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Fig. 4. a) The paircorrelation function g(r) for the liquid phase compared
with Abrahams 16 g(r) + 1, thin line, b) same for the solid phase.
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Fig. 5. Left, the solid formed after a quench of a high T liquid after 2000
MCS, c = 0.3233, T = 0.1. Randomly oriented domains are formed.
Right, same with particles with 5 and 7 neighbors indicated by® and
• , respectively. Grain boundaries with pairs of 5 - 7 and defects are
clearly visible.
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Fig. 6a. The local orientational order parameters <\\y\'2> - \<\y>\- (square)
and \<\jj>\'2 (sphere) as a function of T for U = 0. The arrows point
towards the relevant axes. Clear anomalies occur at T — 2. Black
signatures resprsent results for heating from a perfect VSxVS
structure and open signatures for cooling from the liquid phase. It
shows that crystal growth and melting is irreversible.

- 214 -



0.015

DÉ

£ 0.010

<
o

g 0.005

o

J5.
36

b)

O 1 • 2

TEMPERATURE

Ob. The positional fluctuation parameter (<r2>-<r>2)/a- showing an

anomaly at T ~ 1.55 close to the low T side of the transition region. The

exact high T limit 5/36 is reproduced, thin line. Notice that upon

cooling of the l iquid (open symbols), the formed solid has no

correlation with the reference lattice.
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Fig. la.. Decay exponents q and rçe for the simple and the orientational pair
correlation functions g(r) - 1 and ge(r)/g(r). Clear anomalies occur at
T =a for U = 0.

Fig . 7b. Plot of the logarithm of the correlation functions ge(r)/g(r) and g(r) -
1. It demonstrates that the decay is algebraic and not exponential as
anticipated by Halperin and Nelson-*. The symbols O and • indicate
the maximum of In [gtí(r)/g(r)] and In [g(r)-l], respectively, and the
thin lines are guides to the eye.
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Fig. 8. The phase diagram for coverage c = Vs as a function of temperature
•

and corrugation potential U. The shaded area indicates the
transition region obtained from the indicated scans.

- 217 -



Fig. 9. A typical structure factor S(q) for q = (2,l)q0. The thin line
represents a fit to two Lorentzians and a slightly sloping background.
From this the peak position is extracted. As discussed in appendix A
the density q-point is higer in the other q directions.
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a) TEMPERATURE DEPENDENCE
WITH NO CORRUGATION, U=0
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Fig. 10a. Sequence of structure factors for U = 0 as a function of temperature
T (heating), for three q directions: q(hk) corresponds to q = (h,k)q0.
Notice the disappearence of the VSX Va Bragg peaks at T = 2, and
the isotropic liquid structure factor at high T = 4. Examples from the
solid, the transition region and several from the liquid phase are
shown.
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b) CORRUGATION POTENTIAL
DEPENDENCE AT T = 4

2i

1

O
2,

2
x

O,

LUer

o 0

q(12)

U = 0

q(10)

U = 2

LIQUID

2-

î -

n.

1
i

\

i
/ «

* "• C V _jt!f

^J

TRANS.

• U = 5

. .

• \ ,•" f-^ ^^**-^ _ _ • - * "

•̂"

•
" *
• ^ '

/̂

¿ -

1.

n -

r

/•» ;" \ /
-^ ^~"^

SOLID

U=10

.-.^s~~~*^ -̂*-~— ^J\
->"~ l

0 1 2
WAVE VECTOR q/q0

Fig. 10 b. Same for constant T = 4 and as a function of the corrugation
potential U (decreasing). Notice the disappearence of the Bragg
peaks along the (11) direction for U < 4.5, but the persistence of the
(substrate) potential induced (10) Bragg peak. Compare with the
phase diagram Fig. 8.
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Fig. lla. Peak intensity S(q,0) on a logarithmic scale as a function T. Notice
the linear behavior in the liquid phase, for small corrugation
potential U = 1. The line indicates the results of the linear theory by
Reiter and Moss 21.

b. Same as a function of decreasing corrugation potential U for T = 6.
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Fig. 12. The calculated positional fluctuation <r2>/a2 for different value of
U. Notice the close to linear increase with temperature for constant
U and the expected dramatic increase for U = 0. Notice also that for
small U <r2>/a2 is generally much larger near the melting point
than for larger U.
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Fig. 13. A Debye-Waller plot showing that the S(q,0) peak intensity is
approximately a universal function of the positional fluctuation
parameter <r2>/a2 for finite corrugation potential U * 0 and for
various T. It is defined in eq. <9). The arrow at L indicates the
Lindemann criterion for melting l . The transition region in Fig. 8
falls in the range L=s <r2>/a2s 0.3.
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Two Dimensional Solids and Liquids Influenced
by Small and Large Substrate Potential

ABSTRACT

A general, continuous model for two dimensional solids and liquids on a substrate

is studied by means of Monte Carlo simulation. The results can be applied to the

case of adsorbed atoms or molecules on surfaces as well as intercalated

compounds. We have focused on the study of the melting of a commensurate V3X

Vs structure on a triangular lattice with 1/3 coverage. We have in particular

investigated the contribution from the two dimensional liquid to the Bragg peaks

corresponding to the substrate structure. Reiter and Moss et al have demonstrated

that this gives valuable information about the substrate potential. A universal

dependence is found between the intensity and the particle fluctuations around

the substrate potential wells. This dependence may be useful for an experimental

determinat ion of the magnitude of the substrate potential from scattering

experiments, in particular for weak potentials and large atomic mean square

displacements. New results for large potential* arc also presented and possible

relations to the 1'otts lattice gas description studied.
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I. Introduction

A main reason for the prolonged discussion, see a recent review1 , and lack of

consensus on the problem of two'dimensional solids, liquids and specially the

melting transition is that real experiments are always performed on systems that

are not perfectly two dimensional. Most of the experiments are performed with

atoms physisorbed on substrates or intercalated between layers. A main factor

contributing to the difficulty in comparing these systems with the ideal two

dimensional solids and liquids is the influence of the substrate potential, also

called the corrugation potential.

Two limiting cases have usually been discussed in order to characterize the

substrate influence. The first assumes that the corrugation potential is large, so

that the system can be considered as a lattice liquid in which the motion of the

particles is restricted to a jumping between neighbouring wells, while the motion

within the substrate potential wells is not considered. In this limit several

theories concerning modified Potts Models- have been developed, discussing

mainly the symmetry change between the solid and liquid phase. Some of them3

seem to be in agreement with the phase diagram for Kr adsorbed on graphite4.

Very few calculations of the structure factors have been performed for these

models, the only exception, to our knowledge, being the calculation of the

structure factor of the lattice gas model using Monte Carlo simulation5. The

second case studied is based on the assumption that the substrate potential is

relatively small and can be considered as perturbing the real continuous liquid. A

general perturbation theory of the substrate influence on the structure factor has

been developed by Reiter and Moss1' and has been proved to be successful in

describing experiments on Rb?-s as well as on K9 intercalated in Graphite. The

theory allows the possibility of extracting the corrugation potential from X-ray

scattering data. The principal conclusion of the theory is that the 2d l iquid
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produces an important contribution to the Bragg peaks of the substrate, and that

the diffuse liquid ring structure factor may be reproduced around all the substrate

peaks. The linear approximation predicts that the contribution to the Bragg peak

intensity of the substrate is proportional to (VnK/knT) 2 where VHK are the

Fourier coefficients of the substrate potential, T is the thermodynamic

temperature and kß is the Boltzmann factor. The intensity of the secondary rings

is of higher order. The quantitative comparison between theese predictions and

experiments is however not easy and therefore molecular dynamics calculations

have bee used0-10 for tests. A main problem with this technique is that only

relatively small systems can be studied within reasonable computer time, and

finite size effects may influence the results. In a recent paperil we proposed

instead a continuous Monte Carlo method, which allows the possibility of studying

systems of 2700 atoms or mure, thereby considerably reducing the finite size

effects. Here this is further studied by considering very large corrugation

potentials, as a step towards unifying the Potts lattice description and the

continuous, perturbed liquid description, which is needed in order to understand

the influence of the substrate on the two dimensional solids and liquids.

II The Model

The model11 is defined on a 2d triangular reference lattice, with LxL sites

i(i = l,..,N = LxL) and lattice parameter a. Each site in the lattice corresponds to

the center of a hexagonal cell representing the substrate with edge length =

aA/3. On each site of the triangular lattice we define a variable S¡ taking the two

values 0 or 1 depending on the absence or presence of a particle at the cell i.

Further we define r¡ which is a 2d continuous vector that measures the position of

the center of the atom inside the cell. We neglect the possibility of perpendicular

motion of the particles. The total number of particles on the surface is kept

constant so that:
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