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FIG. 5. Evolution of the order parameters vs temperature in
the A, zone (Fig. 9). The values have been calculated by solv-
ing numerically the mean-field equations (15) with K =—0.4
and K3 =—10. (O, m,; ® m{; 0, my.) T, and T, are the
positional and orientational transition temperatures, respective-
ly. This case corresponds to the behavior of a liquid crystal

with T, <T,. (The lines are guides to the eye.)
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FIG. 6. Evolution of the order parameters vs temperature in
the 4, zone (Fig. 9). The values have been calculated by solv-
ing numerically the mean-field equations (15) with K =—0.2
and K3 =-0.6. (O, m,; ® m{; O, mi.) T, and T, are the
positional and orientational transition temperatures, respective-
ly. This case corresponds to the behavior of a plastic crystal

with T, > T,. (The lines are guides to the eye.)

FIG. 7. Evolution of the order parameters vs temperature in
the A4, zone (Fig. 9). The values have been calculated by solv-
ing numerically the mean-field equations (15) with K {=0.4 and
K}=-10. (O, m,;@ m{;0,mi.) T, and T, are the posi-
tional and orientational transition temperatures, respectively.
(The lines are guides to the eye.)
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FIG. 8. Evolition of the order parameters vs temperature in
the 4; zone (Fig. 9). The values have been calculated by solv-
ing numerically the mean-field equations (15) with K =0.2 and
K3 =-0.6. (O, m,;® mi;0,my.) T, and T, are the posi-
tional and orientational transition temperatures, respectively.
(The lines are guides to the eye.)
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FIG. 9. Detail of the T=0 phase diagram [Fig. 4(a)] showing
the regions where the four different mean-field solutions of Figs.
5-8 have been found. All the regions correspond to the same
ground state but have different evolutions with rising tempera-
ture.
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FIG. 10. Plot of the energy E* vs temperature T* showing
the two transitions T, and 7,. The values have been obtained
by solving numerically the mean-field equations with
K} =—0.4and K =—4.0. (The line is a guide to the eye.)
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where each one of the four solutions 4,, 4,, 4;,and 4,
is stable. It is worth noting that in the border lines 4 -
A, and A;-A,, T, equals T;.

In the A4, region the system behaves as a liquid crystal,
while in the A4, region it behaves as a plastic crystal. In
the A, and A, zones the order parameters show, respec-
tively, the same evolution with temperature as in regions
A, and A4,, but with m | negative.

We note that when one of the two possible modes
(orientational or positional) vanishes, the remaining order
parameters show a slower decay with increasing tempera-
ture. This effect has also been found in general studies of

systems with coupled order parameters, using the Landau .

theory.?

Now we will focus our attention on the study of the 4,
region, since it reproduces qualitatively the behavior ex-
hibited by liquid crystals. In Figs. 10 and 11 we have
represented, respectively, the energy and the specific heat
as a function of the temperature. It is clear that the
specific heat shows two singularities associated with both
the smectic-nematic and nematic-isotropic phase transi-
tions. Theoretical studies on these transitions'® and ex-
perimental results?® show that the smectic-nematic transi-
tion is continuous and the nematic-isotropic is first order.

Due to the numerical method used to obtain the order
parameters as a function of temperature it is difficult to
decide if the energy curve presents some discrete jumps
or not. Consequently there is a difficulty in knowing the
order of the transitions. In our 2D model we have con-
sidered molecules with a discrete number of orientations
0, a priori, it will not exhibit the same transition behav-
ior as real systems. However, it seems clear that the
smectic-nematic transition has a continuous character.
The order of the nematic-isotropic transition is less evi-
dent but also seems to be continuous or at least weakly
first order. ;

Calculating the temperatures T, and T, for different
values of the parameters K| and K7 we obtain the phase
diagram of the system. In Figs. 12 and 13 some sections
of this diagram are plotted. We have also represented the
corresponding analytical expressions for the temperatures
T; and T} previously obtained, with dashed and solid

T -

FIG. 11. Numerical derivative of E* (Fig. 10), showing the
evolution of the specific heat vs temperature in the mean-field
approximation. T, and T, correspond to the smectic-nematic
and nematic-isotropic transition temperatures, respectively.
(The line is a guide to the eye, and vertical units are arbitrary.)
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FIG. 12. Sections of the phase diagram calculated by mean-
field approximation. The T, (®) and T, (O) are plotted for
different values of K3 with K =—0.6 (a) and K = —0.2 (b).
The thick solid and the thick dashed lines are the T, and T, cal-
culated analytically and the thin lines are guides to the eye. (PC
means a plastic-crystal phase with long-range positional order
but not long-range orientational order.)

lines, respectively. As can be seen in the figures there is a
good agreement between both numerical and analytical
methods. We note that when K3 is very negative the nu-
merical minimization of F* is very difficult due to the
logarithmic divergence of some terms in F*, and the cor-
responding points in the phase diagrams are obtained
with a poor resolution.

IV. MONTE CARLO SIMULATION

A numerical simulation of our system is necessary in
order to improve the mean-field solution. In most sys-
tems Monte Carlo simulation allows us to understand as-
pects neglected by the mean-field theory. With this idea,
we have designed a Monte Carlo simulation program for
our model, with the usual method proposed by Metropo-
lis er al.?!

The Monte Carlo simulation of a physical system can
be performed using different dynamics. The two princi-
pal ones are Glauber dynamics,?? used when the order
parameter is not conserved, and Kawaski dynamics,?’
which apply to the case of a system with conserved order
parameter. The simulation of our system imposes
changes keeping the number of molecules N, constant,
but leaving the number of molecules in a certain orienta-
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FIG. 13. Sections of the phase diagram calculated by mean-field theory. The T, (®) and T, (O) are plotted for different values of
K! with K3 =—0.6 (a) and K7 =—1.2 (b). The thick solid and the thick dashed lines are the T, and T, temperatures calculated

analytically and the thin lines are guides to the eye. Mean-field equations with large values of K 3 and K are difficult to solve due to
logarithmic divergence in F*. (PC means a plastic-crystal phase with long-range positional order but not long-range orientational or-

der.)

tion (NJ,N; ) to be variable. This suggests the use of
mixing of the two dynamics, exchanging pairs of particles
and simply changing their orientation.

Glauber dynamics is faster than Kawasaki dynamics.
The use of both simultaneously implies that the mecha-
nism that changes the orientation of the particles is faster
than the mechanism that interchanges particles. In fact,
this is not a bad hypothesis for our system. We have not
studied the relaxation to equilibrium of our system, but of
course this would be a very interesting thing to do in or-
der to analyze the competition of both dynamics.

Our simulations have been carried out on lattices with
30X 30 or 4040 sites with periodic boundary condi-
tions. Usual runs of 3000-5000 Monte Carlo steps
(MCS’s) (1 MCS=1 orientational change attempt per site
and 1 positional interchange attempt per site) have been
performed. The proposed changes are accepted or not by
using an exponential transition probability.?* The calcu-
lation of the numerical values of the variables of interest
has been done by averaging over 1000 equilibrium
configurations and in some cases (order parameters) we
have also averaged over six different runs with different
random number generator seeds.

In most cases we have performed two kinds of evolu-
tions to equilibrium: first, starting with a complete or-
dered structure until reaching the equilibrium state at a
given temperature, and second, starting with a disordered
state. In both cases the final values of the different calcu-
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FIG. 14. Plot of [E*—E*(T=0)]/E*(T =0) at low tem-
peratures calculated by Monte Carlo simulations from an initial
state with orientational and positional order [phase A in Fig.
4(c)]. For K} =—0.25 (@), —0.50 (A), —0.75 (V), and —1.0
(0) the initial state seems to be the most stable, while for
greater K [—1.5 (A) and —2.0 (W)], the energy decays to a
most ordered state formed by clusters of B phase [Fig. 4(c)]. All
the curves are calculated on the line K¥ =K} /V2. The 4
ground-state phase seems to be stable slightly far away from the
border line between A and B phases represented in Fig. 4(a).
The simulations have been carried out on a 30X 30 lattice and
averaging over 1000 MCS’s.



lated quantities agreed quite well.

First of all, we have performed Monte Carlo runs at
low temperature in order to obtain the ground state of
the system. The structure predicted using Karl’s
theorem in zone A (Fig. 4) has not only been confirmed,
but even extended a little into the B zone. As discussed
in Sec. II, the main reason for this change is certainly the
extra energy associated with the boundaries of the clus-
ters in the B zone when the particle density is 0.5, as in
our case.

In Fig. 14 we have represented [E*—E*(T*=0)]/
E*(T*=0) at low T* for different values of K} and with
K3 =K7T/V2. These values of E* have been obtained
starting with a configuration corresponding to the
theoretical ground state obtained from Karl’s theorem,
and reaching equilibrium at a given temperature. When

I < —1 the metastable state at very low temperatures
decays to a state of lower energy: clusters of the B phase
are formed. With K} > —1 this effect does not occur
since the A phase is in the most stable structure. In this
particular case (K3 =K7 /V2) the theoretical limit be-
tween A and B phases calculated by using Karl’s theorem
is reached at K| = —0.739, but the A phase seems to be
stable until K| = —1.0.

In Fig. 15 we show the section of the phase diagram
along the line K3 =K /V2 and we compare it with the
corresponding phase diagram obtained with the mean-
field approximation. The general aspect of both are the
same, but the transition temperatures are lower in the
Monte Carlo calculations.

This is, in fact, the usual result when comparing
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FIG. 15. Section of the phase diagram calculated by Monte
Carlo (MC) simulations compared with the mean-field (MF)
solution. The section is made over the line K3 =K /V2. (+,
T, calculated by MF; O, T, calculated by MF; @, T, calculated
by MC; and O, T, calculated by MC.) The solid lines are the
analytical solutions from Egs. (15) and the dashed lines are
guides to the eye. Both phase diagrams are qualitatively equal;
however, MC calculations give lower transition temperatures.
The simulations have been carried out on a 30X 30 lattice and
averaging over 1000 MCS's after reaching equilibrium.
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FIG. 16. Evolution of the order parameters calculated by
Monte Carlo simulations with K = —0.8 and K5 = —0.4. (e,
Mgt mi; B, my.) The lines are guides to the eye. The
simulations have been carried out on a 40X40 lattice and
averaging over 1000 MCS’s after reaching equilibrium and over
six different runs with different random generator seeds. This
behavior corresponds to a liquid crystal with T, (orientational
transition temperature) greater than T, (positional transition
temperature).
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FIG. 17. Evolution of the energy E* calculated by Monte
Carlo simulations in the same conditions as in Fig. 16. The
smectic-nematic transition (7},) and the nematic-isotropic tran-
sition (T, ) are little masked by the finite-size effects. The inset
shows the detail of the orientational transition. (The error bars
in the inset show the standard deviation of the values.)



mean-field and exact results, since mean field neglects the
effect of the short-range order. Small ordered clusters of
particles will lower the energy and consequently the criti-
cal temperatures.

We have also studied the evolution of the order param-
eters and the energy with temperature in the liquid-
crystal region (zone 4, in Fig. 9). We have focused our
study at the point KT =—0.8 and K; =—0.4 of the
phase diagram. In Figs. 16 and 17 we show the order pa-
rameters and the energy as a function of 7*.

As can be seen from the energy plot the discontinuity
at the nematic-isotropic transition is very weak. Prob-
ably, this is mainly due to finite-size effects.

The Monte Carlo results confirm that the behavior ob-
tained using the mean-field approximation is correct, at
least, at a qualitative level.

V. SUMMARY

In this work we have studied the phase diagram of a
2D lattice-gas model of rodlike molecules which can ex-
hibit four possible different orientations. In addition to
the antiferromagneticlike positional interaction energy
between molecules, the Hamiltonian of the system also
contains a nonpolar orientational interaction between
nearest and next-nearest neighbors. In its dimensionless
form, the Hamiltonian depends on two parameters, K |
and K3, which correspond, respectively, to the ratio be-
tween the NN and the NNN orientational interactions
and the positional one. The orientational interaction is
similar to the one considered in the Maier-Saupe model,
commonly used for the study of the nematic-isotropic
phase transition in liquid crystals.

Our model is able to reproduce both a smectic-
nematic-like transition and a nematic-isotropic-like tran-
sition. It represents only a first approximation to the

study of the behavior of real systems. Its relative simpli-
city, however, allows us to analyze the interdependence
of the orientational and the positional components of the
interaction determining its influence on the phase dia-
gram of such kinds of systems. The ground state of the
model has been investigated on the basis of Karl’s
theorem. For different values of the two parameters, the
system can show a rich variety of structures. We have fo-
cused our attention on the region compatible with the ex-
pected behavior exhibited in liquid crystals. In this re-
gion the Monte Carlo simulation results have confirmed
the ground state predicted by Karl’s theorem.

We have investigated the properties of the system in
this region by mean-field calculation and using the Monte
Carlo simulation technique. The mean-field results have
been qualitatively confirmed when compared with the
Monte Carlo simulations.

The shape of the energy and heat-capacity curves
versus temperature, for both the smectic-nematic and
nematic-isotropic transitions seems at a qualitative level
comparable with those found experimentally in some real
systems. Nevertheless, the order of the transitions in-
volved in the model has not been obtained unambiguous-
ly. It seems, however, that the smectic-nematic transi-
tion has a continuous character, while the nematic-
isotropic transition could also present a continuous or at
least weakly first-order character.
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Lattice-gas model of particles with orientational and positional degrees of freedom:
Mean-field treatment

We consider a lattice-gas model of particles with internal orientational degrees of freedom. In ad-
dition to antiferromagnetic nearest-neighbor (NN) and next-nearest-neighbor (NNN) positional in-
teractions we also consider NN and NNN interactions arising from the internal state of the parti-
cles. The system then shows positional and orientational ordering modes with associated phase
transitions at T, and T, temperatures at which long-range positional and orientational ordering are,
respectively, lost. We use mean-field techniques to obtain a general approach to the study of these
systems. By considering particular forms of the orientational interaction function we study cou-
pling effects between both phase transitions arising from the interplay between orientational and po-
sitional degrees of freedom. In mean-field approximation coupling effects appear only for the phase
transition taking place at lower temperatures. The strength of the coupling depends on the value of
the long-range order parameter that remains finite at that temperature.

I. INTRODUCTION

The complexity that most of the phase diagrams of real
substances exhibit may be attributed to the interplay be-
tween the different kinds of internal degrees of freedom of
their individual components. A typical example is a
binary alloy with one or both kinds of atoms having a
magnetic moment.! Apart from the configurational in-
teraction leading to the ordering of the two species on the
lattice we must consider the magnetic interaction coming
from the magnetic degrees of freedom. If the energies as-
sociated with both kinds of degrees of freedom are com-
parable in magnitude, coupling effects may appear and
modify the phase diagram so that it can differ consider-
ably from the phase diagram corresponding to a nonmag-
netic binary alloy.

In this paper we shall deal with systems exhibiting in-
termediate phases between solid and liquid phases. Usu-
ally their properties emerge from the competition be-
tween two or more ordering modes. We shall focus our
attention on the case of systems constituted by particles
that due to their symmetry can be positionally and orien-
tationally ordered. However, most of our results can be
extrapolated to the case of the competition between any
two ordering modes (magnetic, structural, etc.).

The ground state of these systems is characterized by a
long-range positional and orientational order. By in-
creasing the temperature, the system first loses positional
or orientational long-range order, and an intermediate
phase between solid and liquid phase is obtained (it can
be orientationally ordered only or positionally ordered
only). It can usually be classified as a soft condensed
matter phase. Finally at higher temperatures the liquid
phase with no long-range order is obtained. The
comprehension of the main features of these two phase
transitions and the intermediate phase is a matter that is
closely linked to the problem of coupling between the two
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ordering modes, orientational and positional.

Coupling between phase transitions has been extensive-
ly studied using different theoretical, computer simula-
tion, and experimental studies. Phenomenological mod-
els based on the two-order-parameter Landau theory
have been developed.? Some microscopical models ex-
hibiting coupling have also been studied. In particular,
the two-color Ashkin-Teller model® consisting of two Is-
ing models with a biquadratic coupling has been solved in
an almost exact way using Monte Carlo renormalization-
group theories.* Other microscopical models for magnet-
ic binary alloys have been studied using mean-field ap-
proximations and the cluster variational method (CVM).?
In the field of computer simulation, some Monte Carlo
works may be cited.®~’

Experimentally many systems have been studied, some
of them very recently. Liquid crystals are, possibly, the
best known.® They consist of rodlike molecules that ex-
hibit many phases with orientational and positional
long-range order (solid and smetic phases), phases with
only orientational long-range order (nematic), and com-
pletely disordered phases (isotropic liquid). Another ex-
ample is plastic crystals’ (PC’s), which also consist of
rodlike molecules but differ from liquid crystals (LC’s) in
that the first ordering mode that reaches zero is the orien-
tational one. At higher temperatures the positional order
also vanishes when the isotropic phase is reached. We
should also mention the case of molecules adsorbed on
surfaces. A typical example is molecules of N, adsorbed
on graphite!® which, apart from the possibility of being
positionally ordered on the graphite lattice, may be
oriented in three different directions.

The main purpose of this work is to introduce a gen-
eral model for the description of the systems exhibiting
coupled phase transitions associated with positional and
orientational ordering modes and to solve it using a
mean-field approximation in a general case. The lattice-



gas model has been extensively used for the study of the
solid-liquid phase transition.!! Our objective is to add
orientational degrees of freedom to that model so that it
can reproduce intermediate phases. Because of our in-
terest in the study of coupling phenomena we shall elimi-
nate other effects that may distort our model. In particu-
lar, we shall avoid dealing with frustration effects that
may be important in order to understand the complexity
of phase diagrams in real systems.

The paper is organized as follows. First, in Sec. II, we
shall introduce the model and discuss its general applica-
bility. In Sec. III we shall comment on some aspects of
its ground state. The general solution of the model in the
mean-field approximation will be given in Sec. IV. In
Sec. V we shall focus our attention on two particular
cases (Secs. V A and V B) where the coupling effects can
be- specifically studied, and finally in Sec. VI we shall
summarize the conclusions of the work.

II. MODEL

Consider a lattice with N sites (I =1,...,N) and let us
define in each site two variables: s;, which takes values
{1,0} depending on the presence or absence of a particle
in site I; and t;, which takes one of the n discrete values
{1,...,i,...,n} depending on the orientational state of
the particle. In fact, ¢; is only defined when s;=1. We
shall write the energy of the system as

H=3J, 3 s5i5;+3Jy 3, si5;+3K, 3 515,P(1y,1)
NN NNN NN

+%K2 2 SISJP(tth) ’ (l)
NNN

where J,, J,, K, and K, are constants, P is a symmetric
function of the orientations ¢; and ¢, (it will be treated as
an n Xn matrix with 7; and ¢; taking values between
1I,...,n), and I nN, SNNN are sums over all the nearest-
neighbors (NN) and next-nearest-neighbors (NNN) pairs.
We shall also assume a conservation law on sy,

25]=CN ’ 5 (2)
I

where ¥ is made over all the lattice sites and c is the con-
centration. We shall only consider the case with ¢ =0.5.

We exclude the possibility that P(z;,t;) depends on the
vector rj;, so that we are dealing only with isotropic
orientational interactions. It is worth noting that, in this
model, the orientational interaction is a slave to the posi-
tional one, in the sense that the molecules may only in-
teract orientationally if they are NN or NNN, i.e., they
are positionally interacting. This feature makes this
model different from the usual models used for the study
of coupling between different degrees of freedom where
the coupling appears explicitly through a term giving the
interaction between the different variables.

Another point worth mentioning is that we have
discretized both positions and orientations. This is not
always a sufficiently good approximation, but it may be
physically justified in many cases and it makes the model
suitable for computer simulation.

III. GROUND STATE

The system must have a lattice-gas-like ground state,
so that we may make the hypothesis that J, is positive
enough to.assure that at T— 0 the lattice could be subdi-
vided into two equivalent sublattices (+ and —), one
completely full of particles (+) and the other completely
empty (—). Here we are also assuming some hypotheses
on the symmetry of the lattice so that we shall avoid frus-
tration. In particular, the two-dimensional square lattice,
the simple-cubic lattice, and the bcc lattice agree with
these hypotheses. This division into two sublattices in-
troduces a positional degeneration g, =2.

In order to characterize the sublattices we define the
number of NN ¢,*~ and NNN g, between them.
For instance, we have ¢,* =4 and ¢," =4 for the
two-dimensional square lattice and g¢," " =8 and
g, 1 =6 for the bec lattice. With these assumptions we
may write the ground-state energy as

H(T=0)=1J,q,"TeN+1K, 3 P(15,1)) . (3)
NNN
Now we suppose that K, <0 and that there is a direc-
tion (let us say n), so that P(n,n) has the maximum value
of the matrix elements P(i,j), i,j =1, ...,n. Then at the
ground state all particles are parallel to each other in the
direction n. We do not exclude the possibility that there
are k=n-1,...,n —(g,—1) other directions (g, is the
orientational degeneration), so that P(k,k)=P(n,n). In
this case the total degeneration of the ground state will be
8p8o-
Without losing generality we can also suppose that the
matrix P is normalized so that
P(n,n)=1,
3 (4)
> Pin,i)=0.
i=1
Should this not be the case, the problem can be solved by
defining

P(i,j)— 3 P(nk)/n
k=1

P'li,j)= :
P(n,n)— 3 P(n,k)/n
k=1

and renormalizing J,, J,, K, and K,.

Cases with a ground state where the molecules are not
parallel (for instance, as observed on most of the ad-
sorbed molecules on surfaces'?) may also be solved with
the formalism that we shall develop. However, in this
case the order parameters that shall be introduced later
should be defined in a different way that is suitable for the
considered ground state.

IV. GENERAL MEAN-FIELD SOLUTION

First, we shall define the occupation numbers of the
two different sublattices N,~+ and N;” (i=1,...,n) as the
number of particles with orientational state / in sublattice
+ and —, respectively. We also define the vector
N=(N},...,N},N7,...,N;) and the scalars



N =3.Nt and N"=3,N .

NT+N~"=cN.

From (2) we have

Secondly, we shall introduce the order parameters as a
function of the occupation numbers. The positional or-

der parameter is defined as

m,=2(N*—N~)/N ,

and the orientational order parameters as

mi=2NE-NF)/N,

withk=1,...,n—1

(5)

In the ground state the order parameters will take the
values m, =1, m,; =1, and m_; =0. We define the vector

m=(mJ,...

+ -
yMop —15Mp1 5 -

oy Mg}, Mo,C) .

The relation between the vector m and N is given by the

equation
m=[{1/(N/2)]gN,

where Q is the 2n X 2n matrix

(6)

where we have defined

J,=Jq," ", ‘Iq=']]ql.+:—’ K,=Kyq,*",

5% (10)
K,=Kq, :

Now we can calculate the free energy of our system as

—BF=In 3 g(m)exp[—BH (m)] | , (11)

where 3, is made over all the values of m with ¢ =0.5
and g (m) is the degeneration of a configuration with or-
der parameter m and B=1/kpT, where kp is the
Boltzmann factor and T is the temperature. If we define
the functional F (m) as

—BF(m)=—pBH(m)+In[g(m)], (12)
we can write F=F(m®), where m® is the order-

parameter vector that minimizes F (m) keeping ¢ =0.5.
We can calculate first g'(N) as

-1 1
, Lok 0 g'(N)=(g")"(N)g')"(N),
-1 1
-1 1 :
Q= 0 : (7)  with
(LN)
—1 1 PR ~ ol 2
(g")E(N)= : (13)
s ¢ s 1 -1 -1 « N,i!---N,,*![%N—ENE]!
0.5 s e 0.5 .

Inverting relation (6) we obtain

N=INQ 'm.

(8)

Assuming the usual mean-field approximations we can

write H as a function of NV as

NH(N)=2J N*N~+J,(N*N*+N"N")

+2K, % 3 Pk jINSNT
J

Then, we obtain g(m)=g'(N(m))=g'(1NQ "'m). We
can now look for the minimum of F(m) keeping ¢ con-
stant. By introducing a Lagrange parameter u and
defining a 2n-component vector p=(0,...,0,u) we can
write concisely the set of 2n + 1 equations that determine
m* and p as

BQ'V, H(m)—BQI=iNVyin[g'(N(m))], ¢=0.5,

(14)

+K, §2P(k,j)(N,j'Nj++Nk‘Nj‘) : )
J

where the differential operators V,, and V are defined as
Vn=/9m,,...,8/dmqm_,,d/3m,;,...,3/3m,, _,,d/3m,,d/3c) ,
Vy=(3/3N7{,...,0/3N,},8/3NT,...,3/3N]) .

In obtaining Eq. (14) we have used the Stirling approxi-
mation on (13), the chain rule, and (6) in order to change kidJ
the V,, to a V in the second term (that has to be ex-
pressed in function of m).

A general solution to Eq. (14) is not easy to find. Nev-
ertheless, we can look for some simple solutions. It is
convenient, in order to obtain some analytical results, to
make an extra assumption on the interaction P (K, j),

der parameters only:
H(m)={,+/J, e+ LJ, o )m:

+1K,(m; P +m, )+ K, mtm,

3 3 P(k,jINENf= zP(k,n)Nki] [zp(j,nw;t] ;
- - .

(15)

which allows us to write H (m) as a function of three or-

(16)



where m," and m,” are linear combinations of the orien-
tational order parameters

 Tert!
mEi=— S mZP(nk) . (17)
k=1

This assumption (15) has been extensively discussed'* and
in some cases we are interested in (for instance, in LC’s) it
has been demonstrated that it is exact in the mean-field
approximation. Anyway, numerical solution of Eq. (14)
can be obtained without this assumption, and we use it
here in order to proceed with an analytical analysis. Let
us discuss now the following simple solutions.

(i) Disordered solution: A disordered solution with all
the N equal [or equivalently m=(0,...,0,0,c =0.5)] is
always a solution of Egs. (14) but is only stable at high
enough temperature.

(ii) Solution with only positional order: If we make
NE=N*/n for all k=1,...,n [or equivalently
m=(9, «..,0,m,,0.5)] Egs. (14). reduce to only one
equation

m,(J,—J,)
2ksT

. 1—m,
T

exp (18)

This gives a second-order positional phase transition,
when the orientational order is not present, at a critical
temperature given by

kpT,(my =0)=1(J,—J,) . (19)

(iii) Solution with only orientational order: We now
look for a solution with N;F =N, forallk =1,...,n [or
equivalently m=(m,,. y Mop — 1y M,
=0,0.5)]. Equations (14) lead to a set of n — 1 equations
k=Y. o n—1);

ey My 1Moy e e

=1
B(K,+K,)[P(n,n)—P(n,k)] [ S myP(n,))
j=1

c+2moj

=In L . (0
c+ 2 moj Mk
b 4

This set of equations is reduced to the following two:

nil - x(K,+K ) P(n,n)—P(n,k)]
exp—
k=1 kgT X
o R SR () A
(n—1) prasel
(21
=1 x(K,+K,)[P(n,n)—P(n,k)]
kgl P(n,k)exp kT

=—P 2 _i'
(n,n) Py

where x and y are the following linear combinations of
myg:

n—1
x= 3 my,P(nk),
k=1
n=]
Piies E Moy -
k=1

(22)

Making x —0 and y —0, we can obtain the temperature
at which the orientational order disappears (supposing
that the system is already positionally disordered,
m, =0). This temperature is given by

k,,To(mp=0)=—c(Ko+Kq)n"kz P(n,k)*. (23)
=1

In the general case it is difficult to predict the order of
the transition, but for a particular P(i,j) it may be done
as we shall see in Sec. V. If the transition is first order,
T, corresponds to the low-temperature limit of coex-
istence between the orientationally ordered state and the
completely disordered one.

We have found the solutions with one of the two de-
grees of freedom completely disordered, so we have not
found coupling phenomena. in order to do that, the in-
teresting transition temperatures to be found are
T,(m,=0) and T,(m,=0) and this will be done in a par-
ticular case.

V. SIMPLE PARTICULAR CASE

A. Potts-like orientational interaction

In order to obtain analytical solutions for the inter-
mediate transition temperatures and study the coupling
phenomena, we shall solve Egs. (14) choosing a very sim-
ple P (i,j) matrix

P(n,k)=—1/(n—1),
P(n,n)=1.

(24)

We suppose that the other terms of the matrix P (i, ) are

defined in such a way that Eq. (15) is exactly verified. It
should be pointed out that this definition satisfies the nor-

malization rules (14) defined in Sec. III. Note also that
for this case definition (17) may be reduced to

/(n-—l). (25)

After some algebra, Egs. (14) reduce to the following
equations that determine m,, m,", and m,:

=1

3 m

k=1

- -
' P

P’
(K=K, Jim =m )+ =T, m,
(14+m,)[1+m,+2(n —1)m,"]

i, (1=m,)[1=m,+2(n —1)m,"] i
n(K,mk +quf ) 2nm
"‘"l n—1ksT J='— 1£m, +2(n —)mE
(26b)

At T =0 it is easy to prove that the ground-state solution
ism,=1,m, =1, and m,”=0.
We can look for the solutions at T > 0 as before.



(@) m, =0, m," =0, m,” =0 is always a solution of Egs.
(26) but it may be seen that it is only stable at high
enough temperatures. It represents the disordered state
with neither positional nor orientational order.

(b) m;f =m, =0, m, >0. We obtain, as seen before, a
second-order phase transition at

kpT,(m,=0)=kyT,(0)=1(J,~J,) . (27

() m,=0, m,;* =m;, =m, >0. Making m, =0 in Eqs.
(26), we obtain the transition temperature for this phase

kpT,(m,=0)=kzT,(0)=—4(n —1)""K,+K,) . (28

We can now study the order of this transition. We have
obtained that for n =2 the transition is second order
while for n > 2 it becomes first order, as expected from a
mean-field theory.

(d) m,>0, m,">0, m;>0. Although the general
order-parameter evolution can only be obtained numeri-
cally we can find in this case two transition temperatures
corresponding to two cases: (i)

. + * v *
m,—0 with m;”—mS, m, —-m; .

In this case the transition temperature can be expressed
in a function of the temperatures found in (27) and (28) as
a solution of the following two coupled equations:

2T,(m;')=T,(0)+€T,(0)f(m,)
+{[T,(0)—€T,(0)f (m)]?

+8T,(0)eT,(0)(n —1)m}?}'/2 (29a)
exp[ —2nT,(0)m, /T,(m,')]
=(1=-2m2)/[1+2(n —1)m}], (29

where
e=(K,—K,)/(K,+K,) ,
flm})=14+2(n =2)m? —=2(n —1)m}? .

m, is the orientational order-parameter value at the tran-
sition point T,(m ). Note that if we make m; =0 we re-
cover the solution (28), and if we take m, =1 (this is the
maximum value that m, can take if m,=0), we find
T,(3)=0. It is worth noting again that if the transition
is first order this transition temperature corresponds to
the low-temperature limit of coexistence of the phase
with orientational and positional order and the phase
with only orientational order. (i) m," —0, m, —0,
m,>0. In this case the transition temperature is deter-
mined as the solution of

2An = DkyT,(m})=—K,+[K2+(K2—K})m}?]'?,
(30a)

exp[(J,—=J,)m; /2ky T,(m})]=(1 +m;)/(1—m;),
(30b)

and if the transition is first order this temperature corre-
sponds to the low-temperature limit of coexistence be-
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FIG. 1. Phase diagrams for different values on the number n
of particle orientations for the case K, =K, =K. The positional
transition is second order and takes place at
ks T /(J,—J,)=0.25 regardless of K and n. The orientational
transition changes from second order to first order when n > 2.
Shadowed areas correspond to metastable coexistence regions in
the first-order phase transitions. Transition lines define four re-
gions in the phase space corresponding to the completely disor-
dered phase, the only positionally ordered phase, the only orien-
tationally ordered phase, and the positionally and orientational-
ly ordered phase.

tween a positionally and orientationally ordered phase
and an only positionally ordered phase. From Egs. (29)
and (30) one can obtain the transition temperatures as a
function of the constants (J, —J,), (K, —K,), (K, +K_),
and n. But one can see that this functionality is mainly
governed by the value of the order parameter associated
with the degree of freedom that remains finite during the
transition. (m, in the case of the positional transition
and m, in the case of the orientational transition). Fig-
ures 1 and 2 show the phase diagram calculated from
Egs. (27), (28), (29), and (30) in the cases K, =K,=K and
K,=2K,=2K, respectively. In the former case
(K,=K,=K) we also show the zone where metastable
states are possible during the orientational transition if
n >2. Comparing both figures, the case K, =K, appears
as a special case where there is no coupling effect because
the transition lines do not change when crossing. This is
due to the fact that the constant K,—K, governs the
coupling, as can be clearly seen from Eq. (30a) and via
Eq. (29a). When the NN and NN orientational interac-
tion are equal (K,=K,) the orientational order is not
affected by the positional one because the positional tran-
sition is associated with a balance between the number of
NN and NNN pairs. Another particular case is the case
J,=J,. From Eq. (27) one deduces that the positional
transition disappears if there is not orientational order,
but from Egs. (29) one can see that T, remains finite
when m is different from zero.

(e) To obtain a complete solution for the order-
parameter evolution, solving Egs. (26) is a very difficult
task because of the exponential divergences that make the
convergence of the iterative numerical methods very
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FIG. 2. Phase diagrams for different values of the number n of particle orientations for the case K, =2K,=2K. Dots correspond
to the orientational phase transitions while squares correspond to positional phase transitions. Transition lines define four regions in
the phase space corresponding to the completely disordered phase, the only positionally ordered phase, the only orientationally or-

dered phase, the positionally and orientationally ordered phase.

slow. An easier way to proceed is to minimize numerical-
ly the effective free energy for this problem. This
effective free energy is deduced from (12) noting that
symmetry imposes that all the orientational order param-
eters m,, be equal. Looking for the deepest minimum
one directly obtains the most stable solution, and it is not
necessary to calculate the second derivatives in order to

assure the stability of the solutions.

Solutions giving the order parameters as functions of
temperature are given in Fig. 3 for a case where T,> T,
and in Fig. 4 for a case where T, > T,. Despite the fact
that Fig. 3 corresponds to the case K, =K, which does
not present coupling effects in the phase diagram (Fig. 1),
the order-parameter evolution reflects coupling effects.

1.00 T """" W
0.80 -
0.60 -
0.40 1
y
0.20 1
0.00 T lj) i . ¥ t T T *
0.00 0.10 0.20 .30 0.40 0.50 0.60 0.70 0.80 0.90
T'

FIG. 3. Order parameters m," (X), m,” (+), and m, (@) as a function of reduced temperature T* =k, T /(J,—J,), with J, =1,
J,=0, K,=K,=—2, and n =6. The positional transition (@) is second order, while the orientational transition is first order. Note
that after the positional transition m," =m,” («) because the two sublattices + and — become equivalent.
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