slight increase at greater depths. The vertical

density profiles showed a homogeneous water column with values of ca. 28.7 kg/m3. Peak

fluorescence was detected in the upper 20 m, although high fluorescence was found down

to 40 m (Fig. 3.1.5).
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Figure 3.1.4. Size frequency distribution of Sardina pilchardus
larvae during the November 1998 cruise.
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Horizontal distributions of temperature showed almost no differences in the study

area. A reversed salinity pattern was observed, with higher values restricted to a narrow

coastal band and lower values at the slope (Fig. 3.1.6). Fluorescence both at surface and 50

m was higher than in the autumn cruise. Lower fluorescence values were found in the

coastal region near Barcelona (Fig. 3.1.6). Abundance of nauplii and other

microzooplankton was higher than in the autumn cruise, with maximum values of ca.

13000 nauplii/m3. Maximum concentrations were located from the centre to the Ebro Delta

area and lower concentrations appeared near Barcelona (Fig. 3.1.6).

Pilchard eggs and larval concentrations during this survey were very low. However,

spatial distribution patterns were similar to those of the autumn cruise, with the highest

concentrations on the continental shelf (Fig. 3.1.6). Both eggs and larvae presented the

highest abundance in the area close to the Ebro Delta, coinciding with the highest

concentrations of microzooplankton.

Larvae collected during this survey ranged from 3 to 16.5 mm, although more than

80% were small (3 to 5 mm). At stations beyond the 200 m isobath (offshore), the

abundance of larvae of the smallest sizes (3-4 mm) was very low. The size structure after

separating by north, south and central sectors showed the presence of small larvae both in

the south and northern sectors. No larvae larger than 5.5 mm were present in the northern

sector (Fig. 3.1.7).
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Figure 3.1.6. Horizontal distribution of surface temperature (°C), surface salinity, surface
and 50 m fluorescence, copepod nauplii and other microzooplankton organisms and
Sardina pilchardus eggs and larvae during the February 1999 cruise. Crosses indicate the
sampling location.
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Figure 3.1.8. Mean vertical
sigma t (kg m-3) and
fluorescence profiles during
the November 1999 cruise.
Horizontal lines indicate
standard deviations.
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Oceanographic conditions during this cruise were relatively typical for this period

of the year, with a deep and wide pycnocline (100-200 m) (Fig. 3.1.8). The water column

between the surface and 100 m was well mixed at all the stations, as shown by the

temperature, salinity and density profiles. Mean temperature in the first 100 m was 16.4°C,

and 13.5°C was reached at 175 m. Mean salinity was 38.1. Fluorescence values were
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Figure 3.1.7. Size frequency distribution of Sardina pilchardus larvae
during the February 1999 cruise.
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higher in the upper 40 m of the water column (Fig. 3.1.8).

Sea surface temperature and salinity distributions were relatively homogenous

throughout the area (around 16.5°C and 38) (Fig. 3.1.9). Salinity was higher than in the

previous cruises. Fluorescence values were higher than in November 1998. Horizontal

fluorescence distributions were similar at surface and at 50 m, with maximum values near

the coast (Fig. 3.1.9).

Pilchard eggs and larvae showed a fairly typical distribution pattern, with eggs

mainly located on the shelf and larvae spreading offshore (Fig. 3.1.9). Maximum

concentrations were located in the Southwestern part, where the continental shelf is wider.

The size range of pilchard larvae during this cruise was from 3 to 20 mm with a

modal class between 4 and 5 mm. Both shelf and offshore stations were mainly (90%)

composed by larvae smaller than 5 mm, with no latitudinal or cross-shelf differences (Fig.

3.1.10).
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Fig. 3.1.9. Horizontal distribution of surface temperature (°C), surface salinity, surface
and 50 m fluorescence and Sardina pilchardus eggs and larvae during the November
1999 cruise. Crosses indicate the sampling location.
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DISCUSSION

Hydrography

Hydrographic characteristics during autumn-winter 1998-99 showed an anomalous

situation. In contrast, in November 1999 the oceanographic features were more typical for

the region. The unusual conditions encountered in autumn-winter 1998-99 were

characterised by the anomalous strong intrusion of new AW into the basin that was

reflected in the appearance of warmer and less saltier waters near the Catalan shelf. During

November 1998 the surface salinities observed in the study area were particularly low

(below 37.8), contrasting with previous data for that area and period (above 37.8) (Salat et

al. 2002). The stratified water column, together with the high temperatures and low

salinities in the upper layers during November 1998 are further indications of the influence

of new AW. The effect of these lighter waters is more important at surface levels, and

contributed to strengthen the vertical gradients, restricting the vertical mixing processes
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Figure 3.1.10. Size frequency distribution of Sardina pilchardus larvae
during the November 1999 cruise.
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that should have taken place at that time of the year (Salat 1996; Salat et al. 2002). In

February 1999 the influence of new AW was weaker, as shown by the slightly increased

salinity, but the hydrographical situation was still anomalous, as evidenced by the reversed

salinity pattern (with higher salinities near the coast than at the slope).

We relate these anomalies to the presence, from October 1998 to February 1999, of

an intense mesoscale anticyclonic eddy of new AW near the area of study. The presence of

this eddy was revealed by Sea surface temperature images (NOAA AVHRR data) (Fig.

3.1.11). The influence of these warm low saline waters extended to the continental shelf

zone, restricting the SW flow of the Catalan slope current and even inverting the flow

direction (Pascual et al. 2000).

Figure 3.1.11. AVHRR
image of Balearic Sea from
27/02/1999 showing the
anticyclonic eddy of new
Atlantic Water.
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The data obtained during the present cruises agreed with the satellite observations

indicating that new AW almost reached the continental shelf. In contrast, hydrographic

conditions in November 1999 resemble previously reported data for that time of the year

(Salat 1996; Salat et al. 2002): mixing of the upper 60-100 m of the water column, lower

surface temperature (below 16-18°C) and higher surface salinity (38).

Effects on the organisms

The prolonged (6 months) hydrographical imbalance due to the eddy had an effect

on the organisms living in the water column. The relation between environment and

organisms was evident in the distribution and abundance patterns of pilchard eggs and

larvae during autumn-winter 1998-99. However, the effect of the altered environment

could have been direct or indirect (i.e. through the spawning stock, the planktonic phases

or both). The development of Sardina pilchardus eggs takes 67 hours at 15°C (Miranda et

al. 1990), while larvae remain in the plankton for more than one month (Ré 1984).

Therefore, egg distributions reflect the adult spawning population, while those of larvae are

more dependent on environmental influences. The egg distributions found during the three

studied surveys indicated that the spawning of this species took place on the continental

shelf.

Coastal oceanography and distribution of spawning adults have been judged as the

main determinant of the spatial distribution patterns of Sardina pilchardus eggs and larvae

off the Atlantic Iberian coast (Chesney and Alonso-Noval 1989; García et al. 1992). The

anomalous situation during November 1998 could have affected spawners and early stages.

Although pilchard spawning in the NW Mediterranean starts at temperatures around 20°C,

it does not reach a high intensity until the temperature falls below 18°C (Oliver 1957). In

November 1998 the temperature was closely associated with the distribution pattern of

eggs and larvae, the highest eggs and larval concentrations being found in areas with

temperature values below 19°C. The intense stratification in the water column, together

with the depletion of nutrients in the upper layers after the summer period, could have been

responsible for the low surface fluorescence levels and the consequent low concentrations

of microzooplankton during that period. The highest concentrations of pilchard larvae and

copepod nauplii, their main food item (Conway et al. 1994), corresponded to areas with
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temperature values below 19°C. In this zone, larval abundance from 5 to 9 mm size classes

showed a slow decline, indicating either a lower mortality or a retention of larvae in this

zone.

The spawning peak for pilchard in the NW Mediterranean occurs in January-

February (Gómez Larrañeta 1960; Palomera and Olivar, 1996). Previous data on egg and

larval abundance for that period reported mean densities of ca. 500 individuals/10 m2 (with

areas where abundance was ca. 3000/10 m2) (Olivar et al. 2001). The low egg densities

found in February 1999 (mean value of 152 eggs/10 m2) suggest that spawning during that

period was severely reduced. Furthermore, the low larval abundance (mean density of 44

larvae/10 m2) and the scarcity of larvae larger than 5.5 mm indicated that spawning during

the previous weeks was very low and/or that larval survival was adversely affected. The

vertical structure of the water column evidenced the winter mixing processes that might

have caused a nutrient enrichment in the upper layers, reflected by the high fluorescence

values that resulted in high microzooplankton concentrations throughout the study area. In

the light of the high levels of potential food, it is likely that the scarcity of larvae was due

to a negative effect of the unusual hydrographical conditions on the spawning stock.

During this winter cruise the horizontal distribution of sigma t, with denser waters

in the coastal zone, was the opposite of the usual distribution in the NW Mediterranean.

This was reflected by the reversed current in a NE direction (Pascual et al., 2001). In the

northern part of the Catalan coast, during spring, it has been observed that a reversal in the

density patterns has an adverse effect on the distribution of larvae of shelf-dwelling species

(Sabatés and Masó, 1992). In the present study it is likely that the adverse effect on the

organisms was caused not only by the anomalous hydrographic structure found during the

days of the study, but also by the long persistence (since October 1998) of new AW near

the shelf. The marked difference in the water characteristics could have led to the

development of prey populations less suitable for pilchard feeding and/or might have

modified the distributions patterns of the spawning stock.

Finally, in November 1999 the typical hydrographic situation paralleled the usual

pilchard egg and larval distribution patterns. The most conspicuous feature during this
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cruise was the high number of early larval stages, which was indicative of a high spawning

intensity during the study period and a few weeks before.

Our observations indicate that both spatial distribution and abundance of early

stages of pilchard are associated with oceanographic variability caused by the influence of

the eddy. An unanswered question is: why was new AW displaced towards the coast in the

winter of 1998-99?. Studies carried out from 1996 to 1998 in this region showed an inter-

annual evolution, with increasingly warm winters. Due to this increase in temperature, the

formation of Winter Intermediate Water decreases. This weakened the Catalan current at

the end of spring, which could have facilitated the entrance of new AW to the north (Pinot

et al. 2002). We think that it would be of interest to investigate the influence that large-

scale oscillations affecting the NE Central Atlantic (e.g. North Atlantic Oscillation, NAO)

may have on the Western Mediterranean.
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3.2. RELATIONSHIPS BETWEEN ENVIRONMENT,
GROWTH, AND CONDITION OF PILCHARD Sardina

pilchardus IN THE CATALAN SEA

ABSTRACT

In this chapter we show several relationships between the environmental

characteristics in two contrasting periods (November 1998 and February 1999), the long-

term growth (derived from otolith and muscle growth analyses), and the nutritional

condition (assessed through histological and biochemical indices) of pilchard Sardina

pilchardus (Walbaum) in the Catalan Sea. These measurements were compared between

larvae grouped by selected environmental variables through PCA. Further, non-parametric

correlation was performed between 12 environmental variables and larval condition. The

study of long-term mortality was also attempted.

November 1998 was characterised by unusual hydrographic conditions, probably

caused by the influence of a mesoscale eddy of Atlantic Waters, that provoked higher than

usual temperatures and stratification (Olivar et al. in press). Pilchard larvae collected from

stations with lower stratification, lower temperatures and higher levels of potential food

showed better histological condition and higher RNA/DNA ratios than larvae from highly

stratified areas and lower food levels. Correlation analyses further supported this view. We

found no differences in long-term growth between these two main groups, but higher larval

abundance was found in the areas where larval condition was better.

In February 1999, the effect of the eddy was weaker but still persistent, and defined

an inverted coastal-offshore salinity pattern, which is not usual for this area. However,

several hydrographical features were typical for this time of the year, like the strong

vertical mixing and the low temperature of the water column (ca. 6ºC less than in

November). Larvae grouped in stations attending to the prevailing environmental

conditions (differing trends in temperature and salinity) showed no between-group

differences in growth, mortality or condition. However, the lower larval availability for this

cruise advises caution in the interpretation of results.
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Comparison of both cruises, pooling all larvae, showed that November 1998 was

characterised by higher growth rates and better nutritional condition than February 1999.

Whereas it seems clear that temperature had an effect on growth rates, the differences in

nutritional condition between sites and years might have also influenced growth and hence

potential survival. The overall percentage of starving larvae was low in both cruises (ca. 2-

7%), according to necrotic criteria. However, the amount of larvae in suboptimal condition

was relatively large in both cruises. Possible relationships between all the studied variables

are discussed.

INTRODUCTION

The European pilchard Sardina pilchardus (Walbaum) is within the most

commercially important species in the NW Mediterranean and supports the largest fishery

in terms of biomass on the Catalan coast.

Whereas some literature exists on the spatial and vertical distribution of eggs and

larvae in the area of study (Sabatés and Olivar 1996; Olivar et al. 2001; Olivar et al. in

press, see Section 3.1.), there is no data on the condition or growth in relationship with the

environment.

The survival of pilchard larvae, as in most pelagic species, is thought to be

determined at early stages. It is believed that small variations in egg and larval mortality

may explain a large portion of the sharp fluctuations in the year-class strength (Houde

1989). Starvation and predation, or their interaction, are probably the main cause of the

observed mortality (Leggett and Deblois 1994). Growth is probably a function of successful

feeding, and mortality due to predation is thought to be greater in slower-growing

individuals (Hare and Cowen 1997). Given the fact that predation is difficult to study in the

wild (Bailey and Houde 1989), starvation and growth are usually the variables gathered to

infere survival potential in fish larvae.

It was shown by Olivar et al. (in press) (see Section 3.1.) that the horizontal

distribution and abundance of pilchard eggs and larvae was influenced by environmental

factors in the spawning season 1998-1999. However, it was not shown whether this

distribution responded to an effect on the parental stock or could be attributed to a certain
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degree to the effect of environmental variables on the larvae themselves. In order to shed

some light on this aspect, it was the aim of this section to study the effect of several

environmental characteristics on the long-term growth and nutritional condition of pilchard

larvae collected from two cruises, November 1998 (early season) and February 1999 (peak

of spawning season).

Long-term growth was here estimated through otolith and muscle growth analyses.

Otolith microstructure has long been proved to serve as an indicator of larval age and

growth (e.g. Brothers et al. 1976; Campana and Neilson 1985). For pilchard larvae, the

daily nature of increments was demonstrated by Ré (1984), and the coincidence between

hatching and the first readable ring was shown by Alemany and Álvarez (1994). Some field

studies exist in SW Mediterranean pilchard in regard to otolith-derived growth parameters

(Ramírez et al. 2001). It is known that environmental changes can be reflected in the width

of otolith rings (Neilson and Geen 1985), and therefore, assuming a series of premises, the

total otolith width can be thought of as a measure of long-term growth.

Also, long-term growth can be assessed by the variation of certain muscle

characteristics, like the number of superficial (presumptive slow muscle fibres) or inner

(presumptive fast muscle fibres) fibres over larval age or length. Several works on the

changes in larval muscle cellularity in response to external factors have shown that ambient

temperature can affect the number and width of muscle fibres. These modifications can

occur already at the egg stage and imprint the larvae through older stages (Johnston et al.

1998; Galloway et al. 1998). Once hatched, larvae experiencing diverse thermal conditions

can have their muscle growth patterns modified by either hypertrophy (increase in fibre

size) or hyperplasia (increase in number of fibres) (Stickland et al. 1988; Vieira ad Johnston

1992; Johnston et al. 1995). For clupeiform larvae, this change in muscle cellularity has

been associated with changes in swimming capacity that are directly related to survival

potential (Morly and Batty 1996; Johnston 2001a). Until present, most studies have been

laboratory-based. However, the study of Temple et al. (2000) on herring Clupea harengus,

suggested that food concentration might influence muscle growth patterns. Those authors

recommended further research on the topic. No data on this issue are available for pilchard.
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It has been suggested by several authors (Ferron and Leggett 1994; Suthers 1998)

that no single condition index is “the best index”, as all offer different information on the

physiological status of an individual. We consider that there is a need to test different

methodologies in samples taken from the same sites (provided the same individual cannot

be simultaneously tested for some measurements) in order to compare the information

offered.

Histological indices are thought to be the most reliable indicators of condition

(Ferron and Leggett 1994; Suthers 1998). These indices imply that different tissues can be

graded and reveal large amounts of information about a single individual. Histological data

on the response of pilchard larvae to suboptimal food levels under controlled conditions are

scarce (Silva and Miranda 1992), and studies in the wild have been based upon general

patterns of other species (McFadzen et al. 1997). Indeed, the general histopathological

alterations observed in the absence of food are reasonably maintained across species, which

enables the use of literature information (O’Connell 1976; Cousin et al 1986; Theilacker

and Watanabe 1989; Uriarte and Balbontin 1987; Margulies 1993; McFadzen et al. 1997).

Within the biochemical condition indices, those based on nucleic acids are the most

widely used (Ferron and Legget 1994). The amount of DNA is considered to be relatively

constant in a cell, and is often used as a measure of number of cells or larval size. On the

other hand, RNA is known to vary greatly within a cell when protein synthesis occurs.

Protein is rapidly laid down in growing larvae, which are thought to rely on the fast

increase in size to reduce their susceptibility to mortality. RNA/DNA or protein/DNA ratios

have been successfully used to detect growth or condition in several species including

European pilchard (Chícharo 1998 a b; Ramírez et al. 2001).

The aim of this study was to relate several measurements of growth and condition to

environmental variables in pilchard collected in the Catalan Sea. An approach to the study

of mortality was also attempted.
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MATERIAL AND METHODS

Sample collection and preservation

The general collection techniques and sampling stations were described in Section

3.1. Hauls were between 15 and 20 min. As soon as the haul was up onboard, contents of

the cod-end of one of the bongo nets was poured into a tray and the pilchard larvae were

sorted into 2 groups. One group was preserved in 10% phosphate-buffered formalin and

later transferred to 70% ethanol for histological analyses. The second group was deep-

frozen individually in liquid nitrogen for biochemical and otolith analyses. The onboard

sorting was performed so that larvae from a sufficient size-range were represented. The

larvae from the other bongo net were fixed in standard 5% borax-buffered formalin for later

study.

The whole sorting process was usually finished between 5 and 10 minutes after haul

recovery to minimise post-mortem cellular degradation. Depending on larval abundance,

between 5 and 15 larvae were preserved from each station for each analysis. The final

available number of larvae differed for each analysis and will be specified in the

corresponding section.

We next comment on how the different analyses were related to environmental

characteristics. The two types of growth analyses and the two types of condition

measurements were derived from different individuals. This often implied differences in the

number of larvae or stations analysed. For the sake of clarity, we first explain the common

methods for relating the results to environmental characteristics. The specific methodology

for each type of analysis is detailed below.

Relationships with environmental data

The relationship of growth, mortality and condition vs environmental data was

approached in several ways.

Firstly an a priori grouping of stations into “environmental groups” (A and B) was

conducted within each cruise using PCA. This enabled the comparison of, for example,
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growth with nutritional condition of larvae collected from stations with similar

environmental characteristics. For the PCA analysis, we only used the variables that we

considered representative of the factors that might be affecting the biological parametres

measured (e.g. condition). The selected variables are represented in bold in Table 3.2.1.

Within the variables selected, we decided to include the Brunt-Väissälä (B-V)

frequency as water stability index. The rationale behind this decision is that the degree of

strength of the pycnocline may interact with the production dynamics, food distribution and

larval vertical migration, and therefore might be related to larval nutritional condition. We

calculated the B-V frequency for each station, according to

where g is acceleration due to gravity, ρ is water density and z is depth (Mann and Lazier

1996). This value was calculated for dz= 2 meters, and the maximum value for each station

was selected. The value used was B-V in cycles hour-1, and was calculated using the

program “Buoyancy” from SEASOFT (v.4.244, SEASOFT ELECTRONICS, Inc., USA).

For February 1999, the variables used for PCA were the same except for B-V, which was

not included due to highly uniform mixing of the water column, as seen in Section 3.1.

Regarding the potential food, we used two categories. Copepod nauplii < 45 µm (which we

called N) and other copepod stages, of any size, except eggs ( which we called T-N). These

are the main food items found in the guts of pilchard larvae ranging from 4 to 24 mm, as

described by Conway et al. (1994).

Variables showing high dispersion in values were appropriately transformed (depth

(ln) and potential prey abundance (sqrt)). All variables were then normalised to zero mean

and unit SD and PCA was conducted on the correlation matrix.

Also, correlation analyses between individual larval condition and the values of

each environmental variable associated with the station of collection were performed

(Table 3.2.1.). This made it possible to explore the importance of individual environmental

variables on condition. Long-term growth and mortality could not be analysed in this way

as data were derived from pooled larvae. We used non-parametric Spearman-rank

dz
dg

VB
ρ

ρ
=−
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correlations due to the often non-linear relationships observed in the plots, even after

appropriate data transformation.

Environmental variables

Station Depth (m)
Copepod nauplii m-3 (<45�m)
Other microzooplancton m-3

Temperature at 5 m (˚C)
Salinity at 5m (psu)
Fluorescence at 5m (volts)
Integrated Fluorescence (0-70m) (volts)
Temperature at 50 m (ºC)
Salinity at 50 m (psu)
Fluorescence at 50 m (volts)
Water stability (max. B-V index at 2 m intervals, cycles h-1)*
Depth of maximum B-V index (m)

For November 1998, The first 2 PCs explained ca. 74% of total variance (Table

3.2.2., Fig. 3.2.1., top-left). Basically, stations with lower stratification (B-V) were

paralleled by higher food levels (N and T-N). Stations showing negative values for PC1

were called “A”, and those showing positive values were called “B”. In Fig. 3.2.1. (mid-

left, bottom-left) we represent the stations classified as A or B for this cruise, with

Table 3.2.2. Results of the PCA performed on several environmental variables (7 for November 1998, 6
for February 1999) in order to select those that most contributed to the definition of station groups.

November 1998
PC Depth(ln) Nauplii(�) Other

Microzoop
lankton

(�)

Temp
(5m)

Sal (5m) Fluorescence
(integrated
over 70m)

Stratific
ation
index
(B-V)

Eigenvalue % explained
variance

1 0.385 -0.511 -0.498 0.099 0.001 0.297 0.494 2.06 52.5
2 -0.611 -0.270 -0.133 0.098 0.003 -0.602 0.404 0.84 21.4
3 -0.160 0.373 0.428 0.006 0.001 0.380 0.713 0.59 15.2
February 1999

PC Depth(ln) Nauplii(�) Other
Microzoop

lankton
(�)

Temp
(5m)

Sal (5m) Fluorescence
(integrated
over 70m)

Eigenvalue % explained
variance

1 0.436 0.064 -0.170 0.643 -0.549 0.250 2.29 49.0
2 -0.096 -0.504 -0.727 0.187 0.130 -0.395 1.25 26.8
3 -0.294 0.366 0.152 0.137 -0.419 -0.749 0.63 13.5

Table 3.2.1. Environmental variables analysed on both cruises. In
bold, variables used for station grouping through PCA. (*) The
Brunt-Väissälä (B-V) frequency as water stability index was used
only for November 1998, as stratification was almost homogeneous
in February 1999.
All variables were used for Spearman’s rank-correlation analyses
with condition.
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Figure 3.2.1. Results of the PCA analyses and classification into environmental groups A and B for
both cruises. Top figures, loadings of the first 2 PCs. Middle and bottom figures, classification of
stations into A and B according to the sign of the PC1, and superimposition of the values of selected
variables. The diameter of the circles is proportional to the value of the variable for a given station
(Primer-E Ltd.). B-V, Brunt-Väissälä frequency; D, station depth; F70, fluorescence integrated over
70m; N, copepod Naupli m-3 (< 45�m); S5, salinity at 5 m; T5, temperature at 5 m; T-N, other
microzooplankton.
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superimposed values of the variables explaining the highest amount of variance in PC1. In

Fig. 3.2.2. (left column), stations A and B are plotted over the sampling sites, with

superimposed values of selected environmental variables.

For February 1999, the first two PCs explained almost 77% of the total variance

(Table 3.2.2., Fig. 3.2.1. top-right). The first PC was a contrast between low salinity and

higher temperature and depth, which distinguised inshore from offshore stations. The

second PC was mainly a contrast of abundance of potential food vs temperature and

salinity. As for the previous cruise, stations A and B were defined by their positive or

negative values with respect to PC1. In Fig. 3.2.1. (mid-right and bottom-right), S5 and T-

N are superimposed. Surface temperature, despite explaining a high amount of variance in

PC1, was not shown in Fig. 3.2.1. as it showed similar values to surface salinity in the

second PC, and thus its representation would be redundant. As for the previous cruise, In

Fig. 3.2.2. (right column), stations A and B are plotted over the sampling sites, with

selected superimposed environmental variables. For each cruise, growth, mortality and

histological and biochemical condition were analysed between areas A and B. Finally the

two cruises were compared for the aforementioned parameters by pooling all larvae.

For all the studies, larval length was measured under a binocular microscope at the

nearest 0.1 mm. In order to standardise comparisons, all length measurements are given as

formalin-preserved standard length (SL). When animals were frozen (larvae used for

biochemical analyses), length was corrected by applying a 5% reduction due to

preservation in formalin (Watanabe and Kuroki 1997). No remains of yolk-sac or oil

globule were observed in larvae under 5 mm (preserved length) in any of the cruises.

Larvae under this length were not used for condition analyses, but were included in the

growth and mortality studies.
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Figure 3.2.2. Classification of stations into environmental groups A or B, according to PCA.
For November 98, B-V frequency and the 2 types of food fractions are represented. Superimposed red line
represents intermediate values of Maximum B-V.
For February 1999, salinity and the two fractions of potential prey are represented. Here, superimposed red
line represent intermediate salinity values.
Lines do not necessarily embrace station groups.
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Growth

Long-term growth was explored by 1) assessing the relationships between length,

estimated age through otolith daily increment counts, and otolith radius, and 2) by studying

the muscle growth cellularity along length. The hypothesis tested was that there were no

significant differences between environmental groups (within-cruises) or between cruises in

either type of growth.

Otolith analyses

Long-term growth in length of the grouped larvae from each environmental group

or from each cruise was analysed by comparing standard body length to estimated age

obtained through otolith readings. These data are part of a study which is currently being

conducted by Palomera et al. (unpublished data). From each larva, both right and left

sagittae were located and extracted under a dissecting microscope equipped with polarised

light. Otoliths were rinsed in distilled water, allowed to dry and mounted with DPX onto

slides. The number of daily growth rings and the maximum otolith diameter along the

longest otolith axis was determined using an image analyser (OPTIMAS 6.0) connected to

a PC through a CCD video camera. When possible, final estimation of age was made by

averaging results from both sagittae. If one sagittae was difficult to read, data was obtained

from only one sagitta, either left or right. The number of otoliths analysed is shown in

Table 3.2.3. According to Alemany and Álvarez (1994), the number of presumptive daily

rings was assumed to indicate age from hatching. The relationship between the examined

variables and length was adjusted by either linear (y=a+bx), allometric (y=axb) or

exponential (y=aebx) functions, whichever yielded the highest determination coefficient.

Instantaneous growth in length (GL, mm day-1) or in otolith diameter (GOD, µm day-1) was

calculated by taking the derivative for each equation for a given age.

Significance of each regression was tested through ANOVA, and differences in

slopes and intercepts through ANCOVA by way of GLM (Minitab Inc.). With a view to

standardisation, comparisons within each cruise were made between larvae ranging from 3
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to 15 mm SL for November 1998, and from 3 to 16 mm SL for February 1999.

Comparisons between cruises were made on larvae ranging from 3 to 15 mm SL.

Cruise Environmental
group

Number of
larvae

analysed

Mean larval SL
(mm) ± SD

Number of
stations used

A 53 8.6 ± 2.57 13
November 1998 B 41 7.4 ± 2.78 7

Total 94 8.1 ± 2.71 20
A 45 10.03 ± 3.96 10

February 1999 B 20 11.3 ± 4.59 8
Total 65 10.4 ± 4.17 18

Muscle growth variability

The data for the study of muscle growth variability was treated in a slightly different

way due to the low number of stations available. In this case, for each cruise, we grouped

the larvae into two categories defined only by a range of temperature and potential prey

abundance (see further below). Temperature is known to be a major factor influencing

muscle growth patterns (Johnston 1993; Galloway et al. 1999), and food has been

suggested as a potentially important variable in this respect (Temple et al. 2000).

The hypothesis tested was that muscle cellularity, tested by several measurements,

was not significantly different between environmental groups or between cruises.

Histological analyses were conducted at the Gatty Marine Laboratory (St Andrews,

Scotland), and at the Instituto de Ciencias del Mar (Barcelona). Larvae fixed in 10%

phosphate-buffered formalin and preserved in 70% ethanol were processed for wax

histology. Seven micrometer transverse sections were made from the whole larvae and

mounted in poly-L-lysine coated slides. Analyses were performed on sections located at ca.

0.5 SL from the head region. Sections were de-waxed with xylene, rehydrated and stained

with haematoxylin-eosin.

Data on 1) number of inner fibres, 2) number of superficial fibres and 3) the area of

each inner fibre was taken using an image analyser (OPTIMAS 6.0) (Figure 3.2.3.). Larvae

Table 3.2.3. Otoliths analysed for each cruise and environmental group
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were assumed to be bilaterally

symmetrical, so measurements were

taken from one half of the section and

final values were multiplied by two.

Two groups of larvae were analysed for

each cruise according to the amount of

potential prey and the mean surface (5 m)

temperature. We chose copepod nauplii

to represent potential prey, as they are

thought to make the bulk of ingestion

items in larvae of the range considered

herein (Conway et al. 1994). The two

environmental factors could not be tested

separately, so individuals were grouped

as belonging to either a “Higher Food-

Lower Temperature” group or a “Lower

Food-Higher Temperature” group (Table

3.2.4.). For each cruise, food and

temperature patterns were the opposite,

so stations at lower temperatures always

had higher food concentrations and vice

versa. This made it possible to hypothesise that if a significant difference in muscle

characteristics was observed between environmental zones and for the two years, and was

always associated to a particular environmental group, then one could infer which variable

(potential food or temperature) was probably exerting a greater effect on muscle growth.

For both November 1998 and February 1999, the food abundance differed by about 100%

between each zone. The temperature difference between zones was ca 1°C for November

1998 and ca. 0.5°C for February 1999. The temperature difference between the two cruises

was around 6°C.

40x

100x

Figure 3.2.3. Transverse section of Sardina
pilchardus stained with haematoxylin-eosin.
Standard length = 10.26 mm. dc, dorsal chord; g,
gut; if, inner fibres; my, myonuclei; n, notochord;
pgz, presumptive germinal zone; sf, superficial
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November 1998 (N=57) February 1999 (N=51)
Environmental group Environmental group

A
Higher food

Lower T
Lower food,

Higher T
Higher food

Lower T
Lower Food

Higher T

Nauplii m-3 (± SD) 5164 (1262) 2782 (828) 9300 (1380) 4397 (1040)
Mean surface Temperature in °C
(± SD)

18.9 (0.34) 19.8 (0.25) 12.7(0.12) 13.1 (0.079)

Number of larvae analysed 40 17 21 30
Number of stations 6 10 5 4

B

Cruise Mean T (°C) (SD) Mean Naupli m-3 (SD) Number of
larvae

Number of
Stations

November 1998 19.2 (0.47) 4439 (1500) 57 16
February 1999 12.9 (0.21) 6577 (2641) 51 9

Larvae between 3.5 and 13.5 mm SL were selected from each cruise and compared

between zones (Table 3.2.4. A). Between-cruise comparisons were conducted only for the

number of inner and superficial fibres as there was indication of higher muscle fibre

shrinkage in February 1999, which might affect the fibre diameter for a given length.

Regressions between muscle parameters and length were adjusted by either linear,

potential or exponential equations, and significance was tested by ANOVA on linearised

(when appropriate) equations. Comparisons of slopes and means between areas or years

was made by an ANCOVA by way of GLM (MINITAB Inc.).

The frequency distributions of the inner fibre areas was compared within each

cruise in the two environmental areas characterised in Table 3.2.5. Two length groups

(called “small” and “mid”) were made for each area and cruise. These groups were not

comparable between cruises (Table 3.2.5.) but enabled a size comparison within each

group, which was performed by the non-parametric Kolmogorof-Smirnoff test.

Table 3.2.4. Characteristics of the environmental features utilised for within-cruise
comparisons (A) and between-cruise comparisons (B) in muscle growth parameters. Mean
values for each environmental variable were calculated by assigning to each analysed larvae
the temperature and number of potential prey of the station from which it was collected. N=
number of larvae analysed
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November 1998 February 1999
Environmental group Environmental group

Higher food
Lower T

Lower food
Higher T

Higher food
Lower T

Lower Food
Higher T

Mean surface Temperature in °C
(± SD)

18.7 19.8 (0.20) 12.6 (0.05) 13.1 (0.10)

Naupli m-3 (± SD) 6200 2515 (231) 9195 (1135) 5035 (606)
Number of stations 1 3 3 3

Small
SL (mm) ± SD
Nº larvae measured
Nºfibres measured per larva (± SD)

4.71 ± 0.18
3

37 (4)

4.82 ± 0.27
3

26 (4)

4.09 ± 0.021
5

28 (10)

4.17 ± 0.099
3

32 (2)
Size group Mid

SL (mm) ± SD
Nº larvae measured
Nºfibres measured per larva (± SD)

6.52 ± 0.36
3

36 (3)

6.15 ± 0.44
3

33 (13)

5.26 ± 0.22
4

36 (6)

5.28 ± 0.26
4

31 (8)

Mortality

In order to make reasonable interpretations on mortality curves, the critical

assumption of equilibrium spawning must be met. This means that the abundance of the

oldest age-classes must be related to the previous age-structure. There was evidence from

the previous cruise that November 1998 corresponded to the beginning of the spawning

season, as shown by the large number of eggs and small larvae at some stations. In

February 1999, the spawning season was around its theoretical maximum, and the structure

of the population might be closer to equilibrium spawning during the weeks prior to

collection.

Despite the latter considerations, to obtain a graphical visualisation of the data, we

built age-frequency data from the length-frequency data and the otolith-derived age-length

relationships for both environmental groups and cruises. Larvae between 4 and 16 mm SL

were used. Smaller larvae were excluded from the analyses due to the possible extrusion

phenomenon observed in Section 3.1. We ascribed a mean age to each size category,

calculated every 0.5 mm. Total frequencies at age were given as mean number of larvae 10

m-2 per positive stations. Station 70 was excluded from group A in November 1998 because

it exhibited anomalous amount of eggs and recently hatched larvae, indicative of recent

spawning. Mortality coefficients were not calculated for November 1998 due to the lack of

Table 3.2.5. Larvae used for inner fibre distribution analysis in the two cruises
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reasonable evidence for constant spawning. For February 1999, the abrupt drop in apparent

mortality prevented us from fitting negative exponential fits, and presumptive mortality was

calculated by difference at two ages.

Histological indices

The condition of larvae from the predefined environmental groups A and B was

analysed for both November 1998 and February 1999. Also, correlations between the 12

environmental variables and condition of the larvae was assessed, separated by two size-

classes using a 8 mm cutpoint. The separation into size classes was conducted in order to

allow for possible differences in tissular organisation levels.

The tissues analysed were divided into short and long-term indices. This grouping

responds to the different response time displayed by each tissue in several species reared in

the laboratory (Kashuba and Mathews 1984, Theilacker 1986). Also, a weighted index was

implemented, following the idea of assigning differential susceptibility to mortality to

different indices or tissues, as explained in Section 2.3. (Fig. 2.3.10.).

Larvae older than the yolk-sac stage were processed for Historesin (Leica)

embedding as described in Section 2.3. They were sectioned at 3 �m in an approximate

sagittal plane and stained with Lee’s methylene blue – basic fuchin (Bennet 1976). Larvae

showing strong bents were sectioned in two steps, rotating the resin block to the appropriate

position.

Of all the larvae analysed, a large portion could not be fully interpreted

histologically. These larvae had missing guts that were probably lost during net collection.

This explains why the amount of larvae analysed for short-term indices was lower than that

for long-term indices (Table 3.2.6.). The number of larvae analysed for February 1999 was

lower than that of November 1998. This was due partly to the lower larval abundance, as

shown in Section 3.1. Some considerations about histological problems encountered in

February 1999 ought to be further developed. These samples were characterised by

pronounced shrinkage of muscle and general overstaining of the tissues. We disregard the

trawling speed or onboard sorting time as possible causes of tissue degradation as they were
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similar to those of November 1998, for which no alterations or unusual shrinkage were

evident. However, preservation time could have played a determinant role in the fixation

product. Larvae from February 1999 had been transferred to ethanol almost two months

after collection, about twice the time that elapsed for November 1998 larvae. It is possible

that a degradation of the fixing medium prior to the alcohol transfer occurred. Although the

utilisation of 10% buffered formalin has several advantages (it produces low shrinkage,

allows for relatively long preservation before transference to alcohol, reduces sample

washing before processing etc.), it has some drawbacks. One problem of formaldehyde is

the slowly increasing concentration of methanol (an unwanted by-product of ageing

formaldehyde). Methanol promotes clumping of proteins, which could have accounted for

the anomalously dark coloration of the samples, particularly the muscle.

SHORT-TERM INDICES LONG-TERM INDICES WEIGHTED INDICES

Larval size-class (SL, in mm) Larval size-class (SL, in mm) Larval size-class (SL, in mm)
�8mm > 8mm �8mm > 8mm �8mm > 8mm

CRUISE Nº OF
ST.

USED

N Mean SL SD N Mean SL SD N Mean SL SD N Mean SL SD N Mean SL SD N Mean SL SD
Nov. 98 36 42 6.6 1.05 47 10.1 2.02 78 6.5 0.93 100 10.5 2.28 49 6.8 0.74 92 10.5 2.27
Feb. 99 25 16 6.3 0.92 42 14.2 2.94 28 6.1 1.16 51 13.4 2.95 16 6.5 0.74 42 14.2 3.00

Selection of indices and histological grading

We used both qualitative and quantitative histological measurements. Qualitative

histological criteria used in this study were derived from both the available information in

the literature on both pilchard larvae (Uriarte and Balbontin 1987; Silva and Miranda 1992;

McFadzen et al. 1997) and other clupeids (O’Connell 1976; Sieg 1998). Qualitative

measurements were made on cartilage, pancreas, liver and midgut. These measurements

were classified into nutritional grades according to various cell and tissular characteristics,

from 1 (poor condition) to 3 or 4 (good condition) (Table 3.2.7., Fig. 3.2.4., Fig. 3.2.5.).

Also, two quantitative measurements were incorporated. One was the percentage muscle

fibre separation (MFS). It was chosen over the classical muscle scoring for its best

performance in laboratory rearing (Catalán and Olivar 2002, see Section 2.3.).

Table 3.2.6. Larvae used for histological analyses, classified by type of index, size-class and cruise
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Figure 3.2.4. Examples of healthy and degraded tissues (short-term response) of S.pilchardus larvae
stained with methylene blue-basic fuchsin 3 Φm sections in the sagital plane. Grades for the “good”
tissues are all= 3. Grades for the “poor” tissues are all = 1 except liver, which is = 2 (see Table 3.2.2). A
and B, liver: note the difference in vacuolation. C and D, pancreas: note the difference in zymogen
abundance. E and F, posterior part of the foregut: note the loss of cell integrity and increase in folding of
the degraded tissue. AI, acidophilic inclusions; BB, brush border; BM, basal membrane; BV, blood
vessel; CE, cuboidal epithelium; CM, circular musculature; CS, capsular space; FG, foregut; GC, goblet
cell; GV, glycogen vacuole; HS, hepatic synus; IS, interfibrillar space; L, liver; LU, luminal space; MA,
matrix; MG, midgut; N, nuclei; P, pigment; SV, supranuclear vacuoles; TM, trunk muscle; Z, zymogen.
Magnification is indicated under each image.
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The second quantitative measurement was the ratio between the perimeter of a

section of the foregut epithelium and its contained cellular area (foregut specific surface)

(Fig. 3.2.6.). This measurement was utilised by McFadzen et al. (1994) in larvae of

Scophtalmus maximus. Its use was advantageous for our study as it enabled the study of

specimens at an advanced developmental stage that usually showed a folded midgut.
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BV
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CH
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Figure 3.2.5. Examples of healthy and degraded tissues (long-term response) of S. pilchardus larvae
stained with methylene blue-basic fuchsin 3 Φm sections in the sagital plane. Grades for the “good”
tissued are all 3. Grades for the “poor” tissues are all (see Table 3.2.2). A and B, trunk muscle: note the
difference in muscle fibre separation. C and D, cartilage of the buccal cavity: note collapsed matrix of the
degraded cartilage. BV, blood vessel; CCH, condensed chondrocytes; CH, chondrocytes; CM, collapsed
mattrix; M, myotome; MF, muscle fibre; MFS, muscle fibre separation. Magnification is indicated under
each image.
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Moreover, the foregut was usually present in specimens that had damaged mid and

hindguts.

For the classification into grades of MFS and foregut specific surface, for which no

literature information was available, we used data of several pilchard larvae kept without

food that were hatched onboard during the February cruise. Although hatching was around

90%, mortality was extremely high and only 2 larvae were recovered on day 8 after

hatching. They showed severe signs of emaciation and no yolk was present. The values of

MFS and foregut specific surface of these starved larvae were used as reference values.

MFS was 19 and 23% in these larvae. Specific surface was 0.41 (only one larvae readable).

MFS was classified into nutritional classes taking into consideration both the

laboratory data and images taken from the literature (Figures from Silva and Miranda 1992

and McFadzen et al. 1997). Intervals are shown in Table 3.2.7. The grading of the Foregut

specific surface was made at three equal intervals. Foregut specific surface was the only

measurement that significantly correlated with size even within each of the two larval size-

groups (rp
2 was between –0.41 and –0.29, p<0.001). Therefore, residuals of the foregut

perimeter/area against ln-SL were used to overcome this problem (Table 3.2.7.).

Figure 3.2.6. Determination of the quantitative measurements. A, foregut specific surface. In
yellow dotted line, example of area that would be selected. B, quantification of MFS (%) after
applying a Macro from Optimas.

Foregut specific surface
perimetre/area

Muscle fibre separation
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In the final decision step of what measurements should be used in the short, long-

time and weighted indices, we optimised for the maximum number of larvae analysed. For

the determination of the pancreas and midgut integrity, there was a lower number of

readable larvae than for the readings of liver scores and foregut specific surface. Therefore,

we chose the latter. MFS and cartilage were easily readable in most larvae so we included

the two for the analyses.

For November 1998, we used ((MFS+Cartilage scores)/2) as long-term indices, and

((foregut perimeter/area + liver scores)/2) as short-term measures. The weighted index was

made using only MFS and liver scores (corresponding to steps 2 and 3 respectively in Fig.

2.3.10). The results were compared with the short and long-term indices.

Measurements for February 1999 were restricted to Cartilage (long-term) and Liver

scores (short-term), which retained recognisable characters of emaciation in their cell

structure despite the differential fixation effects. The weighted index was therefore made of

these two measurements.

A last criterion of condition was necrosis. A separate record of any tissue showing

necrotic areas was kept. We interpret the existence of necrosis as a sign comparable to the

concept of “point of no return” (PNR) (Blaxter and Hempel 1963). It was assumed that if a

larva exhibiting necrotic tissues was to encounter sufficient prey, it would not be able to

conduct efficient digestion and assimilation and would probably die (McGurk 1984). All

tissues and sections from each larva were looked at in order to detect necrosis. The criterion

of necrosis was incorporated in the weighted index as the lowest possible outcome of the

analysis (Fig. 2.3.10., step 1).

Biochemical indices

Larvae frozen in liquid nitrogen were transported to the laboratory for protein and

nucleic acid analyses. The methods used herein are those described in Section 2.4. Nucleic

acid analyses was conducted for both cruises. Protein analyses were available only for

February 1999 (Table 3.2.8.).
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The condition indices explored were RNA/DNA for November 1998 and

RNA/DNA plus protein/DNA for February 1999. The relationship between size and the

condition indices was explored through correlation (Pearson) analysis. If no significant

correlation was found, larvae were compared between areas A and B defined at the

beginning of Materials and Methods. These within-group studies were made through T-test,

after checking for normality (Anderson-Darling) and homogeneity of Variance (F-test).

Indices correlating significantly with size were compared through the aforementioned

ANCOVA procedure. Also, relationships between each environmental variable and

condition indices were compared through non-parametric correlations (Spearman). The

level of significance was set at �<0.05.

Comparisons between cruises were performed on RNA/DNA ratios in larvae from a

common size-range (4.8-16.0 mm).

A
Cruise Environmental

group
N° of larvae used for

RNA/DNA
SL ± SD N° of larvae used for

Protein/DNA
SL ± SD

A 76 8.9 ± 2.26 - -
November 98 B 40 8.2 ± 2.24 - -

Total 116 8.7 ± 2.27 - -
A 43 12.7 ± 4.65 26 13.9 ± 2.63

February 99 B 36 12.9 ± 2.49 29 13.5 ± 2.13
Total 79 12.8 ± 3.79 55 13.6 ± 2.37

B
Cruise N° of larvae used for

RNA/DNA
SL ± SD

November 1998 116 8.7 ± 2.27
February 1999 66 11.6 ± 2.73

Table 3.2.8. Number of larvae used for the biochemical indices of condition. A; within-cruise comparisons.
B; between-cruise comparisons (common size-range).
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RESULTS

Growth

Otolith analyses

November 1998

All performed regressions were significant (ANOVA; p<0.0001). For both groups A

and B growth in length was best described by a linear function (Fig. 3.2.7., top-left). GL

(mm day-1) was 0.77 for group A and 0.63 for group B but there were no significant

differences in slopes or intercepts between both areas.

The otolith diameter increased following an exponential equation (Fig. 3.2.7., top

right). There were no significant differences between the two environmental groups. The

length-otolith diameter relationship adjusted well to a potential equation for both

Figure 3.2.7. Relationships between
length, estimated age (otolith increments)
and otolith diameter for the two
environmental groups, A and B, in
November 1998.
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environmental groups (Fig. 3.2.7., bottom-left). The significant regressions between SL and

otolith diameter indicate that otolith size encompassed somatic growth. Although there

were no significant differences between slopes in both groups, the mean length at a given

otolith diameter was significantly higher for group A (ANCOVA; F= 4.33, p<0.05). The

interpretation of these results must be approached with caution (see discussion).

February 1999

All regressions were significant (ANOVA, p<0.0001). We found no significant

differences between environmental groups in any of the comparisons performed. Potential

functions were best adjusted to the length/age relationships (Fig. 3.2.8., top left). For both

Figure 3.2.8. Relationships between length,
estimated age (number of daily increments)
and otolith diameter for the two environmental
groups, A and B, in February 1999.
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groups, otolith diameter increased linearly with age (Fig 3.2.8., top right), whereas body

length related to otolith diameter through a potential function (Fig. 3.2.8., bottom).

Comparison between cruises

The two cruises were compared by pooling all larvae, taking the same length range

in each cruise. All regressions were significant (ANOVA, p<0.0001).

Length related significantly to age by a potential fit (Fig. 3.2.9., top left). GL was

higher at young ages (Day 5: GL for November 1998=0.79 , GL for February 1999=0.64 ),

than at older ages (Day 15: GL for November 1998=0.71 , GL for February 1999= 0.53).

Although statistical difference could not be established, our data suggests a possible older

age for a given length in larvae between 8 and 15 mm for February 1999, suggesting a

slower growth.

For the length-range considered, the otolith diameter increased exponentially with

age in both cruises (Fig. 3.2.9., top-right). This long-term otolith growth was lower for

Figure 3.2.9. Relationship between length,
estimated age (number of daily increments)
and otolith diameter for November 1998
and February 1999.
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younger ages (Day 5: GOD for November 1998 = 1.02, GOD for February 1999 = 0.87 ) than

for older ages (Day 15: GOD for November 1998 =3.05, GOD for February 1999=2.60). We

were unable to find statistically significant differences between slopes or means between

cruises. However, Fig. 3.2.9. suggests that, for the length-range considered, larvae from

February 1999 tend to be older, and have larger otoliths than their November 1998

counterparts.

Somatic growth was reflected in otolith diameter. Figure 3.2.9. (bottom) shows that

changes in length, rapid between 3.5 and 10 mm, were accompanied by fast increases in

otolith diameter.

Muscle growth variability

For both cruises, changes in number of inner fibres and maximum inner fibre area

increased exponentially with larval length, whereas the number of superficial fibres fitted a

potential equation with b <1, hence reducing its rate of increase at larger lengths,

consistently with surface-length associated growth properties.

November 1998

For both environmental groups, regressions between the studied variables and

length were all significant (ANOVA, p <0.005).

For a length ranging from 3.5 to 13.5 mm SL, the number of inner fibres increased

from 78 to 750 fibres per section, and the number of superficial fibres from 40 to 100.

Maximum inner fibre area increased from 27 to 250 �m2 (Fig. 3.2.10.).

No significant differences were found in either slopes or intercepts between the two

environmental groups.

The histogram analysis of inner fibre area distributions (Fig. 3.2.11.) showed that,

for the small larvae (ca. 4.7 mm SL) and mid larvae (ca 6.3 mm SL), increased

environmental temperature was associated with higher mean inner fibre cross-sectional

areas (distributions shifted to the right). The small larvae had a unimodal fibre distribution

peaking between 20-25 �m2 (Higher food-Lower T group,) and 25-30 �m2 (Lower food,

Higher T group).
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Larvae of ca. 6.3 mm showed increased within-environmental group variability

although medians showed similar values to those of small larvae (Fig. 3.2.11. B). The

Kolmogorof-Smirnoff test was not significant between environmental groups in the small

larvae (p=0.069), and it could not be performed in the mid group due to the high variability

between individuals of the same environmental group. However, we believe that the

graphical results enable one to suspect that a 1°C difference in temperature has a greater

effect on inner muscle fibre areas (hypertrophic growth) in larvae of these size ranges than

food abundance.
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Figure 3.2.10. Fitted regression lines of the
muscle variables vs length measured in larvae
of S. pilchardus in each environmentally
differing group in November 1998.
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February 1999

The mean surface temperature on this cruise was around 6°C lower than in

November 1998. Temperature differences between environmental groups were lower than

in 1998 (ca. 0.5°C in February, vs 1°C in November), but the abundance of potential food

within groups was around twice that in 1998 (Table 3.2.5.).

All regressions of the analysed variables vs length were significant (ANOVA,

p<0.001).

Figure 3.2.11. S. pilchardus larvae frequency distribution of inner fibre cross-
sectional areas of two size-classes (small and mid) collected from two groups of
stations differing in surface temperature and potential prey abundance in
November 1998. Arrows indicate medians. Error bars are SD. Bars without error
bar indicate that they belong to only one specimen.
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The number of inner fibres increased from ca. 70 to 450 in larvae measuring

between 3.5 and 13.5 mm SL (Fig. 3.2.12.). The number of superficial fibres increased

from 25 to 100, and the maximum inner fibre area from 30 to 350 µm2. Larvae collected

from stations with higher potential food and slightly lower temperature had a significantly

higher number of inner fibres (ANCOVA (length as a covariate) F=14.42, P<0.001). Slopes

were not significantly different. No significant differences in either slopes or intercepts was

found in the other relationships. This suggests a possible effect of potential food abundance

in the number of inner fibres.

The histogram analysis of fibre area distribution showed a pattern similar to that for

November 1998 (Fig. 3.2.13.). Significant differences were not found. However,

differences between environmental groups seemed smaller than in November 1998. The

Medians of the inner fibre areas tended to be higher in larvae collected from lower food-

higher T stations. Small larvae of ca. 4.15 mm showed a distribution peak between 20 and

30 �m2. From these small-size group, larvae from warmer-higher food areas had a greater
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Figure 3.2.12. Fitted regression lines of the
muscle variables vs length measured in S.
Pilchardus larvae for each environmental
group in February 1999.
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proportion of fibres over 45 �m2 (Fig. 3.2.13. A). These differences were not observed in

the mid group (Fig. 3.2.13. B). No significant differences between environmental groups

were detected through the K-S test.

Comparison between cruises

Between-cruise comparisons (Fig. 3.2.14.) were performed in shrinkage-

independent variables (number of inner and superficial fibres). Larvae from November

1998 (mean T=19°C) showed a significantly higher rate of increase of inner fibre number
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(ANCOVA, F=13.43, p<0.005). Also, the mean number of superficial fibres was

significantly higher for November 1998 (ANOVA, F=4.74, p<0.05), although the slopes

did not differ. These results suggest that larvae from November 1998 had an overall faster

muscle growth than larvae from February 1999. From Table 3.2.5., it is clear that the

analysed larvae from November 1998 had been collected in an environment with less food

than larvae from February 1999. On the other hand, surface temperature was 6ºC higher in

November 1998. This suggests that temperature might be the prevailing factor in

determining muscle growth under the studied conditions. Considerations about the type of

muscle growth can also be drawn and will be addressed at the discussion section.

Mortality

Age-frequency distributions for November 1998 showed that mean larval

abundance was around a higher order of magnitude in group A than in group B (not

shown). This contradicts one of the assumptions for interpreting mortality from this kind of

data, a reasonably constant spawning through time and space (Pepin 2002). However, it

suggests that a positive environmental selection by spawners in environmental group A

might have occurred.
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Figure 3.2.14. Comparison of the fitted regression lines on the number of inner and superficial
fibres vs length measured in larvae of Sardina pilchardus in cruises of November 1998 and
February 1999.
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In February 1999, the

relative decline in larvae around 5

days old was abrupt (Fig. 3.2.15)

and similar between groups A and

B (not shown). The number of

larvae over 6 days old was

extremely low, which is

unexpected for the peak of the

spawning season. The reasons for

both the sharp decrease in

abundances at young ages and the

low number of older larvae will

be discussed.

Comparison of cruises reflects a higher apparent mortality in February than in November.

In February 1999 a ca. 96% decrease in larval population between 3.8 and 6.5 days old was

observed, vs 61% in November 1998 for the same age-range. Though these data are not

comparable for the reasons mentioned above, our data suggests that February 1999 might

be a worse period for larval production. The possibility that the environment might have

affected individual larvae was later explored through the condition analyses in order to shed

some light on the interpretation of the observed mortality.

Histological indices

In general, short-term histological measurements of condition showed intermediate

scores for both cruises, with few larvae exhibiting extreme degeneration. In these cases,

larvae showed almost null coloration of zymogen in the pancreas, had reduced liver

vacuoles and the foregut specific surface was increased (Fig. 3.2.4.). In the long-term

histological indices, cartilage showed a generally healthy appearance, whereas variability in

muscle histomorphology was higher, suggesting that it was more affected by environmental

conditions (Fig. 3.2.5.). In severely degraded larvae, other tissues appeared altered. The

Figure 3.2.15. Age-frequency distributions for the
pooled larvae for each cruise. Abundances are shown
as mean number of larvae at each age-class.
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brain cells exhibited condensed nuclei with conspicuous gaps between them and retinal

cells, particularly ganglion cells, appeared disaggregated.

The particular observations regarding each cruise are detailed below.

November 1998

The nutritional condition of larvae differed between environmental groups A and B.

Short-term indices showed a similar pattern between the two groups, having the modal

class in the intermediate condition (Fig. 3.2.16.). The two size categories of larvae (�8 mm

and > 8 mm) showed no differences in the distribution of condition as assessed by the

short-term index.

The frequency distributions of the long-term index was clearly different between

groups A and B. Around 80% of larvae from group A were in good condition, irrespective

of size-class. In group B, 80% of larvae under 8 mm were either in Poor or Mid condition.

According to this, around 75% of larvae over 8 mm were in good condition and around

24% showed apparent degradation of muscle and cartilage.

Weighted indices (which put more weight on the long-term indices of condition and

on the existence of necrosis, as a proxy for survival potential) showed that the percentage of

larvae scoring under 7 was 4.4% for group A, vs 25% for group B (Fig. 3.2.16.).

Correlations between the 12 environmental variables and both short and long-term

condition indices were performed. Short-term indices showed no significant correlations

with any of the environmental variables studied, in either the small or larger larvae.

In contrast, the long-term histological condition indices showed a significant

correlation with 8 out of 12 variables in larvae �8 mm (Table 3.2.9.). Larvae >8 mm did

not correlate significantly with any variable. From the small larvae, the highest positive

correlations were held with food abundance (both N and T-N). The highest negative

correlations were held with temperature (both at surface and at 50 m) and with the water

stability index (B-V). Therefore, larvae with higher condition indices were found in stations

with higher food abundance and lower stratification and temperature. The correlation

analysis confirms the patterns observed through the initial divisions in groups A and B, and

the adequacy of the variables chosen a priori through PCA to study condition.
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Figure 3.2.16. Frequency distributions of histological tissue grades for S.pilchardus in
November 1998. A and B, environmental groups. Short-term indices, based upon liver scores
and foregut specific surface. Long-term indices, based on MFS and Cartilage. Weighted indices,
based on liver scores, MFS and necrosis.
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Environmental variables Spearman R T (N-2) P value
Station Depth (m)
Nauplii/m3

T-Nauplii
Temperature at 5 m (°C)
Salinity at 5m (psu)
Fluorescence at 5m (Volts)
Integrated Fluorescence (0-70m) (Volts)
Temperature at 50 m (°C)
Salinity at 50 m (psu)
Fluorescence at 50 m (volts)
Water stability (max. B-V index at 2m intervals, cycles h-1)
Depth of maximum B-V index (m)

-0.07
0.49
0.50
-0.49
-0.37
0.17
0.18
-0.45
0.28
0.28
-0.44
-0.17

-0.639
4.891
5.050
-4.827
-3.453
1.512
1.540
-4.068
2.371
2.354
-4.207
-1.477

NS
<0.00001
<0.00001
<0.00001
<0.001

NS
NS

<0.001
<0.05
<0.05

<0.0001
NS

February 1999

For this cruise, the environmental groups A and B were not fully comparable as

there were no available larvae under 8 mm for group B for the short-term index.

The short-term indices showed that in environmental group A, larvae �8 mm were

in poorer condition than larvae > 8 mm (Fig. 3.2.17.). Both A and B groups presented

between 40 and 50% of larvae in good condition (less than in November 1998).

The long-term condition index could only be based on the cartilage scores, which is

known to be one of the last tissues to respond to starvation. The results showed no

differences between size-categories or between environmental groups, and ca. 80% were in

good condition.

The weighted index showed that larvae from group A were in somewhat better

condition than larvae from group B, although the smallest size fraction could not be

compared.

No single environmental variable correlated significantly with the short-term

condition index in larvae �8 mm. This could be partly due to the low number of larvae

available for the analyses. Five out of the 12 environmental variables showed a significant

correlation with the short-term index in larvae > 8 mm (Table 3.2.10.). From this group of

Table 3.2.9. Non-parametric correlations between environmental variables and the long-term
histological condition index for larvae � 8 mm in November 1998. Valid N=78. NS, not
significant.
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larger larvae, those in better condition would have been collected from relatively deep

stations, where the amount of large zooplankters, salinity and fluorescence was high.

Figure 3.2.17. Frequency distributions of histological tissue grades for S. pilchardus in
February 1999. A and B, environmental groups (see Fig. 3.2.1.). Short-term indices, based
on liver scores. Long-term indices, based on Cartilage. Weighted indices, based on
cartilage score, liver scores and necrosis.
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From the long-term indices, only 2 variables were related to condition in larvae �8

mm. From these, a positive correlation was held with salinity at 50 m (rs=0.50, N=29,

T=2.983, p<0.05) and a negative correlation was held with T-N (rs=-0.37, N=29, T=-2.105,

p<0.05). In larvae > 8 mm a positive correlation was observed between condition and

temperature at 5 m (rs=0.34, T=2.390, p<0.05), temperature at 50 m (rs=0.409, N=45,

T=2.833, p<0.01) and salinity at 50 m (rs=-0.34, N=45, T=-2.314, p<0.01). A negative

correlation was held with fluorescence at 50 m (rs=-0.34, N=45, T=-2.314, p<0.05). These

results suggest that good condition assessed through the long-term index was associated

with higher salinity values in both size classes. These were mostly coastal stations (Fig.

3.2.2.) and held the highest number of collected larvae (see Section 3.1.)

Environmental variables Spearman R T (N-2) P value
Station Depth (m)
Nauplii/m3

T-Nauplii
Temperature at 5 m (°C)
Salinity at 5m (psu)
Fluorescence at 5m (Volts)
Integrated Fluorescence (0-70m) (Volts)
Temperature at 50 m (°C)
Salinity at 50 m (psu)
Fluorescence at 50 m (volts)
Water stability (max. B-V index at 2m intervals, cyclesh-1)
Depth of maximum B-V index (m)

-0.39
0.16
0.34
-0.07
0.32
0.36
-0.14
-0.30
-0.03
0.37
0.05
0.26

-2.618
1.043
2.245
-0.457
2.105
2.397
-0.873
-1.925
-0.157
2.442
0.302
1.702

<0.05
NS

<0.05
NS

<0.05
<0.05

NS
NS
NS

<0.05
NS
NS

Comparison between cruises

Pooled larvae from groups A and B from each cruise are compared in Fig. 3.2.18.

Short-term indices are the ones which can be compared more safely, as the two

measurements utilised for November 1998 (liver scores and foregut specific surface) and

the one utilised in February 1999 (liver scores) tend to covary in the same individual

(significant correlation between liver scores and foregut specific surface for larvae in

November 1998, rp=-0.30, N=91 p<0.05), which does not happen between the long-term

indices (cartilage and muscle).

Table 3.2.10. Non parametric correlations between environmental variables and the short-term
histological condition index of larvae > 8 mm in February 1999. Valid N=42. NS, not significant.
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The short-term indices showed that November 1998 had the vast majority of larvae

in intermediate condition for all size classes. In contrast, larvae from February 1999

exhibited a poorer mean condition, with over 40% of larvae classified as “poor” (Fig.

3.2.18.). For this cruise, the larvae � 8 mm were in obviously poorer condition than the

larger larvae.

poor
midgood

0

20

40

60

80

pe
rc

en
ta

g
e

condition

poor
mid

good

0

20

40

60

80

pe
rc

en
ta

g
e

conditionpoor
mid

good

0

20

40

60

80

pe
r c

en
ta

g
e

condition

poor
mid

good

0

20

40

60

80

pe
rc

e n
ta

g
e

condition

0
1

2
3

4
5

6
7

8
9

0

10

20

30

40

50

condit ion

Long-term index

0
1

2
3

4
5

6
7

8
9

0

10

20

30

40

50

size-class

condition

November 1998 February 1999

Short-term index

Weighted condition

COMPARISON BETWEEN CRUISES

n= 91

n= 47
n= 42

n= 57
n= 42

n= 15

n= 178
n= 100

n= 78
n= 78

n= 47
n= 31

n= 141

n= 92

n= 49

pe
rc

en
ta

ge

pe
rc

en
ta

ge

All >8mm !8mm

All >8mm !8mm

n= 16

n= 42

n= 58

All >8mm !8mm
All >8mm !8mm

All >8mm !8mm
All >8mm !8mm

Figure 3.2.18. Comparison between global histological results (groups A and B
pooled) for both cruises, by type of index and size-class.



3. Field Studies. 3.2. [...]Environment and condition in S. pilchardus

192

The long-term indices of November 1998 showed that 50% of larvae �8mm were

in intermediate or poor condition. Most of this information was contained in the MFS

index, the cartilage being affected only in cases of extreme degradation. For the same size

category, larvae from February 1999 had only 15% of larvae in intermediate condition and

none in poor condition. The lowered condition in larvae �8mm in November may be a

combination of both the higher sensitivity of the measures used for November 1998 (only

cartilage was used for February), and the higher environmental within-cruise differences in

November 1998. The interpretations of the long-term index comparison in the February

1999 data, as said before, should be interpreted with caution, as only cartilage could be

used for scoring.

Weighted indices reflected the previous patterns. The percentage of necrotic larvae

was low in both cruises. Only 4 larvae from each cruise were graded as necrotic.

Biochemical indices

November 1998

No correlation between RNA/DNA and size was found. The RNA/DNA value for

environmental group A was 7.0 ± 1.72 (SD) (n=76), whereas for group B was 6.2 ± 1.45

(n=40). The RNA/DNA in each area followed Normality, and the variance was

homogeneous. Larvae from area A had significantly higher RNA/DNA contents than larvae

from area B (T-test, T=2.40, DF=113, p<0.05) (Fig. 3.2.19. )

When all sizes of larvae were pooled, we found significant correlations between

individual RNA/DNA and several environmental variables (Table 3.2.11.). In general,

larvae in better condition (higher RNA/DNA values) were located in shallower stations,

with a higher abundance of total microzooplankton except nauplii and lower salinity and

fluorescence values (both integrated and at surface). Figure 3.2.19. suggests that larger

larvae (over ca. 8 mm) were the groups that differed most between areas A and B. A

separate correlation analysis using these larger larvae showed that RNA/DNA correlated

with a larger number of environmental variables, including negative correlations with the

B-V index (rs =-0.30, N=71 T=-2.571, p<0.05) and surface temperature (rs =-0.28, N=71,
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T=-2.363, p<0,05) and positive correlations with the nauplii abundance (rs =0.30, N=71,

T=2.599, p<0,05). These data match the horizontal pattern for these variables (Fig. 3.2.2.),

which showed that the areas characterised by low B-V had lower mean temperature and

higher abundance of both N and T-N. On the other hand, when the RNA/DNA of larvae

under 8 mm was confronted with environmental variables, they only correlated

significantly, and negatively, with depth (rs=-2.72, N=45 T=-2.012, p<0,05), suggesting

that coastal stations offered better possibilities for larval development. The RNA/DNA

values of these smaller larvae, however, showed higher variability than those of larger

larvae. RNA/DNA values were similar between groups A and B at these larval sizes (Fig.

3.2.19.).

Figure 3.2.19. RNA/DNA results for November 1998. Left; RNA/DNA values vs standard length (SL).
Right; frequency distributions of RNA/DNA in the two environmental areas. A and B, different
environmental groups. Arrows are means. P value obtained after T-test is shown.
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Environmental variables Spearman R T (N-2) P value
Station Depth (m)
Nauplii/m3 (sqrt)
T-Nauplii
Temperature at 5 m (C)
Salinity at 5m (psu)
Fluorescence at 5m (Volts)
Integrated Fluorescence (0-70m) (Volts)
Temperature at 50 m (C)
Salinity at 50 m (psu)
Fluorescence at 50 m (volts)
Water stability (max. B-V index at 2m intervals, cycles/h)
Depth of maximum B-V index (m)

-0.24
0.13
0.31
-0.04
-0.10
-0.25
-0.34
-0.13
-0.25
-0.03
-0.10
-0.12

-2.686
1.438
3.511
-0.422
-1.119
-2.751
-3.816
-1.437
-2.75

-0.281
-1.101
-1.288

<0.05
NS

<0.0001
NS
NS

<0.01
<0.001

NS
<0.01

NS
NS
NS

February 1999

The RNA/DNA ratio showed no correlation with length in either group A or B. The

dispersion of RNA/DNA values was similar for the two environmental groups, although

there was an under representation of larvae under 9 mm in group B (Fig. 3.2.20).

Table 3.2.11. Results from Spearman rank-correlations between environmental variables and
RNA/DNA ratios for all larvae in November 1998. N=116.
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Figure 3.2.20. RNA/DNA results for February 1999. Left; RNA/DNA values vs standard length (SL).
Right; frequency distributions of RNA/DNA in the two environmental areas. A and B, different
environmental groups. Arrows are means. NS, non significant differences between the two groups after
T-test.
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The distribution of the RNA/DNA values from both areas followed normality and

showed homogeneous variances. No significant differences between the two areas were

found (Fig. 3.2.20.) and no single environmental variable correlated significantly with the

RNA/DNA ratio.

Protein/DNA ratios showed a

significant correlation with length in both

A (rp= 0.62, N=26, p<0.001) and B (r=

0.44, N=27, p<0.05) groups. Larvae

between the two areas were compared by

taking the length as a covariate in an

ANCOVA analysis on linearised data.

There were no significant differences

between areas A and B for this condition

index (Fig. 3.2.21.). A significant

correlation with environmental variables

(all data used) was only held with salinity

at 50 m (rs=0.33, N=38, p<0.05). Therefore, larvae assumed to be in better condition

(higher protein/DNA ratio) were found in areas affected by higher salinity.

Comparison between cruises

The pooled larvae from November 1998 and February 1999 followed Normality, but

the variances were not homogeneous. The two cruises were compared through the non-

parametric Mann-Whitney test. The median of the RNA/DNA ratio in November 1998 was

significantly higher than in February 1999 (W=4174, p<0.0001) (Fig. 3.2.22.). It seems

apparent from this figure that for both cruises the smaller larvae (under ca. 9 mm) showed

the highest dispersion in RNA/DNA values. Thus, most of the detected difference between

cruises must be attributed to larvae over that size.

Figure 3.2.21. Relationship between
prot/DNA vs length in the two
environmental groups.
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DISCUSSION

General comments

According to the available literature, not only is there no study on the condition of

pilchard larvae in the Catalan sea, but there is no single study on any species that uses

histological, biochemical, muscle growth characteristics and age/length relationships to

characterise the overall fitness of larval populations in relationship with biotic and abiotic

factors. The results obtained in this section strongly suggest the existence of non-spurious

relationships between environment, growth and condition in pilchard larvae during the

period of analysis, which will be described throughout this discussion.

Abundance and adequacy of potential food

The two fractions of microzooplankton utilised in this study are adequate

descriptors of potential prey for pilchard larvae in the studied size-range. As no remains of

yolk were observed in the analysed specimens, it is assumed that all individuals could

potentially be affected by the prey availability. We acknowledge, however, that in the

Figure 3.2.22. Left: RNA/DNA values vs length in the two cruises. Right; frequency distributions.
Arrows indicate medians. P value after K-W test is shown.
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growth analyses some of the smallest specimens might be still dependant on oil globule

reserves. The fraction N (nauplii under 45 µm) is known to build up to 60% of the total gut

contents of larvae under 10 mm, and up to 40% in the larvae between 10 and 15 mm

(Conway et al. 1994). The second main prey item found in the gut by these authors

corresponds to copepodites. In the category T-N, we included most copepodite stages plus

other microzooplankters. It is known that whereas naupli decrease slightly in the diet as

larvae grow, copepodites are increasingly represented in the gut contents, from 10% in

larvae under 10 mm up to 35% in larvae between 10 and 15 mm (Conway et al. 1994). We

therefore believe that in the present study naupli may be an important food source for

larvae under 8-10 mm, whereas the copepodites will have a larger influence in the larvae

over this size.

Regarding the mean concentration of potential prey found on the two cruises, the

values cannot be considered particularly high in either of them. For November 1998, the

median of nauplii abundance was ca. 4.4 nauplii l-1, and dispersion was high between

stations (1.5 to 9.5 nauplii l-1). The values for T-N were around 20% higher than those of N

and also showed high dispersion values. In February 1999, the median nauplii

concentration was ca. 6.3 nauplii l-1, ranging from 1.5 to 10.5 nauplii l-1. For this cruise, the

fraction T-N was around 10% less abundant than that of N. These figures are generally

lower than those found by other authors in the NW Mediterranean. Calbet et al. (2001)

found mean values of nauplii of around 10 l-1 both in November and February. Also in the

NW Med, during the summer, mean values of 10-20 nauplii l-1 were reported by Sabatés et

al. (2001). In North Atlantic Iberian waters, mean nauplii abundances of between 2.4 and

17.3 have been found in several months (Conway et al. 1994).

The wide between-station variability in microzooplankton abundance, also observed

by Calbet et al. (2001), is an advantage when it comes to incorporating potential food as a

variable in the study of nutritional condition. Indeed, several studies have found

correlations between food abundance and nutritional condition in pilchard (e.g. Chícharo et

al. 1998 a,b).

It cannot be ignored, however, that food availability might have been higher than expected

from our values on abundance, due to patchiness of prey and larvae at the vertical scale.

Active larval vertical migration (Neilson and Perry 1990; Olivar et al. 2001) or turbulence,
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which within certain values can favour the larval-prey encounter rates (Rothchild and

Osborn 1988; McKenzie et al. 1994; see Franks (2001) for another implication of

turbulence in enhancing feeding success) might have also influenced feeding success.

Growth

Otolith analyses

In this thesis we have used the relationship between body length, otolith diameter

and age to estimate the growth of pilchard larval populations from either differing

environmental groups or cruises. The daily deposition of rings in pilchard was

demonstrated by Ré (1984), and the fact that the first detectable ring is formed at hatching

was shown by Alemany and Álvarez (1994). We have assumed these two results in order to

conduct our analyses and interpretations in pilchard larvae.

If environmental conditions were relatively persistent during the age-range

considered, then strong environmental differences between areas, if they occurred, might

have been reflected in a variation of the length-age relationship in the population sampled.

We also studied the relationship between otolith diameter, age and size. The general

correspondence between mean larval growth (e.g. in body length) and mean otolith

diameter is well established. Several works have shown that changes in environmental

factors affecting larval growth are also reflected in the width of daily deposition bands.

However, other authors have reported an uncoupling between somatic growth and otolith

growth. This uncoupling has been associated with changes in food availability and

temperature, and may explain, for example, the fact that the slowest-growing larvae (e.g.

older for a given size) sometimes exhibit the largest otoliths in relation to body length

(Secor and Dean 1989; Barber and Jenkins 2001; Fey 2001).

The only significant difference between environmental group comparisons (within

each cruise) was found in the body length to otolith diameter relationship in November

1998. Slopes did not differ between groups A and B, but mean otolith diameter was higher
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in larvae from group B. The latter result, however, must be taken with caution as the

number of data points corresponding to large otoliths is limited.

It is not surprising that there is a general lack of between-group differences within

each cruise. It must be considered that, though the relationship between daily increments

and length at the time of capture has been successfully used to estimate larval growth

(Brothers et al. 1976; Methot and Kramer 1979; Palomera et al. 1988), this technique only

enables a gross view of the growth parameters from the sampled population, as the length at

age of a given collected specimen is the integral of the past growth history. Therefore, the

past variation in parameters like food and temperature, which may have had an effect on

growth during larval life, may have been obscured by subsequent environmental

fluctuations. Indeed, the observed variability associated with a given age or length was

relatively large. A closer study of the recent otolith growth would be required to relate the

recorded environmental variables to larval growth. This study is currently being conducted

by Palomera et al. (unpublished).

The length-at age relationships of NW Mediterranean pilchard was comparable to

that reported for the same species in other areas. In November 1998 (mean surface T=ca.

19°C), the GL value was 0.64 mm day-1 for day 15, whereas in February 1999 (mean

surface T= 13°C) the GL was 0.53 for the same day.

In SW Mediterranean pilchard collected from the Alboran Sea, Ramírez et al.

(2001) showed a GL= 0.43 mm day-1 for day 15 (mean surface T= 15°C). Ré (1984), for

North Atlantic pilchard, showed mean growth values in body length of 0.49 mm day-1 for

temperatures of 15.6ºC. The generally higher growth rates observed on our two cruises in

comparison with the results of the aforementioned authors could be explained by

differences in the length-range considered. They used larvae from 11.4 to 29 mm (Ramírez

et al. 2001) or 8-26 mm (Ré 1984) vs our 3-15.5 mm size range.

In the present study, higher GL was observed at younger ages, and decreased with

age. This was also observed by Ramírez et al. (2001). Therefore, our use of smaller larvae

could explain our higher growth rates. Of course, other factors might account for the

observed differences, such as food availability, food quality or stock-related growth

characteristics. Also, if growth-selective mortality (Hovenkamp 1992) was higher in our
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sampled population than in the aforementioned works, we could have had a bias in the

growth estimates, as our curves would be derived mostly from the faster growing

individuals. However, in the absence of data on back-calculated length at age, it is not

possible to speculate on this point.

Our otolith-based between-cruise comparison suggests, though not conclusively,

that larvae from November 1998 might be experiencing higher growth than larvae from

February 1999. In spite of the difficulties in making between-cruise comparisons, due to

unequal representation of sizes at each age, Fig. 3.2.9. suggests that larvae from November

1998 might be growing faster. For sizes of 10-15.5 mm, larvae from February 1999 seemed

to be older than those from November 1998 (Fig. 3.2.9., top left). Also, these older larvae

had wider otoliths for the same length (Fig. 3.2.9., top right). This suggests that the otolith

diameters of February collected larvae were not larger because they had experienced better

conditions but because they belonged to older larvae. The latter might be indicative of

uncoupling between otolith growth and somatic growth. This uncoupling, defined as an

otolith growth in periods when somatic growth ceases or is reduced has been observed in

larvae of other species (Brothers 1981; McGurk 1984; Secor and Dean 1989; Molony and

Choat 1990, Secor and Dean 1992; Barber and Jenkins 2001).

Summarising, our results suggests that larvae from February 1999 might have a

decreased growth, as they were older and had wider otoliths than larvae from November

1998 for a same length-range. In further research, it is expected that work on recent otolith

growth can elucidate a possible relationship with condition or temperature that gives a

closer time-scale view of the relationship of our data with the environment.

Muscle growth variability

There are no data on the variability of muscle cellularity in pilchard. Therefore, our

results are not only valuable for the comparison of growth between areas and cruises but as
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reference values for this species. However, until laboratory studies are conducted, our

results must be considered as preliminary.

Literature on the effect of temperature on muscle fibre recruitment (hyperplasic

growth) and fibre size (hypertrophic growth) has been mainly conducted under laboratory

conditions, and shows that even small temperature differences during egg or larval

development cause severe changes in muscle cellularity, which are often species-specific

(Vieira and Johnston 1992; Usher et al. 1994; Johnston et al. 2001b). In herring Clupea

harengus, the studied species which is phylogenetically closest to pilchard, higher

temperatures experienced by eggs and larvae are known to increase the numbers of muscle

fibres and their diameters (Vieira and Johnston 1992; Johnston 1993). The variation in

muscle growth patterns can be of extreme importance to survival, as it may be associated

with striking ability and hence with feeding success (Morley and Batty 1996; Johnston

2001 a).

Within cruises, larvae were compared between two zones, characterised by opposite

trends in temperature and nauplii abundance (Table 3.2.4.). We were unable to show

significant differences in muscle fibre recruitment or maximum inner fibre area between

groups except for February 1999. The groups compared within this cruise were

characterised by differing little in mean surface temperature (0.5ºC). However, food

concentration in one of the groups was the highest observed in all the study (ca. 9 nauplii l-

1). Larvae from this group had a significantly higher amount of inner fibres than larvae

collected from the stations with ca. 4 Nauplii l-1. This result might be attributable to the

difference in food concentration between the studied areas, as temperature differences were

low. Nevertheless, we consider it unwise to extract solid conclusions from this particular

comparison due to the low number of datapoints for larger larvae. The fact that in

November 1998 the within-group comparison performed was unrevealing could be

explained by the lack of larger larvae in the group collected from warmer stations and

lower mean food items (Fig. 3.2.10.).
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Recruitment of inner muscle fibres in pilchard larvae was low until 6-7 mm,

increasing thereafter until 14 mm SL (Fig. 3.2.14.). This was true for both cruises. The low

inner fibre recruitment at small larval sizes was also observed in herring by Johnston et al.

(1998), who found that hypertrophic growth of embryonic myotomal muscle fibres

occurred up to sizes of 12 mm. Our graphical analysis of inner fibre cross-sectional area

distributions, performed on two size-groups within each cruise (Figs. 3.2.11. and 3.2.13.),

suggests that hypertrophic growth might occur in small pilchard larvae, and might be more

affected by small differences in temperature rather than food abundance (larvae from areas

with lower food abundance but slightly higher temperature tended to have a higher mean

inner fibre area). These suggested differences between areas were evident in November

1998, which was the cruise that displayed the largest mean surface temperature differences

between the groups considered (1ºC). The number of superficial fibres in pilchard seemed

to increase more constantly than that of inner fibres at the length-rage studied (Fig. 3.2.14.).

This was also observed in herring larvae (Johnston et al. 1998; Temple et al. 2000).

Our data on number of fibres is difficult to compare to the range of values obtained

for the herring. In the field study by Temple et al. (2000), the mean number of inner fibres

of 16-18 mm SL (live) herring (their lowest size values), collected from areas with

temperature ranging from ca. 10 to 15°C was around 700 and 1000 per cross-section. Our

largest analysed pilchard larvae (ca. 14 mm SL (preserved)), collected in areas with water

temperature around 13°C, showed ca. 400 inner fibres per cross section. This indicates that

the number of inner fibres may lie within a comparable range.

The most revealing result of our analysis is that larvae from November 1998 had

significantly higher inner fibre recruitment rates and a significantly higher number of

superficial fibres than larvae from February 1999. Our results partly agree with the study on

herring by Temple et al. (2000), which showed that, when larvae were compared by age

(determined through otolith analysis), higher temperatures experienced at hatching were

translated into higher number and size of superficial and inner myotomal muscle cells.

These authors suggested that, though temperature might have been the main factor

provoking the observed differences, the amount and suitability of prey should be further
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studied in relation to muscle developmental patterns. In our study, the higher concentrations

of potential food in February 1999 than in November 1998 induce us to believe that food

concentration is not likely to be a factor explaining the lower fibre recruitment observed in

February.

According to our results and the literature data on herring, we propose that muscle

growth properties could be used as a way to determine the past influence of temperature on

the young of the year recruits in pilchard. Firstly, small temperature differences

experienced by eggs and early larvae are recognisable in the number of muscle fibres until

advanced juvenile stages (Johnston et al. 1998). Secondly, there are data on different adult

herring stocks showing large differences in the number of fast (white, usually derived from

inner fibres) muscle fibres, which was suggested as a stock identification factor (Greer-

Walker et al. 1972). If appropriate temperature-muscle growth patterns were available from

laboratory studies, it should be feasible and cheap to study young of the year pilchard (from

market sampling), and to have data on the probable thermal regime at hatching and during

early larval development, according to the muscle growth characteristics and to surface

temperature maps (obtained through ordinary satellite imagery). Then, some interesting

conclusions like “the years of higher stock recruitment correlate with high success of larvae

spawned during the coldest months” could be drawn. This kind of study might be of value

for fisheries ecology and might complement the studies on otolith back-calculated age. Of

course, several aspects such as the correspondence between recruits and spawning site,

genetic differentiation of stocks, etc. should be taken into consideration.

The joint evidence of otolith analyses and muscle growth patterns strongly suggests

that larvae in February 1999 had a reduced growth in length, lower inner fibre recruitment,

and lower mean number of superficial fibres. These observation partly agree with the field

study of Temple et al. (2000) on herring, who also related a lowered growth in length with

a reduction in muscle fibre recruitment. It must be said that, though our otolith-based and

muscle-based growth data are not fully comparable (we did not use “age” in the muscle

growth analyses), the agreement of the two results strengthens the validity of the

conclusions.
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According to the growth-mortality hypothesis, larvae from February 1999 would

remain longer at a less developed stage and/or smaller sizes in the plankton, which might

involve a higher mortality due to predation (Houde 1989), and a higher probability of

starvation due to the smaller storage capacity of less developed larvae.

We believe that muscle growth patterns should be further investigated in the

laboratory with regard to food abundance and temperature, as they could be used as a

measure of condition (and not only of growth) under a wide range of temporal scales. For

example, differences in the properties of cross-sectional areas of the muscle pack could

reflect starvation-induced condition at a short time-scale (variation of myonuclei, as

suggested by Temple et al. 2000), whereas differences in fibre numbers could reflect long-

time exposure to suboptimal food levels.

Mortality

Interpretation of mortality from age-frequency abundances cannot be done safely in

this study. Some of the critical requirements for studying mortality from age-length derived

data (see Pepin 2002) were not met. Our data on November 1998 suggest that spawning

was not in equilibrium, as shown by the high number of eggs and larvae of the smallest

size-classes (Olivar et al. in press, Section 3.1.). Also, spatial heterogeneity was high in the

mean age-class abundances, being an order of magnitude higher in Environmental group A

than in B. In spite of the aforementioned cautionary issues, the higher recent spawning

detected in area A points towards a positive selection of this area by the spawning stock.

In February 1999, the abrupt apparent mortality might be explained by a number of

reasons. As discussed in Olivar et al. (in press, see Section 3.1.), the low number of eggs

and larvae observed might indicate a reduced spawning period during the weeks prior to

collection. Unfavourable conditions during this month (reversed coast-shelf brake salinity

pattern, inversion in the direction of the predominant current) could account for a reduced

spawning.

In the above sections of the discussion devoted to the analysis of growth, we

presented some elements that support the hypothesis that growth might have been reduced
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in February 1999. If this was the case, the longer time during which larvae would remain at

small sizes could have accounted, at least partially, for the sharp decrease in survival, due

to growth-selective or size-selective mortality. In the next sections of the discussion, we

will add the information obtained through condition analyses in order to build up a more

comprehensive picture of how environmental factors might be operating at individual level.

Histological indices

Histological assessment of condition is probably the most accurate indicator of

nutritional status (Ferron and Leggett 1994; Suthers 1998). Histological observations can be

made from several tissues from a single specimen, which respond at different rates to food

deprivation enabling a more precise description of the nutritional state of an individual. At

present, histological criteria have not been successfully calibrated with regard to organ

reaction of starving European pilchard larvae. In this respect, the existing laboratory data

on this species (Silva and Miranda 1992) are difficult to interpret due to the high mortality

observed in the control group (fed larvae). The general histological observations made in

this work were adopted from several works on clupeids (O’Connell 1976; Theilacker and

Watanabe 1989; Uriarte and Balbontin 1987; Silva and Miranda 1992). In general, the

variation in the tissues observed herein was common to that described for other species,

including turbot (Cousin et al 1986), stone flounder (Oozeki et al 1989), mackerel

(Theilacker 1978; Margulies 1993) and Mediterranean Sea bass (Catalán and Olivar 2002;

see Section 2.3.). We therefore believe that our interpretations on starvation-induced

tissular degeneration have a sound base.

We decided to separate indices that may respond more quickly to suboptimal

feeding from those that, allowing for the larval developmental stage, would take longer to

be affected by low food concentrations. This approach had been previously adopted in

S. pilchardus by McFadzen et al (1997).

Although increased tissue complexity was not observed throughout the size range

analysed, organ growth during larval development is known to affect the sequence of

energy usage as well as the duration of a particular energy reserve (Ferron and Leggett

1994). Therefore, the division into developmental stages, or at least size classes, as done in
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the present work, is justified for condition studies. According to various works in European

pilchard larvae (Blaxter 1969; Miranda et al. 1990; Silva and Miranda 1992), complete

yolk-sac resorption occurs between 6 and 7 days old at temperatures of between 13 and

18ºC respectively. Corresponding sizes range from 4.5 to 5.5 mm (4% formalin-preserved

SL). Therefore, our 8 mm SL cutpoint clearly separates larvae that are developing digestive

and feeding abilities from larvae with well established external feeding.

We believe there is sufficient evidence in November 1998 to establish a relationship

between environment and condition according to histological indices. Larvae from

environmental group A were generally in better condition than larvae from group B. This

was not, however, reflected in the short-term condition index. On this cruise, the modal

class of the short-term index was in an intermediate condition for both A and B groups.

However, groups A and B could not be compared safely as the number of positive readings

for both tissues in area B was low. This was probably caused by the generally lower

number of larvae collected for this area, coupled to the high number of larvae with broken

or absent guts, as a result of net damage during collection.

It is known that short-term indices, and particularly liver and gut, can respond to

food intake in a short time period that varies from hours to a few days (Watanabe 1985;

Oozeki et al. 1989; Yúfera et al. 1993, see Section 2.3.). Therefore, the intermediate state of

the short-term index for both sizes might indicate that larvae had not been subjected to

severe starvation prior to collection.

Differences between environmental groups were conspicuously shown by the long-

term index of condition and were more evident in larvae under 8 mm (Fig. 3.2.6.), which is

in accordance with the general lower resistance to starvation of the more undeveloped

larvae. This index was composed of the quantitative evaluation of muscle fibre separation

(MFS) through image analysis developed in Section 2.3, and of the scoring of cartilage.

Our microscope observations showed that MFS was mostly responsible for the differences

in condition between the environmental groups, whereas cartilage only responded in cases

of severe degeneration of muscle tissue. In environmental group B, long-term condition of

larvae under 8 mm (mostly due to a poorer muscle state) had a clear inverted distribution

shape in comparison with their counterparts from group A.
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The fact that muscle tissue responds better and faster than cartilage to lowered food

concentration is well documented in the literature. Fish are known to mobilise muscle

protein during suboptimal feeding to supply for maintenance energy (Love 1970; Pedersen

1990). In the youngest phases, energy reserves in the form of lipids or glycogen are

minimal, and muscle degradation will be almost immediate in the absence of the required

external energy input (O’Connell 1976; Theilacker 1978; Cousin et al. 1986; Martin and

Wright 1987; Green and McCormick 1999; Catalán and Olivar 2002). Furthermore,

cartilage is known to respond only to prolonged periods of food deprivation (Theilacker

1978; McFadzen et al. 1994). Therefore, in group B, the better condition of larvae over 8

mm than of those under 8 mm could be explained by an increased buffer capacity due to

larger storage reserves. The lowered condition of the smaller larvae according to the long-

term index does not contradict the intermediate gradation by the short-term index, in view

of the aforementioned sensitivity of the latter to food ingestion.

There was a good agreement in the correlation analysis of long-term condition vs

environmental variables, and the divisions into A and B groups as potentially influencing

condition. The histological condition of larvae under 8 mm was better (showed higher

significant correlations) at stations that were less stratified, colder, and with higher values

of N and T-N. These results correspond well with the differentiated horizontal patches

shown in Fig. 3.2.2. Larvae over 8 mm showed no correlation with environmental

variables, which follows from most of them being in good condition (Fig. 3.2.16.).

The use of the weighted index developed in Section 2.3. was applied based on the

hypothesis that indices that could reflect an immediate feeding status would have a lower

influence on final survival to juvenile stage than indices related to feeding success, escape

reactions etc. as is the case of muscle. Our results of the weighted index, placing more

weight in the long-term index, showed that the percentage of larvae with necrosis was

extremely low (1.8% for group A and 7.1% for group B). We were unable, however, to

apply the weighted index appropriately in area B because the number of larvae with

positive readings for both short and long-term indices was low. As explained in Section

2.3., we believe that the results of the weighted index give a better picture of larval

susceptibility to mortality than the separate use of each index, or the simple average of the

obtained measurements.
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The results from February 1999 require caution in their interpretation. The number

of available larvae for analysis was lower than for the previous cruise, and there was no

representation for the smallest size class in the short-term condition analyses for

environmental group B. Moreover, preservation problems prevented the correct scoring of

muscle and foregut specific surface.

Allowing for the latter observations, the short-term index suggested a poorer

condition in larvae �8 mm than in their November 1998 counterparts, which could be an

indication of food inadequacy (food abundance was not lower on this cruise). The lack of

significant correlations between larvae � 8 mm and environmental variables was not

unexpected, due to the lower number of larvae compared to the previous cruise for the same

size range, and the lower number of stations analysed. Also, for the short-term index,

correlation results showed that larvae > 8 mm had a better liver condition in areas with a

higher amount of larger potential prey (T-N), higher salinity and fluorescence values, and

higher salinity values. These stations were also located in shallower waters. For this cruise,

the long-term indices showed that larvae were in a generally good condition for both size-

classes, though percentages of larvae in mid-condition were higher than in November 1998.

For these larger larvae, the correlations with environmental variables were weaker than for

the previous cruise, probably due to the fact that muscle, the most responsive tissue within

the long-term indices, could not be used.

Overall, according to the most comparable histological index between cruises,

larvae from February 1999 were in poorer condition than larvae from November 1998.

Whereas long-term indices clearly showed differences between environmental groups in

November 1998, this cannot be safely established for 1999. According to the histological

indices, smaller larvae seemed to be more prone to starvation than larger larvae in both

cruises.

Relationships between a poorer histological condition and lowered food

concentration in field-collected clupeoid larvae has been previously reported (Lasker 1985;

Sieg 1992), although data showing no relationships are also available (O’Connell 1980;

McFadzen 1997). The finding that smaller larvae were generally in worse condition than

larger larvae on both cruises agrees with the Critical Period hypothesis (Hjort 1914) which
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implies that larvae are highly sensitive to suboptimal food concentrations during a short

period after first feeding. In addition, evidence of an improved condition with age is

abundant, which agrees with our data, and has been found for both wild and reared larvae

(O’Connell 1980; Buckley 1984; Suthers 1993; Theilacker and Porter 1994; Grioche 1998).

The latter has been explained in terms of an increased amount of body reserves, but other

factors could also play a role, like the increased potential prey size and species range

(Conway et al. 1994; Gonzalez –Quirós and Anadon 2001; Tudela et al. 2002).

The geographically closest study on pilchard condition assessed through histology

was conducted by McFadzen et al. (1997) in Atlantic Iberian waters. They found that the

vast majority of the larvae analysed were in good condition as assessed by short-term and

long-term indices. They reported, however, a high percentage of starving larvae (up to

30%) identified by necrotic tissues. Our results showed far lower values (up to 7.1%). The

mean length of larvae examined by McFadzen et al. (1997) was consistently lower than

ours, which could explain their higher proportion of necrotic larvae. The mean nauplii

concentration in our cruises was of the same order than theirs. Our results are more in

accordance with those of Balbontin (unpubl.), who found values of ca. of 11-13% of

necrotic Sardinops sagax larvae, calculated from histological grading. However, the large

proportion of larvae in suboptimal condition detected in some areas (25% in group B vs 4%

in group A in November, according to the weighted index) shows that susceptibility to

mortality might be higher.

Summarising, our histological study provides evidence of an influence of potential

food concentration in the histological condition of pilchard in the Catalan sea. The clearest

results were obtained for November 1998, for which larvae from stations with lower B-V

index, lower temperature and higher N and T-N were in better condition than larvae

collected from areas showing opposite environmental trends. These differences were more

evident in larvae under 8 mm. The use of MFS showed to be highly valuable for these

analyses. The results for February 1999 were less clear, but a general pattern suggests that

they were in poorer condition than those of November 1998.
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Biochemical indices

The lack of correlation between body length and RNA/DNA ratios in all cruises and

environmental groups enabled a comparison of the pooled larvae. This lack of correlation

has been observed elsewhere in wild-collected clupeoids (Kimura et al. 2000), and when

positive correlations have been reported, these are typically weak (Chícharo et al. 1998a).

For both cruises, variability in individual RNA/DNA was high. Our observed

RNA/DNA ranges and modal classes were higher than those reported by Chícharo et al.

(1998 a, b), fact which could be attributed to methodological differences. The

aforementioned authors used Ethidium Bromide as a dye. Here, the use of SYBR Green II

plus a detergent increased the sensitivity up to 100 fold in comparison with Ethidium

Bromide (Berdalet 2002). We did not establish critical starvation values, due to the absence

of laboratory calibration for this species using the current methodology. Our lowest

estimated RNA/DNA values were between 2 and 4 (3.3% of all larvae), but the vast

majority of larvae had values over 4. The critical RNA/DNA values, using dyes different to

the one utilised in the present study, have been found to vary between 1.0 and 1.3 for some

clupeoids including S. pilchardus (Clemmensen 1994, Chícharo 1997; Kimura et al. 2000),

depending on temperature, size and species. However, these values cannot be taken for

comparison purposes either, due to the differences in methodology for determining RNA

and DNA. In order to clarify the differences between current methodologies, an

intercalibration study is currently being conducted among several laboratories (Berdalet

pers. com.). A laboratory calibration using the methodology utilised herein should be

conducted in order to determine starvation percentages in this species.

For November 1998 significant differences between environmental groups were

found (Fig. 3.2.19., right). This result agrees with our histological analyses and with the

idea that environmental conditions were better for larval survival in group A. The

correlation analyses also supported this view, and showed that the amount of potential food

was an important variable explaining condition. It was evident from Fig. 3.2.19. and from

subsequent separate correlation analyses that larvae over 8 mm differed most between

groups A and B. The unsuitability of RNA/DNA for detecting starvation in the earliest

developmental stages, particularly during transition to exogenous feeding, has been
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repeatedly demonstrated and pointed out as drawback for the use of RNA/DNA even in

larvae that are already ingesting prey items (Clemmensen 1989; Bergeron and Boulhic

1994; Clemmensen 1996, Section 2.4.). The fact that none of our analysed larvae showed

signs of yolk, plus the fact that we used only one type of tissue for the analyses (muscle),

reduced the possibility of ontogenetic artefacts in the interpretations of RNA/DNA as a

condition measurement. Therefore, at least for November 1998, our results reinforce this

criticism.

A factor also influencing RNA/DNA is temperature. On this cruise, within-group

differences in surface temperature was ca. 1ºC. We do not believe that this temperature

difference can account for the observed differences in the between-group RNA/DNA

values. Several works indicate that temperature differences <2ºC enable direct comparison

of RNA/DNA values (Buckley 1984, Buckley et al. 1999). On the other hand, the effect of

food abundance has repeatedly shown to have a significant effect on RNA/DNA ratios in

European pilchard (Chícharo 1998 a, b). These authors found that between 17 and 20% of

their RNA/DNA variability was explained by zooplankton biomass, values that are

comparable to our results.

The lack of significant differences between groups A and B in February 1999 is in

agreement with the similar growth rates between the two groups as determined by otolith

and muscle cellularity analyses. Our histological results are difficult to compare due to the

low number of larvae available for analysis in this cruise. Also, few larvae under 10 mm

were available for analysis for group B.

The protein/DNA analyses showed no significant differences between

environmental groups either, but correlation analyses with all larvae showed that larvae in

better condition were located in more saline areas. These results agree with those of

histology in larvae > 8 mm and suggest that coastal areas, where the abundance of T-N was

higher (Fig.3.2.2.), were better suited for larval survival.

Higher protein/DNA values were observed at larger sizes in both A and B groups.

The latter agrees with the results of Ramírez et al. (2001) in SW Mediterranean pilchard.

These authors hypothesised that if selective mortality existed upon slower growing

individuals (in worse condition), the survivors would be characterised by having higher
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protein/DNA ratios, which would explain its increase with length. However, the latter

should also apply to RNA/DNA values. For both cruises and groups, we observed a bell-

shaped form of the RNA/DNA frequencies. A truncation at the left-hand side would be

indicative of growth-selective mortality, and this was not observed herein. Therefore, we

suspect that increasing values of protein/DNA with length may be influenced by changes in

physiological properties associated with muscle growth. Laboratory investigation on the

latter could help in the future application of this index.

Larvae collected in November 1998 had significantly higher RNA/DNA values than

those from February 1999, when compared using a common length-range and pooling all

larvae. This is in agreement with our data suggesting higher growth in length and in muscle

fibre numbers for that cruise. Also, the histological indices, particularly the short-term one

(the most comparable measure), showed that larvae from February 1999 were in poorer

condition. The major concern in comparing RNA/DNA values between cruises was

temperature, which was around 6ºC higher in November 1998. Although growth rates of

fish larvae are known to increase with increasing temperature, this does not necessarily

imply increased RNA/DNA values. An initial reason for this is that, for a given RNA/DNA

value, growth is higher at higher temperatures (Buckley 1984). In addition, larvae from

colder environments, given other factors are not limiting, can grow at similar growth rates

to larvae inhabiting warmer areas by increasing the amount of RNA, therefore

compensating for temperature effects (Goolish et al. 1984). In the present study, we

observed that the RNA/DNA ratio in individuals under 8 mm was highly variable and not

distinguishable between the two cruises (Fig. 3.2.22.). According to Goolish et al. (1984),

the similar RNA/DNA values between the November and February cruises for larvae

under 8 mm, coupled with the lower RNA/DNA values of larvae over 8 mm in February

1999 than in November, would further reinforce the view of a general lowered growth or

condition in the larvae collected in February.
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Summary

European pilchard is a multiple spawning species with a protracted spawing season,

which is well characterised both in the North Atlantic Iberian waters (García et al. 1992)

and in the Mediterranean (Palomera and Olivar 1996). This wide period of spawning is an

adaptation to overcome stochastic fluctuations in the numerous factors that can account for

the high mortality at early larval ages, as a result of the low stability of the environment in

which eggs and larvae develop.

In the Catalan Sea, S. pilchardus spawns from October to May within the

continental shelf. During most of the spawning season, winter vertical mixing throughout

the water column enriches the euphotic zone with nutrients, enhancing productivity in the

areas in which larvae are found (Salat et al. 2002).

The area where larvae usually develop is also hydrographically delimited in its

offshore boundary by the Catalan shelf-slope front. The Catalan front has a permanent SW

associated current, the Liguro-Provençal-Catalan current. During the spawning season,

variations to this general hydrographical and production pattern are diverse, including

interactions with open sea eddies (see Introduction). The way in which environmental

variables affect survival of pilchard larvae is difficult to grasp, as they probably act in

concert, in an overlapped fashion, provoking high mortality rates. Nevertheless, the key

role of food availability for larval survival in the wild is revealed by the close link that

exists between the spawning time in temperate marine fish and the time of greatest

abundance of planktonic food (Cushing 1977).

Acknowledging the difficulty of establishing causal links in this type of field study,

we feel that an effort must be made to maximise the information extracted from the

available environmental and individual or population-derived data.

In the light of the results presented in the chapter devoted to field studies (Sections

3.1. and 3.2., several relationships between environment and possible survival of larval

pilchard in the Catalan sea can be established.

In November 1998 the pilchard population was at the beginning of the spawning

season, as evidenced by the patches with high abundance of eggs and recently hatched
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larvae. Certain areas could be characterised in which condition as assessed by histological

and RNA/DNA ratios was particularly high. These areas may be described by ranges of

environmental values that form a favourable “environmental window” (Cury and Roy

1989) for potential larval success. Such a suite of favourable conditions would include

surface temperatures under 19ºC, B-Vvalues of 0.1-0.8 cycles h-1, and mean potential food

abundance over 4.5 nauplii l-1 or over 5.5 other microzooplankters l-1. The areas

characterising an unfavourable environment, where spawning was reduced and nutritional

condition was lower, would exhibit surface temperatures over 19.0ºC, higher B-V values

(0.81-1.8 cycles h-1) and potential food abundance under the aforementioned values. We

showed that the existence of these environmentally differentiated areas was probably

caused by the influence of an oceanic mesoscale eddy of new AW that introduced warmer

and less saline water into the shelf area and enhanced stratification at some sites. This

oceanic eddy was very persistent (October 1998 to February 1999) and probably affected

the larval production during the whole spawning season.

In February 1999 spawning and larval abundance was extremely low compared to

other works conducted on the same month of the year (Olivar et al. 2001). The low number

of larvae over 6 day old or 5 mm SL could be explained by a lower spawning during the

weeks prior to collection and/or to increased mortality. The whole hydrographical situation

on this cruise could be described as anomalous, as indicated by the reversed salinity pattern

and the inversion in the direction of the dominant current. This observation was widely

supported by calculations from our survey (Emelianov pers comm), by analyses derived

from satellite data (Pascual et al. 2001), and by the ADCP results of a survey conducted a

week after our cruise (Salat pers. comm). We found evidence to support the view that

reduced spawning was paralleled by lower growth and condition in comparison to the

previous cruise. The analyses of individual larvae, fewer in number than in November

1998, showed weak correlations with environmental conditions. Only larvae over 8 mm SL

seemed to be in better condition at stations where the total amount of microzooplankters

and surface salinity was high. On this cruise, the mean abundance of potential prey was not

particularly low, and the poorer condition and lower growth observed could be attributed to

a mixture of reduced temperature (6ºC lower than in November) and unsuitability of prey
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composition. In this respect, we speculate that the long persistence of the new AW eddy

might have contributed to a shift in the composition of microzooplankton species.

We believe that general environmental conditions on this cruise affected larval

production negatively, probably due to a combination of reduced spawning intensity,

reduced growth and poorer condition.

The joint interpretation of condition and growth through several methods confirmed

that the type of information offered by measures that are commonly classified into a same

category (e.g. “short-term condition indices” or “long-term growth”) is different. Whereas a

comprehensive picture of the larval “fitness” with regard to the surrounding environment is

undoubtedly enriched by the addition of methods, the interpretation of each one must be

specific for the time-scale of the processes they integrate.

Within the growth measures, our results are valuable for several reasons. Firstly, we

showed that there is an agreement between long-term growth estimated through otolith

analyses and through the study of muscle cellularity. The clearest differences were detected

between cruises and were probably due to temperature. These measures have an inherent

great variability as they integrate the whole past history of the larva, but the general

agreement between the two reinforces the validity of the results. Further research on both

otolith microstructure and muscle cellular properties should be explored in S. pilchardus

larvae with regard to their capability to detect recent growth as a response to varying

environmental conditions. Secondly, muscle cellularity has never been used before in

pilchard, and the results obtained herein seem promising. A future line of work could be

devoted to the backward inference of environmentally important factors affecting larval

survival, through the study of muscle cellularity of young of the year recruits. If appropriate

temperature-muscle growth patterns were available from laboratory studies, it should be

feasible and cheap to study young of the year pilchard (from market sampling), and to have

data on their probable spawning times, according to the muscle growth characteristics and

water surface temperature maps (obtained through ordinary satellite imagery). This kind of

study might be of value for fisheries ecology and might complement the studies on otolith

back-calculated age (e.g. Alvarez and Morales-Nin 1992). Of course, several aspects such

as the correspondence between recruits and spawning site, genetic differentiation of stocks,
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etc. should be taken into consideration. Our results on muscle growth suggest that pilchard

larvae exhibit an initial hypertrophic growth that shifts into hyperplasic growth at around 6-

7 mm SL. This implies that, if unexploited techniques like the cell proliferation rates (see

section 2.4.) come to be of easy routine use, they should be applied only over these length-

ranges.

Among the condition measurements, the information offered by histological and

biochemical indices was complementary.

Within the histological methods, the use of the muscle fibre separation yielded the

highest information on condition, which agrees well with the literature and with the

experiments conducted in the first part of this thesis. Whereas the histological indices were

effective in the larvae of all size-ranges, including the smallest size fraction, the results of

RNA/DNA best differentiated larvae over 8-10 mm. This also conforms the information in

the literature and our results from laboratory studies.

The adequacy of both histological and biochemical indices as indicators of

condition or growth was further evidenced as they covaried with environmental conditions,

particularly in November 1998 and in their between-cruise pattern. Comparative results

within areas in February 1999 were less clear, which was not unexpected due to the lower

number of available larvae and the weaker environmental differences between stations.

Future lines of work regarding histological indices should focus on the standardisation of

histological grading like the one used for MFS determination. Also, automatic

quantification of key tissular traits is desired. The continuous, rather than discrete, obtained

measures could clarify future correlation analyses with environmental variables.

Regarding biochemical indicators, further effort is needed to ascertain the

physiological meaning of the variation in RNA/DNA ratios in tissues like muscle with

growth. This would of course require species-specific validation. We believe that, as the

muscle tissue is the most abundant in fish larvae, and is responsible for most growth,

further research should focus on the link between ontogeny, environmental factors and

muscle properties and its influence on behaviour and survival. Also, common

methodological grounds should be aimed for among researchers, and efforts are currently

being made in this direction.
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The challenge of estimating survival from nutritional studies, given the usual lack of

reliable data on the larval-recruitment correspondence, must ascribe theoretical chances of

survival to particular indices. We believe that the muscle tissue should be given particular

value for its importance in potential survival. Weighting schemes like the one presented in

Section 2.3. and used in this chapter might be valuable for this purpose.

The data from this part of the thesis suggests, firstly, that in the Catalan sea

environmental variations can influence future pilchard recruitment by modulating spawning

intensity through hydrographic events at scales of several months and tens of kilometres. In

addition, potential food abundance as a biological factor, and water column stability and

temperature as physical factors, appear to be strongly associated with larval condition and

growth, probably conditioning larval success at an individual level.
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CONCLUSIONS

LABORATORY STUDIES

1) Morphometric indices proved useful in distinguishing the shape of larvae subjected to

differing feeding conditions. This was done through multivariate analysis on variables

from which the effect of size had been completely removed, but that conserved the

information on allometry.

2) Within the histological variables tested, the quantitative determination of muscle fibre

separation (MFS) showed to be the best method to detect a suboptimal nutritional state.

This best performance was reflected in the percentage of correct classification of

individuals to their age-feeding group, and in the speed of response to food deprivation

or recovery from fast.

3) The RNA/DNA ratio is more appropriate in detecting a nutritional deficiency in post-

flexion than in pre-flexion larvae.

4) Within the biochemical indices studied in post-flexion larvae subjected to a short-term

food deprivation and refeeding, the RNA/DNA and the LDH/DNA ratios are

considered particularly useful.

5) In post-flexion larvae subjected to 2 days of fast, the cell proliferation rate measured in

the muscle was significantly lower than in Fed larvae. This was not observed in the

brain, which is more conservative to the food withdrawal.

6) The comparison of morphometric, histological and biochemical indices shows that, in

pre-flexion larvae, the quantitative determination of muscle fibre separation is the

index that soonest detects the effect of food deprivation. For the same age-range, and

excluding the period of yolk and oil-globule dependence, the RNA/DNA yields the
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maximum correct discrimination percentage (100%). On the contrary, the maximum

correct classification of starved and delayed-feeding larvae is obtained through the use

of the MFS (83% and 44% respectively). In this study, the MFS was the condition

index that held the best correspondence with larval mortality.

7) The larval susceptibility to mortality at sea may be more related to those deficiencies

that involve organs or tissues that are of crucial importance for feeding behaviour,

escape response or maintenance of floatability, like the muscle. It is here proposed that

indices should be weighted in order to relate them with survival potential.

FIELD STUDIES

8) In November 1998, certain environmental characteristics were found to be positively

associated with nutritional condition of S.pilchardus, measured through histological

indices and RNA/DNA ratios. These areas can be characterised by an optimum

“environmental window” defined by temperature values under 19ºC, values of the

Brunt-Väissälä (B-V) water stability index under 0.8 cycles h-1 and values of potential

food abundance over 4.5 nauplii l-1 and 5.5 individuals l-1 of the rest of the

microzooplankton. The variables that best related to larval condition were the B-V

index and the amount of potential food. Moreover, the larval abundance was higher in

those areas. Therefore, it is considered that larval survival would be enhanced in these

areas.

9) In February 1999 the eggs and larval abundance was lower than in November 1998.

10) The larval long-term growth studied through otolith analyses suggests that growth was

enhanced in November 1998 with respect to February 1999. This result was confirmed

by the analysis of the muscle fibre growth patterns. Condition was also better in

November 1998.
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11) The measures of growth and condition showed a general coincident pattern. The

analysis of muscle growth patterns suggests that in pilchard larvae growth is

hypertrophic until 6-7 mm SL, becoming hyperplastic at least until 13.5 mm SL.

Within the histological measures studied, the MFS was the most informative. The

RNA/DNA appeared more useful in larvae over 8-10 mm SL.

12) The amount of larvae in the November 1998 and February 1999 cruises was

anomalously low for the time of the year. Hydrographic conditions during both cruises

were highly unusual, exhibiting high stratification in November and an inverted

salinity pattern in February. The presence of a mesoscale anticyclonic eddy of new

AW, that remained in the area from October 1998 to February 1999, is thought to

account for the unusual hydrographic conditions and the low numbers of eggs and

larvae in some areas.

13) Overall, the data on larval abundance, nutritional condition and environmental

characteristics suggest that the spawning season autumn 1998-winter 1999 was

characterised by a low larval production of this species. It is concluded, from the joint

interpretation of all data, that putative larval survival would be the result of a reduced

spawning and nutritional condition in some areas and periods, and a reduced growth in

the winter cruise.
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RESUMEN

1. INTRODUCCIÓN Y OBJETIVOS GENERALES

Las poblaciones de peces están sometidas a fuertes fluctuaciones en el número de

individuos que se incorporan al stock pescable, proceso que se conoce como reclutamiento.

La difícil predicción de estas fluctuaciones supone uno de los mayores problemas en la

gestión de las pesquerías (Koslow 1992). Dado que en muchas especies sólo un 0.01%

acaba reclutando al stock, mucha de la variabilidad observada se suele atribuir a las

pequeñas variaciones en la mortalidad de huevos y larvas.

También es sabido que los factores que afectan a la mortalidad en las primeras

fases del desarrollo son diversos e interactúan, probablemente, de forma solapada. En una

primera división, estos factores pueden clasificarse en bióticos (principalmente éxito

alimentario, depredación y enfermedad) y abióticos (hidrografía e hidrodinámica). Los

estudios sobre la importancia relativa de cada uno de ellos presenta un grado de dificultad

variable, ya sea en términos de la tecnología necesaria, el tiempo requerido o los costes

económicos que implican.

La comprensión de la relación entre procesos hidrodinámicos y supervivencia

larvaria requiere la utilización de modelos complejos (ej. Brickman y Frank 2000;

Hinrichsen et al. 2001), y el estudio in situ del efecto de la depredación es difícil (Bailey

1989). Por el contrario, el estudio del estado nutricional o “condición” (tras Shelbourne

1957) de las larvas, puede ser realizado sobre cada especimen y, como aproximación al

estado de crecimiento, goza todavía de gran popularidad en la estimación de la

susceptibilidad de muerte del individuo (Ferron y Leggett 1994; Theilacker 1996; Suthers

1998). Aunque la muerte directa por inanición cabe en lo posible, se observa raramente en

estudios de campo. Más probablemente, y de acuerdo con las hipótesis actuales, las larvas

en un estado nutricional deficiente experimentarán una mayor mortalidad debida a

predación, transporte desfavorable, etc. (Houde 1987; Leggett y Deblois 1994; Hare y

Cowen 1997).

Los trabajos sobre el uso de índices de estado nutricional en larvas de peces son

abundantes (Ferron y Leggett 1994; Suthers 1998). La mayoría de estos trabajos pueden
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incluírse en dos grupos principales: aquellos que estudian las propiedades del índice en

cuestión bajo condiciones controladas, y los que aplican índices existentes (previa

calibración en laboratorio o sin ella, en cuyo caso la utilidad aparece en términos relativos a

los grupos considerados) para estudiar la relación entre ambiente y condición e inferir así la

posible supervivencia de las larvas.

La presente tesis pretende contribuir al conocimiento de estas dos grandes divisiones

centrándose en los dos siguientes objetivos generales.

• Profundizar en el estudio de diversos índices de condición en una especie (lubina

Dicentrarchus labrax) que cría con facilidad en el laboratorio.

Para poder comparar las propiedades de cada índice de condición, es deseable estudiar

un gran número de ellos en individuos de historia ambiental conocida y similar. La mayoría

de estudios de laboratorio centran su esfuerzo sobre un sólo índice de condición, con

contadas excepciones (ej. Martin et al. 1985; Bisbal y Bengston 1995). La obtención de

resultados fiables implica un conocimiento de los parámetros de cría de las especies, de

forma que el efecto de los factores estudiados (ej: cantidad de comida) no varíen de forma

impredecible. Por esa razón, se eligió la lubina (Dicentrarchus labrax) para esta parte de la

tesis.

Los índices de condición se han dividido clásicamente con relación al nivel de

organización biológica que integran. Así, los índices pueden clasificarse atendiendo a un

nivel de organismo, tisular o celular. Estos índices operan a diferentes escalas temporales.

Típicamente, cuanto mayor es el nivel de organización, más tiempo tarda el índice en

reflejar un cambio ambiental para un determinado estado de desarrollo, especie, conjunto

de condiciones ambientales o estado nutricional específico en el momento de la captura. Tal

como concluyen Ferron y Leggett (1994), no existe un “índice único” óptimo, y

normalmente debe elegirse uno o la combinación de ellos que mejor responda al objetivo

concreto del estudio.

En la primera parte de esta tesis se abordó el estudio de índices en los tres niveles de

organización mencionados. Se estudiaron índices morfométricos (integran el nivel de

organismo), histológicos y bioquímicos (integran el nivel celular). Además, se describe de
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forma detallada el sistema de cultivo y se justifica la idoneidad del mismo para el ulterior

análisis de índices de condición. Teniendo en cuenta que los valores absolutos de los

índices son específicos para cada especie, la orientación de esta parte, experimental, se

dirigió hacia la comparación de las propiedades de los índices, la mejora de algunos de

ellos, el ensayo de métodos poco utilizados y la relación con la supervivencia en el

laboratorio. A continuación se ofrecen algunos datos sobre los índices estudiados.

Los índices morfométricos de condición se han utilizado desde antiguo (Shelbourne

1957; Theilacker 1978) y se basan en el estudio de la forma, o el cambio de forma, en

respuesta a la variación de alimento. La hipótesis común a estos índices es que, en

respuesta a un déficit alimenticio, algunas partes del cuerpo se modifican respecto a otras

menos sensibles a una deficiencia nutricional. Los principales problemas en la utilización

de índices morfométricos para detectar un deficiente estado nutricional estriban en los

efectos de la talla y de la alometría (tipo de crecimiento en el que una parte del cuerpo crece

de forma diferencial respecto a otra) sobre las variables corporales, cuestiones que a

menudo pueden confundir los efectos de la cantidad/calidad del alimento en la forma del

individuo. En estudios de campo, la edad de la larva suele ser desconocida y la

estandarización por talla es común. En la sección 2.2. de la tesis se aplica un método para la

eliminación del efecto de la talla, que incorpora la información sobre alometría.

Los índices histológicos consisten en el examen de células y órganos, y su

variación, en respuesta al tratamiento alimenticio. La gradación de los resultados obtenidos

sobre distintas variables histológicas permite extraer una gran información de cada

individuo. Otra ventaja de este tipo de índices es que el patrón de degradación, tisular o

celular, suele mantenerse entre especies y es poco dependiente de la talla (Ferron y Leggett

1994; Grioche 1998). Por el contrario, uno de los problemas que plantean es la difícil

objetivación de los métodos de valoración de las características de los tejidos o células, ya

que las medidas suelen basarse en apreciaciones cualitativas o semi-cuantitativas

(O’Connell 1980; Sieg 1992; McFadzen 1997). En la sección 2.3. se aborda este problema,

comparándose las ventajas e inconvenientes de las medidas cualitativas respecto a las

cuantitativas.

En cuanto a los índices que caracterizan el nivel de organización celular, o índices

bioquímicos, se caracterizan por tener bajos tiempos de respuesta respecto a los anteriores.
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Este tipo de medidas han tenido un enorme éxito (Ferron y Leggett 1994; Suthers 1998). Al

igual que la mayoría de los índices, se basan en establecer una relación entre variables

sensibles a la alimentación y aquellas menos sensibles. Uno de los índices más populares es

el cociente ARN/ADN (Buckley 1979; Bergeron 1997; Buckley et al. 1999). Se basa en la

asunción de que la cantidad de ARN celular es proporcional al crecimiento proteico. Ante

una alimentación inadecuada, el crecimiento y la cantidad de ARN se reduce mientras que

el ADN permanece relativamente inalterado. Esta medida se ha utilizado con éxito para

calcular crecimiento y condición (Buckley 1979; Westerman y Holt 1994; Clemmensen

1996).

Otro de los índices bioquímicos utilizados, aunque con menor frecuencia, se basa en

la actividad de ciertas enzimas metabólicas (Lowery et al. 1987; Yang and Somero 1993;

Mathers et al. 1993). Típicamente se estudia la actividad de la lactato deshidrogenasa

(LDH) y de la citrato sintetasa (CS). La LDH es el enzima terminal de la glicólisis

anaeróbica y transforma piruvato en lactato. Este enzima es abundante en el tejido

muscular, y su actividad se ve potenciada en condiciones anaeróbicas como las que se dan

en natación rápida para acometer presas. En varios estudios realizados en larvas de peces, la

actividad LDH se ha relacionado positivamente con la cantidad y calidad de alimento

(Clarke et al. 1992) y negativamente con la actividad natatoria en larvas debilitadas (Fiedler

et al. 1998). La actividad CS tiene lugar en el ciclo de Krebs y refleja la capacidad aeróbica

del tejido estudiado. Se ha observado que la actividad CS es menor en larvas en hambruna

respecto a larvas alimentadas (Mathers et al. 1993). La actividad de ambas enzimas suele

normalizarse por unidad de proteína. Una mayor actividad se equipara a una mayor

cantidad de enzima, en condiciones de saturación de sustrato.

Otro de los métodos, todavía más infrecuente en los análisis de condición, consiste

en el cálculo de las tasas de proliferación celular medidas por citometría de flujo. Se basa

en observaciones in vitro que muestran una parada en el ciclo de crecimiento celular en

ausencia de fuente de energía (Pardee 1989; Murray y Kirschner 1989). Los escasos

estudios donde se ha aplicado esta técnica al crecimiento larvario utilizaron tejido muscular

y cerebral (Theilacker y Shen 1993 a,b, Bromhead et al. 2000; Theilacker and Shen 2001),

sobre la base empírica de que las células de estos dos tejidos se dividen durante la mayor

parte del ciclo vital en los peces (Greer-Walker 1970; Bierse et al. 1980).
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• Explorar las relaciones entre factores ambientales, estado nutricional y crecimiento de

la sardina Sardina pilchardus (Walbaum 1792) en el Mar Catalán.

La sardina Sardina pilchardus es un clupeido que habita en el Atlántico noroccidental,

Mar Mediterráneo, Mar de Mármara y Mar Negro. En el Mediterráneo es más frecuente en

su parte Oeste y Adriático que en la parte Este (Whitehead 1984). Como la mayoría de los

clupeidos, se trata de una especie iterópara (una misma hembra desova de forma

intermitente a lo largo del período de puesta). La época reproductiva es estacional y, en el

Mediterráneo, tiene lugar entre octubre y mayo, con un pico en enero-febrero (Gómez-

Larrañeta 1960; Palomera y Rubíes 1979; Palomera y Olivar 1996). Es la especie pelágica

más abundante en el Mediterráneo nor-occidental (Martín 1991) y soporta la mayor

pesquería (en términos de biomasa) de la costa catalana. A pesar de su importancia

económica y del conocido declive del stock de adultos (Anónim 2000), los estudios sobre

las relaciones entre el ambiente y sus primeros estadíos de vida no están desarrollados en

esta zona.

La oceanografía del área es bien conocida (Salat y Cruzado 1981; Font et al. 1988;

López-Jurado et al. 1996; Millot 1999; Pinot et al. 2002; Salat et al. 2002). Se caracteriza

por una circulación ciclónica controlada por dos frentes de densidad permanentes: el frente

catalán plataforma-talud, y el frente balear. El primero separa las Aguas Atlánticas (AW)

antiguas del centro de la cuenca, más saladas, de las aguas de plataforma, menos saladas. El

frente balear separa las AW antiguas de la menos salina AW nueva, que se introduce en la

cuenca a través de los canales de las Baleares (Pinot 2002). La circulación está sujeta a

fuertes variaciones de mesoescala, que se han atribuído a la acción de remolinos de aguas

abiertas (Tintoré 1990; García et al. 1998). Han sido descritos algunos de los efectos de la

hidrografía sobre poblaciones de larvas de anchoa (en verano y primavera) y

marginalmente sobre sardina (Palomera 1992; Sabatés y Masó 1992; Sabatés y Olivar

1996; Salat 1996; Olivar y Sabatés 1997; Olivar et al. 1998), y se asocian al cambio de

posición del frente catalán plataforma-talud, la circulación anticiclónica en plataforma y el

efecto de advección superficial de aguas dulces en primavera.
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Los únicos trabajos llevados a cabo en larvas de sardina durante la época de puesta,

abordan sus patrones de distribución vertical y horizontal (Olivar et al. 2001). No existen

otros estudios sobre la ecología larvaria de sardina en la costa catalana durante la época de

puesta, ni sobre la relación de variables ambientales con su estado nutricional. En este

contexto, la segunda parte de la tesis ofrece una serie de elementos en respuesta a esta

problemática. En una primera aproximación (sección 3.1.) se estudian las distribuciones de

huevos y larvas con relación a diversas variables ambientales, en tres campañas efectuadas

en la época de puesta (noviembre 1998, febrero 1999, noviembre 1999). En una segunda

fase (sección 3.2.) se exploran las relaciones entre ambiente y estado nutricional, medido

con índices histológicos y bioquímicos. Además, se aplican análisis de crecimiento a largo

plazo, por medio de análisis de otolitos y determinación de la variación en el patrón de

crecimiento de fibras musculares (ver introducción).

2. ESTUDIOS DE LABORATORIO

2.1. Sistema de cría, crecimiento y supervivencia
La mayor parte de esta sección ha sido publicada en: “Olivar MP, Ambrosio PP, Catalán IA (2000)

A closed recirculation system for ecological studies in marine fish larvae: growth and survival of sea bass
larvae fed with live prey. Aquat Living Resour 13: 1-7.”

Esta sección describe la validez de un sistema de cultivo de circulación cerrada, a

pequeña escala, para el estudio de larvas de peces en respuesta a diferentes tratamientos

alimenticios. El sistema sirvió a la vez como incubadora y “hatchery”. Se estudió la

variación temporal de parámetros físico-químicos, la supervivencia y el crecimiento

longitudinal de larvas de lubina durante el primer mes de vida, prestándose especial

atención a la variación de compuestos nitrogenados. Los resultados que se presentan en este

capítulo corresponden sólo a los tres de mayor duración temporal: tratamiento Alimentado

(A), Hambruna (H) y Alimentación Retrasada (AR). El diseño del sistema permitió

mantener unos niveles de amonio, nitritos y nitratos por debajo de los valores considerados

perjudiciales para la supervivencia o la capacidad alimenticia de varias especies de peces

marinos.
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La mortalidad del tratamiento A fue prácticamente nula a partir del noveno día

después de la eclosión ( DDE). El tratamiento H indujo una mortalidad masiva tras 17 días

en ausencia de alimento. Las larvas del tratamiento AR, que permanecieron sin comida

hasta 13 DDE, sufrieron una mortalidad similar a la del tratamiento H hasta dia 13,

recuperándose hasta mortalidad cero cuatro días después. El crecimiento en longitud fue

similar entre los tratamientos alimenticios durante las dos primeras semanas de vida

larvaria, y fue descrito por una curva Gompertz con asíntota entre 5,3 y 5,7 mm de longitud

total (LT). En los tratamientos A y AR, se observó un segundo ciclo de crecimiento

Gompertz algún tiempo después del inicio de la alimentación. Las diferencias en el

crecimiento (en tasa puntual y en longitud total) entre los tratamientos A y AR fueron

especialmente evidentes durante la tercera semana de vida larvaria. Sin embargo, tras dos

semanas de alimentación continuada estas diferencias se redujeron. Los patrones de

crecimiento bajo el tratamiento A fueron similares a los descritos para sistemas de cría de

circulación abierta.

El presente estudio ofrece suficiente evidencia para afirmar que los tratamientos

alimenticios fueron los causantes de las diferencias observadas en el crecimiento y la

supervivencia de las larvas. Se considera que este sistema de cría puede ser de utilidad para

futuros ensayos de laboratorio.

2.2. Índices morfométricos

El primer objetivo de esta sección fue de generar datos morfométricos que

contuviesen sólo información sobre la forma de las larvas, eliminando el efecto de la talla

sobre la alometría sin despreciar la información sobre ésta. En segundo lugar, se quiso

averiguar qué variables morfométricas, de entre las medidas, ofrecen una mejor

discriminación entre grupos de larvas sometidas a los tratamientos alimenticios A, AR y H

anteriormente descritos.

La variación de cinco variables morfométricas con relación a la edad, confirma que

la forma de las larvas en estadio de pre-flexión cambia en el curso del desarrollo y a

diferentes velocidades, dependiendo, sobre todo, de la fuente de energía (interna o externa)

y del tiempo transcurrido desde el inicio de un tratamiento alimenticio. Esto es, sin
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embargo, escasamente evidente con relación a la talla. El método aplicado para la

eliminación del efecto de la talla normaliza las variables corporales de las larvas a una talla

común, incorporando el crecimiento alométrico de las variables corporales (Lleonart et al.

2000). De esta forma, los efectos de la falta de alimento pueden ser observados con menos

interferencias.

Se realizó un análisis multivariante de los datos (Análisis de Componentes

Principales y Análisis Discriminante) así normalizados. Las variables normalizadas que

más discriminaron fueron la longitud preanal, la altura del cuerpo a nivel del ano y la

longitud de la cabeza. El análisis multivariante mostró dos grupos de forma diferenciados:

Las larvas dependientes de las reservas vitelinas, y las larvas del tratamiento H que

llevaban más tiempo sin alimentarse (14-21 DDE). El mayor porcentaje de clasificación

correcta (la que adscribe un individuo a su grupo de edad-alimentación) se obtuvo para las

larvas de más edad (14-21 DDE) del grupo H. Entre el 76 y 62% de estas larvas

(dependiendo de la utilización de todas las larvas o de una submuestra sin reposición)

fueron clasificadas correctamente. Cuando el grupo de clasificación se amplió a todas las

larvas H, el porcentaje de las mismas (de entre 14-21 DDE) correctamente clasificado

osciló entre el 80.0 y el 69.2%. La medida que ofreció mayor correlación con la mortalidad

en las larvas H fue la resultante de calcular la primera variable canónica obtenida de un

análisis discriminante utilizando las anteriores 3 medidas normalizadas. En larvas con

fuerte crecimiento alométrico, este tipo de análisis puede ser de utilidad en análisis de

condición.

2.3. Índices histológicos
Una parte de esta sección ha sido publicada en: Catalán IA, Olivar MP (2002) Quantification of

muscle condition using digital image analysis in Dicentrarchus labrax larvae, and relationship with survival. J
Mar Biol Ass UK 82: 649-654.

Los objetivos específicos de esta sección fueron tres: a) el estudio de la variación de

diferentes tejidos en respuesta a diversos tratamientos alimenticios, que incluyeron los

tratamientos A, AR y H en larvas en estadio de pre-flexión, y un ayuno puntual y

realimentación durante varios días en larvas en estadio de post-flexión; b) comparación de

la degeneración tisular producida por los anteriores tratamientos mediante dos tipos de
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medidas histológicas: unas basadas en la gradación clásica de características celulares y

tisulares, y otras basadas en la cuantificación de ciertas características mediante análisis de

imagen; c) la exploración del grado de relación existente entre la supervivencia larvaria y

las diferentes medidas histológicas.

Los tejidos u órganos estudiados fueron músculo, hígado, páncreas, intestino

posterior y cartílago. De entre las glándulas asociadas al tubo digestivo, el hígado mostró

resultados más consistentes que el páncreas en la determinación de tratamientos

alimenticios. La gradación clásica del hígado (determinación de la cantidad potencial de

glicógeno, estado de condensación de los núcleos, estructuración del citoplasma) se mostró

más efectiva en la detección de larvas sometidas a un ayuno prolongado que la

determinación cuantitativa (diámetro máximo de los hepatocitos). Tanto el hígado como el

páncreas presentaron una gran dependencia del estado de desarrollo y exhibieron una alta

variabilidad intra-tratamiento.

De todos los índices analizados, la determinación cuantitativa del grado de

separación de las fibras musculares (SFM) fue el que, individualmente, adscribió

correctamente un mayor porcentaje de larvas a su correspondiente tratamiento alimenticio.

En larvas del tratamiento A, este índice no se correlacionó significativamente con talla ni

edad y, en las larvas del tratamiento H, sus valores experimentaron una brusca y

significativa variación coincidiendo con la mortalidad masiva de las larvas. Por todo lo

anterior, se considera que la determinación cuantitativa de la SFM es una contribución útil

a los métodos de detección de un deficiente estado nutricional en larvas de peces. Al

tratarse de un método cuantitativo, su uso reduce el sesgo atribuíble a las medidas

cualitativas y a diferencias en la experiencia del observador.

Finalmente, en esta sección se propone un esquema para ponderar los métodos

histológicos, extensible a otros métodos o a una combinación de ellos, para futuros estudios

de campo. Este esquema implica la atribución de más peso a las variables que muestren una

mayor relación con la posible supervivencia.
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2.4. Índices bioquímicos

El objetivo de esta sección fue analizar y comparar varios índices bioquímicos de

condición, a saber, el cociente ARN/ADN, el cociente proteína/ADN, la actividad lactato

deshidrogenasa (LDH) y citrato sintetasa (CS), en larvas de lubina con diverso estado de

desarrollo y sometidas a varios tratamientos alimenticios. Además, se estudió la utilidad de

la tasa de proliferación celular como medida de estado nutricional en larvas en estadio de

post-flexión sometidas a un ayuno puntual.

Las medidas de ácidos nucléicos, proteínas y actividad enzimática se obtuvieron

utilizando sólo tejido muscular, el más apropiado según la literatura revisada. Las tasas de

proliferación celular se midieron tanto en músculo como en cerebro. Dos importantes

eventos en el desarrollo larvario, la total absorción del saco vitelino y la flexión de la

notocorda, fueron los causantes de importantes variaciones en algunos índices bioquímicos,

con independencia del tratamiento alimenticio de las larvas.

En larvas en estadio de pre-flexión, se pudo estudiar únicamente el cociente

ARN/ADN. Éste sólo fue de utilidad para distinguir las larvas en hambruna cuando éstas

hubieron agotado las reservas de orígen materno. El valor de ARN/ADN asociado al inicio

de la mortalidad masiva en estas larvas (H) fue de 1,7 (± 0,62 desv.est.). Tras la flexión de

la notocorda, las medidas más útiles para discriminar un pobre estado nutricional fueron el

cociente ARN/ADN y la actividad LDH.

El tiempo de respuesta a la falta de comida y realimentación fue mayor en larvas en

estadio de pre-flexión que en larvas en estadio de post-flexión. Para estas últimas, el tiempo

necesario para la recuperación disminuyó de forma inversa al tiempo de ayuno.

De entre las dos actividades enzimáticas estudiadas, la de LDH describió mejor los

efectos de un ayuno puntual que la actividad CS. Esta observación ha sido confirmada para

otras especies. En larvas en estadio de post-flexión de D. labrax, la actividad LDH/ADN

podría ser un buen método para detectar un deficiente estado nutricional si se aplicase a

rangos de talla pequeños.

La tasa de proliferación celular medida en músculo, permitió diferenciar, para una

misma edad, larvas sometidas a un ayuno corto de aquellas otras alimentadas. En tejido

cerebral no se observaron diferencias significativas. Aunque se necesita mayor
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investigación en el aspecto metodológico de este índice, el uso de las tasas de proliferación

celular parece prometedor. En la discusión de esta sección se abordan los pros y contras de

una posible aplicación de estos índices en larvas recolectadas en el mar.

2.5. Comparación de índices y discusión

El objetivo de esta sección fue comparar los diferentes índices de condición durante

los dos tramos principales del experimento y de acuerdo a los tres niveles de organización

en los que se enmarcan la mayoría de estudios de la literatura: organismo, histológico y

celular. Los índices se compararon de acuerdo al tiempo de respuesta, la bondad de

clasificación, la relación con la supervivencia y los tiempos de procesado, costes y

requerimientos específicos. En aras de la simplicidad, en esta sección se eligieron sólo los

índices que mejor se comportaron dentro de cada categoría. Si bien en el primer tramo del

cultivo (larvas en estadio de pre-flexión, 6-21 DDE) se compararon los tres tipos de índices,

en el segundo (larvas en estadio de post-flexión, 22-28 DDE) sólo se utilizaron los

histológicos y bioquímicos.

Los criterios para la elección de cada medida se basaron en la independencia de la

edad, talla o estadío de desarrollo. Estas relaciones se exploraron en larvas sometidas al

tratamiento A que son las que, teóricamente, mejor podrían mostrar la dependencia de uno

o varios de los factores citados sin interferencia del regimen alimenticio.

Selección de índices

Todos los índices reflejaron el estado nutricional, aunque de forma diversa.

De entre las medidas morfométricas, se eligió la primera variable canónica

resultante de un análisis discriminante realizado sobre tres variables normalizadas ya

citadas con anterioridad (altura del cuerpo a nivel del ano, longitud preanal y longitud de la

cabeza). Se tomó esta variable porque no está correlacionada con la talla, mostró la mejor

correlación con la supervivencia y ofreció los mayores porcentajes de clasificación correcta

entre los grupos de edad-tratamiento alimenticio estudiados.
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Durante el primer tramo del cultivo en larvas alimentadas, el hígado, intestino y

páncreas sufrieron variaciones atribuíbles a la ontogénesis y no al tratamiento alimenticio.

Ni el músculo ni el cartílago experimentaron cambios apreciables respecto a la edad o la

talla. De todas las variables histológicas medidas en larvas A, la SFM fue la que presentó

menor variabilidad. En la segunda fase del experimento (larvas en estadio de post-flexión),

la variabilidad fue grande en todos los tejidos, incluso en las larvas alimentadas. En este

tramo, la SFM fue la única que permitió distinguir entre tratamientos. Por todo lo anterior,

se seleccionó la SFM como el mejor descriptor de una alimentación no óptima para los dos

tramos del experimento. Además de las ventajas anteriormente mencionadas, la SFM fue la

medida individual que clasificó correctamente el mayor porcentaje de larvas y que mejor se

correlacionó con la supervivencia.

Entre los índices bioquímicos, se seleccionó el ARN/ADN para el primer tramo del

experimento, ya que era la única medida disponible para ese período. Este cociente no se

correlacionó con la talla pero mostró una correlación negativa con la edad en el período 6-

10 DDE. El descenso en los valores del cociente en los primeros días de edad ha sido

observado por otros autores y es independiente del regimen alimenticio (Clemmensen

1987; Clemmensen y Doan 1996). El ARN/ADN sí sirvió para distinguir las larvas del

tratamiento A de las del tratamiento H a partir de 17 DDE. En larvas en estadio de post-

flexión, los resultados del ARN/ADN y LDH/ADN fueron similares excepto por la

pendiente de descenso ante 3 días de ayuno, que fue continuada para el ARN/ADN. En

consecuencia, se eligió también este cociente para comparar con los otros índices.

Tiempos de respuesta

Se compararon los tiempos de respuesta de los diferentes índices ante las

variaciones en los tratamientos alimenticios. El estudio de los tiempos de respuesta (ver

introducción) es útil para la interpretación ecológica de los índices de condición. Por

ejemplo, si se conoce que un determinado índice exhibe una dinámica de respuesta lenta

ante la adición de alimento, puede inferirse que ese individuo permanecerá en un estado

“subóptimo” durante más tiempo en el medio, lo cual permite suponer que tendrá más
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probabilidades de ser depredado, transportado hacia lugares menos favorables para la

alimentación etc.

En larvas preflexión, el índice morfométrico fue el menos sensible a las variaciones

de los tratamientos alimenticios. En general, el índice histológico mostró tiempos de

respuesta a la alimentación -o degradación ante la falta de ella-, superiores a los del

ARN/ADN. Dado que el tejido muscular fue el estudiado en esta comparación (incluso en

el índice morfométrico, la altura del paquete muscular fue una de las variables con más

peso), los resultados obtenidos son coherentes desde un punto de vista fisiológico, ya que la

cascada natural de acontecimientos ante una falta de alimento seguirá un orden creciente

molecular-histológico-morfométrico. En el experimento de ayuno y recuperación a corto

plazo, el índice histológico y el ARN/ADN mostraron unas propiedades similares, siendo

los tiempos de degradación y de recuperación, comparables. Estudios utilizando ARN/ADN

en otras especies muestran tiempos de respuesta a la falta de comida y tiempos de

recuperación tras un ayuno corto (2 dias) similares a los aquí obtenidos. Esta similaridad en

los tiempos de respuesta ante la falta de comida y una realimentación a corto plazo es

sorprendente, teniendo en cuenta la naturaleza de los dos índices comparados.

Propiedades de clasificación

En este apartado se eligieron grupos de la misma edad y se dividieron por tipo de

tratamiento alimenticio. Sólo se utilizaron las larvas de alimentación exógena. Mediante la

comparación del número de larvas adscritas correctamente a su grupo, se dio una medida de

cuán “útil” es cada índice para detectar un estado de alimentación deficiente. La máxima

discriminación del tratamiento A correspondió al ARN/ADN con un 100% de acierto. Por

el contrario, la máxima discriminación del tratamiento de inanición y recuperación lo

ofreció el índice de separación muscular, con un 83% y 44% respectivamente. Mientras que

la SFM se perfila como más adecuado para distinguir larvas en estado nutricional

intermedio, se interpreta que el RNA/DNA es más útil para la detección del crecimiento, y

no del estado nutricional.
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Relación con la supervivencia

El valor teórico de un índice nutricional es mayor cuanto mayor sea su directa

relación con la supervivencia. El caso extremo vendría dado por el establecimiento de un

“punto de no retorno” (PNR, Blaxter y Hempel 1963), o valor del índice tras el cual la

mortalidad fuera segura. Criterios tales como la existencia de tejidos necróticos suelen

utilizarse para determinar el PNR. Si no puede establecerse con certeza el PNR por existir

una alta tolerancia a la falta de alimento (caso del presente estudio), cabe considerar otros

aspectos: la relación entre el valor de un determinado índice y la posible supervivencia,

integrando estas especulaciones en las teorías generales de mortalidad por predación-

hambruna (revisadas por Leggett y Deblois 1994).

En este apartado, se comparó la variación de la curva de mortalidad de las larvas del

tratamiento H con relación a los valores de los diferentes índices a lo largo del tiempo.

Dado que la mortalidad masiva ocurrió el día 17, se asumió que un índice reflejaría la

mortalidad con más precisión cuanto mejor contemplase su variación este evento de

mortalidad masiva.

Las correlaciones no paramétricas entre mortalidad y cada uno de los tres índices

fueron significativas. Cuanta menor supervivencia, menor factor de forma, menor el

cociente ARN/ADN y mayor SFM. La figura 2.5.1. muestra que, aparte del inicial

decremento en todos los índices y la supervivencia durante los días 6-10 DDE, los tres

índices exhibieron los valores indicativos de mayor degradación a partir del dia 17 DDE.

En el mar, se supone que la mortalidad actúa preferentemente sobre las larvas que

crecen menos. En cultivo, el crecimiento debido al tratamiento alimenticio se detectó

alrededor de los 13 DDE. A los 14 DDE, sólo la separación de las fibras musculares reflejó

significativamente este crecimiento diferencial en las larvas del tratamiento A. Por tanto,

desde un punto de vista teórico, puede suponerse una mejor relación de este índice con las

probabilidades de supervivencia de las larvas, en comparación con los índices

morfométricos o bioquímicos analizados.
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Perspectivas para futuros estudios de campo.

Uno de los objetivos de esta serie de análisis fue la de extraer conclusiones de

carácter general a partir de la comparación de los índices, que pudiera ser de utilidad en un

marco que trascendiese el de la especie en estudio. Dada la diversidad de información que

proporciona cada índice y sus características diferenciadas en cuanto a tiempo de respuesta,

requerimientos, relación con la supervivencia etc., se conviene con otros autores que una

combinación de índices es siempre mejor solución que la utilización de uno sólo de ellos.

Consideraciones económicas y de tiempo requerido para los análisis, aconsejan la

utilización del ARN/ADN o de los índices morfométricos. Sin embargo, la cantidad de

información obtenida mediante los índices histológicos y su mejor comportamiento como

descriptor de supervivencia y estado nutricional, sugieren la utilización de estos últimos.

A tenor de la bibliografía sobre el tema, la cantidad de larvas que muestran un

estado fisiológico comprometido en el mar es bajo. Se ha argüído que la mortalidad

probablemente opera sobre larvas que tienen alguna desventaja en cuanto a capacidad

locomotora, de alimentación etc. Por tanto, es útil abordar el problema de la posible

mortalidad en el campo valorando el estado fisiológico de las larvas en una escala que

puede ser asimilada a una alta o baja probabilidad de morir por factores diversos

(predación, enfermedad, etc.). En estudios de campo, por problemas de tiempo y costes, es

frecuente utilizar un solo índice para el estudio de una población determinada. En los casos

en que se consideran varias variables (ej: varias medidas histológicas), no es infrecuente

que éstas se traten de forma similar para conseguir un valor promedio por larva. Por otra

parte, en estudios donde se utilizan análisis multivariantes, pocas veces se adscribe un peso

específico a cada variable concreta.

Para dar cuenta del hecho de que, en el campo, muchos fenómenos inciden en la

mortalidad larvaria, se considera adecuado dar diferente peso a los índices de condición, de

acuerdo a los conocimientos teóricos o experimentales de que se disponga. En esta tesis se

propone un modelo de ponderación en el que los índices que tengan mayor tiempo de

respuesta o se revelen (o supongan) particularmente importantes para la supervivencia, sean

los de más peso. Así, por ejemplo, el criterio de necrosis debería inmediatamente

diferenciar las larvas con una probabilidad máxima de muerte. Seguidamente, índices como
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la SFM deberían tener más peso que el estado del hígado o los índices bioquímicos. Esto es

así porque un tejido muscular degradado sugiere de forma evidente, y así se ha comprobado

en algunos estudios, una posible desventaja en términos de capacidad natatoria, lo que a su

vez está relacionado con una mayor probabilidad de muerte por predación (Hunter 1972;

Frank y Leggett 1982), aumentada por el mayor porcentaje de fracaso de captura de presas

(Laurence 1972). Además, un músculo degradado provoca pérdidas de flotabilidad, lo cual

conduce a posicionamientos en la columna de agua que pueden alejar a las larvas de los

patches óptimos de presas, temperatura, corrientes, etc. (Neilson et al. 1986; Sclafani et al.

1993, 1997, 2000). Por el contrario, los índices que son más sensibles a la alimentación

inmediata y que muestran un rápido tiempo de respuesta, caso de los índices bioquímicos

(ARN/ADN, enzimas metabólicas) podrían utilizarse para refinar este modelo en el

supuesto de que varias medidas pudieran obtenerse simultáneamente de un mismo

individuo (medidas morfométricas e histológicas, por ejemplo).

3. ESTUDIOS DE CAMPO

3.1. Primeros estadíos de Sardina pilchardus y anomalías ambientales en

el Mar Catalán
La mayor parte de esta sección ha sido publicada en: Olivar MP, Catalán IA, Emelianov M,

Fernández de Puelles ML (in press) Early stages of Sardina pilchardus and environmental anomalies in the
North-Western Mediterranean. Est Coast Shelf Sci.

En esta sección se investigó la influencia de las condiciones ambientales en los

patrones de distribución de los primeros estadíos de Sardina pilchardus en un área del Mar

Catalán, durante los meses de Noviembre de 1998, Febrero de 1999 y Noviembre de 1999.

Por regla general, los huevos fueron hallados en la plataforma continental mientras que las

larvas mostraron una distribución más amplia, ocupando buena parte de la plataforma. La

circulación local durante el otoño-invierno de 1998-1999 estuvo dominada por un remolino

anticiclónico de Agua Atlántica (AW) nueva, que permaneció estacionario en el centro del

Mar Catalán desde octubre de 1998 hasta el final de febrero de 1999. Esta situación es muy

infrecuente. La influencia de las aguas del remolino se extendió a la plataforma continental,

desviando la corriente del talud e incluso invirtiendo su dirección.



Resumen

260

En la tercera campaña de muestreo, realizada al comienzo de la época de puesta de

1999 (noviembre), la circulación y distribución de la masa de agua fue la habitual, con el

Agua Atlántica antigua ocupando toda la región. La abundancia de huevos y larvas de

sardina durante esta última campaña fue superior a la de las dos campañas anteriores. En

noviembre de 1998, la abundancia de huevos y larvas de sardina fue relativamente baja en

las zonas afectadas por Agua Atlántica nueva. El resultado más interesante de esta serie de

campañas fue la baja cantidad de huevos y larvas halladas en febrero de 1999,

probablemente debida a la situación anómala creada por el remolino.

3.2. Relaciones entre ambiente, crecimiento y estado nutricional de

Sardina pilchardus en el Mar Catalán

Esta sección tuvo como objetivo el establecer relaciones entre las características

ambientales observadas en dos de las campañas (noviembre de 1998 y febrero de 1999) y

su posible efecto sobre las larvas en términos de crecimiento y estado nutricional.

El estado nutricional se estudió mediante índices histológicos y el cociente

ARN/ADN. El crecimiento se estudió mediante análisis de otolitos (talla-edad y diámetro

máximo) y crecimiento de las fibras musculares (número de fibras internas y superficiales,

y diámetro de las fibras internas) respecto a la variación en talla.

En noviembre de 1998 la sardina estaba al principio del período de puesta, lo que

resultó evidente por el alto número de huevos y larvas de las primeras clases de edad. Se

pudieron caracterizar ciertas áreas donde el estado nutricional, de acuerdo a los dos tipos de

índices utilizados, fue particularmente favorable. Estas áreas pueden ser definidas por unos

rangos de valores, en algunas variables ambientales, que conformarían una “ventana

ambiental óptima” para la supervivencia larvaria. Este elenco de condiciones favorables

incluiría temperaturas superficiales menores de 19°C, bajos valores del índice de

estabilidad de la columna de agua (Brunt-Väissälä = 0.1-0.8 ciclos h-1) y concentraciones

de alimento potencial superiores a � 4.5 nauplii l-1 o a � 5.5 individuos l-1 del resto de

microzooplankton. Las zonas que caracterizaron un ambiente desfavorable, donde la puesta

fue reducida y el estado nutricional deficiente respecto al área anterior, se distinguieron por

temperaturas superiores a los 19.0 °C, mayores valores del índice de estabilidad de la
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columna de agua (Brunt-Väissälä = 0.81-1.8 ciclos h-1) y concentraciones de alimento

potencial menores a las anteriormente indicadas. La diferenciación de estas áreas coincide

con la atribuída a la influencia del remolino de AW nueva mencionado en el anterior

apartado.

En febrero de 1999 la puesta fue reducida, y la cantidad de larvas de más de 5 mm

(LS) o 6 días de edad escasa en relación a datos de otros trabajos para el mismo período

(Olivar et al. 2001). Las relaciones entre las variables ambientales y la condición fueron

débiles. Tan sólo la condición de las larvas mayores de 8 mm (deducida de los dos tipos de

índices utilizados) se correlacionó positivamente con la salinidad y la cantidad de

microzooplankton superior a los 45 �m. Las tasas de crecimiento de la población de larvas

fueron similares entre las áreas consideradas.

Las tasas de crecimiento muscular fueron significativamente más bajas en febrero

que en noviembre, observación que concuerda con los resultados obtenidos mediante los

análisis talla-edad a partir de otolitos. A su vez, los índices de estado nutricional muestran

una peor condición o crecimiento a corto plazo en febrero respecto a noviembre. La distinta

temperatura media superficial entre ambos meses (6ºC menor en febrero) podría explicar

las diferencias de crecimiento a largo plazo y los valores inferiores de ARN/ADN. No

obstante, no se descarta que la importante influencia de las aguas del remolino en el área de

estudio pudiera haber modificado la composición específica del alimento potencial,

afectando a las tasas de crecimiento y a los índices de estado nutricional. En cualquier caso,

hay suficiente evidencia para concluir que, en febrero, las condiciones ambientales

afectaron negativamente la producción larvaria y la posible supervivencia de la población,

probablemente por una combinación de efectos sobre la intensidad de puesta, crecimiento

reducido y deficiente estado nutricional.

Los resultados obtenidos sobre medidas de crecimiento tienen interés por varias

razones: aparte de que este tipo de datos son inexistentes para larvas de sardina en el área

de estudio, se ha aplicado por primera vez en esta especie un índice de crecimiento a largo

plazo basado en el reclutamiento de las fibras musculares. Los resultados se corresponden

bien con los obtenidos por análisis de otolitos. Ambas estimas de crecimiento sólo

permitieron obtener una idea general sobre el crecimiento poblacional de las larvas, el cual
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puede no estar ligado a las condiciones observadas en el momento. Es necesario por tanto,

para esta especie, profundizar en el estudio de estas medidas en respuesta a variaciones

ambientales como descriptores de crecimiento o estado nutricional a corto plazo. Para los

rangos de talla estudiados, los resultados de los otolitos sugieren, aunque no de forma

concluyente, que el crecimiento del otolito en sardina se produce incluso en casos de lento

crecimiento somático. Los análisis de fibras musculares apuntan a que el crecimiento

muscular en larvas de sardina es hipertrófico hasta los 6-7 mm LS, tornándose entonces

hiperplásico. El efecto de la temperatura en este tipo de crecimiento parece claro.

De entre las medidas histológicas de estado nutricional, el análisis de la separación

de las fibras musculares fue el más informativo, variando de forma máxima en noviembre

de 1998 para larvas recolectadas en zonas diferenciadas por la cantidad de alimento

potencial. La utilidad de este índice respecto a otras medidas histológicas está de acuerdo

con la literatura revisada y los resultados de la primera parte de la tesis.

El ARN/ADN se mostró efectivo para diferenciar larvas de las mismas zonas en

noviembre de 1998. No obstante, las diferencias entre áreas son más claras en individuos de

una cierta talla, mayores de 8-10 mm LS, lo que está de acuerdo con datos de otros autores.

Ambas medidas covariaron en sus patrones entre las dos campañas y entre dos áreas

diferenciadas en noviembre de 1998, lo que añade validez a la interpretación de los

resultados. Los resultados fueron menos claros en febrero. El porcentaje de larvas

sobrepasando el “PNR” (presencia de tejidos necróticos) fue bajo de acuerdo a los índices

histológicos, variando entre un 2 y un 7%. Los valores de ARN/ADN no tienen calibración

de laboratorio para esta especie con el protocolo utilizado, y se interpretaron sólo en

términos de comparación entre áreas o campañas.

De los estudios sobre estado nutricional se desprende que, si bien la mortalidad

debida únicamente a inanición es dudosa, la falta de alimento adecuado o en cantidad

suficiente en el momento de muestreo afectó a las poblaciones de larvas, pudiendo influir

decisivamente en el crecimiento y aumentando la probabilidad de muerte.
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CONCLUSIONES

ESTUDIOS DE LABORATORIO

1) Se ha comprobado la utilidad de los índices morfométricos para diferenciar la forma de

larvas sometidas a diferentes regímenes de alimentación. Esto se consigue utilizando

métodos multivariantes sobre variables en las que se elimina completamente el efecto

de la talla , a la vez que se conserva la información sobre la alometría.

2) Entre las variables histológicas estudiadas, la determinación cuantitativa del grado de

separación de las fibras musculares se demuestra el mejor método para detectar un

deficiente estado nutricional. Este mejor comportamiento se manifiesta tanto en los

porcentajes de correcta clasificación a grupos de alimento y edad, como en la rapidez

con que refleja el ayuno o la recuperación.

3) El cociente ARN/ADN es más apropiado para la detección de una alimentación

deficiente en larvas en estadio de post-flexión que en larvas en estadio de pre-flexión.

4) Entre los índices bioquímicos estudiados en larvas en estadio post-flexión, sometidas

a un ayuno y realimentación de corto plazo, el cociente ARN/ADN y la actividad

LDH/ADN se revelan como los indicadores más útiles.

5) En larvas en estadio de post-flexión sometidas a un ayuno puntual de 2 días, la tasa de

proliferación celular en músculo es significativamente menor que en larvas

alimentadas. En el cerebro no ocurre lo mismo al tratarse de un órgano más

conservativo ante la falta de alimento.

6) La comparación de los índices morfométricos, histológicos y bioquímicos estudiados,

muestra que en larvas en estadio de pre-flexión, el índice que más rápidamente detecta

el efecto de la inanición es la cuantificación de la separación de fibras musculares.

Para un mismo rango de edades, excluyendo el período de dependencia de reservas de
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orígen materno, la máxima discriminación del tratamiento alimentado corresponde al

ARN/ADN, con un 100%. Por el contrario, la máxima discriminación del tratamiento

de inanición y recuperación lo ofrece el índice de separación muscular, con un 83% y

44% respectivamente. En este estudio, el grado de separación de las fibras musculares

determinado de forma cuantitativa es el índice de condición que tiene una mejor

correspondencia con la mortalidad larvaria.

7) La posible vulnerabilidad en el mar puede estar más relacionada con aquellas

deficiencias que impliquen órganos o tejidos cruciales para el comportamiento

alimentario, de huída o del mantenimiento de la flotablidad, como es el caso del

músculo. Se propone un método de ponderación de índices para estudiar la condición

de las larvas y relacionarlo con su viabilidad potencial.

ESTUDIOS DE CAMPO

8) En noviembre de 1998, las larvas analizadas en ciertas áreas mostraron una mejor

condición nutricional, reflejada en un mayor valor de los grados histológicos y del

cociente ARN/ADN. Estas zonas se caracterizaron por una “ventana ambiental”

definida por temperaturas inferiores a los 19ºC, valores del índice de Brunt Väissälä

inferiores a 0.8 ciclos h-1 y una abundancia de alimento potencial superior a los 4.5

nauplii l-1 y 5.5 individuos l-1 del resto de microzooplankton. Las variables que mejor

se relacionaron con la condición larvaria fueron la cantidad de alimento potencial y el

índice de estabilidad de la columna de agua. Además, estas áreas coinciden con una

mayor cantidad de larvas. Se considera, pues, que en estas zonas la probabilidad de

supervivencia larvaria sería mayor.

9) En febrero de 1999, la cantidad de huevos y larvas fue inferior a la de noviembre de

1998.

10) Los estudios de crecimiento larvario a largo plazo mediante análisis de otolitos

sugieren que el crecimiento fue mayor en noviembre de 1998 que en febrero de 1999.
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Este resultado fue confirmado por los análisis de reclutamiento de fibras musculares.

La condición también fue mayor en noviembre, aunque en este caso los datos de

campo de Febrero fueron menos concluyentes.

11) Las medidas de crecimiento y condición utilizadas, muestran un patrón general

coincidente. El análisis del crecimiento muscular en larvas de sardina sugiere que éste

es hipertrófico hasta los 6-7 mm, tornándose después hiperplásico hasta como mínimo

los 13.5 mm LS. De entre las medidas histológicas utilizadas, la determinación de la

separación muscular fue la más informativa. El ARN/ADN es de mayor utilidad en

larvas mayores de 8-10 mm LS.

12) La cantidad de larvas en las campañas de noviembre de 1998 y febrero de 1999 fue

anormalmente baja para esas épocas. Las condiciones hidrográficas durante las dos

campañas fueron anómalas para esos períodos, presentando elevados grados de

estratificación en noviembre y un patrón de salinidad invertido en febrero. La presencia

de un remolino anticiclónico de mesoescala constituído por AW nueva, que persistió

durante los meses de octubre de 1998 a febrero 1999, se perfila como probable

causante de las anomalías hidrográficas observadas y las bajas cantidades de huevos y

larvas en ciertas zonas.

13) En conjunto, los datos sobre cantidades de larvas, condición nutricional y diferencias

ambientales, sugieren que la estación reproductiva otoño de 1998 - invierno de 1999

fue de una baja producción larvaria para esta especie. Se infiere, de la interpretación

conjunta de los datos, que la posible supervivencia larvaria será una suma de una

puesta reducida, un estado nutricional deficiente en ciertas áreas y períodos y un

crecimiento menor durante el muestreo de invierno.


