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Study site

The Breitenbach is an unpolluted first-order stream in Hesse (West Germany), 100 km
north-east of Frankfurt (51°N) which rises about 350 m a.s.l. in woodland (see Fig. 7 in chapter
1). The stream is 4.2 Km long and flows into the river Fulda. The streambed surface area is
3173 m°. The mid to lower reaches (studied here) flow predominantly through grassland with
short shadier reaches flanked by alder (Alnus glutinosa), willow (Salix) and hazel (Corylus
avellana) (Cox, 1990a). The stream catchment is forested by Fagus sylvatica and Pinus
sylvestris. The catchment geology is dominated by bunter sandstone resulting in low ion
concentration in stream water (conductivity 140-190 uS cm™, Ca®* 16-18 mg L™, Mg®* 2-5 mg
L") (Marxsen et al. 1997). Mean discharge was 26 L s”. The average pH of the stream was
7.1 with low levels of dissolved nutrients (SRP 20-45 ug L™, NO,-N 600-1300 pg L") (Marxsen
et al. 1997).

Study site in the Breitenbach.
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Ectoenzymatic activities in epilithic biofilms of the

Breitenbach

Abstract

The activity of the extracellular enzymes B-glucosidase, B-xylosidase, phosphatase, and
aminopeptidase were measured on the epilithic biofiims of the Breitenbach. Vmax values for
the four enzymes were higher in the open, higher water velocity site (A), than in the open, low
water velocity site (B) and the forested site (C). The higher algal biomass accumulated at site
A might provide a higher substrate availability enhancing the hydrolytic capacity of the
heterotrophs. At site C the high polysaccharide degradation capacity might result from the
important input of leaf fall during the study period (October-November 1995). On average,
turnover times of substrate hydrolysis (Tt) for the four enzymes were from highest to lowest: 80
hours (B-xylosidase), 19 hours (phosphatase), 17 hours (B-glucosidase) and 5 hours
(aminopeptidase) expressing the slow recycling of hemicellulosic compounds in contrast to the
fast utilization of proteinaceous compounds. The Tt for the phosphatase activity was higher
than that measured for Mediterranean streams.

Introduction

High extracellular enzymatic activity and bacterial biomass were found in sediments of
the Breitenbach (Marxsen 1988, Marxsen and Witzel 1990, Marxsen and Fiebig 1993), since it
is an important habitat for organic matter processing. However, in some stretches the
streambed of the Breitenbach is covered with small stones. Extracellular enzymatic activity
may also occur on the stones also contributing to the degradation of the organic matter of the
stream. This study focus on the epilithic ectoenzymatic activities of the Breitenbach.

Several environmental parameters affect the biomass accrual and activity of epilithic
stream biofilms. Variations in the water velocity can influence biomass accumulation as well as
nutrient uptake rate by the epilithic organisms especially in oligotrophic streams (Horner and
Welch 1981, Stevenson 1984). Epilithic biomass and growth could also be influenced by light
availability (Hill 1996), which would determine the availability of autochthonous organic matter
for the ‘heterotrophs. The input of allochthonous organic matter in low-order forest streams
varies with the season becoming maximum during the leaf fall period (McDowell and Fisher
1976).

The objective of this study was to analyse the hydrolytic capacity of the epilithic
community in this small unpolluted central European stream. To cover the different habitats
found in this stream, and the possible diversity in organic matter input, three different sites,
which differ in light, current velocity and aliochthonous input, were investigated. The study
period (autumn) involved a great input of leaves, especially at the forest site.

The extracellular enzymes B-glucosidase, B-xylosidase, leucine-aminopeptidase, and
phosphatase which are involved respectively in the degradation of polysaccharides, proteins
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and organic phosphorus compounds were measured during autumn 1995. Vmax (maximal
velocity of the enzyme), Km' (apparent Michaelis constant) and Tt (tumover time of substrate
hydrolysis) were obtained for each enzyme by the kinetic approach (chapter §). The epilithic
community was studied by the use of artificial substrates (clay tiles, Sabater and Romani

1996).
Materials and Methods

Sampling

Epilithic biofim samples from the Breitenbach at its mid reach were collected in
October 1995. Artificial substrates (clay tiles, 0.64 cm?’ surface area, 1 cm high), which were
glued on stream boulders and placed in the streambed six-to-eight weeks before sampling
(chapter 3.1), were collected as epilithic biofilm samples. Three sites (A, B and C) located in
the same stream stretch (Fig.1) which differ in water velocity (Schiltknecht currentmeter, Table
1) and light availability were considered.

fulda

0,5 km

W

Fig. 1. Map of the Breitenbach and the sampling sites.
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Site A was open and with a mean water velocity of 0.219 m s (Table 1). Site B was
also open but water velocity was the lowest (Table 1). Site C was covered by riparian canopy;
current velocity was between that of site A and B but highly variable (Table 1). The experiment
was carried out in autumn 1995 and therefore there was a considerable input of ieaves to the
streambed. Tiles from the three sampling sites were collected for enzymatic activity,
chlorophyll-a analysis and bacterial counting. All activity measurements were performed 15-30

minutes after sampling.

TABLE 1. Current velocity and canopy of the Breitenbach at
each sample site. Current values are means and standard
deviations (in brackets) (n=10).

Site Current (ms™) Canopy
A - 0.219 (0.055) . open
B 0.125 (0.035) open
C 0.191 (0.091) forested
Enzyme assays

Enzymatic activities were determined using MUF (4-methyl-umbelliferyl)-substrate
analogues (from Sigma) for the measurement of PB-glucosidase, B-xylosidase, and
phosphatase, and Leucine-MCA (L-leucine-4-methyl-coumarinyl-7-amide from Calbiochem) for
the measurement of leucine-aminopeptidase. Tiles were incubated in a shaking bath at natural
stream temperature (8°C) in the dark for two hours. For each enzyme determination, 4 mi of
fluorogenic substrate at 0.01, 0.025, 0.05, 0.1, 0.2, 0.3, 0.5 mM concentration was added to
each tile. A longer incubation period (2 h) and higher volume of incubated MUF-substrate
solution (4 ml) were used here than for the Mediterranean streams, since a lower activity level
was suspected in these biofims from such a small, oligotrophic, central European stream.
Four replicates and one blank were considered for each concentration and each site. Filtered
sterilized stream water (0.2 um, Sartorius) was used for dilutions of fluorogenic substrates.
Reaction was stopped by adding 1 ml of 0.05 glycine buffer pH 10.5 to each tube. The
fluorescent product (MUF or MCA) released by enzyme activity was measured using a Kontron
SFM25 spectrofluorometer at 455 nm emission under 365 nm excitation. Quantification was
achieved by calibrating the spectrofluorometer with a standard alkaline solution of MUF or
AMC. Enzymatic kinetic parameters, Vmax (maximal reaction velocity) and Km (apparent
Michaelis constant), were calculated by non-linear regression analysis using the Enzfitter
program for the PC, version 1.05 (Leatherbarrow 1987). The turnover time (Km/Vmax ratio)
was also calculated after transformation of the parameters to the same units.
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Algal biomass, bacterial density, and SEM observations

Chlorophyll-a was extracted from the tiles (10 replicates for each site) following the
procedures described in chapter 2. Absorbance was measured in a Kontron
spectrophotometer (Uvikon 810). The ratio of chlorophyll to carotenoids and/or chiorophyll
degradation products (OD430/0D665 ratio, Margalef 1983) was also calculated. The algal
composition was determined under optical microscope after sonication of the tiles (120 sec).

Tiles for bacterial counting were preserved in 2% formalin until the enumeration assay.
Bacterial enumeration was achieved by direct counting of each tile (5 replicates for each site)
following the procedures described in chapter 2. Samples were counted on a fluorescence
microscope (Polyvar) under 1250 magnification. Samples for SEM observations were fixed
with 2.5% gluteraldehyde in phosphate buffer pH 7.5 and stored in the dark until observations
were made. Sample preparation for the SEM is also described in chapter 2.

The possible differences in chlorophyll-a and bacterial cell density between the three
- sampling sites were analysed using an analysis of variance (ANOVA).

Results

Mainly diatoms of the genera Navicula, Achnanthes, Gomphonema, Cymbella and
Diatoma composed the algal community of the epilithic biofilms growing on the artificial clay
tiles in the Breitenbach (Fig. 2). The epilithic bacteria were diverse in their morphologies (Fig.
3). 80-85% of the bacterial cells were small cocci and coccobacilli (0.4-1.2 um diameter), 9-
13% were rod-shaped bacteria (2-3 um length) and 1.5-4% were filaments (4-8 um length).
Filamentous cyanobacteria were also observed under the fluorescence microscope.

Chlorophyll-a density was significantly higher for the epilithic biofilms from site A than
from sites B and C (ANOVA, p<0.00001, Fig. 4a), being not significantly different between sites
B and C (ANOVA, p=0.62). The OD430/0OD665 ratio was around 2 for the three sites (Fig. 4a).

Bacterial density was on average 6.5 10" cell cm? (Fig. 4b) and no significant
differences were found between the three sampling sites (ANOVA, p=0.27).

B-glucosidase activity was similar at sites A and C but a higher affinity for the substrate
(lower Km) was observed at site C (Fig. 5a). At site B, the lowest Km (highest affinity for the
substrate) and lowest Vmax were measured for B-glucosidase. The tumover time of substrate
hydrolysis was 17.4 hours on average being highest at site A (32.1 h, Fig. 6).

For the B-xylosidase activity, the highest Vmax and Km values were measured at site
A. The values at sites B and C were lower and similar to each other (Fig. 5b). The Tt was 79.9
hours on average being higher at sites A (116.3 h) and C (80.72 h) than at site B (Fig.6). Tt for
this enzyme was the highest (the slowest in recycling).
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Fig. 2. SEM photographs of the colonized ceramic tiles in the Breitenbach. a) Diatom cells
(Diatoma, Achnanthes) and bacteria which composed the epilithic biofilm, b) Some areas of the
tiles were totally covered by bacteria cells, c) General view of bacterial and algal community.
Pennate diatoms (genera Cymbella, Gomphonema, Navicula, Achnanthes) were the majority
of the diatoms observed, d) and e) The diatoms were covered with filaments and mucilagenous
material, f) Approach to the bacterial community.
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Fig. 3. Fluorescence microscope photograph of a DAPI stained bacterial preparation from the
Breitenbach epilithic biofilm (growing on tiles). A great diversity in shapes of the rod-shaped
bacteria can be observed.

Phosphatase activity showed the highest values of Vmax and Km at site A, decreasing
to sites B and C (Fig. 5¢). The Tt was similar at the three sites (mean= 19.3 hours, Fig. 6) and
slightly higher (slower recycling) than the mean Tt for the B-glucosidase activity.

Leucine-aminopeptidase activity (Fig. 5d) was higher at site A than B or C, the Km
being similar at the three sites. The Tt for this enzyme was the lowest (mean= 4.9 hours, Fig.

6) and similar at the three sites.

Discussion

The algal flora which grew on the artificial substrates, and the chlorophyll-a density
accumulated, were similar to those observed on natural stones of the Breitenbach (Cox 1990a
and b). The bacterial density on the epilithic biofims was also similar to values obtained from
this stream (Freeman et al. 1993). Therefore, the clay tiles were shown to be reliable for
allowing the colonization of the epilithic biofilm in the Breitenbach.

The epilithic ectoenzymes in the Breitenbach were similar to values reported from
epilithic biofilms in low-order streams (Chapell and Goulder 1994a and 1994b) but slightly

higher than those obtained from dark grown biofilms (Freeman et al. 1993).
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Fig. 4. Aigal biomass and bacterial density on the epilithic biofilms of the Breitenbach growing
at sites A, B and C (described in the text and in Fig. 1). a) Chlorophyli-a density and the
OD430/0D665 ratio, b) Bacterial cell density. Means + standard errors (vertical lines) are
shown (n=10in a, n=5in b).

The three habitats (sites A, B, C) under consideration differ in their epilithic
ectoenzymatic activities (Fig. 5) indicating that there are differences in organic matter input.
The specific microenvironment found at each site could be reponsible for such differences in
heterotrophic metabolism. The higher water velocity as well as the lack of riparian vegetation
(high incident light) at site A could provide favourable conditions for growing algae at this site
(higher chiorophyii-a density, Fig 4a) in contrast to sites B and C, enhancing the ectoenzymatic
activities at site A (Fig. 5). Although less biomass accumulation has been observed as a result
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of shear stress (Lau and Liu 1993), water velocity may increase growth by increasing the
transport of nutrient from the stream water to the biofilm, through biotic and abiotic uptake
processes (Whitford and Schumacher 1961, Pfeifer and McDiffett 1975, Lock and John 1979),
which could be important for biofilms living at low nutrient concentrations (Horer and Welch
1981). The positive effect of light on growing algae has been described eisewhere (Sumner
and Fischer 1979, Hill 1996), especially for those sites where light may be limiting the primary
production (Guasch and Sabater 1994). The higher autochthonous organic matter input at site
A might provide the heterotrophs with “high quality” organic matter (Haack and McFeters
1982b, Kaplan and Bott 1989) such as polymeric substrates for ectoenzyme hydrolysis (Jones
and Lock 1993). An increase in polysaccharidic ectoenzymatic activities along with chlorophyll-
a and photosynthetic activity has been observed in epilithic biofilms (chapter 8).

Vmax
a p-glucosidase 28 Km b  p-xylosidase

Vmax (nmol MUF em?h)
Km (mM)

C  phosphatase d Leu-aminopeptidase

8
]

8

i
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Vmax (nmol AMC cm® h™")
8

Fig. 5. Ectoenzymatic activities on the epilithic biofilms of the Breitenbach growing at sites A, B
and C. Vmax (left bars) and Km (right, thinner bars) are shown. Values are means + standard
errors (vertical lines). a) p-glucosidase activity, b) B-xylosidase activity, c) Phosphatase
activity, d) Leucine-aminopeptidase activity.
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Aminopeptidase activity might be also enhanced by the release of proteinaceous substances
by algal cells (Hoch et al. 1996). Degradation of senescent algal cells can also be a source of
proteinaceous compounds (Jorgensen 1987) as has been observed in the photic zone of a
lake during phytoplankton bloom and breakdown (Halemejko and Chrést 1986, Middelboe et
al. 1995), and in sea water (Hollibaugh and Azam 1983). The higher phosphatase activity at
site A may also be affected by the contribution of algal phosphatases (Jansson et al. 1988).
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Fig. 6. Tumover time of substrate hydrolysis for the four enzymes analysed on the epilithic
biofilms of the Breitenbach growing at sites A, B and C.

The lower ectoenzymatic activities at site B (open, low current) in comparison to site A
might be a result of having a lower algal biomass (Fig. 4a). As explained above, the lower
current velocity in such an oligotrophic stream could affect the algal growth, however, the lower
chiorophyll-a density at site B could be further affected by macroinvertebrate grazing which
was observed only on the tiles at site B and could diminish algal biomass (Hart 1992, Wellnitz
et al. 1996). At this site a similar organic matter source to be used by the heterotrophs than at
site A is suggested, since a similar value for the B-xylosidase:-glucosidase ratio was obtained
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(Table 2). However, the lower polysaccharide degradation capacity (Table 2) and lower Km
values (higher affinity) expressed the lower amount of autochthonous input.

TABLE 2. Polysaccharide degradation capacity (B-glucosidase plus B-xylosidase Vmax) and
-xylosidase:B-glucosidase ratio in the three sample sites of the Breitenbach.

Polysaccharide degradation capacity B-xylosidase:p-glucosidase

(nmol MUF cm h™) ratio
Site A 19.64 0.599
Site B 8.07 0.559
Site C 16.48 0.196

In contrast, at site C (forested) the lower ectoenzymatic activities (Fig. 5) might be a
result of the low incident light due to the canopy cover which caused lower chlorophyll-a
density (Fig. 4a) and therefore lower autochthonous input. However, p-glucosidase activity at
site C was as high as at site A (Fig. 5a). Although a lower algal biomass was accumulated at
site C, the utilization of organic compounds from the leaves accumulated on the streambed is
suggested since the collecting of the epilithic biofilm samples was made just after the leaf fall.
The higher p-glucosidase activity at site C could be a result of the use of leaf leachates (e.g.
polysaccharides) (Sinsabaugh and Linkins 1988) which are released as water-soluble
compounds during the initial stages of leaf decay (Lock and Hynes 1976, Bouiton and Boon
1991). The lower Km (higher affinity) for the p-glucosidase at site C than at site A could
indicate that the input of substrates for this enzymatic activity is a pulse source at site C but a
constant source at site A (algal material). The polysaccharide degradation capacity at sites A
" and C was similar (Table 2) but the difference in the p-xylosidase:p-glucosidase ratio (Table 2)
indicates the use of a different organic matter source. Further experiments should be planned
at the forested site during other periods of the year.

Tumover time of substrate hydrolysis was on average 80:19:17:5 hours for B-
xylbsidase:phosphatase:ﬁ-glucosidase:aminopeptidase (Fig. 6) indicating slower recycling for
the polysaccharides than for the proteinaceous compounds. Values for the three sites were
similar except for the higher Tt (slower recycling) for B-glucosidase at site A and for p-
xylosidase at sites A and C which might result frbm a greater availability of substrates for these
enzymes at these sites. These average turnover times were similar to those measured for the
epilithic biofiims in Riera Major stream (chapter 5) but significantly higher for the phosphatase
activity in the Breitenbach. The slower recycling of organic phosphorus materials in contrast to
the fast recycling of the proteinaceous materials (low Tt) could indicate that nitrogen is a more
limiting compound than phosphorus for the heterotrophs living in the Breitenbach stream -
biofilms.
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8.1. Metabolic changes associated with biofilm formation in an
undisturbed Mediterranean stream

Abstract

Respiratory activity (ETS), ectoenzymatic activity (B-glucosidase and p-xylosidase) and
photosynthetic activity (H'*CO, incorporation) in the biofilm were measured in a shaded stream
during a colonization sequence (43 days) on artificial substrates (unglazed clay tiles) and
compared with older (aged) tiles. In the first five days bacterial densities and ectoenzyme
activities showed a sharp increase. After two weeks, algal density, chlorophyll-a and productivity
increased moderately. Chiorophyil-a did not reach similar values to those of the aged biofilms
until the last day of colonization. Photosynthetic activity seemed to be relevant to the
heterotrophs metabolism during substrate colonization, as could be deduced from the significant
correlation between pB-glucosidase and H'“CO, incorporation, algal cell densities, and
chlorophyll-a. Respiratory activity (ETS) decreased in the older biofims, accordingly to their
higher algal and bacterial density. Younger biofims (up to 8 days old) showed higher ETS
activity per cell, indicating a fast response of microorganisms to substrate availability.

Introduction

Some of the biofilm properties (polysaccharide matrix development, organic matter
retention, ion-exchange mechanisms, nutrient diffusion) can change depending on its type or
age. It has been shown that the biomass accrual related to biofilm age affects photosynthesis
(Boston and Hill 1990, Guasch et al. 1995), as well as gas and nutrient diffusion (Mulholiand et
al. 1991) that occurs inside the biofilm. Other studies have highlighted that river biofilms appear
remarkably resilient to organic matter depletion from the overlying waters, in part because of the
function of carbon reserve of the polysaccharide matrix (Freeman and Lock 1995). Colonization
of biofilm can be described as a process of several overlapping stages (Stock and Ward 1989)
resulting from the progressive response of the organisms to imposing physical factors (light,
temperature, water current) and nutrient availability. The evolution of biofiim metabolism have
been monitored throughout the colonization of a bare substrate to determine whether a simple
biofilm has a differential metabolism than another older, more complex biofilm. This study has
been conducted in an oligotrophic, undisturbed stream during a period of low light availability
(Guasch and Sabater 1994) to highlight the possible role of the primary producers in such an
unfavourable situation for the algae. The main objective was to show that a progressive ageing
and complexity of the biofilm would result in the respective metabolic variations in algae and

bacteria.
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Materials and methods

Study site

The experiment was carried out in Riera Major, an undisturbed second-order
Mediterranean forest stream (chapter 3). The physical and chemical characteristics during the
period of study (13 June to 26 July 1994) are summarized in Table 1. Light irradiance reaching
the river bottom was very low, on the average ca. 20 umol photons m* s. Very little
precipitation was recorded over the sampling period, as is usual in Mediterranean streams
during summer (Sabater et al. 1995). In this period water flow reached its minimum (12 L s-1

during mid July 1994).

TABLE 1. Physical and chemical characteristics of Riera Major stream

duﬁglme study period.
Mean (n=11) SD

Temperature (°C) 14.04 1.26
Incident light (umol m* sec™) 21.83 13.73
pH 8.01 0.20
Alkalinity (meq I'') 2.23 0.09
Conductivity (uS cm™) 224.25 17.07
Oxygen (mg ") 8.81 0.85
DOC (mg ') 0.77 0.65
Nitrate (ug I'') 276.6 50.65
Ammonia (ug I'") 10.78 448
SRP (ug ") 7.44 425
Sample collection

Small, unglazed clay tiles (0.64 cm? of surface area and 1cm height) were glued using
colouriess silicone onto flat surfaces of natural boulders, and immersed in a stream riffle stretch
to allow colonization. Tiles were randomly collected at 0, 1,2, 3, 4,7, 9, 14, 21, 30 and 43 days
of colonization. Tiles were gently rinsed of coarse debris and placed in sterile glass tubes with
stream water and maintained cold (on ice), in the dark, during transport. Tiles for bacterial
counts were fixed with 2% formalin. Samples for SEM observations were fixed with 2.5%
glutaraldehyde in phosphate buffer pH 7.5 and stored in the dark until SEM observations. Cell
densities (bacteria and algae), enzymatic and respiratory activities, and primary production and
chlorophyll-a were measured on the colonizing tiles. The same measurements (except cell
densities) were also performed using six to twelve week old tiles located at the same site. From
previous tests, it was established that six weeks was the minimum time to allow the development
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of an aged community in Riera Major, i.e. one that strongly resembled the natural ones in
species density and community structure.

Light was measured with a LiCor underwater cell immediately above the colonizing
surfaces. Water temperature, pH, alkalinity, conductivity and dissolved oxygen were also
measured at each sampling date. Water dissolved inorganic carbon (DIC) was calculated from
~ measures of alkalinity, temperature, pH and conductivity using the computer program WATEQX
(Van Gaans 1989). Water was filtered with precombusted Whatman GF/F filters to analyse
dissolved inorganic nutrients (nitrate, ammonia and soluble reactive phosphorus), as well as
DOC. Three replicates were performed for each analysis following the procedures described in
chapter 2. '

Bacterial density, algal biomass, and SEM observations

Bacterial densities (DAP! stain, epiﬂuoreécence microscopy) and algal densities
(inverted microscope) were estimated in friplicate. Chiorophyli-a was measured separately in
triplicate. SEM was used to follow the colonization sequence on the tiles. All measurements
were determined following the procedures described in chapter 2.

Metabolism measurements

Extracellular B-D-glucosidase and B-D-xylosidase potential activities were determined in
tiles (3 replicates) and one formaldehyde-killed control. Two blanks of filter-sterilized stream
water were also incubated for each enzyme. The Electron Transport System (ETS) activity was
measured using three replicate tiles and one killed-control tile. ETS activity was also expressed
in a cell basis by summing bacteria and algal cells (chapter 2.2). Primary production was
measured using three replicate tiles, one killed-control tile and one dark-incubated tile. All
measurements were determined following the procedures described in chapter 2. Even though
ambient light was below saturation, the saturated light conditions (150 pmol photons m?s™) was
used for the '*C incorporation assay since this is sometimes experienced by the summer algal
communities in Riera Major, since sunflecks through the forest canopy (Guasch and Sabater
1995) provide pulsing light energy.

Data analyses
Significant differences between the colonization and the aged tiles were analyzed through a

one-way analysis of variance (ANOVA). Correlation analysis of the colonization and
environmental data set was performed using product-moment Pearson coefficient.

Results
Bacteria were the earliest colonizers of the bare tiles (Fig. 1a, b, and ¢). Bacteria showed a

first phase of rapid occupation (up to day 5), followed by a slower increase, although cell
densities continued to rise (Fig. 2a). No clear succession of bacterial forms was apparent during
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the colonization period. Rod-shaped and small coccoid bacteria constituted the characteristic
population throughout. Algal colonization followed a similar two period-pattemn to the bacteria,
but the magnitude and respective time length differed when compared with results observed for
bacterial density. The density of algal cells remained very low until day 22, and reached the
highest values during the last three weeks of the experiment (Fig. 2b). Algal remains (such as
empty diatom frustules and dead cells) were common in the earlier days, but the density of
pioneer taxa increased from day 14. These were mainly diatoms of the genus Achnanthes (Fig.
1d) and small cyanobacteria filaments (Fig. 1a). Progressively some green algae (Ulothrix) as
well as other diatom taxa (mainly from the genera Amphora, Gomphonema and Cymbelia) were
increasingly frequent (Fig. 1e and f). Chlorophyll-a increased from day 8 onwards, but it
approached similar concentrations to those of the aged tiles only on day 43 (Fig. 2c).

Low levels of C uptake were observed until the last days of the experiment (Fig. 2d).
H'CO, incorporation on the colonizing tiles was significantly different to that recorded in aged
tiles, which however, was highly irregular. Incorporation of H'*CO; on the colonizing tiles was
correlated with chlorophyll-a content (r=0.87, p<0.05, n=11) and density of algal cells (r=0.79,
p<0.05, n=11).

Ectoenzymatic activities are shown in Fig. 2e and f. The comparison between aged and
colonizing tiles shows that the activity of both p-glucosidase and B-xylosidase increased steeply
during the first eight and five days of the colonization respectively. Thereafter, differences
between the two kinds of tiles were not significant (p= 0.0699 and p= 0.1798 respectively). From
day 8 onwards the ectoenzyme activities fluctuated markedly both in the aged and in the
colonizing tiles. Their trends of change remained very similar, except at the end of the
experiment, when B-glucosidase tended to increase while B-xylosidase decreased. Correlation
analysis revealed that B-glucosidase and B-xylosidase activities increased with bacterial density
in the colonizing tiles (= 0.84 and 0.6 respectively, p<0.05, n=11). B-glucosidase shows a
positive correlation with algal density, H'*CO, incorporation and chlorophyll-a concentration
(r=0.66, 0.64 and 0.86, respectively p<0.05, n=11). In contrast, enzyme activities in the aged
substrata did not show any significant correlation either with the environmental or with the

‘biological variables measured.

ETS activity per unit area showed a steep increase at day 4, but from day 5 significant
differences with the aged tiles were not found (Fig. 2g). ETS fluctuated both in the colonizing
and in the aged tiles. ETS was significantly correlated only to B-xylosidase activity (r=0.8,
p<0.05, n=11). When ETS activity per cell was considered (Fig. 2h) two periods of different
activity were apparent. Up to day 8 there was a distinctly higher respiratory activity (5.19 +/- 3.64
10™ pg cell" h*' on average), which decreased during the last part of the colonization (average

value of 1.29 +/- 1.16 10™ pgcell’ h™").
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Fig. 1. Sequence of SEM photographs of the colonizing tiles. (a) Bacteria and filamentous
cyanobacteria scattered on the substrate of a young biofim (day 2). (b) Epithemia (left) and
Synedra (right) diatom cells partially covered by mucopolysacharide strips in day 3. (c) Web of
mucopolysacharide strips covering the tile in the day 4. (d) Some cells of the diatom Achnanthes
minutissima are apparent over the day 21 tile. (€) Abundance of A. minutissima and Amphora
ovalis (on the left) in day 30. (f) Green algae (upper fi Iament) and rare diatoms (Gomphonema

acuminatum) occurred scarcely at day 30.
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Discussion

Bacteria colonized the bare tiles rapidly but algae were far slower to colonize (Fig. 1a, b,
and c). Algal activity remained very low during the whole experiment, even though chlorophyil-a
was noticeable on day 9. Low light availability clearly slows algal colonization (e.g. Hill and
Knight 1988). In fact only the chlorophyll-a values of day 43 (Fig. 2c) were of the same order as
those regularly occurring in Riera Major during summer (Guasch and Sabater 1994). The
apparent predominance of heterotrophs over autotrophs during the colonization period is not
uncommon in low order, light-limited streams of temperate regions (Minshall et al. 1983). The
initially high heterotrophic character of the biofilm is evidenced by a quicker increase in the
ectoenzymatic activities than in the algal activity.

Ectoenzymatic activity became similar in the colonizing and in the aged tiles in only six
days. Polysaccharides (both from plant litter and algae) constitute a significant portion of DOM in
aquatic systems (Minster and Chrost 1990), and are therefore a major source of carbon and
energy for epilithic bacteria (Kaplan and Bott 1989). The predominance of cellulose rather than
hemicellulose as a carbon source can be inferred from the higher activity of B-glucosidase than
B-xylosidase. This was the characteristic both in the colonizing and aged tiles. Their activities
respectively reflect, at least in part, the use of autochthonous (algal) or allochthonous (plant)
carbon material by heterotrophic bacteria. The possibility of a direct relationship with the
allochthonous organic carbon was not confirmed by any correlation between the ectoenzymatic
activities and the stream DOC concentration.

Ectoenzyme activities were highly correlated with microbial and algal biomass and primary
production. B-glucosidase activity in the colonizing tiles was correlated to algal-related variables,
suggesting that algal extracellular products were being used by the bacteria. Even though B-
glucosidase mediates the hydrolysis of cellobiose both from allochthonous plant and algal
celluloses, a preeminence in the degradation of autochthonous algal material could be assumed.
B-glucosidase activity increased during colonization, as well as bacterial and algal biomass,
while B-xylosidase activity was seen to decrease. p-glucosidase and B-xylosidase followed the
same pattern during the first 5 to 8 days of colonization, when the biofilm was still scarce in
algae. Only when the autotrophic biomass and activity became apparent, did p-glucosidase and
B-xylosidase follow different patterns. There was a significant correlation between B-glucosidase
and algal chlorophyli-a when the last days of the colonization experiment (from day 15 to day 31)
were considered separately. These results indicate the existence of a trophic link between the
algae and the bacteria in an unfavourable situation for the photosynthetic activity. Similar
connections were observed during the decay of a phytoplankton bloom, when B-glucosidase had
the maximum acfivity (Chrést 1989). Also in light- incubated biofilms B-glucosidase activity was
strongly correlated with photosynthetic communities (Jones and Lock 1993).

The higher ETS activity per cell was distinctive of the earlier colonized biofilms. Higher
activities per cell have also been observed in disturbed biofilms, such as those affected by
grazing or by a storm-flow. A higher ETS activity per cell at the first days of colonization of bare
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grazing or by a storm-flow. A higher ETS activity per cell at the first days of colonization of bare
substrates has been also calculated for dark and light-incubated tiles in a similar experiment
performed in spring (chapter 8.2). Blenkinsopp and Lock (1992) found that biofilms disrupted by
flooding had higher respiratory activities than intact biofilms, concluding that nutrient diffusion
and ectoenzymatic activity increased after disruption. The ETS activity per cell in the biofilms
decreased when the algal chlorophyll-a became more important, and the associated biofilm '
complexity increased. This is possibly related to the resistance to diffusion exerted by the
polysaccharides matrix (Burkholder et al. 1990), which is capable to determine oxygen gradients
in aerobic biofilms (Ramsing et al. 1993) and to modify nutrient transport through the biofilm
(Stevenson and Glover 1993).
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8.2. Effect of primary producers on the heterotrophic
metabolism of a stream biofilm

Abstract

Algal biomass (chlorophyll-a) and metabolism (H™CO, incorporation) were significantly
correlated to heterotrophic metabolism (ectoenzymatic activities) in stream biofilms. Regression
lines obtained using dark-grown biofilms and light-grown biofilms suggest that the response of
the heterotrophs is faster in biofilms with low algal biomass accrual, and slows down when algae
increase in their biomass. In light-grown biofilms a steeper slope of the regression lines was
observed for the B-glucosidase activity than for the B-xylosidase activity. Also, B-glucosidase
activity per cell was higher in the light-grown biofiims. These observations indicated the
preferential use for algal-related (cellobiosic polysaccharides) products by the heterotrophs,
when they are available, than others allochthonous {xylobiosic polysaccharides). This was
confirmed by the similar slopes between p-glucosidase and p-xylosidase in dark-grown biofilms.

Introduction

Microbial sessile communities exposed o light in natural stream environments are
associated with phototrophic organisms in a dense polymeric matrix (chapter 1). In epilithic
biofilms, biomass accumulation, polysaccharide matrix development, difussion properties, and
the input of allocthonous organic matter piay an important role in biofilm metabolism (Lock
1993), hinderihg the identification of bacterial-algal relationships. However, in marine and
freshwater planktonic environments bacterial-algal relationships have been widely described
(Cole 1982, Bird and Kalff 1984, Le et al. 1994) and it is generally accepted that heterotrophic
bacteria directly utilize products excreted by algae (Chrést 1981, Brock and Clyne 1984, Siuda
et al. 1991). Only in especific conditions, an uncoupling of bacteria and phytoplankton has been
observed such as in strong tidal mixing environments (Cho et al. 1994) and in a highly
heterotrophic estuary (Findlay et al. 1991). In some oligotrophic streams a strong bacterial-algal
link has been found (Stock and Ward 1989), while in others it was evidenced that allochthonous
input was the main support for bacteria, thus masking a possible bacterial-algal relationship
(Findlay et al. 1993). Several studies of epilithic biofilms conclude that algal exudates are a
major carbon source for bacteria (Haack and McFeters 1982b, Geesey et al. 1978, Kaplan and
Bott 1989). Furthermore, the development of algal biomass and the polysaccharide matrix
increase the surface area which is available for bacterial colonization (Geesey et al. 1978). The
link between bacteria and algae in the biofilm is possibly dependent on algal accrual (Sobczak
1996).

This study seeks to determine whether the algal growth affects the microbial metabolism
in an epilithic biofilm, and whether biomass accrual might modulate this effect. Therefore, biofilm
biomass and metabolism was analyzed during colonization (in dark and light conditions) to
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monitor biomass intensively, from the bare substrate to a mature biofilm. The evolution in the
use of organic material of algal origin by the heterotrophs was investigated through the
variations in the activities of the ectoenzymes B-glucosidase and B-xylosidase (Chrést 1990), as
well as in bacterial cell density, respiration activity (ETS) and photosynthetic biomass and
activitiy. The experiment was performed in spring (maximum primary production of the epilithic
community, Guasch and Sabater 1994) to maximize the possible effect of algae on the

heterotrophic component of the biofilm.

Materials and Methods

Study site
The experiment was carried out in Riera Major, an undisturbed second-order

Mediterranean forest stream (chapter 3). The physical and chemical characteristics during the
period of study (13 March to 11 May 1995) are summarized in Table 1. Incident light was high
(Table 1), and did not, therefore limit primary production (Guasch and Sabater 1995). Flow
averaged 40 L s™.

TABLE 1. Physical and chemical characteristics of Riera
Major stream during the study period.

Mean (n=12) SD
Temperature (°C) 7.48 1.398
incident light (umol m? sec™) 812.9 217.2
pH 8.18 0.12
Conductivity (uS cm™) 193.6 9.68
Oxygen (mg I'") 10.63 0.76
DOC (mg I) 2.34 1.86
DIC (mg I") 21.24 0.79
Nitrate (ug I'") 256.76 98.7
Ammonia (ug I'") 17.36 27.82
Phosphate (ug I'') 2.48 3.28

Sample collection
Small, unglazed ceramic tiles (0.64 cm? of surface area and 1cm height) were glued

onto the flat surfaces of natural boulders using colourless silicone, and immersed in a stream
stretch where they were to be colonized. Half of the boulders were left in the stream stretch in
natural conditions (light-incubated), while the rest were placed inside an immersed dark tube
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(dark-incubated). The plastic (PVC) tube (1.20 m long, 25 cm diameter) was partially buried in
the streambed so as to ensure similar hydrological conditions to those in the stream. Light
irradiance inside the tube was below 0.2 umol photons m?s™. At the same site, six-to-eight
week old tiles were used as control (Sabater and Romani 1996). Tiles from light, dark, and
control conditions, were randomiy collected at 0, 1, 2, 3, 4, 7, 9, 14, 21, 29, 44, and 59 days of
colonization, and dark tiles were also collected at 81 and 105 days of colonization to assure total
colonization in the dark. Tiles were placed in sterile glass vials with stream water and kept cold
(on ice) in the dark until their arrival in the laboratory. Samples for bacterial cell counting were
fixed with 2% formalin. Cell numbers (bacteria and algae), ectoenzymatic activities, respiratory
activities (ETS), chlorophyll-a, and primary production were measured in the light, dark and
control tiles at each sampling date. Algal and bacterial cell numbers in the control tiles were only
measured on the first and the last sampling dates. All activity measurements were performed in
the laboratory, two to three hours after sampling.

Light was measured with a LiCor underwater cell situated immediately above the
colonizing surfaces. Water temperature, pH, dissolved oxygen and conductivity were also
measured on each sampling date. Filtered (precombusted Whatman GF/F filters) water samples
(three replicates) were taken to analyse inorganic nutrients (nitrate, ammonia and soluble
reactive phosphorus), as well as dissolved organic carbon (DOC) and dissolved inorganic
carbon (DIC) following the procedures described in chapter 2.

Bacterial density, algal biomass, and SEM observations

Bacterial density (DAP} stain, epifiuorescence microscopy) and algal density (inverted
microscope) were estimated in ftriplicate following the procedures described in chapter 2.
Chlorophyll-a was measured separately in triplicate after extraction in 90% acetone (chapter 2).
The ratio of chiorophyil to carotenoids and/or chlorophyll degradation products was measured as
the quotient of the optical densities at 430/665 nm (Margalef 1983). SEM was used to follow the
colonization sequence on the tiles in light and dark conditions.

Metabolism measurements

Extracellular enzyme potential activities (B-D-glucosidase and p-D-xylosidase),
community respiration (ETS), and primary production (H'*CO, incorporation) were assayed
following the procedures described in chapter 2. For each assay, five replicates of each sample
type (light-incubated, dark-incubated and control tiles) and two killed-control tiles (and two tiles in
darkened tubes for primary production) were used. For the ectoenzymatic activities, two blanks
of each MUF-substrate prepared with filter-sterilized stream water was also included.

Data analyses

Differences between control and light-grown biofims, and light and dark-grown biofilms
were analyzed through an analysis of variance (ANOVA, two single factor with replicates).
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Differences between control and light-grown biofilms, and light and dark-grown biofilms after
sixty days of colonization were analyzed by a t-test. Values in dark incubated biofilms taken after
81 and 105 days of colonization were compared to values at day 59 by a t-test. Correlation
analysis was performed using product-moment Pearson coefficient. Regression analyses were
performed for ectoenzymatic activities to chlorophyli-a and H"“CO, incorporation in light-
incubated, dark-incubated, and control tiles.

Results

' Bacteria and diatoms (mainly the genera Cocconeis, Achnanthes and Cymbella) had
accumulated on the light-incubated tiles after three weeks (Fig. 1a). This contrasted with the
scarce amount of material accumulated on the dark-incubated tiles (Fig 1d). At week eight, other
algae appeared on the light-incubated tiles (Fig. 1b) and a mucilagenous material developed
among the bacterial community (Fig. 1c). On the dark-incubated tiles damaged diatoms and
broken valves were observed (Fig. 1e and f).

Bacterial cell density increased during colonization on both light and dark-incubated
tiles. Significant differences between the two were observed after 9 days of colonization
(ANOVA, p<0.0004) (Fig. 2a). However, differences in algal cell density between light and dark-v
incubated tiles were significant from the first day of the experiment (ANOVA, p<0.0001, Fig. 2b).
Both bacterial and algal cell density on light-incubated tiles were not significantly different to
those of the control tiles at the end of the experiment (t-test, p=0.66, p=0.64, respectively).

Chiorophyll-a density increased drastically on light-incubated tiles after one week of
colonization; whereas a very low chlorophyll-a accumulation was observed on dark-incubated
tiles (Fig. 2c). Significant differences between light and dark were found after 5 days of
colonization (ANOVA, p<0.0001). A significantly lower chlorophyll-a concentration and higher
0D430/0D665 ratio were observed on dark-incubated tiles at the end of the experiment (Table
2). Chiorophyll-a densities on light-incubated tiles were not significantly different from those on
control tiles after three weeks of colonization (ANOVA, p>0.1), but values diverged at the end of
the experiment (ANOVA, p=0.0006) (Fig. 2c). '

Photosynthetic activity on the light-incubated tiles increased steeply during the first
week, and after 9 days it was not significantly different to that of the control tiles (ANOVA,
p=0.058, Fig. 2d). H'CO, incorporation was not detected in dark-incubated tiles.

Light and dark ETS activity were significantly different after 9 days of colonization
(ANOVA, p<0.0001, Fig. 2g). Differences were not significant between light and control tiles after
29 days of colonization (ANOVA, p=0.053).

Light and dark ETS per cell was also calculated and a peak was observed after 3 days
of colonization. At the end of the experiment activity per cell was higher in light-incubated than in
dark-incubated tiles (Fig. 2h).
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Fig. 1. Sequence of SEM photographs on the light-incubated (a, b, c) and dark-incubated (d, e,
f) tiles. (a) Bacteria and diatom cells (Achnanthes, Cocconeis) totally covered the light-incubated
tiles by day 21. (b) Larger diatoms (Diatoma) appeared by day 59. (c) Bacterial cells were
covered by mucopolysaccharide (day 59). (d) Few baterial cells and diatoms were observed on
the dark-incubated tiles by day 21. (e) Empty diatoms and broken frustules on day 59. (f)
Mucilagenous material and detritus accumulated on the dark-incubated tiles (day 59).
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B-glucosidase and B-xylosidase activities increased slowly during the first week of the
experiment on both light and dark-incubated tiles. Afterwards, a higher increase was observed
on light-incubated tiles (Fig. 2e and f), differences being significant after 7 days for B-glucosidase
(ANOVA, P<0.0001) and after 9 days for B-xylosidase (ANOVA, p<0.0001). Ectoenzymatic
activities on light-incubated tiles were not significantly diferent to those of the control tiles at the
end of the experiment (ANOVA, p=0.45 for B-glucosidase and p=0.62 for B-xylosidase).
However, light-incubated tiles had significantly higher B-glucosidase and p-xylosidase activities
than dark-incubated tiles, but ectoenzymatic activities per cell were only significantly higher for

p-glucosidase (Table 2).

TABLE 2. Mean bacterial and algal activities and biomass on dark-incubated and light-incubated
tiles after sixty days of colonization. Differences are expressed by the i-test probability.

LIGHT DARK t-test
Mean SD Mean SD  probability

4.32 1.62 0.72 0.28 0.03
2.18 043 1.49 0.16 0.04
12.41 3.23 4.93 2.26 0.002
6.96 1.31 4.91 1.08 0.01
6.19 0.72 3.82 0.44 0.02
3.18 0.02 3.31 0.96 0.42
3.97 0.42 0.78 0.12 0.003
2.61 0.73 3.93 0.94 0.006
14.13 3.04 0 0 0.0002
4.31 0.53 0.60 0.02  0.00005

Algae (cell 10° cm™)

Bacteria (cell 10" cm?)
B-glucosidase (nmol MUF cm™? h™)
B-xylosidase (nmol MUF cm? h™)

° hmol cell™ h™)

B-glucosidase/cell (10
B-xylosidase/cell (10™*° nmol cell* h™")
Chlorophyll-a (ug cm?)
0OD430/0D665

H'"CO, incorporation (ugC cm?h')

W WYY W W3

ETS (ug formazan cm? h)

Ectdenzymatic. ETS activities and algal and bacterial densities in dark-incubated tiles at
days 81 and 105 (not shown) did not differ significantly from those at day 59 (t-test, p>0.05)
indicating that the microbial populations had reached the steady state in the dark.

Ectoenzymatic activities were significantly related to chlorophyll-a and photosynthetic activity
throughout colonization, fitting linear regressions (Fig. 3 and Fig. 4). Slopes and square
correlation coefficients for chlorophyll-a were the highest for the dark-incubated tiles. In this
case, the regression lines were similar for B-glucosidase and B-xylosidase. For light-incubated
and control tiles, regressions were not as significant, and a gentler slope was characteristic of
the p-xylosidase regression line. For H*CO; incorporation, the regression coefficients were
significant for both enzymes for light-incubated tiles, but only for B-xylosidase-on the control tiles

(Fig. 4). A lower slope for B-xylosidase was also observed for light-incubated and control! tiles.
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Fig. 3. Linear regressions between the chlorophyll-a concentration and the ectoenzymatic
activities on dark-incubated, light-incubated and control tiles. The single points indicate the mean
values obtained at each sample time (dark circles for p-glucosidase and empty circles for p-
xylosidase). The regression lines, square correlation and the probability of F-Fischer after the
ANOVA analysis are shown for both p-glucosidase activity (B-glu) and B-xylosidase activity (B-

xyl).
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Fig. 4. Linear regressions between the photosynthetic activity (as H'*CO, incorporation) and the
ectoenzymatic activities on light-incubated and control tiles. The single points indicate the mean
values obtained at each sample time (dark circles for p-glucosidase and empty circles for B-
xylosidase). The regression lines, square correlation and the probability of F-Fischer after the
ANOVA analysis are shown for both B-glucosidase activity (B-glu) and B-xylosidase activity (p-

xyl).

Ectoenzymatic activities were significantly related to chlorophyll-a and photosynthetic
activity throughout colonization, fitting linear regressions (Fig. 3 and Fig. 4). Slopes and square
correlation coefficients for chiorophyll-a were the highest for the dark-incubated tiles. In this
case, the regression lines were similar for B-glucosidase and p-xylosidase. For light-incubated
and control tiles, regressions were not as significant, and a gentler slope was characteristic of
the B-xylosidase regression fine. For H'“CO, incorporation, the regression coefficients were
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significant for both enzymes for light-incubated tiles, but only for B-xylosidase on the control tiles
(Fig. 4). A lower slope for p-xylosidase was also observed for light-incubated and control tiles.

Discussion

Light-grown biofilms accumulated higher algal and bacterial densities than were
accumulated by dark-grown biofiims. Algae provide a greater surface area for colonization
(Gessey et al. 1978, Hamilton 1987) than is provided by a bare substrate deprived of light.
Bacteria feeding on algal material have favourable growth conditions (Gessey et al. 1978, Haack
and McFeters 1982a and 1982b, Stock and Ward 1989). The development of primary producers
in light-grown and control biofilms might aiso be responsible for the higher respiratory activity
here, in contrast to that recorded in dark-grown biofilms (Blenkinsopp et al. 1991). Light-grown
biofiims (both light-incubated and control tiles in this experiment) show higher degradation
activities because of the higher availability of substrates (Blenkinsopp and Lock 1992).

The increase in the ectoenzymatic activities along with chlorophyli-a and photosynthetic
activity in dark, light and control biofiims (Fig. 3 and Fig. 4) would seem to confirm that algal
material is used by the heterotrophic community (chapter 8.1). However, autotrophic biofiims
showed a different response to increasing algal biomass and activity to that shown by
heterotrophic biofiims (Fig. 3 and 4). Dark-grown biofilms respond rapidly to chlorophyll-a
accumulation (higher slope of the regression line), while in light-grown and control biofilms, a
higher increase of chlorophyll-a density is necessary to observe an analogous increase in the
ectoenzymatic activities. Therefore, the more algae accumulated on the biofilm, the slower is the
ectoenzymatic response of the microbial community. In light-grown biofilms, algae, bacteria and
polysaccharide accumulation might act as an organic matter reservoir (Freeman and Lock 1995)
toning down the response to increasing algal biomass. It could be argued that such differences
between light-grown and dark-grown biofiims are an effect of differences in nutrient diffusion
being limited in the thicker biofilms (Hamilton 1987). However, light and dark-grown biofilms
were similar in their thickness, being both rather thin. Furthermore, the shaking procedure used
during the incubation was designed to eliminate any diffusion barrier.

The non-limiting light conditions for primary producers during the experimental period
(Guasch and Sabater 1995) could be thought to be the only scenario where this heterotrophic
behaviour in response to algae could be detected. But, the validity of this heterotrophic
behaviour in Riera Major stream is stressed when analyzing other data from an analogous
experiment performed in the summer (when the canopy limits light availability, chapter 8.1). In
that case, a significant linear regression was found between p-glucosidase activity and
chiorophyll-a (-giu=2.62+3.79 Chl, r?=0.73, p=0.0008). The slope under that conditions was in
between those found for light and dark-grown biofilms in the current study. This was not
unexpected, since the chlorophyll-a concentration aiso ranged between that of the light and
‘dark-grown biofilms.
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The different response of B-glucosidase and B-xylosidase activities to chlorophyli-a
accrual and H"CO; incorporation was observed in both light-grown and control biofilms (Fig. 3
and Fig. 4). The steeper slope found for B-glucosidase than for B-xylosidase reflects the
preferential use of celiulose compounds, which are more easily and more rapidly degraded than
hemicellulose compounds (Opsahl and Benner 1993, Boschkner et al. 1995, Lachke 1988).
When available, bacteria preferentially use metabolites of phototrophs (Haack and McFeters
1982a), such as cellobiosic molecules, cleaved by B-glucosidase (Deshpande and Eriksson
1988). in contrast, in dark-grown biofiims there would seem to be little choice between the two
enzymes (similar response) since high quality organic matter input (such as polysaccharides
released by algae) is scarce. The (low) chlorophyll-a accrual in dark-grown biofilms might be due
to passive settlement of colonists (Steinman and Parker 1990).

The highest values for $-glucosidase activity per cell (Table 2) underlie the greater
utilization of cellobiose molecules by the heterotrophic community in light-grown biofilms. Algal
released polysaccharides in light-grown biofilms might enhance B-glucosidase activity (Somville
1984, Jones and Lock 1993). The ratio B-xylosidase:B-glucosidase in light incubated biofilms
was ca. 0.5, a value commonly quoted for stream biofims (Sinsabaugh and Linkins 1988,
Chapell and Goulder 1994a). In contrast, in dark incubated biofilms, this ratio was nearly 1,
which might be related to the higher input of hemicellulose polysaccharides with respect to
cellulose in dark conditions. The accumulation of decaying algae in dark-grown biofilms is
' indicated by the high values of the OD430/0D665 ratio (Table 2) (Margalef 1983).

We conclude that algal accumulation on the epilithic biofilm modulates the utilization of
the organic matter by the heterotrophic community in three aspects: a) it increases the amount
of organic substrate available for bacteria and therefore leads to a higher cleavage of
macromolecules, b) it favours the use of cellobiosic as opposed to xylobiosic polysaccharides,
probably due to the presence of high quality organic matter such as algal exudates, and c) it
confers a slower response to the microbial community in relation to its own accrual. The low
nutrient and DOC concentration in Riera Major stream water probably reinforces the capacity of
the bacterial community to respond to changes in algal density and activity as has been
observed in a laboratory prepared biofilm under low DOC conditions (Murray et al. 1986).
Additional research needs to be conducted so as to validate the applicability of this model to
different environmental situations.
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9. Measuring ectoenzymatic activities in Mediterranean
stream biofilms: general trends and relationship to the

bacteria/algae biomass ratio

Abstract

Seasonal studies of biofim ectoenzymatic activities performed in Mediterranean streams
provided enough data to investigate the existence of any general behaviour for such activities.
Statistical analyses of the data (Principal components, Pearson Correlation, Canonical
Correlation) were used. From the physico-chemical parameters, conductivity and DIC
(dissolved inorganic matter) were mostly responsible for ectoenzyme variability, while biofilm
chlorophyll-a density was the most relevant biological parameter. p-xylosidase was more
closely related to the allochthonous than the autochthonous organic matter sources. High
phosphatase activities were found with low values of SRP in stream water. The ectoenzymatic
activities measured in Mediterranean streams were higher than those from European streams
but similar to those from North American and Australian streams. However, the ratio of B-
xylosidase:B-glucosidase activity was similar for the streams of the different regions
considered, being ca. 0.5. A negative relationship was found between the ectoenzymatic
activities and the bacteria/algae biomass ratio of each studied stream biofilm (the
Mediterranean and several European streams), stressing the importance of algae for the
heterotrophs. It is concluded that autotrophs play a more relevant role as an organic matter
source for the heterotrophs and therefore for carbon cycling than has generally been
postulated for stream biofilms.

Introduction

The ectoenzymatic activities measured in stream biofilms have been related to
environmental parameters such as nutrient concentration (chapter 3.1, chapter 6), water
discharge (chapter 6, chapter 7), light and temperature (Sinsabaugh and Linkins 1988,
chapter 3.3, chapter 5, chapter 6), and to biological parameters (Chapell and Goulder 1994a,
chapter 3, chapter 4, chapter 8). In several studies ectoenzymatic activities have also been
related to substrate availability in preference to environmental changes (e.g. Meyer-Reil 1987).
In this chapter the relationship of ectoenzymatic activities to the environmental parameters
and physiographic features was investigated for the three Mediterranean streams studied. The
main objective was to find out whether there is any general trend for these heterotrophic
activities for the Mediterranean streams and whether they differ from other studied streams in
other regions (Europe, America, Australia). For this first purpose, ectoenzymatic data from the
studied Mediterranean streams and from bibliographic sources for the European, American
and Australian streams were analysed.

The second main objective was to investigate whether there is a relationship between
the biomass of bacteria and algae of a given stream biofilm and its capacity to cleave organic
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substrates. Few studies have focused on the effect of biofiim related parameters (i.e. bacteria
and algal biomass, the main organisms which compose the biofilm structure) on the enzymatic
activitiy in a given stream biofilm. In some stream biofilms, a significant correlation between
ectoenzyme activity and bacterial cell density and/or chlorophyll or biomass has been
observed (Sinsabaugh and Linkins 1988, Chapell and Goulder 1994a, chapter 8), but in other
studies this relationship is weak or non-existent (Sinsabaugh et al. 1991a, Chapell and
Goulder 1992, Jones and Lock 1993). Although the accrual of bacteria and algae might be
important for the regulation of organic matter degradation capacity in a given stream biofilm,
the relative amount of algal and bacterial biomass (bacteria/algae ratio) is probably more
important in regulating the ectoenzymatic activity, since there are structural and functional
relationships between them (chapter 8). Depending on the relative contribution of bacteria and
algae on the biofilm biomass, the biofilm metabolism would be more autrotrophic or
heterotrophic, which may determine a higher or lower level of enzymatic activity.

For this second purpose, data from the four study sites considered in this project
(Riera Major, La Solana, Ter and Breitenbach) and their different benthic substrates (epilithic,
epipsammic, cyanobacterial crust) were analyzed together with results from other studied
streams (European, American, Australian) also considering different substrates (wood, Ieéves,
natural stones, glass beads). The collection of data from such different substrates and sites
provided us with results from different stream biofilms, which differed in the density of bacteria
and algae, giving us the possibility of investigating a wide range of biofilm compositions.
Results of the p-glucosidase, p-xylosidase and phosphatase activities and the bacterial and
chlorophyll-a densities and biomass have been analyzed together.

Stream comparison

Comparison of the studied streams

The data from the seasonal studies in the Riera Major (chapters 3.1 and 3.2), La
Solana (chapter 4.1), and river Ter (chapter 6), and from the study in the Breitenbach (chapter
'7), were collected (Table 1). For the Riera Major the three substrate types were considered:
stream-edge sand (n=10), mid-channel sand (chapter 3.1 together with the surface sand
results from 3.2, n=21), tiles (n=10) and subsurface sand (n=9). For La Solana, the four
stromatolitic algal patches of the cyanobacterial crust were considered: the mixed community
(n=11), the Rivularia community (n=6), the Zygnema-Spirogyra community (n=6) and the
diatom bloom (n=2). For the Ter (n=8) and the Breitenbach (n=3) data from the artificial clay
tles were considered (chapters 6 and 7, respectively). Values of p-glucosidase activity, -
xylosidase activity, phosphatase activity, chlorophyll-a density and bacterial cell density at all
sites and sampling times (n=84) were used in the Principal Components Analysis (PCA) so as
to visualize the stream differences and the seasonal distribution of the samples.
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The ectoenzymatic activities, respiratory activity, and chlorophyll-a and bacterial
density in the different study sites and substrates are summarized in Table 1. Since these
variables were considered for the PCA, the results will be discussed together.

The results of the PCA showed an arrangement of pB-glucosidase, p-xylosidase and
chlorophyll-a by the first component which explains 42.3% of the variance (Table 2). The
second component arranges with bacterial density and chlorophyll-a and negatively with p-

xylosidase activity, explaining 24.4 % of the variance.

TABLE 2. Results of the PCA performed with
data from Riera Major, La Solana, river Ter
and Breitenbach. Loadings for the factors 1
and 2 (PC | and PC Il) and the eigenvaiues
and percentage of total variance explained by

each factor are also shown.

Variable PCI PCIl
p-glucosidase - 0.90 -0.16
B-xylosidase 0.81 -0.44
Phosphatase 0.47 0.22
Chiorophyll-a 0.64 0.49
Bacterial density 0.10 0.84
Eigenvalue 2.1 1.22
% variance 423 244

The different streams were represented in the PCA by their scores (Fig. 1). On the left
side of the first component were placed the Riera Major (sand and tiles), and Breitenbach,
indicating a lower ectoenzymatic activity in these streams than in the river Ter and La Solana
(placed on the right side of the first component). The scores for the PC | for the river Ter were
similar to those for La Solana, indicating that ectoenzymatic activities were in the same range
of values. The higher ectoenzymatic activity for the biofilms growing on calcareous
watersheds (the river Ter at Montesquiu and La Solana, Table 3) could be in part a result of
the higher concentration of the calcium and magnesium ions in these study sites (Sabater
1988, Marti and Sabater 1996, Table 3) than in Riera Major and the Breitenbach (Martl and
Sabater 1996, Marxsen et al. 1997). A positive response of B-glucosidase to added calcium,
and especially magnesium, has been observed in sediments (King 1986). Furthermore, these
ions, especially magnesium, could act as activating cations for the enzyme reaction (Chrost
1990). Greater ectoenzymatic activity on celcareous watersheds was also observed for
several streams in N England (Chapell and Goulder 1994a). These two sites (La
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Solana and river Ter) showed higher respiratory activity (ETS, not included in the PCA) (Table
1), indicating more relevant heterotrophic activities than in the silicic sites.

However the river Ter and La Solana differ in their distribution throughout the second
component. At the upper extreme are located the spring samples from the river Ter (Ter3 and
TerS) and the winter sample for the Rivularia community (R1). These biofilms are
characterized by a low B-xylosidase activity and high bacterial and chlorophyll-a density. In
constrast in the lower extreme of the second component, the samples from the mixed
community in La Solana in autumn and winter (M8, M9, M11, M12, M1) were found. These are
characterized by a high B-xylosidase activity and low bacterial and chlorophyli-a density. The
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Fig. 1. Plot of the scores of the PCA performed with Riera Major mid-channel sand (mS),
stream-edge sand (eS), subsurface sand (subS) and epilithic biofilm (T), the algal patches of
La Solana cyanobacterial crust: Mixed community (M), Rivularia community (R), Zygnema-
Spirogyra community (Z) and Diatom bloom (D), the river Ter epilithic biofilm (Ter), the
Breitenbach epilithic biofilm (Breit). The numbers indicate the sampling month.
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detailed distribution throughout PC |l can be interpreted in terms of efficiency of organic matter
utilization. In the upper extreme are located the more eutrophic systems, less efficient in
organic matter use and based on both autochthonous and allochthonous sources. In the
bottom extreme the systems are more oligotrophic, more efficient in organic matter use and
mainly based on allochthonous sources. Following this reasoning, the mixed community of La
Solana cyanobacterial crust is the most efficient in the utilization of organic matter of all the
biofilms studied (as has already been described in chapter 4.1). Moreover, the epilithic biofilms
in Riera Major might be less efficient in organic matter use than the sandy biofilms (Fig. 1)
coinciding with the higher capacity to degrade organic matter suggested for the sandy
substrate than for the rocky substrate (chapter 3.1).

The Breitenbach had similar scores to those of Riera Major. Both streams have similar
environmental characteristics (Table 3) which make these streams similar in their biofilm
metabolisms (Table 1). Both streams have a catchment geology which results in a low ion
concentration in the stream water (Bunter sandstone for the Breitenbach, Marxsen et al. 1997,
and granodiorite for Riera Major, Marti and Sabater 1996). Riera Major was covered by a
riparian forest (Alnus glutinosa) and the Breitenbach drains a highly forested area (Fagus
sylvatica and Pinus sylvestris) with riparian vegetation (Alnus glutinosa) in some stretches.
However, there were large differences in bacterial cell density (Table 1), which were very
much lower in the Breitenbach.

Regularities in temporal variations in the studied streams

The seasonal distribution of the different biofilms in the PCA is presented separately
for each stream (Fig. 2, 3 and 4). In Riera Major, variations are mainly attributable to the PC II,
and thus due to bacterial and chiorophyll-a density variations (Fig. 2). This is especially clear
for the. tiles, which showed no variation on the first axis (PC I), indicating the lack of
seasonality in the ectoenzymatic activities. For the sand, the higher values for the PCl were
observed in the spring and summer months. As was described in the seasonal study of the
Riera Major (chapter 3.1) there was no clear seasonality for the epilithic biofilm metabolism
while the activities in the sandy biofilm followed seasonal variations. The few temporal
fluctuations for the subsurface zone (chapter 3.2) are expressed by the very close distribution
of all the samples from this habitat.

In La Solana, time variations were due to PC | and PC Il which aiso distribute the
different algal patches (Fig 3). The highest ectoenzymatic activities in the mixed community
(M) (Table 1 and chapter 4.1) are expressed by the distribution of this algal patch in the right
hand side of the PC |, while the lower ectoenzymatic values and score values of the PC | were
characteristic of the diatom bloom (D). In between the M and D community, the Zygnema-
Spirogyra (Z) and Rivularia (R) communities were found with much higher scores of the PC Il
for the R community, expressing the higher bacterial density in this algal patch. A seasonal
pattern was observed for the Rivularia and the mixed community, which decrease throughout
the second component in summer (R7, M8). This could indicate the decrease in bacterial and
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chiorophyli-a density during the drought period but the rapid recovery of the ectoenzymatic
activities (chapter 4.2) meaning a high level of efficiency of organic matter use especially in
the R and M algal patches (lower values in PCII, as discussed above).
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Fig. 2. Partial plot of the PCA (as in Fig. 1) for the Riera Major mid-channel sand (mS),
stream-edge sand (eS), subsurface sand (subS), and tiles (T) and the Breitenbach (Breit).

The drastic seasonal changes in ectoenzymatic activities in the river Ter (chapter 6)
are also expressed by the PCA analysis (Fig. 4). When drawing a line through the monthly
samples, there seems to be a clear seasonality in epilithic biofilm metabolism for this
Mediterranean river. The year of stddy (1994-95) was especially dry, determining the low
summer activities and the high autumn activities when the flow was recovered (chapter 6).
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Fig. 3. Partial plot of the PCA (as in Fig. 1) for the algal patches of La Solana cyanobacterial crust: Mixed
community (M), Rivularia community (R), Zygnema-Spirogyra community (Z), and diatom bloom (D).

Tors

PCI

Fig. 4. Partial plot of the PCA (as in Fig. 1) for the river Ter. A line was drawn between the points
to outline the seasonal sequence.
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General trends in the Mediterranean stream biofilms

Correlation analysis of the environmental and biological parameters for the
Mediterranean streams was performed using product-moment Pearson coefficient. In addition
a Canonical Correlation Analysis (CCA) was performed between the heterotrophic activities .
(B-glucosidase, B-xylosidase, phosphatase and ETS) and the physico-chemical and biological
variables (bacterial density, chlorophyli-a, bacteria/algae biomass ratio, DOC, DIC, SRP,
nitrate, ammonia, pH, temperature, conductivity and light). CCA was designed in order to
elucidate which variables of this second variable group (physico-chemical and biological) had
the greatest weight in determining the variation of the heterotrophic activities in the
Mediterranean streams.

The correlation analysis performed with all data from Riera Major, La Solana and the
river Ter, showed several highly significant relationships (Tables 4 and 5). The three enzymes,
B-glucosidase, B-xylosidase and phosphatase were significantly correlated with respiratory
activity (Table 4), which indicates that enzymatic activities are an expression of heterotrophic
activity. A significant correlation between ectoenzymes and bacterial activity (thymidine
incorporation) was observed especially for B-glucosidase (Somville 1984, Chrést and
Overbeck 1990, Chrést 1991b, Chrést 1994) and for proteolytic activity (Admiraal and Tubbing
1991, Gajewski and Chrést 1995). it has been concluded that ectoenzymes may be a useful
indicator of the bacterial activity in aquatic environments (Gajewski and Chrést 1995).
However, although a strong relationship between bacterial production (thymidine
incorporation) and enzymatic activity was also found in the Adriatic Sea, the two activity
measurements followed a different trend during a diatom bloom leaving unclear whether
extracellular enzymatic activity and bacterial production are mediated by the same part of the
active proportion of the bacterial community (Karner et al. 1992). For the Mediterranean
streams, no significant correlations were found between ectoenzymatic activities and bacterial
cell density (Table 4). This contradictory finding is possibly due to the presence of non-active

_bacteria in certain biofilms (i.e. in sand, Bott and Kaplan 1985), which have been included in
the data set.

Relationships with physico-chemical variables have also been explored. The three
ectoenzymes were in general significantly correlated to conductivity, DIC and nitrate (Table 5).
More scattered correlations were also found with oxygen, DOC, SRP and ammonia, indicating
that the nutrient content in stream water must be an important parameter for the regulation of
the ectoenzymatic activities. These correlations suggest that there is a negative relationship
between the enzymatic activities and discharge as will be discussed after the CCA analysis.

218



chapter 9 general trends in ectoenzyme activities

TABLE 4. Significant Pearson correlation coefficients between enzymatic activities,
respiratory activity, bacteria and chlorophyli-a for the three Mediterranean study sites (Riera
Major, La Solana, Ter). The level of significance is expressed by the star: *p<0.05, **p<0.01,
***n<0.001, n=80.

B-xyl Phosp ETS Bact Chi-a Bac. Bac/alg xyl/giu

. biovol. ratio ratio
B-glucosidase 0.77*** 0.38™* 0.45"**
B-xylosidase - 0.22* 0.30* 0.57
Phosphatase - 0.61* 0.27* 0.75*
ETS - 0.61** -0.23*
Bacteria - 0.24*
Chilorophyll-a -

Bact. biovolume -
Bac./alg. ratio -

TABLE 5. Significant Pearson correlation coefficients between enzymatic activities, respiratory activity,
bacteria and chlorophyll, and the physical and chemical parameters for the three Mediterranean study sites
(Riera Major, La Solana, Ter). The level of significance is expressed by the star: *p<0.05, **p<0.01,
***n<0.001, n=80.

Cond Oxygen DOC DiC NH, NO, SRP pH Light Temp.

B-glucosidase 0.70*** -0.39** 0.40™* 0.54** 0.27* -0.33" 0.30*
B-xylosidase = 0.62*** 0.55*** -0.29*

Phosphatase = 0.50*** 0.57*** -0.23*

ETS 0.51** -0.36** 0.60™** -0.37* 0.57*** 0.22*
Bacteria 0.29**

Chlorophyll-a 0.52*** -0.28* 0.48** 0.25" 0.55*** 0.31* 0.62*** 0.22*
Bac. biovol. 0.43** 0.54** -0.27* -0.27*
Bac./alg. -0.31™ -0.31* 0.23*

However, to distinguish which variables were the best predictors for the variability of
the heterotrophic biofilm metabolism, a CCA was performed with the data. It is obvious that
the variation in the heterotrophic activities could be determined not only by a unique
environmental or biological variable but by a combination of variables which will also be
elucidated by the CCA.

The CCA determines linear combinations within the variables of each set when
obtaining the canonical variables. The canonical variables obtained for each set are equal to
the number of variables in the set with fewer variables, which will be named U,, U,, ... U, for
the left set and V,, V,, ... V,, for the right set. These linear combinations are removed from
each set in order to obtain the maximum correlation (canonical R) between them (U, with V,,
U, with V,,...). The canonical roots are pairs of variables (U,V,, U,V,,...). The correlation
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between U, and V, is maximum, as is that between U, and V, under the condition that they are

not correlated with U, and V,, and successively.

The two variable sets chosen for this analysis and the initial results are summarized in
Table 6. The analysis showed that the four canonical roots removed were significant (p<0.5,

Manly 1995) (Table 7).

TABLE 6. Results of the CCA and the variables considered for the left set and right set,

Canonical R: 0.90053
Chi? (d.f. 48) = 185.78 p=0.0000

Left set Right set
No. of variables 4 12
Variance extracted 100.000% 45.6287%
Total redundancy 56.2016% 26.7921%
Variables: Respiratory activity ETS Bacterial density BAC
B-giucosidase activity GLU Chlorophyili-a density CHLA
B-xylosidase activity XYL Bacteria/algae ratio BAC/ALG
Phosphatase activity P Dissolved organic carbon DOC
Dissolved inorganic carbon DIC
Soluble reactive phosphorus SRP
Nitrate NO3
Ammonia NH4
pH PH
Temperature TEMP
Conductivity COND
Incident light LIGHT

" TABLE 7. Chi-Square tests with successive roots removed by the CCA. The canonical
correlation (R), squared canonical correlation (R %), Chi-square, degrees of freedom (df)

and grobablly P) are shown for each root. All roots removed are slgmficant (p<0.5).

Rcanonical = R°can. Chi* df p
0 0,801 - 0,811 185,779 48 49E-18
1 0,744 0,554 80,006 33 9,03E-06
2 0,506 0,256 28,740 20 0,0931
3 0,380 0,145 9,917 9 0,357

To interpret each canonical variable we used the correlation between the variables
and the canonical roots in each set (Table 8). The most indicative variables for each canonical
variable are those which have the highest correlation (> + 0.5, < -0.5).

218



chapter 9 general trends in ectoenzyme activities

TABLE 8. Correlation of each variable to the canonical roots removed.

Left set Root 1 Root 2 Root 3 Root 4
U, U, U, U,
ETS -0,838 0,106 -0,455 0,282
GLU -0,760 -0,292 0,207 -0,543
XYL -0,486 -0,720 -0,186 -0,458
P -0,693 -0,354 0,195 0,597
Right set Root 1 Root 2 Root 3 Root 4
V, V, V, V,
BAC - -0,220 0,436 0,117 -0,104
CHLA -0,765 0,357 -0,001 -0,016
BAC/ALG 0,287 0,071 0,064 0,010
DOC -0,308 -0,298 0,733 -0,257
DIC -0,774 -0,432 -0,092 0,277
SRP -0,247 0,280 0,164 -0,366
NO3 . 0467 0,138 0,126 0,022
NH4 -0,141 -0,234 0,581 -0,303
PH -0,251 0,015 -0,070 0,118
TEMP -0,332 0,098 0,167 -0,254
COND -0,838 -0,457 0,095 -0,114
LLUM -0,492 0,259 -0,199 0,335

'Each canonical variable of the left and right side could be interpreted as follows:

Left set

U,: low respiratory and ectoenzymatic activities

U,: low B-xylosidase activity

U,: low respiratory activity

U,: high phosphatase activity, low B-glucosidase and -xylosidase activities

Right set
V,: late autumn-winter conditions (low conductivity and DIC, low chiorophyll-a density, low light

and temperature, high nitrate)

V,: spring conditions (low conductivity and DIC), importance of benthic biomass (high bacterial
and chlorophyll-a density).

V,: high DOC and ammonia concentration

V,: low nutrient content (low phosphorus and ammonia), high incident light
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The most significant correlation (that between U, and V,, Table 7), indicates that low
values of ectoenzymatic and respiratory activities are related to low values of conductivity,
DIC, chiorophyll-a density, light and temperature, and high nitrate content. These conditions in
Mediterranean streams are usually found in late autumn and winter when there is a high
discharge (floods usually occur in autumn), low nutrient and mineral content resulting in low
conductivity in the stream water and low benthic biomass. The reverse situation (high
conductivity, DIC and chlorophyll-a density) will be attained in late spring and summer with the
highest values of ectoenzymatic and respiratory activity. The positive relationship to the DIC
content express the higher ectoenzymatic activites measured in calcareous streams (as
discussed above, in the section comparison of the studied streams). A similar positive
relationship between epilithic ectoenzymatic activities and conductivity as well as variables
related to water quality was found by Chapell and Goulder (1994a) for several English
streams. In the Mediterranean streams a direct relationship has been observed between
conductivity and discharge (especially for the river Ter and Riera Major) (Sabater F 1988, A.
Butturini, pers. comm.). This general conclusion is in disagreement with the increase in the
ectoenzymatic activities and discharge observed in the river Ter (chapter 6). Such a difference
could be related to the higher DOC content in stream water in higher-order rivers during high
discharge periods, which could provide organic substrates for the enzymatic hydrolysis.
However, the lack of values from the high flood events for the river Ter as well as the
representativeness of the seasonal study in an especially dry year (low heterotrophic activities
in summer) could influence in this positive relationship between enzymatic activity and
discharge in the river Ter, therefore contrasting to the negative relationship suggested in the
lower-order streams (Riera Major and La Solana).

Algal biomass (chlorophyll-a density) appears as the most important biological factor
for the variations in the ectoenzymatic and respiratory activities. Algae are an important
source of high quality organic matter for heterotrophs (chapter 3, 4, 5 and 7) and a suitable
site for bacteria attachment (chapter 8). Photosynthetic activity and biomass are related with
ectoenzymatic activity (chapter 8). Concluding, algal biomass has a stimulating effect on
heterotrophic activities in Mediterranean stream biofilms.

The second canonical root show that low values of B-xylosidase activity were related
to high chiorophyli-a and bacterial density in the biofilm. This combination of variables
indicates the conditions when B-xylosidase activity is énhanced: high conductivity, DIC and
DOC in streamwater, and low chlorophyil-a and bacterial density. This could be a further
evidence of the greater dependence of the B-xylosidase activity on allochthonous than on
autochthonous organic matter.

The third canonical root relates low values of respiratory activity (ETS) with high DOC
and ammonia in the stream water, conditions which were attained in the studied
Mediterranean streams during the dry season. Specially dry conditions were found during the
annual study (1994-85), compared to other annual periods (Guasch 1995, Marti 1985).
Particularly in La Solana, low values of respiratory activity were found during the drought

220



chapter 9 general trends in ectoenzyme activities

period (chapter 4.1), coinciding with a high DOC and ammonia content in the stream water.
Depletion of nutrients (e.g. inorganic phosphorus) during these dry periods might limit the
bacterial and algal metabolic activity, in spite of having enough substrates available for
heterotrophs (high DOC).

The fourth canonical root relates the low nutrient concentrations (soluble reactive
phosphorus and ammonia) in stream water to high values of phosphatase activity and low
values of polysaccharidic enzymes. Phosphatase activity may be important in Mediterranean
streams to obtain inorganic phosphorus when it is scarce in the stream water. This has been
observed for La Solana stream (chapters 3 and 5) where this activity is enhanced when there
is a low phosphorus concentration in stream water. However, the general use of phosphatase
activity to indicate the phosphorus state of natural waters has been under discussion (Jansson
et al. 1988).

It is generally accepted that temperature regulates the metabolic processes (e.g.
Peters et al. 1987, Kaplan and Bott 1889) and thus ectoenzymatic activities (Chrost 1991b,
Minster et al 1992, Wiebe et al. 1892). However this was not revealed to be an important
parameter for the ectoenzymatic activities in the river systems studied. Significant correlations
with temperature were found only with p-glucosidase and ETS activity (Table 5). Analogous
studies which have analysed seasonal variations found that ectoenzymatic activity and
temperature is not always correlated (Jones and Lock 1993, Hoch et al. 1996). Sediment
bacteria do not show significant differences in bacterial growth when the temperature is
increased by 5 degrees (Bott et al. 1984). Substrate concentration was more important than
temperature (in the range 8-25°C) for bacterial growth in culture (Barillier and Garnier 1993). It
is possible that in more extreme conditions there would be a clear response to temperature,
as has been observed in a boreal lake (Tulonen et al. 1994). Substrate availability and nutrient
content are probably the main ectoenzyme regulators in temperate streams (Sinsabaugh and
Linkins 1988, Jones and Lock 1993). The apparent relationship to temperature could also be
masked by the retarded response of extracellular enzyme activity to changing water
temperature (Hoppe et al 1988).

Comparison with other lotic systems ,

Comparison with other systems is difficult since few studies which gather enzymatic,
bacterial, algal, and environmental data are available. Those which better fullfii these
requirements have been included in Table 9.

The ectoenzymatic activities measured in the Mediterranean stream biofilms were in
general higher than those reported from European streams (e.g. Jones and Lock 1993,
Chapell and Goulder 1994, Table 9) but similar to the values reported for the St. Regis River
(New York) (Sinsabaugh et al. 1991a) and for the the Billabong periphyton in Australia (lentic
environment) (Scoltz and Boon 1983). The different climatic characteristics (pluviosity,
temperature, incident light) in each region could be related with such differences in
heterotrophic activities. The European streams considered, which were in fact north-European
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streams (latitude >50° N, Table 9) have a lower light irradiance and temperature and a higher
rainfall (especially in the north Wales streams) than the Mediterranean streams (Margalef
1989). However, the light irradiance, temperature and pluviosity in New York is similar than in
the Mediterranean region (Margalef 1989). The high activities in the Billabong periphyton in
Australia (36° S) could be due to the different habitat (lentic), with a developed photic and
aphotic zone, which makes difficult its comparison to the other stream substrates considered.
However, this site may indicate that the ectoenzymatic activities in perifiton are higher than in
benthic substrates.

The ratio of B-xylosidase:B-glucosidase activity gives values rather similar for'all the
streams and substrates, being around 0.5 (Table 10), even though ectoenzymatic activities
differ between geographical regions and stream benthic substrates. In all streams there is a
major utilization of cellobiosic to xylobiosic molecules. The greater activity of p-glucosidase
than B-xylosidase in all the stream biofilms considered could not be only a response to the
composition of organic matter input (more cellulose than hemicellulose) but also a preference
of bacteria to produce those ectoenzymes catalyzing more efficient reactions (Gazewski and
Chrést 1995). The enzyme B-glucosidase splits p-linked polysaccharides found in a great
variety of molecules, while p-xylosidase is involved in xylobiose degradation usually found in
more complicated molecules.

it is suggested that a higher production of the p-xylosidase occurs only when it is
strictly necessary to degrade organic matter with a large amount of hemicellulosic molecules,
as will happen when allochthonous material is the main organic matter source. In this way,
higher values of the p-xylosidase:B-glucosidase ratio (0.7-1) were observed in the mixed
community of La Solana cyanobacterial crust, in the natural stones of the Breitenbach, in the
wood substrates of the St. Regis River (Table 5), and in the dark-grown epilithic biofilms in
Riera Major (chapter 8.2). These four substrates coincide in their low autochthonous input,
allochthonous materials being the main organic matter source: low algal density in the mixed
community of La Solana cyanobacterial crust; low chlorophyll, low incident light and
accumulation of leaves in the Breitenbach natural stones in autumn; and low chlorophyll
density and great accumulation of leaf material (from the riparian vegetation and the
neighbouring high forested watershed) on the wood substrate of the St. Regis river). Therefore
a high p-xylosidase:B-glucosidase ratio (ca. >0.6) in a given stream biofilm might indicate that
allochthonous material is the major source of organic matter for the heterotrophs. in addition,
the different substrate (xylobiosic or cellobiosic) that is being used by the heterotrophs might
not be characteristic of a given stream but of a given streambed substrate, since in the same
stream different values of this ratio have been calculated for the different substrates (Table
10). The microenvironment of each biofilm therefore plays a key role in the organic matter
source to be used by the heterotrophs.
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TABLE 10. p-xylosidase:p-glucosidase ratio in the different stream biofilms for the Mediterranean
sites (left side) and for several European and American streams (right side) (from Table 9 when
both B-glucosidase and B-xylosidase activities were available) (see bibliographic sources in Table
9). Values are means from monthly values and standard deviations (n as in Table 1) for the streams
studied in this project and mean values for the results found in the bib!ingraphy.

B-xylosidase/p-glucosidase ratio

Mediterranean streams : European and American streams
Site and substrate Mean Site and substrate Mean
Riera Major Breitenbach
Current sand 0.48 (0.25)  Artificial substrates (tiles) 0.45 (0.22)
Littoral sand 0.44 (0.37) Natural stones 1.03
Hyporheic sand 0.39(0.08) Sediment 0.52
Artificial substrates (tiles) 0.44 (0.24) St Regis River
La Solana Glass slides 0.40
Mixed community 0.71 (0.33) Wood slides 0.71
Rivularia community 0.42 (0.08) Nant Waen (glass beads) 0.25
Zygnema-Spirogyra community 0.49 (0.24) River Clywedog (glass beads) 0.30
Diatom bloom 0.63 (0.3-0.9) Driffield Beck (stones) 0.40
Ter Birk Gl (stones) 0.38
Artificial substrates (tiles) 0.39(0.29) Long Gill (stones) 0.16
Calcareous streams (stones) 0.33
Milistone-grit streams (stones) 0.35

Relationships between ectoenzymatic activities and the bacterial/algal

biomass ratio

The bacteria/algae ratio in terms of biomass (ug C cm? of biofilm) was calculated for
the studied streams (Riera Major, La Solana, river Ter and Breitenbach) at the different
substrate types, and for those streams from Table 9 where both bacterial density and
chlorophyll was determined (from Jones and Lock 1993, Chapell and Goulder 1994a, Chapell
and Goulder 1994b, Chapell and Goulder 1992) being all them North-european. Algal biomass
was transformed from chiorophyll-a density using the conversion factor C:Chl of 60, which
was in the middie of the range 20-100 suggested by Margalef for algae of the river benthos
(1983) and applied in a mountain stream benthic community (Geesey et al. 1978). Although
higher C:Chl ratios have been measured in cyanobacteria dominated communities (900-2500
for a Nostoc sp. dominated community, 227-1400 for Phormidium sp
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dominated community, Vincent and Howard-Wiliams 1986; but 45.8 for Phormidium sp,
Hawes 1993), measurements for diatoms, which were the most abundant in the biofilms
studied, have always been lower (29.7-41.8 for Thalassiosira sp, Montagnes et al. 1994, 25-
100 for Thalassiosira pseudonana, Geider and Macintyre 1996). Similar conversion factors
have been reported for natural phytoplankton (Banse 1977).

Bacterial biomass was calculated from bacterial cell biovolume using the conversion
factor of 2.2 10" gC um™ (Bratbak and Dundas 1984, Kemp 1990) (chapter 2). For the
results found in the bibliography bacterial biomass was calculated from bacterial density
results and assuming a mean bacterial cell volume of 0.1 um®,

TABLE 11. Bacteria/algae biomass ratio in the different stream biofilms for the Mediterranean study sites
(left side) and for several European streams (right site) (see bibliographic source in Table 9). Values are
means from monthly values and standard deviations (n as in Table 1) for the streams studied in this project
and mean values for the results found in the bibliography. The symbols for the European streams are those
used in Fig. 5.

Bacteria7§lgae biomass ratio

Mediterranean streams European streams

Site and substrate Mean Site and substrate Mean
Riera Major Breitenbach

Current sand 4.60 (9.52) Artificial substrates (tiles) Breit  0.006 (0.003)
Littoral sand 1.81(2.63) Nant Waen (glass beads) NwWg3 0.055
Hyporheic sand 2.26 (2.31) River Clywedog (glass beads) RC93 0.092
Artificial substrates (tiles) 2.98 (2.01) Driffield Beck (stones) DB94a 0.022
La Solana ) Birk Gill (stones) BGY94a 0.052
Mixed community ~0.15 (0.10) Long Gill (stones) LG94a 0.049
Rivularia community 0.66 (0.72) Weighton Beck (stones) WB94b 0.018
Zygnema-Spirogyra community  0.20(0.17) Calcareous streams (stones) CAL92 0.002
Diatom bloom 0.06 (0.009) Millstone-grit streams (stones) MILL92 0.012
Ter

Artificial substrates (tiles) 0.25 (0.28)

The different stream biofilms showed a different bacteria/algae biomass ratio (Table
11). The more heterotrophic biofims (more abundant in bacteria) were found in Riera Major,
especially in the sandy substrate, while La Solana and river Ter were more autotrophic (more
abundant in algae). The Breitenbach epilithic biofilm had a drastically higher algal biomass
than bacterial. The other European streams have also lower bacteria/algae biomass ratios
than the Mediterranean streams (Table 11). The bacteria/algae biomass ratio can be used as
an indicative value of the relative amount of algal and bacterial biomass on each biofilm.
However, empirical values have to be managed with care, since the utilization of a single
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log (phosphatase activity)

log (bacteria/algae biomass ratio)

Fig. 5. Relationship between the bacteria/algae biomass ratio (in logarithms) and the
ectoenzymatic activities (in logarithms) in the different stream biofiims: the Mediterranean
streams: Riera Major (mid-channel sand, mS, stream-edge sand, eS, subsurface sand, subS,
and tiles, T), La Solana (mixed community, M, Rivularia community, R, Zygnema-Spirogyra
community, Z, diatom bloom, D), and river Ter; and several North European streams: the
Breitenbach (Breit), Nant Waen (NW33), River Clywedog (RC93), Driffield Beck (DF94a), Birk
Gill (BG94a), Long Gill (LG94a), Weighton Beck (WB94b), 7 English Calcareous streams
(CAL92), 8 English Millstone-grit streams (MILL92). a) B-glucosidase, b) B-xylosidase and c)
phosphatase. The significant regression line for each enzyme and for the Mediterranean and
European streams is also shown following the equations indicated in Table 12.

conversion factor for the algal and bacterial biomass could imply deviations from the real
values in diverse communities. Especially in La Solana, where the cyanobacteria are an
important component of the biofilm species, the algal biomass is possibly underestimated, and
thus this ratio would be lower than the calculated one.

In this section, regularities in the relationships between ectoenzymatic activities and
the bacteria/algae biomass ratio are explored in the studied streams and compared to the
North-european streams considered (Table 11). These relationships were analyzed after
drawing the scatter plot and by performing non-linear regression analyses. Since a potential
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relationship was found for the three enzymes, data were transformed to logarithms and a
linear regression was performed. The relationship between the bacteria/algae biomass ratio
and the respiratory activity was also investigated for the Mediterranean streams.

Significant negative relationships were found between the bacteria/algae biomass
ratio and the three ectoenzymatic activities for the Mediterranean streams studied (Fig. 5,
Table 12). This relationship indicates that in highly heterotrophic biofilms (high values for the
bacteria/algae biomass ratio) ectoenzymatic activities are lower than in more autotrophic
biofilms (low values for the bacteria/algae biomass ratio) suggesting that there is a limitation to
hydrolytic activities in the more heterotrophic biofims. When the bacterial biomass of the
bioﬁirh is higher than the algal biomass, the ectoenzymatic activities do not increase but
decrease. The highest heterotrophic biofims were those found in Riera Major. Although
allochthonous organic matter input may be an important carbon source for the heterotrophs in
the Riera Major (chapter 3), ectoenzymatic activities could be substrate limited when the algal
biomass is low. In contrast, when the bacteria/algae ratio is low (i.e. La Solana and river Ter,
Table 11) ectoenzymatic activities were higher (Fig. 5). Therefore, higher algal biomass with
respect to bacteria enhances the activity of the ectoenzymes. An extreme example of this
tendency is the low ectoenzymatic activities measured in the dark incubated biofilms of Riera
Major (chapter 8.2), where algae were very scarce (bacteria/algae biomass ratio =8.8, on
average). It seems that given a bacteria/algae biomass ratio of a stream biofilm, the potential
ectoenzymatic activities have a thereshold which is not exceeded. A part from stream
differences there seems to be an upper limit for the enzymatic activities.

Related with this pattern, it is observed a positive correlation between B-glucosidase
and phosphatase to chlorophyll-a (Table 4). This indicates the importance of algae as an
organic matter source for the heterotrophs, which is cleaved faster than allochthonous
materials (chapter 5).

Significant negative relationships between the bacteria/algae biomass ratio and -
glucosidase and B-xylosidase activities were also found when considering the Breitenbach
and other 8 European stream sites described in Table 9 (Fig. 5, Table 12). However, any
significant relaﬁonship could be stablished for the phosphatase activity. The slopes of the
regression lines were similar but the constants were lower than those found in the
Mediterranean streams (Table 12), as a result of the lower ectoenzymatic characteristic of the
European streams. Similar slopes in Mediterranean and European streams indicates that, at
least for the studied systems, there is a general decrease in ectoenzymatic activities when the
bacteria/algae biomass ratio increases. It is worth to be noted that calcareous streams are
placed on the left side of the graph indicating a lower bacteria/algae biomass ratio and a
higher ectoenzymatic activity in such habitats (La Solana and Ter for the Mediterranean
streams and the seven headwater English calcareous streams, CAL92, for the European

streams, Fig. 5).
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TABLE 12. Equations for the linear regressions obtained between the (log)
ectoenzymatic activities and the (log) bacteria/algae biomass ratio (bac/alg) with
Mediterranean and North-european streams. Coefficients of determination (R?),
degrees of freedom (df) and significance of the F-Fischer (F and signif. F) are also
shown.

Equation R* df F signif F
Mediterranean streams

log B-glucosidase = 1.15-0.39 (log bac/alg) 0355 79 43.55 0.000

log B-xylosidase = 0.77-0.40 (log bac/alg) 0286 78 31.18 0.000

log Phosphatase = 1.42-0.42 (log bac/alg) 0.231 79 23.72 0.000

log ETS = -0.02-0.56 (log bac/alg) 0437 72 5599 0.000

North-european streams

log B-glucosidase = -0.46-0.49 (log bac/alg) 0.500 ] 9.01 0.015

log B-xylosidase = -1.26-0.65 (log bac/alg) 0.587 8 11.37 0.010

log Phosphatase= 0.92-0.12 (log bac/alg) 0.051 7 0.38 0.558
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Fig. 6. Relationship between the bacteria/algae biomass ratio (in logarithms) and the
respiratory activity in Riera Major, La Solana and river Ter biofilms (symbols as in Fig. 5). The
significant regression line is also shown and the equation is indicated in Table 12.
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Respiratory activity also showed a significant negative relationship with the
algae/bacteria biomass ratio (Fig. 6). The higher slope than those found for ectoenzymatic
activities might indicate that there is a considerable contribution of algae to the respiratory
activity. Furthermore, it also stresses that algae are relevant for the heterotrophic metabolism
of the biofilm.

Conclusions and perspectives

Autochthonous organic matter, also known as high quality material for its lability, plays
an important role for the hydrolysis capacity of the heterotrophs in biofilms with low chlorophyll
density. The algal content of a highly heterotrophic biofilm in an oligotrophic stream is a
valuable organic matter source for the heterotrophs. in more autotrophic biofilms, the role of
algae decreases as a regulator parameter for the heterotrophic activity while the geochemical
features and environmental conditions of the stream become important for the microbial

activity.

In this study, special attention has been given to the role of the autotrophs in the
biofitm metabolism, and it is concluded that they play an important role. Less importance is
generally given to the autochthonous input for the microbial loop in flowing waters than to the
allochthonous input (e.g. Meyer 1994), possibly as a result of more study sites described in
the literature being devoted to forested streams.

Organic matter use in stream biofilms could experience variations in the short-time
scale. An analysis of the hourly and daily changes in ectoenzymatic activity probably would
give more light into the detailed dynamics of organic matter processing, especially on what
concemns to the role of heterotrophs and their link with the autotrophs. in the planktonic
environment it has been observed an hourly variation of ectoenzymatic activities following the
variations in the primary production (Karner and Rassoulzadegan 1995).

Furthermore, to widely analyse the factors which control the hydrolytic capacity of the
stream biofilms, we should also study allochthonous input, such as the specific analysis of
DOC composition. In a large number of studies of organic matter cycling in streams, the
influence of DOC composition for microbial uptake and growth, rather than DOC
concentration, has been suggested and noted (e.g. Barlocher and Murdoch 1989, Hedin 1990,
Middelboe and Sondergaard 1993, Koetsier lil et al. 1997), strongly encouraging this analysis
to a major knowledge of the microbial loop in stream ecosystems (Meyer 1994). The DOC
composition of the stream water, and therefore the lability or recalcitrancy of the compounds
being transported will determine the quantity of ectoenzymes synthesized and their activities.

On the other hand, a wider approach to the bacterial heterotrophic activity (i.e
measuring incorporation of organic substrates and bacterial production) should be planned as
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a complement to the ectoenzymatic activities since they are direct measures of heterotrophic
activity.

Multidisplinarity is probalby necessary since the complication of all different
appoaches to the study of organic matter use in stream environments. However, by knowing
the natural substrate concentration of a given organic compound, the kinetic parameters of the
specific ectoenzyme and the incorporation of this compound by the heterotrophs, we will be
able to calculate the real hydrolytic activity and thus the total organic matter which is being
used by the biofilm community and therefore the self depuration capacity of a stream stretch.
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